1 /**
2   ******************************************************************************
3   * @file    stm32mp1xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2019 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32mp1xx_ll_tim.h"
22 #include "stm32mp1xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32MP1xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined(TIM12) | defined (TIM13) | defined (TIM14) | defined (TIM15) || defined (TIM16) || defined (TIM17)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
71 
72 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
73                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
74 
75 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
76                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
77 
78 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
79                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
80 
81 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
82                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
83                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
84 
85 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
86                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
87                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
89 
90 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
106 
107 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
108                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
109                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
110 
111 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
112                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
113                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
114 
115 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
116                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
117 
118 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
119                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
120 
121 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
122                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
123 
124 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
125                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
126                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
127                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
128 
129 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
130                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
131 
132 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
133                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
134 
135 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
136                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
137                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
138                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
139                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
140                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
141                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
142                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
143                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
151 
152 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT)          \
153                                            || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
154 
155 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
156                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
157 
158 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
159                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
160 
161 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
162                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
163                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
164                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
165                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
166                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
167                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
168                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
169                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
177 
178 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT)       \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
180 
181 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
182                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
183 /**
184   * @}
185   */
186 
187 
188 /* Private function prototypes -----------------------------------------------*/
189 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
190   * @{
191   */
192 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
193 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
194 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
195 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
196 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
197 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
198 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
199 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
200 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
201 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
202 /**
203   * @}
204   */
205 
206 /* Exported functions --------------------------------------------------------*/
207 /** @addtogroup TIM_LL_Exported_Functions
208   * @{
209   */
210 
211 /** @addtogroup TIM_LL_EF_Init
212   * @{
213   */
214 
215 /**
216   * @brief  Set TIMx registers to their reset values.
217   * @param  TIMx Timer instance
218   * @retval An ErrorStatus enumeration value:
219   *          - SUCCESS: TIMx registers are de-initialized
220   *          - ERROR: invalid TIMx instance
221   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)222 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
223 {
224   ErrorStatus result = SUCCESS;
225 
226   /* Check the parameters */
227   assert_param(IS_TIM_INSTANCE(TIMx));
228 
229 #if defined(TIM1)
230   if (TIMx == TIM1)
231   {
232     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
233     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
234   }
235 #endif
236 #if defined(TIM2)
237   else if (TIMx == TIM2)
238   {
239     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
240     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
241   }
242 #endif
243 #if defined(TIM3)
244   else if (TIMx == TIM3)
245   {
246     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
247     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
248   }
249 #endif
250 #if defined(TIM4)
251   else if (TIMx == TIM4)
252   {
253     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
254     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
255   }
256 #endif
257 #if defined(TIM5)
258   else if (TIMx == TIM5)
259   {
260     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
261     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
262   }
263 #endif
264 #if defined(TIM6)
265   else if (TIMx == TIM6)
266   {
267     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
268     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
269   }
270 #endif
271 #if defined (TIM7)
272   else if (TIMx == TIM7)
273   {
274     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
275     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
276   }
277 #endif
278 #if defined(TIM8)
279   else if (TIMx == TIM8)
280   {
281     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
282     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
283   }
284 #endif
285 #if defined(TIM12)
286   else if (TIMx == TIM12)
287   {
288     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
289     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
290   }
291 #endif
292 #if defined(TIM13)
293   else if (TIMx == TIM13)
294   {
295     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
296     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
297   }
298 #endif
299 #if defined(TIM14)
300   else if (TIMx == TIM14)
301   {
302     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
303     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
304   }
305 #endif
306 #if defined(TIM15)
307   else if (TIMx == TIM15)
308   {
309     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
310     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
311   }
312 #endif
313 #if defined(TIM16)
314   else if (TIMx == TIM16)
315   {
316     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
317     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
318   }
319 #endif
320 #if defined(TIM17)
321   else if (TIMx == TIM17)
322   {
323     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
324     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
325   }
326 #endif
327   else
328   {
329     result = ERROR;
330   }
331 
332   return result;
333 }
334 
335 /**
336   * @brief  Set the fields of the time base unit configuration data structure
337   *         to their default values.
338   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
339   * @retval None
340   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)341 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
342 {
343   /* Set the default configuration */
344   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
345   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
346   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
347   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
348   TIM_InitStruct->RepetitionCounter = 0x00000000U;
349 }
350 
351 /**
352   * @brief  Configure the TIMx time base unit.
353   * @param  TIMx Timer Instance
354   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
355   * @retval An ErrorStatus enumeration value:
356   *          - SUCCESS: TIMx registers are de-initialized
357   *          - ERROR: not applicable
358   */
LL_TIM_Init(TIM_TypeDef * TIMx,LL_TIM_InitTypeDef * TIM_InitStruct)359 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
360 {
361   uint32_t tmpcr1;
362 
363   /* Check the parameters */
364   assert_param(IS_TIM_INSTANCE(TIMx));
365   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
366   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
367 
368   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
369 
370   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
371   {
372     /* Select the Counter Mode */
373     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
374   }
375 
376   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
377   {
378     /* Set the clock division */
379     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
380   }
381 
382   /* Write to TIMx CR1 */
383   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
384 
385   /* Set the Autoreload value */
386   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
387 
388   /* Set the Prescaler value */
389   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
390 
391   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
392   {
393     /* Set the Repetition Counter value */
394     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
395   }
396 
397   /* Generate an update event to reload the Prescaler
398      and the repetition counter value (if applicable) immediately */
399   LL_TIM_GenerateEvent_UPDATE(TIMx);
400 
401   return SUCCESS;
402 }
403 
404 /**
405   * @brief  Set the fields of the TIMx output channel configuration data
406   *         structure to their default values.
407   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
408   * @retval None
409   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)410 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
411 {
412   /* Set the default configuration */
413   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
414   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
415   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
416   TIM_OC_InitStruct->CompareValue = 0x00000000U;
417   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
418   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
419   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
420   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
421 }
422 
423 /**
424   * @brief  Configure the TIMx output channel.
425   * @param  TIMx Timer Instance
426   * @param  Channel This parameter can be one of the following values:
427   *         @arg @ref LL_TIM_CHANNEL_CH1
428   *         @arg @ref LL_TIM_CHANNEL_CH2
429   *         @arg @ref LL_TIM_CHANNEL_CH3
430   *         @arg @ref LL_TIM_CHANNEL_CH4
431   *         @arg @ref LL_TIM_CHANNEL_CH5
432   *         @arg @ref LL_TIM_CHANNEL_CH6
433   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
434   * @retval An ErrorStatus enumeration value:
435   *          - SUCCESS: TIMx output channel is initialized
436   *          - ERROR: TIMx output channel is not initialized
437   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)438 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
439 {
440   ErrorStatus result = ERROR;
441 
442   switch (Channel)
443   {
444     case LL_TIM_CHANNEL_CH1:
445       result = OC1Config(TIMx, TIM_OC_InitStruct);
446       break;
447     case LL_TIM_CHANNEL_CH2:
448       result = OC2Config(TIMx, TIM_OC_InitStruct);
449       break;
450     case LL_TIM_CHANNEL_CH3:
451       result = OC3Config(TIMx, TIM_OC_InitStruct);
452       break;
453     case LL_TIM_CHANNEL_CH4:
454       result = OC4Config(TIMx, TIM_OC_InitStruct);
455       break;
456     case LL_TIM_CHANNEL_CH5:
457       result = OC5Config(TIMx, TIM_OC_InitStruct);
458       break;
459     case LL_TIM_CHANNEL_CH6:
460       result = OC6Config(TIMx, TIM_OC_InitStruct);
461       break;
462     default:
463       break;
464   }
465 
466   return result;
467 }
468 
469 /**
470   * @brief  Set the fields of the TIMx input channel configuration data
471   *         structure to their default values.
472   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
473   * @retval None
474   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)475 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
476 {
477   /* Set the default configuration */
478   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
479   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
480   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
481   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
482 }
483 
484 /**
485   * @brief  Configure the TIMx input channel.
486   * @param  TIMx Timer Instance
487   * @param  Channel This parameter can be one of the following values:
488   *         @arg @ref LL_TIM_CHANNEL_CH1
489   *         @arg @ref LL_TIM_CHANNEL_CH2
490   *         @arg @ref LL_TIM_CHANNEL_CH3
491   *         @arg @ref LL_TIM_CHANNEL_CH4
492   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
493   * @retval An ErrorStatus enumeration value:
494   *          - SUCCESS: TIMx output channel is initialized
495   *          - ERROR: TIMx output channel is not initialized
496   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)497 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
498 {
499   ErrorStatus result = ERROR;
500 
501   switch (Channel)
502   {
503     case LL_TIM_CHANNEL_CH1:
504       result = IC1Config(TIMx, TIM_IC_InitStruct);
505       break;
506     case LL_TIM_CHANNEL_CH2:
507       result = IC2Config(TIMx, TIM_IC_InitStruct);
508       break;
509     case LL_TIM_CHANNEL_CH3:
510       result = IC3Config(TIMx, TIM_IC_InitStruct);
511       break;
512     case LL_TIM_CHANNEL_CH4:
513       result = IC4Config(TIMx, TIM_IC_InitStruct);
514       break;
515     default:
516       break;
517   }
518 
519   return result;
520 }
521 
522 /**
523   * @brief  Fills each TIM_EncoderInitStruct field with its default value
524   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
525   * @retval None
526   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)527 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
528 {
529   /* Set the default configuration */
530   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
531   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
532   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
533   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
534   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
535   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
536   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
537   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
538   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
539 }
540 
541 /**
542   * @brief  Configure the encoder interface of the timer instance.
543   * @param  TIMx Timer Instance
544   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
545   * @retval An ErrorStatus enumeration value:
546   *          - SUCCESS: TIMx registers are de-initialized
547   *          - ERROR: not applicable
548   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)549 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
550 {
551   uint32_t tmpccmr1;
552   uint32_t tmpccer;
553 
554   /* Check the parameters */
555   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
556   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
557   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
558   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
559   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
560   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
561   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
562   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
563   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
564   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
565 
566   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
567   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
568 
569   /* Get the TIMx CCMR1 register value */
570   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
571 
572   /* Get the TIMx CCER register value */
573   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
574 
575   /* Configure TI1 */
576   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
577   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
578   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
579   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
580 
581   /* Configure TI2 */
582   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
583   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
584   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
585   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
586 
587   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
588   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
589   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
590   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
591   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
592 
593   /* Set encoder mode */
594   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
595 
596   /* Write to TIMx CCMR1 */
597   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
598 
599   /* Write to TIMx CCER */
600   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
601 
602   return SUCCESS;
603 }
604 
605 /**
606   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
607   *         structure to their default values.
608   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
609   * @retval None
610   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)611 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
612 {
613   /* Set the default configuration */
614   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
615   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
616   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
617   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
618 }
619 
620 /**
621   * @brief  Configure the Hall sensor interface of the timer instance.
622   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
623   *       to the TI1 input channel
624   * @note TIMx slave mode controller is configured in reset mode.
625           Selected internal trigger is TI1F_ED.
626   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
627   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
628   *       between 2 changes on the inputs. It gives information about motor speed.
629   * @note Channel 2 is configured in output PWM 2 mode.
630   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
631   * @note OC2REF is selected as trigger output on TRGO.
632   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
633   *       when TIMx operates in Hall sensor interface mode.
634   * @param  TIMx Timer Instance
635   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
636   * @retval An ErrorStatus enumeration value:
637   *          - SUCCESS: TIMx registers are de-initialized
638   *          - ERROR: not applicable
639   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)640 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
641 {
642   uint32_t tmpcr2;
643   uint32_t tmpccmr1;
644   uint32_t tmpccer;
645   uint32_t tmpsmcr;
646 
647   /* Check the parameters */
648   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
649   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
650   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
651   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
652 
653   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
654   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
655 
656   /* Get the TIMx CR2 register value */
657   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
658 
659   /* Get the TIMx CCMR1 register value */
660   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
661 
662   /* Get the TIMx CCER register value */
663   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
664 
665   /* Get the TIMx SMCR register value */
666   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
667 
668   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
669   tmpcr2 |= TIM_CR2_TI1S;
670 
671   /* OC2REF signal is used as trigger output (TRGO) */
672   tmpcr2 |= LL_TIM_TRGO_OC2REF;
673 
674   /* Configure the slave mode controller */
675   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
676   tmpsmcr |= LL_TIM_TS_TI1F_ED;
677   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
678 
679   /* Configure input channel 1 */
680   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
681   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
682   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
683   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
684 
685   /* Configure input channel 2 */
686   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
687   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
688 
689   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
690   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
691   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
692   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
693 
694   /* Write to TIMx CR2 */
695   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
696 
697   /* Write to TIMx SMCR */
698   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
699 
700   /* Write to TIMx CCMR1 */
701   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
702 
703   /* Write to TIMx CCER */
704   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
705 
706   /* Write to TIMx CCR2 */
707   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
708 
709   return SUCCESS;
710 }
711 
712 /**
713   * @brief  Set the fields of the Break and Dead Time configuration data structure
714   *         to their default values.
715   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
716   * @retval None
717   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)718 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
719 {
720   /* Set the default configuration */
721   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
722   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
723   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
724   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
725   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
726   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
727   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
728   TIM_BDTRInitStruct->BreakAFMode     = LL_TIM_BREAK_AFMODE_INPUT;
729   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
730   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
731   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
732   TIM_BDTRInitStruct->Break2AFMode    = LL_TIM_BREAK2_AFMODE_INPUT;
733   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
734 }
735 
736 /**
737   * @brief  Configure the Break and Dead Time feature of the timer instance.
738   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
739   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
740   *  can be necessary to configure all of them during the first write access to
741   *  the TIMx_BDTR register.
742   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
743   *       a timer instance provides a break input.
744   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
745   *       a timer instance provides a second break input.
746   * @param  TIMx Timer Instance
747   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
748   * @retval An ErrorStatus enumeration value:
749   *          - SUCCESS: Break and Dead Time is initialized
750   *          - ERROR: not applicable
751   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)752 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
753 {
754   uint32_t tmpbdtr = 0;
755 
756   /* Check the parameters */
757   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
758   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
759   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
760   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
761   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
762   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
763   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
764 
765   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
766   the OSSI State, the dead time value and the Automatic Output Enable Bit */
767 
768   /* Set the BDTR bits */
769   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
770   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
771   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
772   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
773   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
774   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
775   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
776   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
777   if (IS_TIM_ADVANCED_INSTANCE(TIMx))
778   {
779     assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
780     assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
781     MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
782     MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
783   }
784 
785   if (IS_TIM_BKIN2_INSTANCE(TIMx))
786   {
787     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
788     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
789     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
790     assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
791 
792     /* Set the BREAK2 input related BDTR bit-fields */
793     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
794     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
795     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
796     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
797   }
798 
799   /* Set TIMx_BDTR */
800   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
801 
802   return SUCCESS;
803 }
804 /**
805   * @}
806   */
807 
808 /**
809   * @}
810   */
811 
812 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
813   *  @brief   Private functions
814   * @{
815   */
816 /**
817   * @brief  Configure the TIMx output channel 1.
818   * @param  TIMx Timer Instance
819   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
820   * @retval An ErrorStatus enumeration value:
821   *          - SUCCESS: TIMx registers are de-initialized
822   *          - ERROR: not applicable
823   */
OC1Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)824 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
825 {
826   uint32_t tmpccmr1;
827   uint32_t tmpccer;
828   uint32_t tmpcr2;
829 
830   /* Check the parameters */
831   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
832   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
833   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
834   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
835   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
836   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
837 
838   /* Disable the Channel 1: Reset the CC1E Bit */
839   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
840 
841   /* Get the TIMx CCER register value */
842   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
843 
844   /* Get the TIMx CR2 register value */
845   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
846 
847   /* Get the TIMx CCMR1 register value */
848   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
849 
850   /* Reset Capture/Compare selection Bits */
851   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
852 
853   /* Set the Output Compare Mode */
854   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
855 
856   /* Set the Output Compare Polarity */
857   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
858 
859   /* Set the Output State */
860   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
861 
862   if (IS_TIM_BREAK_INSTANCE(TIMx))
863   {
864     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
865     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
866 
867     /* Set the complementary output Polarity */
868     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
869 
870     /* Set the complementary output State */
871     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
872 
873     /* Set the Output Idle state */
874     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
875 
876     /* Set the complementary output Idle state */
877     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
878   }
879 
880   /* Write to TIMx CR2 */
881   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
882 
883   /* Write to TIMx CCMR1 */
884   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
885 
886   /* Set the Capture Compare Register value */
887   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
888 
889   /* Write to TIMx CCER */
890   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
891 
892   return SUCCESS;
893 }
894 
895 /**
896   * @brief  Configure the TIMx output channel 2.
897   * @param  TIMx Timer Instance
898   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
899   * @retval An ErrorStatus enumeration value:
900   *          - SUCCESS: TIMx registers are de-initialized
901   *          - ERROR: not applicable
902   */
OC2Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)903 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
904 {
905   uint32_t tmpccmr1;
906   uint32_t tmpccer;
907   uint32_t tmpcr2;
908 
909   /* Check the parameters */
910   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
911   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
912   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
913   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
914   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
915   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
916 
917   /* Disable the Channel 2: Reset the CC2E Bit */
918   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
919 
920   /* Get the TIMx CCER register value */
921   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
922 
923   /* Get the TIMx CR2 register value */
924   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
925 
926   /* Get the TIMx CCMR1 register value */
927   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
928 
929   /* Reset Capture/Compare selection Bits */
930   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
931 
932   /* Select the Output Compare Mode */
933   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
934 
935   /* Set the Output Compare Polarity */
936   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
937 
938   /* Set the Output State */
939   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
940 
941   if (IS_TIM_BREAK_INSTANCE(TIMx))
942   {
943     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
944     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
945 
946     /* Set the complementary output Polarity */
947     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
948 
949     /* Set the complementary output State */
950     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
951 
952     /* Set the Output Idle state */
953     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
954 
955     /* Set the complementary output Idle state */
956     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
957   }
958 
959   /* Write to TIMx CR2 */
960   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
961 
962   /* Write to TIMx CCMR1 */
963   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
964 
965   /* Set the Capture Compare Register value */
966   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
967 
968   /* Write to TIMx CCER */
969   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
970 
971   return SUCCESS;
972 }
973 
974 /**
975   * @brief  Configure the TIMx output channel 3.
976   * @param  TIMx Timer Instance
977   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
978   * @retval An ErrorStatus enumeration value:
979   *          - SUCCESS: TIMx registers are de-initialized
980   *          - ERROR: not applicable
981   */
OC3Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)982 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
983 {
984   uint32_t tmpccmr2;
985   uint32_t tmpccer;
986   uint32_t tmpcr2;
987 
988   /* Check the parameters */
989   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
990   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
991   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
992   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
993   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
994   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
995 
996   /* Disable the Channel 3: Reset the CC3E Bit */
997   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
998 
999   /* Get the TIMx CCER register value */
1000   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
1001 
1002   /* Get the TIMx CR2 register value */
1003   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1004 
1005   /* Get the TIMx CCMR2 register value */
1006   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1007 
1008   /* Reset Capture/Compare selection Bits */
1009   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
1010 
1011   /* Select the Output Compare Mode */
1012   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
1013 
1014   /* Set the Output Compare Polarity */
1015   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
1016 
1017   /* Set the Output State */
1018   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
1019 
1020   if (IS_TIM_BREAK_INSTANCE(TIMx))
1021   {
1022     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1023     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1024 
1025     /* Set the complementary output Polarity */
1026     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1027 
1028     /* Set the complementary output State */
1029     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1030 
1031     /* Set the Output Idle state */
1032     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1033 
1034     /* Set the complementary output Idle state */
1035     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1036   }
1037 
1038   /* Write to TIMx CR2 */
1039   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1040 
1041   /* Write to TIMx CCMR2 */
1042   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1043 
1044   /* Set the Capture Compare Register value */
1045   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1046 
1047   /* Write to TIMx CCER */
1048   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1049 
1050   return SUCCESS;
1051 }
1052 
1053 /**
1054   * @brief  Configure the TIMx output channel 4.
1055   * @param  TIMx Timer Instance
1056   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1057   * @retval An ErrorStatus enumeration value:
1058   *          - SUCCESS: TIMx registers are de-initialized
1059   *          - ERROR: not applicable
1060   */
OC4Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1061 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1062 {
1063   uint32_t tmpccmr2;
1064   uint32_t tmpccer;
1065   uint32_t tmpcr2;
1066 
1067   /* Check the parameters */
1068   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1069   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1070   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1071   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1072   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1073   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1074 
1075   /* Disable the Channel 4: Reset the CC4E Bit */
1076   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1077 
1078   /* Get the TIMx CCER register value */
1079   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1080 
1081   /* Get the TIMx CR2 register value */
1082   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1083 
1084   /* Get the TIMx CCMR2 register value */
1085   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1086 
1087   /* Reset Capture/Compare selection Bits */
1088   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1089 
1090   /* Select the Output Compare Mode */
1091   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1092 
1093   /* Set the Output Compare Polarity */
1094   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1095 
1096   /* Set the Output State */
1097   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1098 
1099   if (IS_TIM_BREAK_INSTANCE(TIMx))
1100   {
1101     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1102     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1103 
1104     /* Set the Output Idle state */
1105     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1106   }
1107 
1108   /* Write to TIMx CR2 */
1109   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1110 
1111   /* Write to TIMx CCMR2 */
1112   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1113 
1114   /* Set the Capture Compare Register value */
1115   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1116 
1117   /* Write to TIMx CCER */
1118   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1119 
1120   return SUCCESS;
1121 }
1122 
1123 /**
1124   * @brief  Configure the TIMx output channel 5.
1125   * @param  TIMx Timer Instance
1126   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1127   * @retval An ErrorStatus enumeration value:
1128   *          - SUCCESS: TIMx registers are de-initialized
1129   *          - ERROR: not applicable
1130   */
OC5Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1131 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1132 {
1133   uint32_t tmpccmr3;
1134   uint32_t tmpccer;
1135 
1136   /* Check the parameters */
1137   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1138   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1139   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1140   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1141   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1142   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1143 
1144   /* Disable the Channel 5: Reset the CC5E Bit */
1145   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1146 
1147   /* Get the TIMx CCER register value */
1148   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1149 
1150   /* Get the TIMx CCMR3 register value */
1151   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1152 
1153   /* Select the Output Compare Mode */
1154   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1155 
1156   /* Set the Output Compare Polarity */
1157   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1158 
1159   /* Set the Output State */
1160   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1161 
1162   if (IS_TIM_BREAK_INSTANCE(TIMx))
1163   {
1164     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1165     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1166 
1167     /* Set the Output Idle state */
1168     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1169 
1170   }
1171 
1172   /* Write to TIMx CCMR3 */
1173   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1174 
1175   /* Set the Capture Compare Register value */
1176   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1177 
1178   /* Write to TIMx CCER */
1179   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1180 
1181   return SUCCESS;
1182 }
1183 
1184 /**
1185   * @brief  Configure the TIMx output channel 6.
1186   * @param  TIMx Timer Instance
1187   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1188   * @retval An ErrorStatus enumeration value:
1189   *          - SUCCESS: TIMx registers are de-initialized
1190   *          - ERROR: not applicable
1191   */
OC6Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1192 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1193 {
1194   uint32_t tmpccmr3;
1195   uint32_t tmpccer;
1196 
1197   /* Check the parameters */
1198   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1199   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1200   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1201   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1202   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1203   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1204 
1205   /* Disable the Channel 5: Reset the CC6E Bit */
1206   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1207 
1208   /* Get the TIMx CCER register value */
1209   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1210 
1211   /* Get the TIMx CCMR3 register value */
1212   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1213 
1214   /* Select the Output Compare Mode */
1215   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1216 
1217   /* Set the Output Compare Polarity */
1218   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1219 
1220   /* Set the Output State */
1221   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1222 
1223   if (IS_TIM_BREAK_INSTANCE(TIMx))
1224   {
1225     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1226     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1227 
1228     /* Set the Output Idle state */
1229     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1230   }
1231 
1232   /* Write to TIMx CCMR3 */
1233   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1234 
1235   /* Set the Capture Compare Register value */
1236   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1237 
1238   /* Write to TIMx CCER */
1239   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1240 
1241   return SUCCESS;
1242 }
1243 
1244 /**
1245   * @brief  Configure the TIMx input channel 1.
1246   * @param  TIMx Timer Instance
1247   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1248   * @retval An ErrorStatus enumeration value:
1249   *          - SUCCESS: TIMx registers are de-initialized
1250   *          - ERROR: not applicable
1251   */
IC1Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1252 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1253 {
1254   /* Check the parameters */
1255   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1256   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1257   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1258   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1259   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1260 
1261   /* Disable the Channel 1: Reset the CC1E Bit */
1262   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1263 
1264   /* Select the Input and set the filter and the prescaler value */
1265   MODIFY_REG(TIMx->CCMR1,
1266              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1267              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1268 
1269   /* Select the Polarity and set the CC1E Bit */
1270   MODIFY_REG(TIMx->CCER,
1271              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1272              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1273 
1274   return SUCCESS;
1275 }
1276 
1277 /**
1278   * @brief  Configure the TIMx input channel 2.
1279   * @param  TIMx Timer Instance
1280   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1281   * @retval An ErrorStatus enumeration value:
1282   *          - SUCCESS: TIMx registers are de-initialized
1283   *          - ERROR: not applicable
1284   */
IC2Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1285 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1286 {
1287   /* Check the parameters */
1288   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1289   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1290   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1291   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1292   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1293 
1294   /* Disable the Channel 2: Reset the CC2E Bit */
1295   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1296 
1297   /* Select the Input and set the filter and the prescaler value */
1298   MODIFY_REG(TIMx->CCMR1,
1299              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1300              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1301 
1302   /* Select the Polarity and set the CC2E Bit */
1303   MODIFY_REG(TIMx->CCER,
1304              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1305              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1306 
1307   return SUCCESS;
1308 }
1309 
1310 /**
1311   * @brief  Configure the TIMx input channel 3.
1312   * @param  TIMx Timer Instance
1313   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1314   * @retval An ErrorStatus enumeration value:
1315   *          - SUCCESS: TIMx registers are de-initialized
1316   *          - ERROR: not applicable
1317   */
IC3Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1318 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1319 {
1320   /* Check the parameters */
1321   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1322   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1323   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1324   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1325   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1326 
1327   /* Disable the Channel 3: Reset the CC3E Bit */
1328   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1329 
1330   /* Select the Input and set the filter and the prescaler value */
1331   MODIFY_REG(TIMx->CCMR2,
1332              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1333              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1334 
1335   /* Select the Polarity and set the CC3E Bit */
1336   MODIFY_REG(TIMx->CCER,
1337              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1338              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1339 
1340   return SUCCESS;
1341 }
1342 
1343 /**
1344   * @brief  Configure the TIMx input channel 4.
1345   * @param  TIMx Timer Instance
1346   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1347   * @retval An ErrorStatus enumeration value:
1348   *          - SUCCESS: TIMx registers are de-initialized
1349   *          - ERROR: not applicable
1350   */
IC4Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1351 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1352 {
1353   /* Check the parameters */
1354   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1355   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1356   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1357   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1358   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1359 
1360   /* Disable the Channel 4: Reset the CC4E Bit */
1361   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1362 
1363   /* Select the Input and set the filter and the prescaler value */
1364   MODIFY_REG(TIMx->CCMR2,
1365              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1366              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1367 
1368   /* Select the Polarity and set the CC2E Bit */
1369   MODIFY_REG(TIMx->CCER,
1370              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1371              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1372 
1373   return SUCCESS;
1374 }
1375 
1376 
1377 /**
1378   * @}
1379   */
1380 
1381 /**
1382   * @}
1383   */
1384 
1385 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 */
1386 
1387 /**
1388   * @}
1389   */
1390 
1391 #endif /* USE_FULL_LL_DRIVER */
1392