1 /**
2   ******************************************************************************
3   * @file    stm32mp1xx_hal_rtc.c
4   * @author  MCD Application Team
5   * @brief   RTC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Real-Time Clock (RTC) peripheral:
8   *           + Initialization/de-initialization functions
9   *           + Calendar (Time and Date) configuration
10   *           + Alarms (Alarm A and Alarm B) configuration
11   *           + WakeUp Timer configuration
12   *           + TimeStamp configuration
13   *           + Tampers configuration
14   *           + Backup Data Registers configuration
15   *           + RTC Tamper and TimeStamp Pins Selection
16   *           + Interrupts and flags management
17   *
18   ******************************************************************************
19   * @attention
20   *
21   * Copyright (c) 2019 STMicroelectronics.
22   * All rights reserved.
23   *
24   * This software is licensed under terms that can be found in the LICENSE file
25   * in the root directory of this software component.
26   * If no LICENSE file comes with this software, it is provided AS-IS.
27   *
28   ******************************************************************************
29   @verbatim
30  ===============================================================================
31                           ##### RTC Operating Condition #####
32  ===============================================================================
33   [..] The real-time clock (RTC) and the RTC backup registers can be powered
34        from the VBAT voltage when the main VDD supply is powered off.
35        To retain the content of the RTC backup registers and supply the RTC
36        when VDD is turned off, VBAT pin can be connected to an optional
37        standby voltage supplied by a battery or by another source.
38 
39                    ##### Backup Domain Reset #####
40  ===============================================================================
41   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42        to their reset values.
43        A backup domain reset is generated when one of the following events occurs:
44     (#) Software reset, triggered by setting the BDRST bit in the
45         RCC Backup domain control register (RCC_BDCR).
46     (#) VDD or VBAT power on, if both supplies have previously been powered off.
47     (#) Tamper detection event resets all data backup registers.
48 
49                    ##### Backup Domain Access #####
50   ==================================================================
51   [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52        is protected against possible unwanted write accesses.
53   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54     (+) Enable the Power Controller (PWR) APB1 interface clock using the
55         __HAL_RCC_PWR_CLK_ENABLE() function.
56     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59 
60   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61     (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62         PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63     (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64 
65                   ##### How to use RTC Driver #####
66  ===================================================================
67   [..]
68     (+) Enable the RTC domain access (see description in the section above).
69     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70         format using the HAL_RTC_Init() function.
71 
72   *** Time and Date configuration ***
73   ===================================
74   [..]
75     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76         and HAL_RTC_SetDate() functions.
77     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78 
79   *** Alarm configuration ***
80   ===========================
81   [..]
82     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83             You can also configure the RTC Alarm with interrupt mode using the
84             HAL_RTC_SetAlarm_IT() function.
85     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86 
87                   ##### RTC and low power modes #####
88   ==================================================================
89   [..] The MCU can be woken up from a low power mode by an RTC alternate
90        function.
91   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92        RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93        These RTC alternate functions can wake up the system from the Stop and
94        Standby low power modes.
95   [..] The system can also wake up from low power modes without depending
96        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97        or the RTC wakeup events.
98   [..] The RTC provides a programmable time base for waking up from the
99        Stop or Standby mode at regular intervals.
100        Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101        is LSE or LSI.
102 
103   *** Callback registration ***
104   =============================================
105   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
106   not defined, the callback registration feature is not available and all callbacks
107   are set to the corresponding weak functions. This is the recommended configuration
108   in order to optimize memory/code consumption footprint/performances.
109 
110   The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
111   allows the user to configure dynamically the driver callbacks.
112   Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.
113 
114   Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
115     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
116     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
117     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
118     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
119     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
120     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
121     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
122     (+) InternalTamper1EventCallback : RTC InternalTamper 1 Event callback.
123     (+) InternalTamper2EventCallback : RTC InternalTamper 2 Event callback.
124     (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
125     (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
126     (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
127     (+) InternalTamper8EventCallback : RTC InternalTamper 8 Event callback.
128     (+) MspInitCallback              : RTC MspInit callback.
129     (+) MspDeInitCallback            : RTC MspDeInit callback.
130   This function takes as parameters the HAL peripheral handle, the Callback ID
131   and a pointer to the user callback function.
132 
133   Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
134   weak function.
135   @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
136   and the Callback ID.
137   This function allows to reset following callbacks:
138     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
139     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
140     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
141     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
142     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
143     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
144     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
145     (+) InternalTamper1EventCallback : RTC Internal Tamper 1 Event callback.
146     (+) InternalTamper2EventCallback : RTC Internal Tamper 2 Event callback.
147     (+) InternalTamper3EventCallback : RTC Internal Tamper 3 Event callback.
148     (+) InternalTamper4EventCallback : RTC Internal Tamper 4 Event callback.
149     (+) InternalTamper5EventCallback : RTC Internal Tamper 5 Event callback.
150     (+) InternalTamper8EventCallback : RTC Internal Tamper 8 Event callback.
151     (+) MspInitCallback              : RTC MspInit callback.
152     (+) MspDeInitCallback            : RTC MspDeInit callback.
153 
154   By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
155   all callbacks are set to the corresponding weak functions :
156   examples @ref AlarmAEventCallback(), @ref TimeStampEventCallback().
157   Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
158   in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
159   (not registered beforehand).
160   If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
161   keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
162 
163   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
164   Exception done MspInit/MspDeInit that can be registered/unregistered
165   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
166   thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
167   In that case first register the MspInit/MspDeInit user callbacks
168   using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
169   or @ref HAL_RTC_Init() function.
170 
171   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
172   not defined, the callback registration feature is not available and all callbacks
173   are set to the corresponding weak functions.
174 
175   @endverbatim
176   ******************************************************************************
177   */
178 
179 /* Includes ------------------------------------------------------------------*/
180 #include "stm32mp1xx_hal.h"
181 
182 /** @addtogroup STM32MP1xx_HAL_Driver
183   * @{
184   */
185 
186 
187 /** @addtogroup RTC
188   * @brief RTC HAL module driver
189   * @{
190   */
191 
192 #ifdef HAL_RTC_MODULE_ENABLED
193 
194 /* Private typedef -----------------------------------------------------------*/
195 /* Private define ------------------------------------------------------------*/
196 /* Private macro -------------------------------------------------------------*/
197 /* Private variables ---------------------------------------------------------*/
198 /* Private function prototypes -----------------------------------------------*/
199 /* Exported functions --------------------------------------------------------*/
200 
201 /** @addtogroup RTC_Exported_Functions
202   * @{
203   */
204 
205 /** @addtogroup RTC_Exported_Functions_Group1
206  *  @brief    Initialization and Configuration functions
207  *
208 @verbatim
209  ===============================================================================
210               ##### Initialization and de-initialization functions #####
211  ===============================================================================
212    [..] This section provides functions allowing to initialize and configure the
213          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
214          RTC registers Write protection, enter and exit the RTC initialization mode,
215          RTC registers synchronization check and reference clock detection enable.
216          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
217              It is split into 2 programmable prescalers to minimize power consumption.
218              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
219              (++) When both prescalers are used, it is recommended to configure the
220                  asynchronous prescaler to a high value to minimize power consumption.
221          (#) All RTC registers are Write protected. Writing to the RTC registers
222              is enabled by writing a key into the Write Protection register, RTC_WPR.
223          (#) To configure the RTC Calendar, user application should enter
224              initialization mode. In this mode, the calendar counter is stopped
225              and its value can be updated. When the initialization sequence is
226              complete, the calendar restarts counting after 4 RTCCLK cycles.
227          (#) To read the calendar through the shadow registers after Calendar
228              initialization, calendar update or after wakeup from low power modes
229              the software must first clear the RSF flag. The software must then
230              wait until it is set again before reading the calendar, which means
231              that the calendar registers have been correctly copied into the
232              RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
233              implements the above software sequence (RSF clear and RSF check).
234 
235 @endverbatim
236   * @{
237   */
238 
239 /**
240   * @brief  Initialize the RTC peripheral
241   * @param  hrtc RTC handle
242   * @retval HAL status
243   */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)244 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
245 {
246   HAL_StatusTypeDef status = HAL_ERROR;
247 
248   /* Check the RTC peripheral state */
249   if (hrtc != NULL)
250   {
251     /* Check the parameters */
252     assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
253     assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
254     assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
255     assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
256     assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
257     assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
258     assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
259     assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
260 
261 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
262     if (hrtc->State == HAL_RTC_STATE_RESET)
263     {
264       /* Allocate lock resource and initialize it */
265       hrtc->Lock = HAL_UNLOCKED;
266 
267       hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback      */
268       hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback      */
269       hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;        /* Legacy weak TimeStampEventCallback   */
270       hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback;      /* Legacy weak WakeUpTimerEventCallback */
271       hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;          /* Legacy weak Tamper1EventCallback     */
272       hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;          /* Legacy weak Tamper2EventCallback     */
273       hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;          /* Legacy weak Tamper3EventCallback     */
274       hrtc->InternalTamper1EventCallback =  HAL_RTCEx_InternalTamper1EventCallback;  /* Legacy weak InternalTamper1EventCallback */
275       hrtc->InternalTamper2EventCallback =  HAL_RTCEx_InternalTamper2EventCallback;  /* Legacy weak InternalTamper2EventCallback */
276       hrtc->InternalTamper3EventCallback =  HAL_RTCEx_InternalTamper3EventCallback;  /* Legacy weak InternalTamper3EventCallback */
277       hrtc->InternalTamper4EventCallback =  HAL_RTCEx_InternalTamper4EventCallback;  /* Legacy weak InternalTamper3EventCallback */
278       hrtc->InternalTamper5EventCallback =  HAL_RTCEx_InternalTamper5EventCallback;  /* Legacy weak InternalTamper5EventCallback */
279       hrtc->InternalTamper8EventCallback =  HAL_RTCEx_InternalTamper8EventCallback;  /* Legacy weak InternalTamper8EventCallback */
280 
281       if (hrtc->MspInitCallback == NULL)
282       {
283         hrtc->MspInitCallback = HAL_RTC_MspInit;
284       }
285       /* Init the low level hardware */
286       hrtc->MspInitCallback(hrtc);
287 
288       if (hrtc->MspDeInitCallback == NULL)
289       {
290         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
291       }
292     }
293 #else
294     if (hrtc->State == HAL_RTC_STATE_RESET)
295     {
296       /* Allocate lock resource and initialize it */
297       hrtc->Lock = HAL_UNLOCKED;
298 
299       /* Initialize RTC MSP */
300       HAL_RTC_MspInit(hrtc);
301     }
302 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
303 
304     /* Set RTC state */
305     hrtc->State = HAL_RTC_STATE_BUSY;
306 
307     /* Disable the write protection for RTC registers */
308     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
309 
310     /* Enter Initialization mode */
311     status = RTC_EnterInitMode(hrtc);
312     if (status == HAL_OK)
313     {
314       /* Clear RTC_CR FMT, OSEL and POL Bits */
315       CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE));
316       /* Set RTC_CR register */
317       SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity));
318 
319       /* Configure the RTC PRER */
320       WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos)));
321 
322       /* Exit Initialization mode */
323       status = RTC_ExitInitMode(hrtc);
324       if (status == HAL_OK)
325       {
326         MODIFY_REG(RTC->CR, \
327                    RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \
328                    hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
329       }
330     }
331 
332     /* Enable the write protection for RTC registers */
333     __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
334 
335     if (status == HAL_OK)
336     {
337       hrtc->State = HAL_RTC_STATE_READY;
338     }
339   }
340 
341   return status;
342 }
343 
344 /**
345   * @brief  DeInitialize the RTC peripheral.
346   * @note   This function does not reset the RTC Backup Data registers.
347   * @param  hrtc RTC handle
348   * @retval HAL status
349   */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)350 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
351 {
352   HAL_StatusTypeDef status;
353 
354   /* Set RTC state */
355   hrtc->State = HAL_RTC_STATE_BUSY;
356 
357   /* Disable the write protection for RTC registers */
358   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
359 
360   /* Enter Initialization mode */
361   status = RTC_EnterInitMode(hrtc);
362   if (status == HAL_OK)
363   {
364     /* Reset all RTC CR register bits */
365     CLEAR_REG(RTC->CR);
366     WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
367     CLEAR_REG(RTC->TR);
368     WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
369     WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU)));
370     CLEAR_REG(RTC->ALRMAR);
371     CLEAR_REG(RTC->ALRMBR);
372     CLEAR_REG(RTC->SHIFTR);
373     CLEAR_REG(RTC->CALR);
374     CLEAR_REG(RTC->ALRMASSR);
375     CLEAR_REG(RTC->ALRMBSSR);
376     WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | RTC_SCR_CALRAF);
377 #if defined (CORTEX_IN_SECURE_STATE)
378     WRITE_REG(RTC->SMCR, (RTC_SMCR_DECPROT | RTC_SMCR_INITDPROT | RTC_SMCR_CALDPROT | RTC_SMCR_TSDPROT | RTC_SMCR_WUTDPROT | RTC_SMCR_ALRBDPROT | RTC_SMCR_ALRADPROT));
379 #endif
380 
381     /* Exit initialization mode */
382     status = RTC_ExitInitMode(hrtc);
383     if (status == HAL_OK)
384     {
385       /* Reset TAMP registers */
386       WRITE_REG(TAMP->CR1, RTC_INT_TAMPER_ALL);
387       CLEAR_REG(TAMP->CR2);
388       CLEAR_REG(TAMP->FLTCR);
389       WRITE_REG(TAMP->ATCR1, TAMP_ATCR1_ATCKSEL);
390       CLEAR_REG(TAMP->ATOR);
391 #if defined (CORTEX_IN_SECURE_STATE)
392       WRITE_REG(TAMP->SMCR, TAMP_SMCR_TAMPDPROT);
393 #endif
394     }
395   }
396 
397   /* Enable the write protection for RTC registers */
398   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
399 
400   if (status == HAL_OK)
401   {
402 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
403     if (hrtc->MspDeInitCallback == NULL)
404     {
405       hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
406     }
407 
408     /* DeInit the low level hardware: CLOCK, NVIC.*/
409     hrtc->MspDeInitCallback(hrtc);
410 
411 #else
412     /* De-Initialize RTC MSP */
413     HAL_RTC_MspDeInit(hrtc);
414 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
415 
416     hrtc->State = HAL_RTC_STATE_RESET;
417   }
418 
419   /* Release Lock */
420   __HAL_UNLOCK(hrtc);
421 
422   return status;
423 }
424 
425 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
426 /**
427   * @brief  Register a User RTC Callback
428   *         To be used instead of the weak predefined callback
429   * @param  hrtc RTC handle
430   * @param  CallbackID ID of the callback to be registered
431   *         This parameter can be one of the following values:
432   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
433   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
434   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
435   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
436   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
437   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
438   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
439   *          @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID          Tamper 4 Callback ID
440   *          @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID          Tamper 5 Callback ID
441   *          @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID          Tamper 6 Callback ID
442   *          @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID          Tamper 7 Callback ID
443   *          @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID          Tamper 8 Callback ID
444   *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
445   *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
446   *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
447   *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
448   *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
449   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
450   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
451   * @param  pCallback pointer to the Callback function
452   * @retval HAL status
453   */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)454 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
455 {
456   HAL_StatusTypeDef status = HAL_OK;
457 
458   if (pCallback == NULL)
459   {
460     return HAL_ERROR;
461   }
462 
463   /* Process locked */
464   __HAL_LOCK(hrtc);
465 
466   if (HAL_RTC_STATE_READY == hrtc->State)
467   {
468     switch (CallbackID)
469     {
470       case HAL_RTC_ALARM_A_EVENT_CB_ID :
471         hrtc->AlarmAEventCallback = pCallback;
472         break;
473 
474       case HAL_RTC_ALARM_B_EVENT_CB_ID :
475         hrtc->AlarmBEventCallback = pCallback;
476         break;
477 
478       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
479         hrtc->TimeStampEventCallback = pCallback;
480         break;
481 
482       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
483         hrtc->WakeUpTimerEventCallback = pCallback;
484         break;
485 
486       case HAL_RTC_TAMPER1_EVENT_CB_ID :
487         hrtc->Tamper1EventCallback = pCallback;
488         break;
489 
490       case HAL_RTC_TAMPER2_EVENT_CB_ID :
491         hrtc->Tamper2EventCallback = pCallback;
492         break;
493 
494       case HAL_RTC_TAMPER3_EVENT_CB_ID :
495         hrtc->Tamper3EventCallback = pCallback;
496         break;
497 
498       case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
499         hrtc->InternalTamper1EventCallback = pCallback;
500         break;
501 
502       case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
503         hrtc->InternalTamper2EventCallback = pCallback;
504         break;
505 
506       case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
507         hrtc->InternalTamper3EventCallback = pCallback;
508         break;
509 
510       case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
511         hrtc->InternalTamper5EventCallback = pCallback;
512         break;
513 
514       case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
515         hrtc->InternalTamper8EventCallback = pCallback;
516         break;
517 
518       case HAL_RTC_MSPINIT_CB_ID :
519         hrtc->MspInitCallback = pCallback;
520         break;
521 
522       case HAL_RTC_MSPDEINIT_CB_ID :
523         hrtc->MspDeInitCallback = pCallback;
524         break;
525 
526       default :
527         /* Return error status */
528         status =  HAL_ERROR;
529         break;
530     }
531   }
532   else if (HAL_RTC_STATE_RESET == hrtc->State)
533   {
534     switch (CallbackID)
535     {
536       case HAL_RTC_MSPINIT_CB_ID :
537         hrtc->MspInitCallback = pCallback;
538         break;
539 
540       case HAL_RTC_MSPDEINIT_CB_ID :
541         hrtc->MspDeInitCallback = pCallback;
542         break;
543 
544       default :
545         /* Return error status */
546         status =  HAL_ERROR;
547         break;
548     }
549   }
550   else
551   {
552     /* Return error status */
553     status =  HAL_ERROR;
554   }
555 
556   /* Release Lock */
557   __HAL_UNLOCK(hrtc);
558 
559   return status;
560 }
561 
562 /**
563   * @brief  Unregister an RTC Callback
564   *         RTC callback is redirected to the weak predefined callback
565   * @param  hrtc RTC handle
566   * @param  CallbackID ID of the callback to be unregistered
567   *         This parameter can be one of the following values:
568   *         This parameter can be one of the following values:
569   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
570   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
571   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
572   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
573   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
574   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
575   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
576   *          @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID          Tamper 4 Callback ID
577   *          @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID          Tamper 5 Callback ID
578   *          @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID          Tamper 6 Callback ID
579   *          @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID          Tamper 7 Callback ID
580   *          @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID          Tamper 8 Callback ID
581   *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
582   *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
583   *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
584   *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
585   *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
586   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
587   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
588   * @retval HAL status
589   */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)590 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
591 {
592   HAL_StatusTypeDef status = HAL_OK;
593 
594   /* Process locked */
595   __HAL_LOCK(hrtc);
596 
597   if (HAL_RTC_STATE_READY == hrtc->State)
598   {
599     switch (CallbackID)
600     {
601       case HAL_RTC_ALARM_A_EVENT_CB_ID :
602         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
603         break;
604 
605       case HAL_RTC_ALARM_B_EVENT_CB_ID :
606         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
607         break;
608 
609       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
610         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
611         break;
612 
613       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
614         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
615         break;
616 
617       case HAL_RTC_TAMPER1_EVENT_CB_ID :
618         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
619         break;
620 
621       case HAL_RTC_TAMPER2_EVENT_CB_ID :
622         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
623         break;
624 
625       case HAL_RTC_TAMPER3_EVENT_CB_ID :
626         hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
627         break;
628 
629       case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
630         hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;        /* Legacy weak InternalTamper1EventCallback         */
631         break;
632 
633       case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
634         hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;        /* Legacy weak InternalTamper2EventCallback         */
635         break;
636 
637       case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
638         hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;        /* Legacy weak InternalTamper3EventCallback         */
639         break;
640 
641       case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
642         hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;        /* Legacy weak InternalTamper5EventCallback         */
643         break;
644 
645       case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
646         hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;        /* Legacy weak InternalTamper8EventCallback         */
647         break;
648 
649       case HAL_RTC_MSPINIT_CB_ID :
650         hrtc->MspInitCallback = HAL_RTC_MspInit;
651         break;
652 
653       case HAL_RTC_MSPDEINIT_CB_ID :
654         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
655         break;
656 
657       default :
658         /* Return error status */
659         status =  HAL_ERROR;
660         break;
661     }
662   }
663   else if (HAL_RTC_STATE_RESET == hrtc->State)
664   {
665     switch (CallbackID)
666     {
667       case HAL_RTC_MSPINIT_CB_ID :
668         hrtc->MspInitCallback = HAL_RTC_MspInit;
669         break;
670 
671       case HAL_RTC_MSPDEINIT_CB_ID :
672         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
673         break;
674 
675       default :
676         /* Return error status */
677         status =  HAL_ERROR;
678         break;
679     }
680   }
681   else
682   {
683     /* Return error status */
684     status =  HAL_ERROR;
685   }
686 
687   /* Release Lock */
688   __HAL_UNLOCK(hrtc);
689 
690   return status;
691 }
692 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
693 
694 /**
695   * @brief  Initialize the RTC MSP.
696   * @param  hrtc RTC handle
697   * @retval None
698   */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)699 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
700 {
701   /* Prevent unused argument(s) compilation warning */
702   UNUSED(hrtc);
703 
704   /* NOTE : This function should not be modified, when the callback is needed,
705             the HAL_RTC_MspInit could be implemented in the user file
706    */
707 }
708 
709 /**
710   * @brief  DeInitialize the RTC MSP.
711   * @param  hrtc RTC handle
712   * @retval None
713   */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)714 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
715 {
716   /* Prevent unused argument(s) compilation warning */
717   UNUSED(hrtc);
718 
719   /* NOTE : This function should not be modified, when the callback is needed,
720             the HAL_RTC_MspDeInit could be implemented in the user file
721    */
722 }
723 
724 /**
725   * @}
726   */
727 
728 /** @addtogroup RTC_Exported_Functions_Group2
729  *  @brief   RTC Time and Date functions
730  *
731 @verbatim
732  ===============================================================================
733                  ##### RTC Time and Date functions #####
734  ===============================================================================
735 
736  [..] This section provides functions allowing to configure Time and Date features
737 
738 @endverbatim
739   * @{
740   */
741 
742 /**
743   * @brief  Set RTC current time.
744   * @param  hrtc RTC handle
745   * @param  sTime Pointer to Time structure
746   * @param  Format Specifies the format of the entered parameters.
747   *          This parameter can be one of the following values:
748   *            @arg RTC_FORMAT_BIN: Binary data format
749   *            @arg RTC_FORMAT_BCD: BCD data format
750   * @retval HAL status
751   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)752 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
753 {
754   uint32_t tmpreg;
755   HAL_StatusTypeDef status;
756 
757   /* Check the parameters */
758   assert_param(IS_RTC_FORMAT(Format));
759   assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
760   assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
761 
762   /* Process Locked */
763   __HAL_LOCK(hrtc);
764 
765   hrtc->State = HAL_RTC_STATE_BUSY;
766 
767   /* Disable the write protection for RTC registers */
768   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
769 
770   /* Enter Initialization mode */
771   status = RTC_EnterInitMode(hrtc);
772   if (status == HAL_OK)
773   {
774     if (Format == RTC_FORMAT_BIN)
775     {
776       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
777       {
778         assert_param(IS_RTC_HOUR12(sTime->Hours));
779         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
780       }
781       else
782       {
783         sTime->TimeFormat = 0x00U;
784         assert_param(IS_RTC_HOUR24(sTime->Hours));
785       }
786       assert_param(IS_RTC_MINUTES(sTime->Minutes));
787       assert_param(IS_RTC_SECONDS(sTime->Seconds));
788 
789       tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
790                           ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
791                           ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
792                           (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
793     }
794     else
795     {
796       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
797       {
798         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
799         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
800       }
801       else
802       {
803         sTime->TimeFormat = 0x00U;
804         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
805       }
806       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
807       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
808       tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
809                 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
810                 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
811                 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
812     }
813 
814     /* Set the RTC_TR register */
815     WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
816 
817     /* Clear the bits to be configured */
818     CLEAR_BIT(RTC->CR, RTC_CR_BKP);
819 
820     /* Configure the RTC_CR register */
821     SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
822 
823     /* Exit Initialization mode */
824     status = RTC_ExitInitMode(hrtc);
825   }
826 
827   /* Enable the write protection for RTC registers */
828   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
829 
830   if (status == HAL_OK)
831   {
832     hrtc->State = HAL_RTC_STATE_READY;
833   }
834 
835   /* Process Unlocked */
836   __HAL_UNLOCK(hrtc);
837 
838   return status;
839 }
840 
841 /**
842   * @brief  Get RTC current time.
843   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
844   *        value in second fraction ratio with time unit following generic formula:
845   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
846   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
847   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
848   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
849   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
850   *        to ensure consistency between the time and date values.
851   * @param  hrtc RTC handle
852   * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
853   *                with input format (BIN or BCD), also SubSeconds field returning the
854   *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
855   *                factor to be used for second fraction ratio computation.
856   * @param  Format Specifies the format of the entered parameters.
857   *          This parameter can be one of the following values:
858   *            @arg RTC_FORMAT_BIN: Binary data format
859   *            @arg RTC_FORMAT_BCD: BCD data format
860   * @retval HAL status
861   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)862 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
863 {
864   uint32_t tmpreg;
865 
866   UNUSED(hrtc);
867   /* Check the parameters */
868   assert_param(IS_RTC_FORMAT(Format));
869 
870   /* Get subseconds structure field from the corresponding register*/
871   sTime->SubSeconds = READ_REG(RTC->SSR);
872 
873   /* Get SecondFraction structure field from the corresponding register field*/
874   sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
875 
876   /* Get the TR register */
877   tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
878 
879   /* Fill the structure fields with the read parameters */
880   sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
881   sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
882   sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
883   sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
884 
885   /* Check the input parameters format */
886   if (Format == RTC_FORMAT_BIN)
887   {
888     /* Convert the time structure parameters to Binary format */
889     sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
890     sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
891     sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
892   }
893 
894   return HAL_OK;
895 }
896 
897 /**
898   * @brief  Set RTC current date.
899   * @param  hrtc RTC handle
900   * @param  sDate Pointer to date structure
901   * @param  Format specifies the format of the entered parameters.
902   *          This parameter can be one of the following values:
903   *            @arg RTC_FORMAT_BIN: Binary data format
904   *            @arg RTC_FORMAT_BCD: BCD data format
905   * @retval HAL status
906   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)907 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
908 {
909   uint32_t datetmpreg;
910   HAL_StatusTypeDef status;
911 
912   /* Check the parameters */
913   assert_param(IS_RTC_FORMAT(Format));
914 
915   /* Process Locked */
916   __HAL_LOCK(hrtc);
917 
918   hrtc->State = HAL_RTC_STATE_BUSY;
919 
920   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
921   {
922     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
923   }
924 
925   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
926 
927   if (Format == RTC_FORMAT_BIN)
928   {
929     assert_param(IS_RTC_YEAR(sDate->Year));
930     assert_param(IS_RTC_MONTH(sDate->Month));
931     assert_param(IS_RTC_DATE(sDate->Date));
932 
933     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
934                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
935                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
936                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
937   }
938   else
939   {
940     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
941     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
942     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
943 
944     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
945                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
946                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
947                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
948   }
949 
950   /* Disable the write protection for RTC registers */
951   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
952 
953   /* Enter Initialization mode */
954   status = RTC_EnterInitMode(hrtc);
955   if (status == HAL_OK)
956   {
957     /* Set the RTC_DR register */
958     WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
959 
960     /* Exit Initialization mode */
961     status = RTC_ExitInitMode(hrtc);
962   }
963 
964   /* Enable the write protection for RTC registers */
965   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
966 
967   if (status == HAL_OK)
968   {
969     hrtc->State = HAL_RTC_STATE_READY;
970   }
971 
972   /* Process Unlocked */
973   __HAL_UNLOCK(hrtc);
974 
975   return status;
976 }
977 
978 /**
979   * @brief  Get RTC current date.
980   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
981   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
982   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
983   * @param  hrtc RTC handle
984   * @param  sDate Pointer to Date structure
985   * @param  Format Specifies the format of the entered parameters.
986   *          This parameter can be one of the following values:
987   *            @arg RTC_FORMAT_BIN:  Binary data format
988   *            @arg RTC_FORMAT_BCD:  BCD data format
989   * @retval HAL status
990   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)991 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
992 {
993   uint32_t datetmpreg;
994 
995   UNUSED(hrtc);
996   /* Check the parameters */
997   assert_param(IS_RTC_FORMAT(Format));
998 
999   /* Get the DR register */
1000   datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1001 
1002   /* Fill the structure fields with the read parameters */
1003   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1004   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1005   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1006   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1007 
1008   /* Check the input parameters format */
1009   if (Format == RTC_FORMAT_BIN)
1010   {
1011     /* Convert the date structure parameters to Binary format */
1012     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1013     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1014     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1015   }
1016   return HAL_OK;
1017 }
1018 
1019 /**
1020   * @}
1021   */
1022 
1023 /** @addtogroup RTC_Exported_Functions_Group3
1024  *  @brief   RTC Alarm functions
1025  *
1026 @verbatim
1027  ===============================================================================
1028                  ##### RTC Alarm functions #####
1029  ===============================================================================
1030 
1031  [..] This section provides functions allowing to configure Alarm feature
1032 
1033 @endverbatim
1034   * @{
1035   */
1036 /**
1037   * @brief  Set the specified RTC Alarm.
1038   * @param  hrtc RTC handle
1039   * @param  sAlarm Pointer to Alarm structure
1040   * @param  Format Specifies the format of the entered parameters.
1041   *          This parameter can be one of the following values:
1042   *             @arg RTC_FORMAT_BIN: Binary data format
1043   *             @arg RTC_FORMAT_BCD: BCD data format
1044   * @retval HAL status
1045   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1046 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1047 {
1048   uint32_t tmpreg, subsecondtmpreg;
1049 
1050   /* Check the parameters */
1051   assert_param(IS_RTC_FORMAT(Format));
1052   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1053   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1054   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1055   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1056   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1057 
1058   /* Process Locked */
1059   __HAL_LOCK(hrtc);
1060 
1061   hrtc->State = HAL_RTC_STATE_BUSY;
1062 
1063   if (Format == RTC_FORMAT_BIN)
1064   {
1065     if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1066     {
1067       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1068       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1069     }
1070     else
1071     {
1072       sAlarm->AlarmTime.TimeFormat = 0x00U;
1073       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1074     }
1075     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1076     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1077 
1078     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1079     {
1080       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1081     }
1082     else
1083     {
1084       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1085     }
1086     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1087               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1088               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1089               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1090               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1091               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1092               ((uint32_t)sAlarm->AlarmMask));
1093   }
1094   else /* format BCD */
1095   {
1096     if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1097     {
1098       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1099       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1100     }
1101     else
1102     {
1103       sAlarm->AlarmTime.TimeFormat = 0x00U;
1104       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1105     }
1106 
1107     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1108     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1109 
1110 #ifdef  USE_FULL_ASSERT
1111     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1112     {
1113       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1114     }
1115     else
1116     {
1117       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1118     }
1119 
1120 #endif /* USE_FULL_ASSERT */
1121     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1122               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1123               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1124               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1125               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1126               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1127               ((uint32_t)sAlarm->AlarmMask));
1128   }
1129 
1130   /* Configure the Alarm A or Alarm B Sub Second registers */
1131   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1132 
1133   /* Disable the write protection for RTC registers */
1134   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1135 
1136   /* Configure the Alarm register */
1137   if (sAlarm->Alarm == RTC_ALARM_A)
1138   {
1139     /* Disable the Alarm A interrupt */
1140     /* In case of interrupt mode is used, the interrupt source must disabled */
1141     CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1142     /* Clear flag alarm A */
1143     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1144     /* Configure the Alarm A */
1145     WRITE_REG(RTC->ALRMAR, (uint32_t)tmpreg);
1146     /* Configure the Alarm A Sub Second register */
1147     WRITE_REG(RTC->ALRMASSR, subsecondtmpreg);
1148     /* Configure the Alarm state: Enable Alarm */
1149     SET_BIT(RTC->CR, RTC_CR_ALRAE);
1150   }
1151   else
1152   {
1153     /* Disable the Alarm B interrupt */
1154     /* In case of interrupt mode is used, the interrupt source must disabled */
1155     CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1156     /* Clear flag alarm B */
1157     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1158     /* Configure the Alarm A */
1159     WRITE_REG(RTC->ALRMBR, tmpreg);
1160     /* Configure the Alarm B Sub Second register */
1161     WRITE_REG(RTC->ALRMBSSR, subsecondtmpreg);
1162     /* Configure the Alarm state: Enable Alarm */
1163     SET_BIT(RTC->CR, RTC_CR_ALRBE);
1164   }
1165 
1166   /* Enable the write protection for RTC registers */
1167   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1168 
1169   /* Change RTC state */
1170   hrtc->State = HAL_RTC_STATE_READY;
1171 
1172   /* Process Unlocked */
1173   __HAL_UNLOCK(hrtc);
1174 
1175   return HAL_OK;
1176 }
1177 
1178 /**
1179   * @brief  Set the specified RTC Alarm with Interrupt.
1180   * @note   The Alarm register can only be written when the corresponding Alarm
1181   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
1182   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1183   * @param  hrtc RTC handle
1184   * @param  sAlarm Pointer to Alarm structure
1185   * @param  Format Specifies the format of the entered parameters.
1186   *          This parameter can be one of the following values:
1187   *             @arg RTC_FORMAT_BIN: Binary data format
1188   *             @arg RTC_FORMAT_BCD: BCD data format
1189   * @retval HAL status
1190   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1191 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1192 {
1193   uint32_t tmpreg, subsecondtmpreg;
1194 
1195   /* Check the parameters */
1196   assert_param(IS_RTC_FORMAT(Format));
1197   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1198   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1199   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1200   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1201   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1202 
1203   /* Process Locked */
1204   __HAL_LOCK(hrtc);
1205 
1206   hrtc->State = HAL_RTC_STATE_BUSY;
1207 
1208   if (Format == RTC_FORMAT_BIN)
1209   {
1210     if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1211     {
1212       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1213       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1214     }
1215     else
1216     {
1217       sAlarm->AlarmTime.TimeFormat = 0x00U;
1218       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1219     }
1220     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1221     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1222 
1223     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1224     {
1225       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1226     }
1227     else
1228     {
1229       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1230     }
1231     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1232               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1233               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1234               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1235               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1236               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1237               ((uint32_t)sAlarm->AlarmMask));
1238   }
1239   else /* Format BCD */
1240   {
1241     if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1242     {
1243       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1244       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1245     }
1246     else
1247     {
1248       sAlarm->AlarmTime.TimeFormat = 0x00U;
1249       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1250     }
1251 
1252     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1253     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1254 
1255 #ifdef  USE_FULL_ASSERT
1256     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1257     {
1258       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1259     }
1260     else
1261     {
1262       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1263     }
1264 
1265 #endif /* USE_FULL_ASSERT */
1266     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1267               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1268               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1269               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1270               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1271               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1272               ((uint32_t)sAlarm->AlarmMask));
1273   }
1274   /* Configure the Alarm A or Alarm B Sub Second registers */
1275   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1276 
1277   /* Disable the write protection for RTC registers */
1278   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1279 
1280   /* Configure the Alarm register */
1281   if (sAlarm->Alarm == RTC_ALARM_A)
1282   {
1283     /* Disable the Alarm A interrupt */
1284     CLEAR_BIT(RTC->CR, RTC_CR_ALRAIE);
1285     /* Clear flag alarm A */
1286     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1287     /* Configure the Alarm A */
1288     WRITE_REG(RTC->ALRMAR, (uint32_t)tmpreg);
1289     /* Configure the Alarm A Sub Second register */
1290     WRITE_REG(RTC->ALRMASSR, subsecondtmpreg);
1291     /* Configure the Alarm interrupt : Enable Alarm */
1292     SET_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1293   }
1294   else
1295   {
1296     /* Disable the Alarm B interrupt */
1297     CLEAR_BIT(RTC->CR, RTC_CR_ALRBIE);
1298     /* Clear flag alarm B */
1299     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1300     /* Configure the Alarm B */
1301     WRITE_REG(RTC->ALRMBR, (uint32_t)tmpreg);
1302     /* Configure the Alarm B Sub Second register */
1303     WRITE_REG(RTC->ALRMBSSR, subsecondtmpreg);
1304     /* Configure the Alarm B interrupt : Enable Alarm */
1305     SET_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1306   }
1307 
1308   /* RTC Alarm Interrupt Configuration: EXTI configuration */
1309   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1310 
1311   /* Enable the write protection for RTC registers */
1312   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1313 
1314   hrtc->State = HAL_RTC_STATE_READY;
1315 
1316   /* Process Unlocked */
1317   __HAL_UNLOCK(hrtc);
1318 
1319   return HAL_OK;
1320 }
1321 
1322 /**
1323   * @brief  Deactivate the specified RTC Alarm.
1324   * @param  hrtc RTC handle
1325   * @param  Alarm Specifies the Alarm.
1326   *          This parameter can be one of the following values:
1327   *            @arg RTC_ALARM_A:  AlarmA
1328   *            @arg RTC_ALARM_B:  AlarmB
1329   * @retval HAL status
1330   */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1331 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1332 {
1333   /* Check the parameters */
1334   assert_param(IS_RTC_ALARM(Alarm));
1335 
1336   /* Process Locked */
1337   __HAL_LOCK(hrtc);
1338 
1339   hrtc->State = HAL_RTC_STATE_BUSY;
1340 
1341   /* Disable the write protection for RTC registers */
1342   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1343 
1344   /* In case of interrupt mode is used, the interrupt source must disabled */
1345   if (Alarm == RTC_ALARM_A)
1346   {
1347     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1348   }
1349   else
1350   {
1351     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1352   }
1353 
1354   /* Enable the write protection for RTC registers */
1355   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1356 
1357   hrtc->State = HAL_RTC_STATE_READY;
1358 
1359   /* Process Unlocked */
1360   __HAL_UNLOCK(hrtc);
1361 
1362   return HAL_OK;
1363 }
1364 
1365 /**
1366   * @brief  Get the RTC Alarm value and masks.
1367   * @param  hrtc RTC handle
1368   * @param  sAlarm Pointer to Date structure
1369   * @param  Alarm Specifies the Alarm.
1370   *          This parameter can be one of the following values:
1371   *             @arg RTC_ALARM_A: AlarmA
1372   *             @arg RTC_ALARM_B: AlarmB
1373   * @param  Format Specifies the format of the entered parameters.
1374   *          This parameter can be one of the following values:
1375   *             @arg RTC_FORMAT_BIN: Binary data format
1376   *             @arg RTC_FORMAT_BCD: BCD data format
1377   * @retval HAL status
1378   */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1379 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1380 {
1381   uint32_t tmpreg, subsecondtmpreg;
1382 
1383   UNUSED(hrtc);
1384   /* Check the parameters */
1385   assert_param(IS_RTC_FORMAT(Format));
1386   assert_param(IS_RTC_ALARM(Alarm));
1387 
1388   if (Alarm == RTC_ALARM_A)
1389   {
1390     /* AlarmA */
1391     sAlarm->Alarm = RTC_ALARM_A;
1392 
1393     tmpreg = READ_REG(RTC->ALRMAR);
1394     subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS);
1395 
1396     /* Fill the structure with the read parameters */
1397     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1398     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1399     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
1400     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
1401     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1402     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1403     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
1404     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1405   }
1406   else
1407   {
1408     sAlarm->Alarm = RTC_ALARM_B;
1409 
1410     tmpreg = READ_REG(RTC->ALRMBR);
1411     subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS);
1412 
1413     /* Fill the structure with the read parameters */
1414     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
1415     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
1416     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
1417     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
1418     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1419     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
1420     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
1421     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1422   }
1423 
1424   if (Format == RTC_FORMAT_BIN)
1425   {
1426     sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1427     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1428     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1429     sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1430   }
1431 
1432   return HAL_OK;
1433 }
1434 
1435 #if defined (CORTEX_IN_SECURE_STATE)
1436 /**
1437   * @brief  Handle Alarm secure interrupt request.
1438   * @param  hrtc RTC handle
1439   * @retval None
1440   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1441 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1442 {
1443   /* Get interrupt status */
1444   uint32_t tmp = READ_REG(RTC->SMISR);
1445 
1446   if ((tmp & RTC_SMISR_ALRAMF) != 0u)
1447   {
1448     /* Clear the AlarmA interrupt pending bit */
1449     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1450 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1451     /* Call Compare Match registered Callback */
1452     hrtc->AlarmAEventCallback(hrtc);
1453 #else
1454     HAL_RTC_AlarmAEventCallback(hrtc);
1455 #endif
1456   }
1457 
1458   if ((tmp & RTC_SMISR_ALRBMF) != 0u)
1459   {
1460     /* Clear the AlarmB interrupt pending bit */
1461     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1462 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1463     /* Call Compare Match registered Callback */
1464     hrtc->AlarmBEventCallback(hrtc);
1465 #else
1466     HAL_RTCEx_AlarmBEventCallback(hrtc);
1467 #endif
1468 
1469   }
1470 
1471   /* Change RTC state */
1472   hrtc->State = HAL_RTC_STATE_READY;
1473 }
1474 
1475 #else /* #if defined (CORTEX_IN_SECURE_STATE) */
1476 
1477 /**
1478   * @brief  Handle Alarm non-secure interrupt request.
1479   * @note   Alarm non-secure is available in non-secure driver.
1480   * @param  hrtc RTC handle
1481   * @retval None
1482   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1483 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1484 {
1485   /* Get interrupt status */
1486   uint32_t tmp = READ_REG(RTC->MISR);
1487 
1488   if ((tmp & RTC_MISR_ALRAMF) != 0U)
1489   {
1490     /* Clear the AlarmA interrupt pending bit */
1491     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1492 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1493     /* Call Compare Match registered Callback */
1494     hrtc->AlarmAEventCallback(hrtc);
1495 #else
1496     HAL_RTC_AlarmAEventCallback(hrtc);
1497 #endif
1498   }
1499 
1500   if ((tmp & RTC_MISR_ALRBMF) != 0U)
1501   {
1502     /* Clear the AlarmB interrupt pending bit */
1503     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1504 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1505     /* Call Compare Match registered Callback */
1506     hrtc->AlarmBEventCallback(hrtc);
1507 #else
1508     HAL_RTCEx_AlarmBEventCallback(hrtc);
1509 #endif
1510   }
1511 
1512   /* Change RTC state */
1513   hrtc->State = HAL_RTC_STATE_READY;
1514 }
1515 #endif /* #if defined (CORTEX_IN_SECURE_STATE) */
1516 
1517 /**
1518   * @brief  Alarm A secure secure callback.
1519   * @param  hrtc RTC handle
1520   * @retval None
1521   */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1522 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1523 {
1524   /* Prevent unused argument(s) compilation warning */
1525   UNUSED(hrtc);
1526 
1527   /* NOTE : This function should not be modified, when the secure secure callback is needed,
1528             the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1529    */
1530 }
1531 
1532 /**
1533   * @brief  Handle AlarmA Polling request.
1534   * @param  hrtc RTC handle
1535   * @param  Timeout Timeout duration
1536   * @retval HAL status
1537   */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1538 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1539 {
1540   uint32_t tickstart = HAL_GetTick();
1541 
1542   while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
1543   {
1544     if (Timeout != HAL_MAX_DELAY)
1545     {
1546       if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1547       {
1548         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1549         return HAL_TIMEOUT;
1550       }
1551     }
1552   }
1553 
1554   /* Clear the Alarm interrupt pending bit */
1555   WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1556 
1557   /* Change RTC state */
1558   hrtc->State = HAL_RTC_STATE_READY;
1559 
1560   return HAL_OK;
1561 }
1562 
1563 /**
1564   * @}
1565   */
1566 
1567 /** @addtogroup RTC_Exported_Functions_Group4
1568  *  @brief   Peripheral Control functions
1569  *
1570 @verbatim
1571  ===============================================================================
1572                      ##### Peripheral Control functions #####
1573  ===============================================================================
1574     [..]
1575     This subsection provides functions allowing to
1576       (+) Wait for RTC Time and Date Synchronization
1577 
1578 @endverbatim
1579   * @{
1580   */
1581 
1582 /**
1583   * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1584   *         synchronized with RTC APB clock.
1585   * @note   The RTC Resynchronization mode is write protected, use the
1586   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1587   * @note   To read the calendar through the shadow registers after Calendar
1588   *         initialization, calendar update or after wakeup from low power modes
1589   *         the software must first clear the RSF flag.
1590   *         The software must then wait until it is set again before reading
1591   *         the calendar, which means that the calendar registers have been
1592   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
1593   * @param  hrtc RTC handle
1594   * @retval HAL status
1595   */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1596 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
1597 {
1598   uint32_t tickstart;
1599 
1600   UNUSED(hrtc);
1601   /* Clear RSF flag */
1602   SET_BIT(RTC->ICSR, RTC_RSF_MASK);
1603 
1604   tickstart = HAL_GetTick();
1605 
1606   /* Wait the registers to be synchronised */
1607   while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
1608   {
1609     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1610     {
1611       return HAL_TIMEOUT;
1612     }
1613   }
1614 
1615   return HAL_OK;
1616 }
1617 
1618 /**
1619   * @}
1620   */
1621 
1622 /** @addtogroup RTC_Exported_Functions_Group5
1623  *  @brief   Peripheral State functions
1624  *
1625 @verbatim
1626  ===============================================================================
1627                      ##### Peripheral State functions #####
1628  ===============================================================================
1629     [..]
1630     This subsection provides functions allowing to
1631       (+) Get RTC state
1632 
1633 @endverbatim
1634   * @{
1635   */
1636 /**
1637   * @brief  Return the RTC handle state.
1638   * @param  hrtc RTC handle
1639   * @retval HAL state
1640   */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1641 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
1642 {
1643   /* Return RTC handle state */
1644   return hrtc->State;
1645 }
1646 
1647 /**
1648   * @}
1649   */
1650 /**
1651   * @}
1652   */
1653 
1654 /** @addtogroup RTC_Private_Functions
1655   * @{
1656   */
1657 /**
1658   * @brief  Enter the RTC Initialization mode.
1659   * @note   The RTC Initialization mode is write protected, use the
1660   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1661   * @param  hrtc RTC handle
1662   * @retval HAL status
1663   */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1664 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
1665 {
1666   uint32_t tickstart;
1667   HAL_StatusTypeDef status = HAL_OK;
1668 
1669   UNUSED(hrtc);
1670   /* Check if the Initialization mode is set */
1671   if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
1672   {
1673     /* Set the Initialization mode */
1674     SET_BIT(RTC->ICSR, RTC_ICSR_INIT);
1675 
1676     tickstart = HAL_GetTick();
1677     /* Wait till RTC is in INIT state and if Time out is reached exit */
1678     while ((READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
1679     {
1680       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
1681       {
1682         status = HAL_TIMEOUT;
1683         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1684       }
1685     }
1686   }
1687 
1688   return status;
1689 }
1690 
1691 /**
1692   * @brief  Exit the RTC Initialization mode.
1693   * @param  hrtc RTC handle
1694   * @retval HAL status
1695   */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1696 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1697 {
1698   HAL_StatusTypeDef status = HAL_OK;
1699 
1700   /* Exit Initialization mode */
1701   CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
1702 
1703   /* If CR_BYPSHAD bit = 0, wait for synchro */
1704   if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
1705   {
1706     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1707     {
1708       hrtc->State = HAL_RTC_STATE_TIMEOUT;
1709       status = HAL_TIMEOUT;
1710     }
1711   }
1712   else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry.
1713           Please look at Errata sheet on the internet for details. */
1714   {
1715     /* Clear BYPSHAD bit */
1716     CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
1717     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1718     {
1719       hrtc->State = HAL_RTC_STATE_TIMEOUT;
1720       status = HAL_TIMEOUT;
1721     }
1722     /* Restore BYPSHAD bit */
1723     SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
1724   }
1725 
1726   return status;
1727 }
1728 
1729 /**
1730   * @brief  Convert a 2 digit decimal to BCD format.
1731   * @param  Value Byte to be converted
1732   * @retval Converted byte
1733   */
RTC_ByteToBcd2(uint8_t Value)1734 uint8_t RTC_ByteToBcd2(uint8_t Value)
1735 {
1736   uint32_t bcdhigh = 0U;
1737   uint8_t tmp_Value = Value;
1738 
1739   while (tmp_Value >= 10U)
1740   {
1741     bcdhigh++;
1742     tmp_Value -= 10U;
1743   }
1744 
1745   return ((uint8_t)(bcdhigh << 4U) | tmp_Value);
1746 }
1747 
1748 /**
1749   * @brief  Convert from 2 digit BCD to Binary.
1750   * @param  Value BCD value to be converted
1751   * @retval Converted word
1752   */
RTC_Bcd2ToByte(uint8_t Value)1753 uint8_t RTC_Bcd2ToByte(uint8_t Value)
1754 {
1755   uint32_t tmp;
1756   tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U;
1757   return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
1758 }
1759 
1760 /**
1761   * @}
1762   */
1763 
1764 #endif /* HAL_RTC_MODULE_ENABLED */
1765 /**
1766   * @}
1767   */
1768 
1769 /**
1770   * @}
1771   */
1772