1 /**
2   ******************************************************************************
3   * @file    stm32mp1xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2019 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32MP1xx_LL_TIM_H
21 #define __STM32MP1xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32mp1xx.h"
29 
30 /** @addtogroup STM32MP1xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined(TIM12) | defined (TIM13) | defined (TIM14) | defined (TIM15) || defined (TIM16) || defined (TIM17)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #define TIM_POSITION_BRK_SOURCE           (POSITION_VAL(Source) & 0x1FUL)
120 
121 /* Generic bit definitions for TIMx_AF1 register */
122 #define TIMx_AF1_BKINE          TIM1_AF1_BKINE       /*!< BRK BKINE input enable */
123 #if defined(DFSDM1_Channel0)
124 #define TIMx_AF1_BKDFBKE        TIM1_AF1_BKDF1BK0E     /*!< BRK DFSDM1_BREAK[0] enable */
125 #endif /* DFSDM1_Channel0 */
126 #define TIMx_AF1_BKINP        TIM1_AF1_BKINP       /*!< BRK BKIN input polarity */
127 /* Generic bit definitions for TIMx_AF2 register */
128 #define TIMx_AF2_BK2INE         TIM1_AF2_BK2INE      /*!< BRK B2KINE input enable */
129 #if defined(DFSDM1_Channel0)
130 #define TIMx_AF2_BK2DFBKE       TIM1_AF2_BK2DF1BK1E    /*!< BRK DFSDM_BREAK[0] enable */
131 #endif /* DFSDM1_Channel0 */
132 #define TIMx_AF2_BK2INP       TIM1_AF2_BK2INP      /*!< BRK BK2IN input polarity */
133 #define TIMx_AF1_ETRSEL    TIM1_AF1_ETRSEL    /*!< TIMx ETR source selection */
134 
135 
136 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
137 #define DT_DELAY_1 ((uint8_t)0x7F)
138 #define DT_DELAY_2 ((uint8_t)0x3F)
139 #define DT_DELAY_3 ((uint8_t)0x1F)
140 #define DT_DELAY_4 ((uint8_t)0x1F)
141 
142 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
143 #define DT_RANGE_1 ((uint8_t)0x00)
144 #define DT_RANGE_2 ((uint8_t)0x80)
145 #define DT_RANGE_3 ((uint8_t)0xC0)
146 #define DT_RANGE_4 ((uint8_t)0xE0)
147 
148 /** Legacy definitions for compatibility purpose
149 @cond 0
150   */
151 #define TIMx_AF1_BKDFBK0E   TIMx_AF1_BKDF1BK0E
152 #define TIMx_AF2_BK2DFBK1E  TIMx_AF2_BK2DF1BK1E
153 /**
154 @endcond
155   */
156 
157 #define OCREF_CLEAR_SELECT_Pos (16U)
158 #define OCREF_CLEAR_SELECT_Msk (0x1U << OCREF_CLEAR_SELECT_Pos)                /*!< 0x00010000 */
159 /**
160   * @}
161   */
162 
163 /* Private macros ------------------------------------------------------------*/
164 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
165   * @{
166   */
167 /** @brief  Convert channel id into channel index.
168   * @param  __CHANNEL__ This parameter can be one of the following values:
169   *         @arg @ref LL_TIM_CHANNEL_CH1
170   *         @arg @ref LL_TIM_CHANNEL_CH1N
171   *         @arg @ref LL_TIM_CHANNEL_CH2
172   *         @arg @ref LL_TIM_CHANNEL_CH2N
173   *         @arg @ref LL_TIM_CHANNEL_CH3
174   *         @arg @ref LL_TIM_CHANNEL_CH3N
175   *         @arg @ref LL_TIM_CHANNEL_CH4
176   *         @arg @ref LL_TIM_CHANNEL_CH5
177   *         @arg @ref LL_TIM_CHANNEL_CH6
178   * @retval none
179   */
180 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
181   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
182    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
183    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
184    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
185    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
186    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
187    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
188    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
189 
190 /** @brief  Calculate the deadtime sampling period(in ps).
191   * @param  __TIMCLK__ timer input clock frequency (in Hz).
192   * @param  __CKD__ This parameter can be one of the following values:
193   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
194   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
195   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
196   * @retval none
197   */
198 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
199   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
200    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
201    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
202 /**
203   * @}
204   */
205 
206 
207 /* Exported types ------------------------------------------------------------*/
208 #if defined(USE_FULL_LL_DRIVER)
209 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
210   * @{
211   */
212 
213 /**
214   * @brief  TIM Time Base configuration structure definition.
215   */
216 typedef struct
217 {
218   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
219                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
220 
221                                    This feature can be modified afterwards using unitary function @ref LL_TIM_SetPrescaler().*/
222 
223   uint32_t CounterMode;       /*!< Specifies the counter mode.
224                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
225 
226                                    This feature can be modified afterwards using unitary function @ref LL_TIM_SetCounterMode().*/
227 
228   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
229                                    Auto-Reload Register at the next update event.
230                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
231                                    Some timer instances may support 32 bits counters. In that case this parameter must be a number between 0x0000 and 0xFFFFFFFF.
232 
233                                    This feature can be modified afterwards using unitary function @ref LL_TIM_SetAutoReload().*/
234 
235   uint32_t ClockDivision;     /*!< Specifies the clock division.
236                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
237 
238                                    This feature can be modified afterwards using unitary function @ref LL_TIM_SetClockDivision().*/
239 
240   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
241                                    reaches zero, an update event is generated and counting restarts
242                                    from the RCR value (N).
243                                    This means in PWM mode that (N+1) corresponds to:
244                                       - the number of PWM periods in edge-aligned mode
245                                       - the number of half PWM period in center-aligned mode
246                                    GP timers: this parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF.
247                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
248 
249                                    This feature can be modified afterwards using unitary function @ref LL_TIM_SetRepetitionCounter().*/
250 } LL_TIM_InitTypeDef;
251 
252 /**
253   * @brief  TIM Output Compare configuration structure definition.
254   */
255 typedef struct
256 {
257   uint32_t OCMode;        /*!< Specifies the output mode.
258                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
259 
260                                This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetMode().*/
261 
262   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
263                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
264 
265                                This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
266 
267   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
268                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
269 
270                                This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
271 
272   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
273                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
274 
275                                This feature can be modified afterwards using unitary function LL_TIM_OC_SetCompareCHx (x=1..6).*/
276 
277   uint32_t OCPolarity;    /*!< Specifies the output polarity.
278                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
279 
280                                This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
281 
282   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
283                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
284 
285                                This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
286 
287 
288   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
289                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
290 
291                                This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
292 
293   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
294                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
295 
296                                This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
297 } LL_TIM_OC_InitTypeDef;
298 
299 /**
300   * @brief  TIM Input Capture configuration structure definition.
301   */
302 
303 typedef struct
304 {
305 
306   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
307                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
308 
309                                This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
310 
311   uint32_t ICActiveInput; /*!< Specifies the input.
312                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
313 
314                                This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
315 
316   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
317                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
318 
319                                This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
320 
321   uint32_t ICFilter;      /*!< Specifies the input capture filter.
322                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
323 
324                                This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
325 } LL_TIM_IC_InitTypeDef;
326 
327 
328 /**
329   * @brief  TIM Encoder interface configuration structure definition.
330   */
331 typedef struct
332 {
333   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
334                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
335 
336                                  This feature can be modified afterwards using unitary function @ref LL_TIM_SetEncoderMode().*/
337 
338   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
339                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
340 
341                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
342 
343   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
344                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
345 
346                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
347 
348   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
349                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
350 
351                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
352 
353   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
354                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
355 
356                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
357 
358   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
359                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
360 
361                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
362 
363   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
364                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
365 
366                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
367 
368   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
369                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
370 
371                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
372 
373   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
374                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
375 
376                                  This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
377 
378 } LL_TIM_ENCODER_InitTypeDef;
379 
380 /**
381   * @brief  TIM Hall sensor interface configuration structure definition.
382   */
383 typedef struct
384 {
385 
386   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
387                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
388 
389                                     This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
390 
391   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
392                                     Prescaler must be set to get a maximum counter period longer than the
393                                     time interval between 2 consecutive changes on the Hall inputs.
394                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
395 
396                                     This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
397 
398   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
399                                     This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
400 
401                                     This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
402 
403   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
404                                     A positive pulse (TRGO event) is generated with a programmable delay every time
405                                     a change occurs on the Hall inputs.
406                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
407 
408                                     This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetCompareCH2().*/
409 } LL_TIM_HALLSENSOR_InitTypeDef;
410 
411 /**
412   * @brief  BDTR (Break and Dead Time) structure definition
413   */
414 typedef struct
415 {
416   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
417                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
418 
419                                       This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
420 
421                                       @note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
422 
423   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
424                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
425 
426                                       This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
427 
428                                       @note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
429 
430   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
431                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
432 
433                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
434                                             has been written, their content is frozen until the next reset.*/
435 
436   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
437                                       switching-on of the outputs.
438                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
439 
440                                       This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetDeadTime()
441 
442                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed. */
443 
444   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
445                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
446 
447                                       This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
448 
449                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
450 
451   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
452                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
453 
454                                       This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK()
455 
456                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
457 
458   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
459                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
460 
461                                       This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK()
462 
463                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
464 
465   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
466                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
467 
468                                       This feature can be modified afterwards using unitary functions @ref LL_TIM_ConfigBRK()
469 
470                                       @note Bidirectional break input is only supported by advanced timers instances.
471 
472                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
473 
474   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
475                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
476 
477                                       This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
478 
479                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
480 
481   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
482                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
483 
484                                       This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK2()
485 
486                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
487 
488   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
489                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
490 
491                                       This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK2()
492 
493                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
494 
495   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
496                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
497 
498                                       This feature can be modified afterwards using unitary functions @ref LL_TIM_ConfigBRK2()
499 
500                                       @note Bidirectional break input is only supported by advanced timers instances.
501 
502                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
503 
504   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
505                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
506 
507                                       This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
508 
509                                       @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
510 } LL_TIM_BDTR_InitTypeDef;
511 
512 /**
513   * @}
514   */
515 #endif /* USE_FULL_LL_DRIVER */
516 
517 /* Exported constants --------------------------------------------------------*/
518 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
519   * @{
520   */
521 
522 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
523   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
524   * @{
525   */
526 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
527 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
528 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
529 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
530 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
531 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
532 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
533 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
534 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
535 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
536 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
537 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
538 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
539 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
540 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
541 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
542 /**
543   * @}
544   */
545 
546 #if defined(USE_FULL_LL_DRIVER)
547 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
548   * @{
549   */
550 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
551 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
552 /**
553   * @}
554   */
555 
556 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
557   * @{
558   */
559 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
560 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
561 /**
562   * @}
563   */
564 
565 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
566   * @{
567   */
568 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
569 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
570 /**
571   * @}
572   */
573 #endif /* USE_FULL_LL_DRIVER */
574 
575 /** @defgroup TIM_LL_EC_IT IT Defines
576   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
577   * @{
578   */
579 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
580 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
581 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
582 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
583 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
584 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
585 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
586 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
587 /**
588   * @}
589   */
590 
591 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
592   * @{
593   */
594 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
595 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
596 /**
597   * @}
598   */
599 
600 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
601   * @{
602   */
603 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
604 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
605 /**
606   * @}
607   */
608 
609 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
610   * @{
611   */
612 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!< Counter used as upcounter */
613 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
614 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
615 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up. */
616 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
617 /**
618   * @}
619   */
620 
621 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
622   * @{
623   */
624 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
625 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
626 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
627 /**
628   * @}
629   */
630 
631 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
632   * @{
633   */
634 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
635 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
636 /**
637   * @}
638   */
639 
640 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
641   * @{
642   */
643 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
644 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
645 /**
646   * @}
647   */
648 
649 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
650   * @{
651   */
652 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
653 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
654 /**
655   * @}
656   */
657 
658 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
659   * @{
660   */
661 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
662 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
663 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
664 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
665 /**
666   * @}
667   */
668 
669 /** @defgroup TIM_LL_EC_CHANNEL Channel
670   * @{
671   */
672 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
673 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
674 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
675 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
676 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
677 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
678 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
679 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
680 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
681 /**
682   * @}
683   */
684 
685 #if defined(USE_FULL_LL_DRIVER)
686 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
687   * @{
688   */
689 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
690 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
691 /**
692   * @}
693   */
694 #endif /* USE_FULL_LL_DRIVER */
695 
696 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
697   * @{
698   */
699 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
700 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
701 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
702 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
703 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
704 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
705 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
706 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
707 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
708 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
709 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
710 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
711 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
712 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
713 /**
714   * @}
715   */
716 
717 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
718   * @{
719   */
720 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
721 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
722 /**
723   * @}
724   */
725 
726 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
727   * @{
728   */
729 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
730 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
731 /**
732   * @}
733   */
734 
735 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
736   * @{
737   */
738 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
739 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
740 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
741 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
742 /**
743   * @}
744   */
745 
746 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
747   * @{
748   */
749 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
750 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
751 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
752 /**
753   * @}
754   */
755 
756 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
757   * @{
758   */
759 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
760 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
761 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
762 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
763 /**
764   * @}
765   */
766 
767 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
768   * @{
769   */
770 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
771 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
772 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
773 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
774 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
775 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
776 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
777 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
778 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
779 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
780 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
781 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
782 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
783 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
784 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
785 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
786 /**
787   * @}
788   */
789 
790 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
791   * @{
792   */
793 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
794 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
795 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
796 /**
797   * @}
798   */
799 
800 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
801   * @{
802   */
803 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
804 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
805 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
806 /**
807   * @}
808   */
809 
810 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
811   * @{
812   */
813 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
814 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
815 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
816 /**
817   * @}
818   */
819 
820 /** @defgroup TIM_LL_EC_TRGO Trigger Output
821   * @{
822   */
823 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
824 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
825 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
826 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
827 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
828 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
829 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
830 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
831 /**
832   * @}
833   */
834 
835 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
836   * @{
837   */
838 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
839 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
840 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
841 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
842 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
843 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
844 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
845 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
846 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
847 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
848 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
849 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
850 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
851 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
852 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
853 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
854 /**
855   * @}
856   */
857 
858 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
859   * @{
860   */
861 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
862 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
863 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
864 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
865 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
866 /**
867   * @}
868   */
869 
870 /** @defgroup TIM_LL_EC_TS Trigger Selection
871   * @{
872   */
873 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
874 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
875 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
876 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
877 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
878 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
879 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
880 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
881 /**
882   * @}
883   */
884 
885 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
886   * @{
887   */
888 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
889 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
890 /**
891   * @}
892   */
893 
894 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
895   * @{
896   */
897 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
898 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
899 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
900 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
901 /**
902   * @}
903   */
904 
905 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
906   * @{
907   */
908 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
909 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
910 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
911 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
912 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
913 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
914 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
915 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
916 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
917 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
918 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
919 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
920 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
921 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
922 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
923 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
924 /**
925   * @}
926   */
927 
928 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
929   * @{
930   */
931 #define LL_TIM_TIM1_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
932 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1             (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 1 */
933 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2             TIM1_AF1_ETRSEL_2                                 /*!< ETR input is connected to ADC1 analog watchdog 2 */
934 #define LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 3 */
935 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD1             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to ADC2 analog watchdog 1 */
936 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD2             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC2 analog watchdog 2 */
937 #define LL_TIM_TIM1_ETRSOURCE_ADC2_AWD3             (TIM1_AF1_ETRSEL_3)                               /*!< ETR input is connected to ADC2 analog watchdog 3 */
938 
939 #define LL_TIM_TIM8_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
940 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD1             (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 1 */
941 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD2             TIM1_AF1_ETRSEL_2                                 /*!< ETR input is connected to ADC1 analog watchdog 2 */
942 #define LL_TIM_TIM8_ETRSOURCE_ADC1_AWD3             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC1 analog watchdog 3 */
943 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to ADC2 analog watchdog 1 */
944 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2             (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to ADC2 analog watchdog 2 */
945 #define LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3             (TIM1_AF1_ETRSEL_3)                               /*!< ETR input is connected to ADC2 analog watchdog 3 */
946 
947 #define LL_TIM_TIM2_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
948 #define LL_TIM_TIM2_ETRSOURCE_RCC_LSE               (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to RCC LSE */
949 #define LL_TIM_TIM2_ETRSOURCE_SAI1_FSA              TIM1_AF1_ETRSEL_2                                 /*!< ETR input is connected to SAI1 FS_A */
950 #define LL_TIM_TIM2_ETRSOURCE_SAI1_FSB              (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to SAI1 FS_B */
951 #define LL_TIM_TIM2_ETRSOURCE_ETH_PPS               (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to ETH PPS */
952 
953 #define LL_TIM_TIM3_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
954 #define LL_TIM_TIM3_ETRSOURCE_ETH_PPS               (TIM1_AF1_ETRSEL_2 | TIM1_AF1_ETRSEL_1) /*!< ETR input is connected to ETH PPS */
955 
956 #define LL_TIM_TIM4_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
957 
958 #define LL_TIM_TIM5_ETRSOURCE_GPIO                  0x00000000U                                                 /*!< ETR input is connected to GPIO */
959 #define LL_TIM_TIM5_ETRSOURCE_SAI2_FSA              TIM1_AF1_ETRSEL_0                                 /*!< ETR input is connected to SAI2 FS_A */
960 #define LL_TIM_TIM5_ETRSOURCE_SAI2_FSB              TIM1_AF1_ETRSEL_1                                 /*!< ETR input is connected to SAI2 FS_B */
961 #define LL_TIM_TIM5_ETRSOURCE_OTG_SOF               (TIM1_AF1_ETRSEL_1 | TIM1_AF1_ETRSEL_0) /*!< ETR input is connected to OTG SOF */
962 /**
963   * @}
964   */
965 
966 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
967   * @{
968   */
969 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
970 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
971 /**
972   * @}
973   */
974 
975 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
976   * @{
977   */
978 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
979 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
980 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
981 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
982 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
983 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
984 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
985 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
986 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
987 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
988 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
989 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
990 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
991 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
992 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
993 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
994 /**
995   * @}
996   */
997 
998 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
999   * @{
1000   */
1001 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1002 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1003 /**
1004   * @}
1005   */
1006 
1007 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1008   * @{
1009   */
1010 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1011 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1012 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1013 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1014 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1015 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1016 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1017 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1018 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1019 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1020 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1021 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1022 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1023 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1024 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1025 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1026 /**
1027   * @}
1028   */
1029 
1030 /** @defgroup TIM_LL_EC_OSSI OSSI
1031   * @{
1032   */
1033 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1034 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1035 /**
1036   * @}
1037   */
1038 
1039 /** @defgroup TIM_LL_EC_OSSR OSSR
1040   * @{
1041   */
1042 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1043 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1044 /**
1045   * @}
1046   */
1047 
1048 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1049   * @{
1050   */
1051 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1052 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1053 /**
1054   * @}
1055   */
1056 
1057 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1058   * @{
1059   */
1060 #define LL_TIM_BKIN_SOURCE_BKIN                TIM1_AF1_BKINE      /*!< BKIN input from AF controller */
1061 #define LL_TIM_BKIN_SOURCE_DF1BK               TIM1_AF1_BKDF1BK0E  /*!< internal signal: DFSDM1 break output */
1062 /**
1063   * @}
1064   */
1065 
1066 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1067   * @{
1068   */
1069 #define LL_TIM_BKIN_POLARITY_LOW               TIM1_AF1_BKINP           /*!< BRK BKIN input is active low */
1070 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1071 /**
1072   * @}
1073   */
1074 
1075 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1076   * @{
1077   */
1078 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1079 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1080 /**
1081   * @}
1082   */
1083 
1084 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1085   * @{
1086   */
1087 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1088 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1089 /**
1090   * @}
1091   */
1092 
1093 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1094   * @{
1095   */
1096 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1097 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1098 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1099 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1100 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1101 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1102 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1103 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1104 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1105 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1106 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1107 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1108 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1109 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1110 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1111 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1112 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1113 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1114 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1115 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1116 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1117 #define LL_TIM_DMABURST_BASEADDR_AF1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_AF1 register is the DMA base address for DMA burst */
1118 #define LL_TIM_DMABURST_BASEADDR_AF2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_AF2 register is the DMA base address for DMA burst */
1119 #define LL_TIM_DMABURST_BASEADDR_TISEL         (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                  /*!< TIMx_TISEL register is the DMA base address for DMA burst */
1120 /**
1121   * @}
1122   */
1123 
1124 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1125   * @{
1126   */
1127 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1128 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1129 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1130 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1131 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1132 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1133 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1134 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1135 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1136 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1137 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1138 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1139 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1140 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1141 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1142 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1143 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1144 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1145 /**
1146   * @}
1147   */
1148 
1149 /** @defgroup TIM_LL_EC_TIM1_TIx_RMP  TIM1 Timer Input Chx Remap
1150   * @{
1151   */
1152 #define LL_TIM_TIM1_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 1 is connected to GPIO */
1153 #define LL_TIM_TIM1_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 2 is connected to GPIO */
1154 #define LL_TIM_TIM1_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 3 is connected to GPIO */
1155 #define LL_TIM_TIM1_TI4_RMP_GPIO   0x00000000U                                       /*!< TIM1 input 4 is connected to GPIO */
1156 /**
1157   * @}
1158   */
1159 /** @defgroup TIM_LL_EC_TIM8_TIx_RMP  TIM8 Timer Input Chx Remap
1160   * @{
1161   */
1162 #define LL_TIM_TIM8_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM8 input 1 is connected to GPIO */
1163 #define LL_TIM_TIM8_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM8 input 2 is connected to GPIO */
1164 #define LL_TIM_TIM8_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM8 input 3 is connected to GPIO */
1165 #define LL_TIM_TIM8_TI4_RMP_GPIO   0x00000000U                                       /*!< TIM8 input 4 is connected to GPIO */
1166 /**
1167   * @}
1168   */
1169   /** @defgroup TIM_LL_EC_TIM2_TIx_RMP  TIM2 Timer Input Chx Remap
1170   * @{
1171   */
1172 #define LL_TIM_TIM2_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 1 is connected to GPIO */
1173 #define LL_TIM_TIM2_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 2 is connected to GPIO */
1174 #define LL_TIM_TIM2_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 3 is connected to GPIO */
1175 #define LL_TIM_TIM2_TI4_RMP_GPIO   0x00000000U                                       /*!< TIM2 input 4 is connected to GPIO */
1176 /**
1177   * @}
1178   */
1179 /** @defgroup TIM_LL_EC_TIM3_TIx_RMP  TIM3 Timer Input Chx Remap
1180   * @{
1181   */
1182 #define LL_TIM_TIM3_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 1 is connected to GPIO */
1183 #define LL_TIM_TIM3_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 2 is connected to GPIO */
1184 #define LL_TIM_TIM3_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 3 is connected to GPIO */
1185 #define LL_TIM_TIM3_TI4_RMP_GPIO   0x00000000U                                       /*!< TIM3 input 4 is connected to GPIO */
1186 /**
1187   * @}
1188   */
1189 /** @defgroup TIM_LL_EC_TIM4_TIx_RMP  TIM4 Timer Input Chx Remap
1190   * @{
1191   */
1192 #define LL_TIM_TIM4_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 1 is connected to GPIO */
1193 #define LL_TIM_TIM4_TI2_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 2 is connected to GPIO */
1194 #define LL_TIM_TIM4_TI3_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 3 is connected to GPIO */
1195 #define LL_TIM_TIM4_TI4_RMP_GPIO   0x00000000U                                       /*!< TIM4 input 4 is connected to GPIO */
1196 /**
1197   * @}
1198   */
1199 /** @defgroup TIM_LL_EC_TIM5_TIx_RMP  TIM5 Timer Input Chx Remap
1200   * @{
1201   */
1202 #define LL_TIM_TIM5_TI1_RMP_GPIO        0x00000000U                                  /*!< TIM5 input 1 is connected to GPIO */
1203 #define LL_TIM_TIM5_TI1_RMP_FDCAN1_TMP  TIM_TISEL_TI1SEL_0                           /*!< TIM5 input 1 is connected to FDCAN1_TMP */
1204 #define LL_TIM_TIM5_TI1_RMP_FDCAN1_RTP  TIM_TISEL_TI1SEL_1                           /*!< TIM5 input 1 is connected to FDCAN1_RTP */
1205 #define LL_TIM_TIM5_TI2_RMP_GPIO        0x00000000U                                  /*!< TIM5 input 2 is connected to GPIO */
1206 #define LL_TIM_TIM5_TI3_RMP_GPIO        0x00000000U                                  /*!< TIM5 input 3 is connected to GPIO */
1207 #define LL_TIM_TIM5_TI4_RMP_GPIO        0x00000000U                                  /*!< TIM5 input 4 is connected to GPIO */
1208 /**
1209   * @}
1210   */
1211 /** @defgroup TIM_LL_EC_TIM12_TIx_RMP  TIM12 Timer Input Chx Remap
1212   * @{
1213   */
1214 #define LL_TIM_TIM12_TI1_RMP_GPIO         0x00000000U                                 /*!< TIM12 input 1 is connected to GPIO */
1215 #define LL_TIM_TIM12_TI1_RMP_HSI_CAL_CK   TIM_TISEL_TI1SEL_0                          /*!< TIM12 input 1 is connected to HSI_CAL_CK */
1216 #define LL_TIM_TIM12_TI1_RMP_CSI_CAL_CK   TIM_TISEL_TI1SEL_1                          /*!< TIM12 input 1 is connected to CSI_CAL_CK */
1217 #define LL_TIM_TIM12_TI2_RMP_GPIO         0x00000000U                                 /*!< TIM12 input 2 is connected to GPIO */
1218 /**
1219   * @}
1220   */
1221 /** @defgroup TIM_LL_EC_TIM13_TIx_RMP  TIM13 Timer Input Chx Remap
1222   * @{
1223   */
1224 #define LL_TIM_TIM13_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM13 input 1 is connected to GPIO */
1225 /**
1226   * @}
1227   */
1228 /** @defgroup TIM_LL_EC_TIM14_TIx_RMP  TIM14 Timer Input Chx Remap
1229   * @{
1230   */
1231 #define LL_TIM_TIM14_TI1_RMP_GPIO   0x00000000U                                       /*!< TIM14 input 1 is connected to GPIO */
1232 /**
1233   * @}
1234   */
1235 /** @defgroup TIM_LL_EC_TIM15_TIx_RMP  TIM15 Timer Input Chx Remap
1236   * @{
1237   */
1238 #define LL_TIM_TIM15_TI1_RMP_GPIO        0x00000000U                                  /*!< TIM15 input 1 is connected to GPIO */
1239 #define LL_TIM_TIM15_TI1_RMP_TIM2_CH1    TIM_TISEL_TI1SEL_0                           /*!< TIM15 input 1 is connected to TIM2_CH1 */
1240 #define LL_TIM_TIM15_TI1_RMP_TIM3_CH1    TIM_TISEL_TI1SEL_1                           /*!< TIM15 input 1 is connected to TIM3_CH1 */
1241 #define LL_TIM_TIM15_TI1_RMP_TIM4_CH1    (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)    /*!< TIM15 input 1 is connected to TIM4_CH1 */
1242 #define LL_TIM_TIM15_TI1_RMP_RCC_LSE     TIM_TISEL_TI1SEL_2                           /*!< TIM15 input 1 is connected to RCC_LSE  */
1243 #define LL_TIM_TIM15_TI1_RMP_RCC_CSI     (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_0)    /*!< TIM15 input 1 is connected to RCC_CSI  */
1244 #define LL_TIM_TIM15_TI1_RMP_RCC_MCO2    (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1)    /*!< TIM15 input 1 is connected to RCC_MCO2 */
1245 #define LL_TIM_TIM15_TI1_RMP_HSI_CAL_CK  (TIM_TISEL_TI1SEL_2 | TIM_TISEL_TI1SEL_1 | TIM_TISEL_TI1SEL_0)    /*!< TIM15 input 1 is connected to HSI_CAL_CK */
1246 #define LL_TIM_TIM15_TI1_RMP_CSI_CAL_CK  TIM_TISEL_TI1SEL_3                           /*!< TIM15 input 1 is connected to CSI_CAL_CK */
1247 #define LL_TIM_TIM15_TI2_RMP_GPIO        0x00000000U                                  /*!< TIM15 input 2 is connected to GPIO */
1248 #define LL_TIM_TIM15_TI2_RMP_TIM2_CH2    TIM_TISEL_TI1SEL_0                           /*!< TIM15 input 2 is connected to TIM2_CH2 */
1249 #define LL_TIM_TIM15_TI2_RMP_TIM3_CH2    TIM_TISEL_TI1SEL_1                           /*!< TIM15 input 2 is connected to TIM3_CH2 */
1250 #define LL_TIM_TIM15_TI2_RMP_TIM4_CH2    (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)    /*!< TIM15 input 2 is connected to TIM4_CH2 */
1251 /**
1252   * @}
1253   */
1254 /** @defgroup TIM_LL_EC_TIM16_TIx_RMP  TIM16 Timer Input Chx Remap
1255   * @{
1256   */
1257 #define LL_TIM_TIM16_TI1_RMP_GPIO        0x00000000U                                  /*!< TIM16 input 1 is connected to GPIO */
1258 #define LL_TIM_TIM16_TI1_RMP_RCC_LSI     TIM_TISEL_TI1SEL_0                           /*!< TIM16 input 1 is connected to RCC_LSI */
1259 #define LL_TIM_TIM16_TI1_RMP_RCC_LSE     TIM_TISEL_TI1SEL_1                           /*!< TIM16 input 1 is connected to RCC_LSE */
1260 #define LL_TIM_TIM16_TI1_RMP_WKUP_IT     (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)    /*!< TIM16 input 1 is connected to WKUP_IT */
1261 /**
1262   * @}
1263   */
1264 /** @defgroup TIM_LL_EC_TIM17_TIx_RMP  TIM17 Timer Input Chx Remap
1265   * @{
1266   */
1267 #define LL_TIM_TIM17_TI1_RMP_GPIO         0x00000000U                                  /*!< TIM17 input 1 is connected to GPIO */
1268 #define LL_TIM_TIM17_TI1_RMP_SPDIFRX_FS   TIM_TISEL_TI1SEL_0                           /*!< TIM17 input 1 is connected to SPDIF_FS */
1269 #define LL_TIM_TIM17_TI1_RMP_RCC_HSE_RTC  TIM_TISEL_TI1SEL_1                           /*!< TIM17 input 1 is connected to RCC_HSE_RTC */
1270 #define LL_TIM_TIM17_TI1_RMP_RCC_MCO1     (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)    /*!< TIM17 input 1 is connected to RCC_MCO1 */
1271 /**
1272   * @}
1273   */
1274 
1275 /** Legacy definitions for compatibility purpose
1276 @cond 0
1277   */
1278 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1279 /**
1280 @endcond
1281   */
1282 /**
1283   * @}
1284   */
1285 
1286 /* Exported macro ------------------------------------------------------------*/
1287 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1288   * @{
1289   */
1290 
1291 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1292   * @{
1293   */
1294 /**
1295   * @brief  Write a value in TIM register.
1296   * @param  __INSTANCE__ TIM Instance
1297   * @param  __REG__ Register to be written
1298   * @param  __VALUE__ Value to be written in the register
1299   * @retval None
1300   */
1301 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1302 
1303 /**
1304   * @brief  Read a value in TIM register.
1305   * @param  __INSTANCE__ TIM Instance
1306   * @param  __REG__ Register to be read
1307   * @retval Register value
1308   */
1309 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1310 /**
1311   * @}
1312   */
1313 
1314 /** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
1315   * @{
1316   */
1317 
1318 /**
1319   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1320   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1321   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1322   *        to TIMx_CNT register bit 31)
1323   * @param  __CNT__ Counter value
1324   * @retval UIF status bit
1325   */
1326 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1327   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1328 
1329 /**
1330   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1331   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1332   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1333   * @param  __CKD__ This parameter can be one of the following values:
1334   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1335   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1336   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1337   * @param  __DT__ deadtime duration (in ns)
1338   * @retval DTG[0:7]
1339   */
1340 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1341   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ? (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :                                               \
1342     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ? (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1343     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ? (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1344     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1345     0U)
1346 
1347 /**
1348   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1349   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1350   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1351   * @param  __CNTCLK__ counter clock frequency (in Hz)
1352   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1353   */
1354 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1355   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)(((__TIMCLK__)/(__CNTCLK__)) - 1U) : 0U)
1356 
1357 /**
1358   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1359   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1360   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1361   * @param  __PSC__ prescaler
1362   * @param  __FREQ__ output signal frequency (in Hz)
1363   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1364   */
1365 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1366   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1367 
1368 /**
1369   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare active/inactive delay.
1370   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1371   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1372   * @param  __PSC__ prescaler
1373   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1374   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1375   */
1376 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1377   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1378               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1379 
1380 /**
1381   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration (when the timer operates in one pulse mode).
1382   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1383   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1384   * @param  __PSC__ prescaler
1385   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1386   * @param  __PULSE__ pulse duration (in us)
1387   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1388   */
1389 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1390   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1391               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1392 
1393 /**
1394   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1395   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1396   * @param  __ICPSC__ This parameter can be one of the following values:
1397   *         @arg @ref LL_TIM_ICPSC_DIV1
1398   *         @arg @ref LL_TIM_ICPSC_DIV2
1399   *         @arg @ref LL_TIM_ICPSC_DIV4
1400   *         @arg @ref LL_TIM_ICPSC_DIV8
1401   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1402   */
1403 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1404   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1405 
1406 
1407 /**
1408   * @}
1409   */
1410 
1411 
1412 /**
1413   * @}
1414   */
1415 
1416 /* Exported functions --------------------------------------------------------*/
1417 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1418   * @{
1419   */
1420 
1421 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1422   * @{
1423   */
1424 /**
1425   * @brief  Enable timer counter.
1426   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1427   * @param  TIMx Timer instance
1428   * @retval None
1429   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1430 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1431 {
1432   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1433 }
1434 
1435 /**
1436   * @brief  Disable timer counter.
1437   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1438   * @param  TIMx Timer instance
1439   * @retval None
1440   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1441 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1442 {
1443   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1444 }
1445 
1446 /**
1447   * @brief  Indicates whether the timer counter is enabled.
1448   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1449   * @param  TIMx Timer instance
1450   * @retval State of bit (1 or 0).
1451   */
LL_TIM_IsEnabledCounter(TIM_TypeDef * TIMx)1452 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx)
1453 {
1454   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1455 }
1456 
1457 /**
1458   * @brief  Enable update event generation.
1459   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1460   * @param  TIMx Timer instance
1461   * @retval None
1462   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1463 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1464 {
1465   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1466 }
1467 
1468 /**
1469   * @brief  Disable update event generation.
1470   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1471   * @param  TIMx Timer instance
1472   * @retval None
1473   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1474 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1475 {
1476   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1477 }
1478 
1479 /**
1480   * @brief  Indicates whether update event generation is enabled.
1481   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1482   * @param  TIMx Timer instance
1483   * @retval Inverted state of bit (0 or 1).
1484   */
LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef * TIMx)1485 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx)
1486 {
1487   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1488 }
1489 
1490 /**
1491   * @brief  Set update event source
1492   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1493   *       generate an update interrupt or DMA request if enabled:
1494   *        - Counter overflow/underflow
1495   *        - Setting the UG bit
1496   *        - Update generation through the slave mode controller
1497   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1498   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1499   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1500   * @param  TIMx Timer instance
1501   * @param  UpdateSource This parameter can be one of the following values:
1502   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1503   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1504   * @retval None
1505   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1506 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1507 {
1508   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1509 }
1510 
1511 /**
1512   * @brief  Get actual event update source
1513   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1514   * @param  TIMx Timer instance
1515   * @retval Returned value can be one of the following values:
1516   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1517   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1518   */
LL_TIM_GetUpdateSource(TIM_TypeDef * TIMx)1519 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx)
1520 {
1521   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1522 }
1523 
1524 /**
1525   * @brief  Set one pulse mode (one shot v.s. repetitive).
1526   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1527   * @param  TIMx Timer instance
1528   * @param  OnePulseMode This parameter can be one of the following values:
1529   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1530   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1531   * @retval None
1532   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1533 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1534 {
1535   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1536 }
1537 
1538 /**
1539   * @brief  Get actual one pulse mode.
1540   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1541   * @param  TIMx Timer instance
1542   * @retval Returned value can be one of the following values:
1543   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1544   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1545   */
LL_TIM_GetOnePulseMode(TIM_TypeDef * TIMx)1546 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx)
1547 {
1548   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1549 }
1550 
1551 /**
1552   * @brief  Set the timer counter counting mode.
1553   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1554   *       check whether or not the counter mode selection feature is supported
1555   *       by a timer instance.
1556   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1557   *       requires a timer reset to avoid unexpected direction
1558   *       due to DIR bit readonly in center aligned mode.
1559   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1560   *         CR1          CMS           LL_TIM_SetCounterMode
1561   * @param  TIMx Timer instance
1562   * @param  CounterMode This parameter can be one of the following values:
1563   *         @arg @ref LL_TIM_COUNTERMODE_UP
1564   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1565   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1566   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1567   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1568   * @retval None
1569   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1570 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1571 {
1572   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1573 }
1574 
1575 /**
1576   * @brief  Get actual counter mode.
1577   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1578   *       check whether or not the counter mode selection feature is supported
1579   *       by a timer instance.
1580   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1581   *         CR1          CMS           LL_TIM_GetCounterMode
1582   * @param  TIMx Timer instance
1583   * @retval Returned value can be one of the following values:
1584   *         @arg @ref LL_TIM_COUNTERMODE_UP
1585   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1586   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1587   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1588   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1589   */
LL_TIM_GetCounterMode(TIM_TypeDef * TIMx)1590 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx)
1591 {
1592   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS));
1593 }
1594 
1595 /**
1596   * @brief  Enable auto-reload (ARR) preload.
1597   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1598   * @param  TIMx Timer instance
1599   * @retval None
1600   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1601 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1602 {
1603   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1604 }
1605 
1606 /**
1607   * @brief  Disable auto-reload (ARR) preload.
1608   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1609   * @param  TIMx Timer instance
1610   * @retval None
1611   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1612 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1613 {
1614   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1615 }
1616 
1617 /**
1618   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1619   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1620   * @param  TIMx Timer instance
1621   * @retval State of bit (1 or 0).
1622   */
LL_TIM_IsEnabledARRPreload(TIM_TypeDef * TIMx)1623 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx)
1624 {
1625   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1626 }
1627 
1628 /**
1629   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
1630   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1631   *       whether or not the clock division feature is supported by the timer
1632   *       instance.
1633   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1634   * @param  TIMx Timer instance
1635   * @param  ClockDivision This parameter can be one of the following values:
1636   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1637   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1638   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1639   * @retval None
1640   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1641 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1642 {
1643   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1644 }
1645 
1646 /**
1647   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
1648   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1649   *       whether or not the clock division feature is supported by the timer
1650   *       instance.
1651   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1652   * @param  TIMx Timer instance
1653   * @retval Returned value can be one of the following values:
1654   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1655   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1656   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1657   */
LL_TIM_GetClockDivision(TIM_TypeDef * TIMx)1658 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx)
1659 {
1660   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1661 }
1662 
1663 /**
1664   * @brief  Set the counter value.
1665   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1666   *       whether or not a timer instance supports a 32 bits counter.
1667   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1668   * @param  TIMx Timer instance
1669   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1670   * @retval None
1671   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1672 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1673 {
1674   WRITE_REG(TIMx->CNT, Counter);
1675 }
1676 
1677 /**
1678   * @brief  Get the counter value.
1679   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1680   *       whether or not a timer instance supports a 32 bits counter.
1681   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1682   * @param  TIMx Timer instance
1683   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1684   */
LL_TIM_GetCounter(TIM_TypeDef * TIMx)1685 __STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx)
1686 {
1687   return (uint32_t)(READ_REG(TIMx->CNT));
1688 }
1689 
1690 /**
1691   * @brief  Get the current direction of the counter
1692   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1693   * @param  TIMx Timer instance
1694   * @retval Returned value can be one of the following values:
1695   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1696   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1697   */
LL_TIM_GetDirection(TIM_TypeDef * TIMx)1698 __STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx)
1699 {
1700   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1701 }
1702 
1703 /**
1704   * @brief  Set the prescaler value.
1705   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1706   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1707   *       prescaler ratio is taken into account at the next update event.
1708   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1709   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1710   * @param  TIMx Timer instance
1711   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1712   * @retval None
1713   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1714 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1715 {
1716   WRITE_REG(TIMx->PSC, Prescaler);
1717 }
1718 
1719 /**
1720   * @brief  Get the prescaler value.
1721   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1722   * @param  TIMx Timer instance
1723   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1724   */
LL_TIM_GetPrescaler(TIM_TypeDef * TIMx)1725 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx)
1726 {
1727   return (uint32_t)(READ_REG(TIMx->PSC));
1728 }
1729 
1730 /**
1731   * @brief  Set the auto-reload value.
1732   * @note The counter is blocked while the auto-reload value is null.
1733   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1734   *       whether or not a timer instance supports a 32 bits counter.
1735   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1736   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1737   * @param  TIMx Timer instance
1738   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1739   * @retval None
1740   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1741 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1742 {
1743   WRITE_REG(TIMx->ARR, AutoReload);
1744 }
1745 
1746 /**
1747   * @brief  Get the auto-reload value.
1748   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1749   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1750   *       whether or not a timer instance supports a 32 bits counter.
1751   * @param  TIMx Timer instance
1752   * @retval Auto-reload value
1753   */
LL_TIM_GetAutoReload(TIM_TypeDef * TIMx)1754 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx)
1755 {
1756   return (uint32_t)(READ_REG(TIMx->ARR));
1757 }
1758 
1759 /**
1760   * @brief  Set the repetition counter value.
1761   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1762   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1763   *       whether or not a timer instance supports a repetition counter.
1764   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1765   * @param  TIMx Timer instance
1766   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1767   * @retval None
1768   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1769 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1770 {
1771   WRITE_REG(TIMx->RCR, RepetitionCounter);
1772 }
1773 
1774 /**
1775   * @brief  Get the repetition counter value.
1776   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1777   *       whether or not a timer instance supports a repetition counter.
1778   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1779   * @param  TIMx Timer instance
1780   * @retval Repetition counter value
1781   */
LL_TIM_GetRepetitionCounter(TIM_TypeDef * TIMx)1782 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(TIM_TypeDef *TIMx)
1783 {
1784   return (uint32_t)(READ_REG(TIMx->RCR));
1785 }
1786 
1787 /**
1788   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1789   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read in an atomic way.
1790   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1791   * @param  TIMx Timer instance
1792   * @retval None
1793   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1794 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1795 {
1796   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1797 }
1798 
1799 /**
1800   * @brief  Disable update interrupt flag (UIF) remapping.
1801   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1802   * @param  TIMx Timer instance
1803   * @retval None
1804   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1805 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1806 {
1807   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1808 }
1809 
1810 /**
1811   * @}
1812   */
1813 
1814 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1815   * @{
1816   */
1817 /**
1818   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1819   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1820   *       they are updated only when a commutation event (COM) occurs.
1821   * @note Only on channels that have a complementary output.
1822   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1823   *       whether or not a timer instance is able to generate a commutation event.
1824   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1825   * @param  TIMx Timer instance
1826   * @retval None
1827   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1828 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1829 {
1830   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1831 }
1832 
1833 /**
1834   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1835   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1836   *       whether or not a timer instance is able to generate a commutation event.
1837   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1838   * @param  TIMx Timer instance
1839   * @retval None
1840   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)1841 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1842 {
1843   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1844 }
1845 
1846 /**
1847   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1848   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1849   *       whether or not a timer instance is able to generate a commutation event.
1850   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1851   * @param  TIMx Timer instance
1852   * @param  CCUpdateSource This parameter can be one of the following values:
1853   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1854   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1855   * @retval None
1856   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)1857 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1858 {
1859   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1860 }
1861 
1862 /**
1863   * @brief  Set the trigger of the capture/compare DMA request.
1864   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1865   * @param  TIMx Timer instance
1866   * @param  DMAReqTrigger This parameter can be one of the following values:
1867   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1868   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1869   * @retval None
1870   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1871 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1872 {
1873   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1874 }
1875 
1876 /**
1877   * @brief  Get actual trigger of the capture/compare DMA request.
1878   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1879   * @param  TIMx Timer instance
1880   * @retval Returned value can be one of the following values:
1881   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1882   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1883   */
LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef * TIMx)1884 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx)
1885 {
1886   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1887 }
1888 
1889 /**
1890   * @brief  Set the lock level to freeze the
1891   *         configuration of several capture/compare parameters.
1892   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1893   *       the lock mechanism is supported by a timer instance.
1894   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1895   * @param  TIMx Timer instance
1896   * @param  LockLevel This parameter can be one of the following values:
1897   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1898   *         @arg @ref LL_TIM_LOCKLEVEL_1
1899   *         @arg @ref LL_TIM_LOCKLEVEL_2
1900   *         @arg @ref LL_TIM_LOCKLEVEL_3
1901   * @retval None
1902   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)1903 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1904 {
1905   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1906 }
1907 
1908 /**
1909   * @brief  Enable capture/compare channels.
1910   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1911   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1912   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1913   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1914   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1915   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1916   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
1917   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
1918   *         CCER         CC6E          LL_TIM_CC_EnableChannel
1919   * @param  TIMx Timer instance
1920   * @param  Channels This parameter can be a combination of the following values:
1921   *         @arg @ref LL_TIM_CHANNEL_CH1
1922   *         @arg @ref LL_TIM_CHANNEL_CH1N
1923   *         @arg @ref LL_TIM_CHANNEL_CH2
1924   *         @arg @ref LL_TIM_CHANNEL_CH2N
1925   *         @arg @ref LL_TIM_CHANNEL_CH3
1926   *         @arg @ref LL_TIM_CHANNEL_CH3N
1927   *         @arg @ref LL_TIM_CHANNEL_CH4
1928   *         @arg @ref LL_TIM_CHANNEL_CH5
1929   *         @arg @ref LL_TIM_CHANNEL_CH6
1930   * @retval None
1931   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1932 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1933 {
1934   SET_BIT(TIMx->CCER, Channels);
1935 }
1936 
1937 /**
1938   * @brief  Disable capture/compare channels.
1939   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1940   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1941   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1942   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1943   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1944   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1945   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
1946   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
1947   *         CCER         CC6E          LL_TIM_CC_DisableChannel
1948   * @param  TIMx Timer instance
1949   * @param  Channels This parameter can be a combination of the following values:
1950   *         @arg @ref LL_TIM_CHANNEL_CH1
1951   *         @arg @ref LL_TIM_CHANNEL_CH1N
1952   *         @arg @ref LL_TIM_CHANNEL_CH2
1953   *         @arg @ref LL_TIM_CHANNEL_CH2N
1954   *         @arg @ref LL_TIM_CHANNEL_CH3
1955   *         @arg @ref LL_TIM_CHANNEL_CH3N
1956   *         @arg @ref LL_TIM_CHANNEL_CH4
1957   *         @arg @ref LL_TIM_CHANNEL_CH5
1958   *         @arg @ref LL_TIM_CHANNEL_CH6
1959   * @retval None
1960   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1961 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1962 {
1963   CLEAR_BIT(TIMx->CCER, Channels);
1964 }
1965 
1966 /**
1967   * @brief  Indicate whether channel(s) is(are) enabled.
1968   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1969   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1970   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1971   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1972   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1973   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1974   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
1975   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
1976   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
1977   * @param  TIMx Timer instance
1978   * @param  Channels This parameter can be a combination of the following values:
1979   *         @arg @ref LL_TIM_CHANNEL_CH1
1980   *         @arg @ref LL_TIM_CHANNEL_CH1N
1981   *         @arg @ref LL_TIM_CHANNEL_CH2
1982   *         @arg @ref LL_TIM_CHANNEL_CH2N
1983   *         @arg @ref LL_TIM_CHANNEL_CH3
1984   *         @arg @ref LL_TIM_CHANNEL_CH3N
1985   *         @arg @ref LL_TIM_CHANNEL_CH4
1986   *         @arg @ref LL_TIM_CHANNEL_CH5
1987   *         @arg @ref LL_TIM_CHANNEL_CH6
1988   * @retval State of bit (1 or 0).
1989   */
LL_TIM_CC_IsEnabledChannel(TIM_TypeDef * TIMx,uint32_t Channels)1990 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1991 {
1992   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1993 }
1994 
1995 /**
1996   * @}
1997   */
1998 
1999 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
2000   * @{
2001   */
2002 /**
2003   * @brief  Configure an output channel.
2004   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
2005   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
2006   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
2007   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
2008   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2009   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2010   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2011   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2012   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2013   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2014   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2015   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2016   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2017   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2018   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2019   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2020   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2021   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2022   * @param  TIMx Timer instance
2023   * @param  Channel This parameter can be one of the following values:
2024   *         @arg @ref LL_TIM_CHANNEL_CH1
2025   *         @arg @ref LL_TIM_CHANNEL_CH2
2026   *         @arg @ref LL_TIM_CHANNEL_CH3
2027   *         @arg @ref LL_TIM_CHANNEL_CH4
2028   *         @arg @ref LL_TIM_CHANNEL_CH5
2029   *         @arg @ref LL_TIM_CHANNEL_CH6
2030   * @param  Configuration This parameter must be a combination of all the following values:
2031   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2032   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2033   * @retval None
2034   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2035 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2036 {
2037   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2038   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2039   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2040   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2041              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2042   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2043              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2044 }
2045 
2046 /**
2047   * @brief  Define the behavior of the output reference signal OCxREF from which
2048   *         OCx and OCxN (when relevant) are derived.
2049   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2050   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2051   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2052   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2053   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2054   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2055   * @param  TIMx Timer instance
2056   * @param  Channel This parameter can be one of the following values:
2057   *         @arg @ref LL_TIM_CHANNEL_CH1
2058   *         @arg @ref LL_TIM_CHANNEL_CH2
2059   *         @arg @ref LL_TIM_CHANNEL_CH3
2060   *         @arg @ref LL_TIM_CHANNEL_CH4
2061   *         @arg @ref LL_TIM_CHANNEL_CH5
2062   *         @arg @ref LL_TIM_CHANNEL_CH6
2063   * @param  Mode This parameter can be one of the following values:
2064   *         @arg @ref LL_TIM_OCMODE_FROZEN
2065   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2066   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2067   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2068   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2069   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2070   *         @arg @ref LL_TIM_OCMODE_PWM1
2071   *         @arg @ref LL_TIM_OCMODE_PWM2
2072   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2073   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2074   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2075   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2076   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2077   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2078   * @retval None
2079   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2080 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2081 {
2082   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2083   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2084   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]),  Mode << SHIFT_TAB_OCxx[iChannel]);
2085 }
2086 
2087 /**
2088   * @brief  Get the output compare mode of an output channel.
2089   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2090   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2091   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2092   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2093   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2094   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2095   * @param  TIMx Timer instance
2096   * @param  Channel This parameter can be one of the following values:
2097   *         @arg @ref LL_TIM_CHANNEL_CH1
2098   *         @arg @ref LL_TIM_CHANNEL_CH2
2099   *         @arg @ref LL_TIM_CHANNEL_CH3
2100   *         @arg @ref LL_TIM_CHANNEL_CH4
2101   *         @arg @ref LL_TIM_CHANNEL_CH5
2102   *         @arg @ref LL_TIM_CHANNEL_CH6
2103   * @retval Returned value can be one of the following values:
2104   *         @arg @ref LL_TIM_OCMODE_FROZEN
2105   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2106   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2107   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2108   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2109   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2110   *         @arg @ref LL_TIM_OCMODE_PWM1
2111   *         @arg @ref LL_TIM_OCMODE_PWM2
2112   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2113   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2114   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2115   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2116   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2117   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2118   */
LL_TIM_OC_GetMode(TIM_TypeDef * TIMx,uint32_t Channel)2119 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel)
2120 {
2121   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2122   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2123   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2124 }
2125 
2126 /**
2127   * @brief  Set the polarity of an output channel.
2128   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2129   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2130   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2131   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2132   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2133   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2134   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2135   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2136   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2137   * @param  TIMx Timer instance
2138   * @param  Channel This parameter can be one of the following values:
2139   *         @arg @ref LL_TIM_CHANNEL_CH1
2140   *         @arg @ref LL_TIM_CHANNEL_CH1N
2141   *         @arg @ref LL_TIM_CHANNEL_CH2
2142   *         @arg @ref LL_TIM_CHANNEL_CH2N
2143   *         @arg @ref LL_TIM_CHANNEL_CH3
2144   *         @arg @ref LL_TIM_CHANNEL_CH3N
2145   *         @arg @ref LL_TIM_CHANNEL_CH4
2146   *         @arg @ref LL_TIM_CHANNEL_CH5
2147   *         @arg @ref LL_TIM_CHANNEL_CH6
2148   * @param  Polarity This parameter can be one of the following values:
2149   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2150   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2151   * @retval None
2152   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2153 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2154 {
2155   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2156   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2157 }
2158 
2159 /**
2160   * @brief  Get the polarity of an output channel.
2161   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2162   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2163   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2164   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2165   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2166   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2167   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2168   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2169   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2170   * @param  TIMx Timer instance
2171   * @param  Channel This parameter can be one of the following values:
2172   *         @arg @ref LL_TIM_CHANNEL_CH1
2173   *         @arg @ref LL_TIM_CHANNEL_CH1N
2174   *         @arg @ref LL_TIM_CHANNEL_CH2
2175   *         @arg @ref LL_TIM_CHANNEL_CH2N
2176   *         @arg @ref LL_TIM_CHANNEL_CH3
2177   *         @arg @ref LL_TIM_CHANNEL_CH3N
2178   *         @arg @ref LL_TIM_CHANNEL_CH4
2179   *         @arg @ref LL_TIM_CHANNEL_CH5
2180   *         @arg @ref LL_TIM_CHANNEL_CH6
2181   * @retval Returned value can be one of the following values:
2182   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2183   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2184   */
LL_TIM_OC_GetPolarity(TIM_TypeDef * TIMx,uint32_t Channel)2185 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
2186 {
2187   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2188   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2189 }
2190 
2191 /**
2192   * @brief  Set the IDLE state of an output channel
2193   * @note This function is significant only for the timer instances
2194   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2195   *       can be used to check whether or not a timer instance provides
2196   *       a break input.
2197   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2198   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2199   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2200   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2201   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2202   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2203   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2204   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2205   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2206   * @param  TIMx Timer instance
2207   * @param  Channel This parameter can be one of the following values:
2208   *         @arg @ref LL_TIM_CHANNEL_CH1
2209   *         @arg @ref LL_TIM_CHANNEL_CH1N
2210   *         @arg @ref LL_TIM_CHANNEL_CH2
2211   *         @arg @ref LL_TIM_CHANNEL_CH2N
2212   *         @arg @ref LL_TIM_CHANNEL_CH3
2213   *         @arg @ref LL_TIM_CHANNEL_CH3N
2214   *         @arg @ref LL_TIM_CHANNEL_CH4
2215   *         @arg @ref LL_TIM_CHANNEL_CH5
2216   *         @arg @ref LL_TIM_CHANNEL_CH6
2217   * @param  IdleState This parameter can be one of the following values:
2218   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2219   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2220   * @retval None
2221   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2222 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2223 {
2224   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2225   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2226 }
2227 
2228 /**
2229   * @brief  Get the IDLE state of an output channel
2230   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2231   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2232   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2233   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2234   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2235   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2236   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2237   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2238   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2239   * @param  TIMx Timer instance
2240   * @param  Channel This parameter can be one of the following values:
2241   *         @arg @ref LL_TIM_CHANNEL_CH1
2242   *         @arg @ref LL_TIM_CHANNEL_CH1N
2243   *         @arg @ref LL_TIM_CHANNEL_CH2
2244   *         @arg @ref LL_TIM_CHANNEL_CH2N
2245   *         @arg @ref LL_TIM_CHANNEL_CH3
2246   *         @arg @ref LL_TIM_CHANNEL_CH3N
2247   *         @arg @ref LL_TIM_CHANNEL_CH4
2248   *         @arg @ref LL_TIM_CHANNEL_CH5
2249   *         @arg @ref LL_TIM_CHANNEL_CH6
2250   * @retval Returned value can be one of the following values:
2251   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2252   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2253   */
LL_TIM_OC_GetIdleState(TIM_TypeDef * TIMx,uint32_t Channel)2254 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(TIM_TypeDef *TIMx, uint32_t Channel)
2255 {
2256   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2257   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2258 }
2259 
2260 /**
2261   * @brief  Enable fast mode for the output channel.
2262   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2263   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2264   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2265   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2266   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2267   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2268   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2269   * @param  TIMx Timer instance
2270   * @param  Channel This parameter can be one of the following values:
2271   *         @arg @ref LL_TIM_CHANNEL_CH1
2272   *         @arg @ref LL_TIM_CHANNEL_CH2
2273   *         @arg @ref LL_TIM_CHANNEL_CH3
2274   *         @arg @ref LL_TIM_CHANNEL_CH4
2275   *         @arg @ref LL_TIM_CHANNEL_CH5
2276   *         @arg @ref LL_TIM_CHANNEL_CH6
2277   * @retval None
2278   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2279 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2280 {
2281   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2282   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2283   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2284 
2285 }
2286 
2287 /**
2288   * @brief  Disable fast mode for the output channel.
2289   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2290   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2291   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2292   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2293   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2294   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2295   * @param  TIMx Timer instance
2296   * @param  Channel This parameter can be one of the following values:
2297   *         @arg @ref LL_TIM_CHANNEL_CH1
2298   *         @arg @ref LL_TIM_CHANNEL_CH2
2299   *         @arg @ref LL_TIM_CHANNEL_CH3
2300   *         @arg @ref LL_TIM_CHANNEL_CH4
2301   *         @arg @ref LL_TIM_CHANNEL_CH5
2302   *         @arg @ref LL_TIM_CHANNEL_CH6
2303   * @retval None
2304   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2305 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2306 {
2307   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2308   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2309   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2310 
2311 }
2312 
2313 /**
2314   * @brief  Indicates whether fast mode is enabled for the output channel.
2315   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2316   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2317   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2318   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2319   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2320   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2321   * @param  TIMx Timer instance
2322   * @param  Channel This parameter can be one of the following values:
2323   *         @arg @ref LL_TIM_CHANNEL_CH1
2324   *         @arg @ref LL_TIM_CHANNEL_CH2
2325   *         @arg @ref LL_TIM_CHANNEL_CH3
2326   *         @arg @ref LL_TIM_CHANNEL_CH4
2327   *         @arg @ref LL_TIM_CHANNEL_CH5
2328   *         @arg @ref LL_TIM_CHANNEL_CH6
2329   * @retval State of bit (1 or 0).
2330   */
LL_TIM_OC_IsEnabledFast(TIM_TypeDef * TIMx,uint32_t Channel)2331 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
2332 {
2333   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2334   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2335   register uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2336   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2337 }
2338 
2339 /**
2340   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2341   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2342   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2343   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2344   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2345   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2346   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2347   * @param  TIMx Timer instance
2348   * @param  Channel This parameter can be one of the following values:
2349   *         @arg @ref LL_TIM_CHANNEL_CH1
2350   *         @arg @ref LL_TIM_CHANNEL_CH2
2351   *         @arg @ref LL_TIM_CHANNEL_CH3
2352   *         @arg @ref LL_TIM_CHANNEL_CH4
2353   *         @arg @ref LL_TIM_CHANNEL_CH5
2354   *         @arg @ref LL_TIM_CHANNEL_CH6
2355   * @retval None
2356   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2357 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2358 {
2359   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2360   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2361   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2362 }
2363 
2364 /**
2365   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2366   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2367   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2368   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2369   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2370   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2371   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2372   * @param  TIMx Timer instance
2373   * @param  Channel This parameter can be one of the following values:
2374   *         @arg @ref LL_TIM_CHANNEL_CH1
2375   *         @arg @ref LL_TIM_CHANNEL_CH2
2376   *         @arg @ref LL_TIM_CHANNEL_CH3
2377   *         @arg @ref LL_TIM_CHANNEL_CH4
2378   *         @arg @ref LL_TIM_CHANNEL_CH5
2379   *         @arg @ref LL_TIM_CHANNEL_CH6
2380   * @retval None
2381   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2382 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2383 {
2384   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2385   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2386   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2387 }
2388 
2389 /**
2390   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2391   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2392   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2393   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2394   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2395   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2396   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2397   * @param  TIMx Timer instance
2398   * @param  Channel This parameter can be one of the following values:
2399   *         @arg @ref LL_TIM_CHANNEL_CH1
2400   *         @arg @ref LL_TIM_CHANNEL_CH2
2401   *         @arg @ref LL_TIM_CHANNEL_CH3
2402   *         @arg @ref LL_TIM_CHANNEL_CH4
2403   *         @arg @ref LL_TIM_CHANNEL_CH5
2404   *         @arg @ref LL_TIM_CHANNEL_CH6
2405   * @retval State of bit (1 or 0).
2406   */
LL_TIM_OC_IsEnabledPreload(TIM_TypeDef * TIMx,uint32_t Channel)2407 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
2408 {
2409   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2410   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2411   register uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2412   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2413 }
2414 
2415 /**
2416   * @brief  Enable clearing the output channel on an external event.
2417   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2418   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2419   *       or not a timer instance can clear the OCxREF signal on an external event.
2420   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2421   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2422   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2423   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2424   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2425   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2426   * @param  TIMx Timer instance
2427   * @param  Channel This parameter can be one of the following values:
2428   *         @arg @ref LL_TIM_CHANNEL_CH1
2429   *         @arg @ref LL_TIM_CHANNEL_CH2
2430   *         @arg @ref LL_TIM_CHANNEL_CH3
2431   *         @arg @ref LL_TIM_CHANNEL_CH4
2432   *         @arg @ref LL_TIM_CHANNEL_CH5
2433   *         @arg @ref LL_TIM_CHANNEL_CH6
2434   * @retval None
2435   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2436 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2437 {
2438   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2439   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2440   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2441 }
2442 
2443 /**
2444   * @brief  Disable clearing the output channel on an external event.
2445   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2446   *       or not a timer instance can clear the OCxREF signal on an external event.
2447   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2448   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2449   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2450   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2451   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2452   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2453   * @param  TIMx Timer instance
2454   * @param  Channel This parameter can be one of the following values:
2455   *         @arg @ref LL_TIM_CHANNEL_CH1
2456   *         @arg @ref LL_TIM_CHANNEL_CH2
2457   *         @arg @ref LL_TIM_CHANNEL_CH3
2458   *         @arg @ref LL_TIM_CHANNEL_CH4
2459   *         @arg @ref LL_TIM_CHANNEL_CH5
2460   *         @arg @ref LL_TIM_CHANNEL_CH6
2461   * @retval None
2462   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2463 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2464 {
2465   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2466   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2467   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2468 }
2469 
2470 /**
2471   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2472   * @note This function enables clearing the output channel on an external event.
2473   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2474   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2475   *       or not a timer instance can clear the OCxREF signal on an external event.
2476   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2477   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2478   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2479   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2480   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2481   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2482   * @param  TIMx Timer instance
2483   * @param  Channel This parameter can be one of the following values:
2484   *         @arg @ref LL_TIM_CHANNEL_CH1
2485   *         @arg @ref LL_TIM_CHANNEL_CH2
2486   *         @arg @ref LL_TIM_CHANNEL_CH3
2487   *         @arg @ref LL_TIM_CHANNEL_CH4
2488   *         @arg @ref LL_TIM_CHANNEL_CH5
2489   *         @arg @ref LL_TIM_CHANNEL_CH6
2490   * @retval State of bit (1 or 0).
2491   */
LL_TIM_OC_IsEnabledClear(TIM_TypeDef * TIMx,uint32_t Channel)2492 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
2493 {
2494   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2495   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2496   register uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2497   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2498 }
2499 
2500 /**
2501   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of the Ocx and OCxN signals).
2502   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2503   *       dead-time insertion feature is supported by a timer instance.
2504   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2505   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2506   * @param  TIMx Timer instance
2507   * @param  DeadTime between Min_Data=0 and Max_Data=255
2508   * @retval None
2509   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2510 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2511 {
2512   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2513 }
2514 
2515 /**
2516   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2517   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2518   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2519   *       whether or not a timer instance supports a 32 bits counter.
2520   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2521   *       output channel 1 is supported by a timer instance.
2522   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2523   * @param  TIMx Timer instance
2524   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2525   * @retval None
2526   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2527 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2528 {
2529   WRITE_REG(TIMx->CCR1, CompareValue);
2530 }
2531 
2532 /**
2533   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2534   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2535   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2536   *       whether or not a timer instance supports a 32 bits counter.
2537   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2538   *       output channel 2 is supported by a timer instance.
2539   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2540   * @param  TIMx Timer instance
2541   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2542   * @retval None
2543   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2544 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2545 {
2546   WRITE_REG(TIMx->CCR2, CompareValue);
2547 }
2548 
2549 /**
2550   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2551   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2552   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2553   *       whether or not a timer instance supports a 32 bits counter.
2554   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2555   *       output channel is supported by a timer instance.
2556   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2557   * @param  TIMx Timer instance
2558   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2559   * @retval None
2560   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2561 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2562 {
2563   WRITE_REG(TIMx->CCR3, CompareValue);
2564 }
2565 
2566 /**
2567   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2568   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2569   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2570   *       whether or not a timer instance supports a 32 bits counter.
2571   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2572   *       output channel 4 is supported by a timer instance.
2573   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2574   * @param  TIMx Timer instance
2575   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2576   * @retval None
2577   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2578 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2579 {
2580   WRITE_REG(TIMx->CCR4, CompareValue);
2581 }
2582 
2583 /**
2584   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2585   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2586   *       output channel 5 is supported by a timer instance.
2587   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2588   * @param  TIMx Timer instance
2589   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2590   * @retval None
2591   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2592 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2593 {
2594   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2595 }
2596 
2597 /**
2598   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2599   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2600   *       output channel 6 is supported by a timer instance.
2601   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2602   * @param  TIMx Timer instance
2603   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2604   * @retval None
2605   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2606 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2607 {
2608   WRITE_REG(TIMx->CCR6, CompareValue);
2609 }
2610 
2611 /**
2612   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2613   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2614   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2615   *       whether or not a timer instance supports a 32 bits counter.
2616   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2617   *       output channel 1 is supported by a timer instance.
2618   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2619   * @param  TIMx Timer instance
2620   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2621   */
LL_TIM_OC_GetCompareCH1(TIM_TypeDef * TIMx)2622 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx)
2623 {
2624   return (uint32_t)(READ_REG(TIMx->CCR1));
2625 }
2626 
2627 /**
2628   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2629   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2630   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2631   *       whether or not a timer instance supports a 32 bits counter.
2632   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2633   *       output channel 2 is supported by a timer instance.
2634   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2635   * @param  TIMx Timer instance
2636   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2637   */
LL_TIM_OC_GetCompareCH2(TIM_TypeDef * TIMx)2638 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx)
2639 {
2640   return (uint32_t)(READ_REG(TIMx->CCR2));
2641 }
2642 
2643 /**
2644   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2645   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2646   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2647   *       whether or not a timer instance supports a 32 bits counter.
2648   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2649   *       output channel 3 is supported by a timer instance.
2650   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2651   * @param  TIMx Timer instance
2652   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2653   */
LL_TIM_OC_GetCompareCH3(TIM_TypeDef * TIMx)2654 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx)
2655 {
2656   return (uint32_t)(READ_REG(TIMx->CCR3));
2657 }
2658 
2659 /**
2660   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2661   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2662   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2663   *       whether or not a timer instance supports a 32 bits counter.
2664   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2665   *       output channel 4 is supported by a timer instance.
2666   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2667   * @param  TIMx Timer instance
2668   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2669   */
LL_TIM_OC_GetCompareCH4(TIM_TypeDef * TIMx)2670 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx)
2671 {
2672   return (uint32_t)(READ_REG(TIMx->CCR4));
2673 }
2674 
2675 /**
2676   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2677   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2678   *       output channel 5 is supported by a timer instance.
2679   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2680   * @param  TIMx Timer instance
2681   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2682   */
LL_TIM_OC_GetCompareCH5(TIM_TypeDef * TIMx)2683 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(TIM_TypeDef *TIMx)
2684 {
2685   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2686 }
2687 
2688 /**
2689   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2690   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2691   *       output channel 6 is supported by a timer instance.
2692   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2693   * @param  TIMx Timer instance
2694   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2695   */
LL_TIM_OC_GetCompareCH6(TIM_TypeDef * TIMx)2696 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(TIM_TypeDef *TIMx)
2697 {
2698   return (uint32_t)(READ_REG(TIMx->CCR6));
2699 }
2700 
2701 /**
2702   * @brief  Select on which reference signal the OC5REF is combined to.
2703   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2704   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2705   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2706   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2707   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2708   * @param  TIMx Timer instance
2709   * @param  GroupCH5 This parameter can be a combination of the following values:
2710   *         @arg @ref LL_TIM_GROUPCH5_NONE
2711   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2712   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2713   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2714   * @retval None
2715   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2716 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2717 {
2718   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2719 }
2720 
2721 /**
2722   * @}
2723   */
2724 
2725 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2726   * @{
2727   */
2728 /**
2729   * @brief  Configure input channel.
2730   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2731   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2732   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2733   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2734   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2735   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2736   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2737   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2738   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2739   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2740   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2741   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2742   *         CCER         CC1P          LL_TIM_IC_Config\n
2743   *         CCER         CC1NP         LL_TIM_IC_Config\n
2744   *         CCER         CC2P          LL_TIM_IC_Config\n
2745   *         CCER         CC2NP         LL_TIM_IC_Config\n
2746   *         CCER         CC3P          LL_TIM_IC_Config\n
2747   *         CCER         CC3NP         LL_TIM_IC_Config\n
2748   *         CCER         CC4P          LL_TIM_IC_Config\n
2749   *         CCER         CC4NP         LL_TIM_IC_Config
2750   * @param  TIMx Timer instance
2751   * @param  Channel This parameter can be one of the following values:
2752   *         @arg @ref LL_TIM_CHANNEL_CH1
2753   *         @arg @ref LL_TIM_CHANNEL_CH2
2754   *         @arg @ref LL_TIM_CHANNEL_CH3
2755   *         @arg @ref LL_TIM_CHANNEL_CH4
2756   * @param  Configuration This parameter must be a combination of all the following values:
2757   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2758   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2759   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2760   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2761   * @retval None
2762   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2763 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2764 {
2765   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2766   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2767   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2768              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))  << SHIFT_TAB_ICxx[iChannel]);
2769   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2770              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2771 }
2772 
2773 /**
2774   * @brief  Set the active input.
2775   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2776   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2777   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2778   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2779   * @param  TIMx Timer instance
2780   * @param  Channel This parameter can be one of the following values:
2781   *         @arg @ref LL_TIM_CHANNEL_CH1
2782   *         @arg @ref LL_TIM_CHANNEL_CH2
2783   *         @arg @ref LL_TIM_CHANNEL_CH3
2784   *         @arg @ref LL_TIM_CHANNEL_CH4
2785   * @param  ICActiveInput This parameter can be one of the following values:
2786   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2787   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2788   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2789   * @retval None
2790   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2791 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2792 {
2793   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2794   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2795   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2796 }
2797 
2798 /**
2799   * @brief  Get the current active input.
2800   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2801   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2802   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2803   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2804   * @param  TIMx Timer instance
2805   * @param  Channel This parameter can be one of the following values:
2806   *         @arg @ref LL_TIM_CHANNEL_CH1
2807   *         @arg @ref LL_TIM_CHANNEL_CH2
2808   *         @arg @ref LL_TIM_CHANNEL_CH3
2809   *         @arg @ref LL_TIM_CHANNEL_CH4
2810   * @retval Returned value can be one of the following values:
2811   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2812   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2813   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2814   */
LL_TIM_IC_GetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel)2815 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel)
2816 {
2817   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2818   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2819   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2820 }
2821 
2822 /**
2823   * @brief  Set the prescaler of input channel.
2824   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2825   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2826   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2827   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2828   * @param  TIMx Timer instance
2829   * @param  Channel This parameter can be one of the following values:
2830   *         @arg @ref LL_TIM_CHANNEL_CH1
2831   *         @arg @ref LL_TIM_CHANNEL_CH2
2832   *         @arg @ref LL_TIM_CHANNEL_CH3
2833   *         @arg @ref LL_TIM_CHANNEL_CH4
2834   * @param  ICPrescaler This parameter can be one of the following values:
2835   *         @arg @ref LL_TIM_ICPSC_DIV1
2836   *         @arg @ref LL_TIM_ICPSC_DIV2
2837   *         @arg @ref LL_TIM_ICPSC_DIV4
2838   *         @arg @ref LL_TIM_ICPSC_DIV8
2839   * @retval None
2840   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)2841 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2842 {
2843   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2844   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2845   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2846 }
2847 
2848 /**
2849   * @brief  Get the current prescaler value acting on an  input channel.
2850   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2851   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2852   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2853   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2854   * @param  TIMx Timer instance
2855   * @param  Channel This parameter can be one of the following values:
2856   *         @arg @ref LL_TIM_CHANNEL_CH1
2857   *         @arg @ref LL_TIM_CHANNEL_CH2
2858   *         @arg @ref LL_TIM_CHANNEL_CH3
2859   *         @arg @ref LL_TIM_CHANNEL_CH4
2860   * @retval Returned value can be one of the following values:
2861   *         @arg @ref LL_TIM_ICPSC_DIV1
2862   *         @arg @ref LL_TIM_ICPSC_DIV2
2863   *         @arg @ref LL_TIM_ICPSC_DIV4
2864   *         @arg @ref LL_TIM_ICPSC_DIV8
2865   */
LL_TIM_IC_GetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel)2866 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel)
2867 {
2868   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2869   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2870   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2871 }
2872 
2873 /**
2874   * @brief  Set the input filter duration.
2875   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2876   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2877   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2878   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2879   * @param  TIMx Timer instance
2880   * @param  Channel This parameter can be one of the following values:
2881   *         @arg @ref LL_TIM_CHANNEL_CH1
2882   *         @arg @ref LL_TIM_CHANNEL_CH2
2883   *         @arg @ref LL_TIM_CHANNEL_CH3
2884   *         @arg @ref LL_TIM_CHANNEL_CH4
2885   * @param  ICFilter This parameter can be one of the following values:
2886   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2887   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2888   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2889   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2890   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2891   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2892   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2893   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2894   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2895   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2896   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2897   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2898   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2899   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2900   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2901   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2902   * @retval None
2903   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)2904 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2905 {
2906   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2907   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2908   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2909 }
2910 
2911 /**
2912   * @brief  Get the input filter duration.
2913   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2914   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2915   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2916   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2917   * @param  TIMx Timer instance
2918   * @param  Channel This parameter can be one of the following values:
2919   *         @arg @ref LL_TIM_CHANNEL_CH1
2920   *         @arg @ref LL_TIM_CHANNEL_CH2
2921   *         @arg @ref LL_TIM_CHANNEL_CH3
2922   *         @arg @ref LL_TIM_CHANNEL_CH4
2923   * @retval Returned value can be one of the following values:
2924   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2925   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2926   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2927   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2928   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2929   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2930   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2931   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2932   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2933   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2934   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2935   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2936   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2937   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2938   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2939   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2940   */
LL_TIM_IC_GetFilter(TIM_TypeDef * TIMx,uint32_t Channel)2941 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel)
2942 {
2943   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2944   register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2945   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2946 }
2947 
2948 /**
2949   * @brief  Set the input channel polarity.
2950   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2951   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2952   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2953   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2954   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2955   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2956   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2957   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
2958   * @param  TIMx Timer instance
2959   * @param  Channel This parameter can be one of the following values:
2960   *         @arg @ref LL_TIM_CHANNEL_CH1
2961   *         @arg @ref LL_TIM_CHANNEL_CH2
2962   *         @arg @ref LL_TIM_CHANNEL_CH3
2963   *         @arg @ref LL_TIM_CHANNEL_CH4
2964   * @param  ICPolarity This parameter can be one of the following values:
2965   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2966   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2967   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2968   * @retval None
2969   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)2970 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2971 {
2972   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2973   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2974              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2975 }
2976 
2977 /**
2978   * @brief  Get the current input channel polarity.
2979   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2980   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2981   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2982   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2983   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2984   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2985   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2986   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
2987   * @param  TIMx Timer instance
2988   * @param  Channel This parameter can be one of the following values:
2989   *         @arg @ref LL_TIM_CHANNEL_CH1
2990   *         @arg @ref LL_TIM_CHANNEL_CH2
2991   *         @arg @ref LL_TIM_CHANNEL_CH3
2992   *         @arg @ref LL_TIM_CHANNEL_CH4
2993   * @retval Returned value can be one of the following values:
2994   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2995   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2996   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2997   */
LL_TIM_IC_GetPolarity(TIM_TypeDef * TIMx,uint32_t Channel)2998 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
2999 {
3000   register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3001   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
3002           SHIFT_TAB_CCxP[iChannel]);
3003 }
3004 
3005 /**
3006   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3007   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3008   *       a timer instance provides an XOR input.
3009   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3010   * @param  TIMx Timer instance
3011   * @retval None
3012   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3013 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3014 {
3015   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3016 }
3017 
3018 /**
3019   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3020   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3021   *       a timer instance provides an XOR input.
3022   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3023   * @param  TIMx Timer instance
3024   * @retval None
3025   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3026 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3027 {
3028   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3029 }
3030 
3031 /**
3032   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3033   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3034   * a timer instance provides an XOR input.
3035   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3036   * @param  TIMx Timer instance
3037   * @retval State of bit (1 or 0).
3038   */
LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef * TIMx)3039 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
3040 {
3041   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3042 }
3043 
3044 /**
3045   * @brief  Get captured value for input channel 1.
3046   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3047   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3048   *       whether or not a timer instance supports a 32 bits counter.
3049   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3050   *       input channel 1 is supported by a timer instance.
3051   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3052   * @param  TIMx Timer instance
3053   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3054   */
LL_TIM_IC_GetCaptureCH1(TIM_TypeDef * TIMx)3055 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx)
3056 {
3057   return (uint32_t)(READ_REG(TIMx->CCR1));
3058 }
3059 
3060 /**
3061   * @brief  Get captured value for input channel 2.
3062   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3063   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3064   *       whether or not a timer instance supports a 32 bits counter.
3065   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3066   *       input channel 2 is supported by a timer instance.
3067   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3068   * @param  TIMx Timer instance
3069   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3070   */
LL_TIM_IC_GetCaptureCH2(TIM_TypeDef * TIMx)3071 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx)
3072 {
3073   return (uint32_t)(READ_REG(TIMx->CCR2));
3074 }
3075 
3076 /**
3077   * @brief  Get captured value for input channel 3.
3078   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3079   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3080   *       whether or not a timer instance supports a 32 bits counter.
3081   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3082   *       input channel 3 is supported by a timer instance.
3083   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3084   * @param  TIMx Timer instance
3085   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3086   */
LL_TIM_IC_GetCaptureCH3(TIM_TypeDef * TIMx)3087 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx)
3088 {
3089   return (uint32_t)(READ_REG(TIMx->CCR3));
3090 }
3091 
3092 /**
3093   * @brief  Get captured value for input channel 4.
3094   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3095   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3096   *       whether or not a timer instance supports a 32 bits counter.
3097   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3098   *       input channel 4 is supported by a timer instance.
3099   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3100   * @param  TIMx Timer instance
3101   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3102   */
LL_TIM_IC_GetCaptureCH4(TIM_TypeDef * TIMx)3103 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx)
3104 {
3105   return (uint32_t)(READ_REG(TIMx->CCR4));
3106 }
3107 
3108 /**
3109   * @}
3110   */
3111 
3112 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3113   * @{
3114   */
3115 /**
3116   * @brief  Enable external clock mode 2.
3117   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3118   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3119   *       whether or not a timer instance supports external clock mode2.
3120   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3121   * @param  TIMx Timer instance
3122   * @retval None
3123   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3124 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3125 {
3126   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3127 }
3128 
3129 /**
3130   * @brief  Disable external clock mode 2.
3131   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3132   *       whether or not a timer instance supports external clock mode2.
3133   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3134   * @param  TIMx Timer instance
3135   * @retval None
3136   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3137 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3138 {
3139   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3140 }
3141 
3142 /**
3143   * @brief  Indicate whether external clock mode 2 is enabled.
3144   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3145   *       whether or not a timer instance supports external clock mode2.
3146   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3147   * @param  TIMx Timer instance
3148   * @retval State of bit (1 or 0).
3149   */
LL_TIM_IsEnabledExternalClock(TIM_TypeDef * TIMx)3150 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx)
3151 {
3152   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3153 }
3154 
3155 /**
3156   * @brief  Set the clock source of the counter clock.
3157   * @note when selected clock source is external clock mode 1, the timer input
3158   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3159   *       function. This timer input must be configured by calling
3160   *       the @ref LL_TIM_IC_Config() function.
3161   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3162   *       whether or not a timer instance supports external clock mode1.
3163   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3164   *       whether or not a timer instance supports external clock mode2.
3165   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3166   *         SMCR         ECE           LL_TIM_SetClockSource
3167   * @param  TIMx Timer instance
3168   * @param  ClockSource This parameter can be one of the following values:
3169   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3170   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3171   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3172   * @retval None
3173   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3174 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3175 {
3176   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3177 }
3178 
3179 /**
3180   * @brief  Set the encoder interface mode.
3181   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3182   *       whether or not a timer instance supports the encoder mode.
3183   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3184   * @param  TIMx Timer instance
3185   * @param  EncoderMode This parameter can be one of the following values:
3186   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3187   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3188   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3189   * @retval None
3190   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3191 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3192 {
3193   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3194 }
3195 
3196 /**
3197   * @}
3198   */
3199 
3200 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3201   * @{
3202   */
3203 /**
3204   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3205   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3206   *       whether or not a timer instance can operate as a master timer.
3207   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3208   * @param  TIMx Timer instance
3209   * @param  TimerSynchronization This parameter can be one of the following values:
3210   *         @arg @ref LL_TIM_TRGO_RESET
3211   *         @arg @ref LL_TIM_TRGO_ENABLE
3212   *         @arg @ref LL_TIM_TRGO_UPDATE
3213   *         @arg @ref LL_TIM_TRGO_CC1IF
3214   *         @arg @ref LL_TIM_TRGO_OC1REF
3215   *         @arg @ref LL_TIM_TRGO_OC2REF
3216   *         @arg @ref LL_TIM_TRGO_OC3REF
3217   *         @arg @ref LL_TIM_TRGO_OC4REF
3218   * @retval None
3219   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3220 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3221 {
3222   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3223 }
3224 
3225 /**
3226   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3227   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3228   *       whether or not a timer instance can be used for ADC synchronization.
3229   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3230   * @param  TIMx Timer Instance
3231   * @param  ADCSynchronization This parameter can be one of the following values:
3232   *         @arg @ref LL_TIM_TRGO2_RESET
3233   *         @arg @ref LL_TIM_TRGO2_ENABLE
3234   *         @arg @ref LL_TIM_TRGO2_UPDATE
3235   *         @arg @ref LL_TIM_TRGO2_CC1F
3236   *         @arg @ref LL_TIM_TRGO2_OC1
3237   *         @arg @ref LL_TIM_TRGO2_OC2
3238   *         @arg @ref LL_TIM_TRGO2_OC3
3239   *         @arg @ref LL_TIM_TRGO2_OC4
3240   *         @arg @ref LL_TIM_TRGO2_OC5
3241   *         @arg @ref LL_TIM_TRGO2_OC6
3242   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3243   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3244   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3245   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3246   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3247   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3248   * @retval None
3249   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3250 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3251 {
3252   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3253 }
3254 
3255 /**
3256   * @brief  Set the synchronization mode of a slave timer.
3257   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3258   *       a timer instance can operate as a slave timer.
3259   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3260   * @param  TIMx Timer instance
3261   * @param  SlaveMode This parameter can be one of the following values:
3262   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3263   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3264   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3265   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3266   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3267   * @retval None
3268   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3269 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3270 {
3271   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3272 }
3273 
3274 /**
3275   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3276   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3277   *       a timer instance can operate as a slave timer.
3278   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3279   * @param  TIMx Timer instance
3280   * @param  TriggerInput This parameter can be one of the following values:
3281   *         @arg @ref LL_TIM_TS_ITR0
3282   *         @arg @ref LL_TIM_TS_ITR1
3283   *         @arg @ref LL_TIM_TS_ITR2
3284   *         @arg @ref LL_TIM_TS_ITR3
3285   *         @arg @ref LL_TIM_TS_TI1F_ED
3286   *         @arg @ref LL_TIM_TS_TI1FP1
3287   *         @arg @ref LL_TIM_TS_TI2FP2
3288   *         @arg @ref LL_TIM_TS_ETRF
3289   * @retval None
3290   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3291 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3292 {
3293   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3294 }
3295 
3296 /**
3297   * @brief  Enable the Master/Slave mode.
3298   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3299   *       a timer instance can operate as a slave timer.
3300   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3301   * @param  TIMx Timer instance
3302   * @retval None
3303   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3304 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3305 {
3306   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3307 }
3308 
3309 /**
3310   * @brief  Disable the Master/Slave mode.
3311   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3312   *       a timer instance can operate as a slave timer.
3313   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3314   * @param  TIMx Timer instance
3315   * @retval None
3316   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3317 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3318 {
3319   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3320 }
3321 
3322 /**
3323   * @brief Indicates whether the Master/Slave mode is enabled.
3324   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3325   * a timer instance can operate as a slave timer.
3326   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3327   * @param  TIMx Timer instance
3328   * @retval State of bit (1 or 0).
3329   */
LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef * TIMx)3330 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx)
3331 {
3332   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3333 }
3334 
3335 /**
3336   * @brief  Configure the external trigger (ETR) input.
3337   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3338   *       a timer instance provides an external trigger input.
3339   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3340   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3341   *         SMCR         ETF           LL_TIM_ConfigETR
3342   * @param  TIMx Timer instance
3343   * @param  ETRPolarity This parameter can be one of the following values:
3344   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3345   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3346   * @param  ETRPrescaler This parameter can be one of the following values:
3347   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3348   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3349   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3350   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3351   * @param  ETRFilter This parameter can be one of the following values:
3352   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3353   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3354   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3355   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3356   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3357   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3358   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3359   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3360   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3361   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3362   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3363   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3364   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3365   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3366   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3367   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3368   * @retval None
3369   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3370 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3371                                       uint32_t ETRFilter)
3372 {
3373   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3374 }
3375 
3376 /**
3377   * @brief  Select the external trigger (ETR) input source.
3378   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3379   *       not a timer instance supports ETR source selection.
3380   * @rmtoll AF1          ETRSEL        LL_TIM_SetETRSource
3381   * @param  TIMx Timer instance
3382   * @param  ETRSource This parameter can be one of the following values:
3383   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_GPIO
3384   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD1
3385   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD2
3386   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC1_AWD3
3387   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD1
3388   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD2
3389   *         @arg @ref LL_TIM_TIM1_ETRSOURCE_ADC2_AWD3
3390   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_GPIO
3391   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD1
3392   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD2
3393   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC1_AWD3
3394   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD1
3395   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD2
3396   *         @arg @ref LL_TIM_TIM8_ETRSOURCE_ADC2_AWD3
3397   *         @arg @ref LL_TIM_TIM2_ETRSOURCE_GPIO
3398   *         @arg @ref LL_TIM_TIM2_ETRSOURCE_RCC_LSE
3399   *         @arg @ref LL_TIM_TIM2_ETRSOURCE_SAI1_FSA
3400   *         @arg @ref LL_TIM_TIM2_ETRSOURCE_SAI1_FSB
3401   *         @arg @ref LL_TIM_TIM2_ETRSOURCE_ETH_PPS
3402   *         @arg @ref LL_TIM_TIM3_ETRSOURCE_GPIO
3403   *         @arg @ref LL_TIM_TIM3_ETRSOURCE_ETH_PPS
3404   *         @arg @ref LL_TIM_TIM4_ETRSOURCE_GPIO
3405   *         @arg @ref LL_TIM_TIM5_ETRSOURCE_GPIO
3406   *         @arg @ref LL_TIM_TIM5_ETRSOURCE_SAI2_FSA
3407   *         @arg @ref LL_TIM_TIM5_ETRSOURCE_SAI2_FSB
3408   *         @arg @ref LL_TIM_TIM5_ETRSOURCE_OTG_SOF
3409 
3410   * @retval None
3411   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3412 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3413 {
3414 
3415   MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
3416 }
3417 
3418 /**
3419   * @}
3420   */
3421 
3422 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3423   * @{
3424   */
3425 /**
3426   * @brief  Enable the break function.
3427   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3428   *       a timer instance provides a break input.
3429   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3430   * @param  TIMx Timer instance
3431   * @retval None
3432   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3433 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3434 {
3435   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3436 }
3437 
3438 /**
3439   * @brief  Disable the break function.
3440   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3441   * @param  TIMx Timer instance
3442   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3443   *       a timer instance provides a break input.
3444   * @retval None
3445   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3446 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3447 {
3448   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3449 }
3450 
3451 /**
3452   * @brief  Configure the break input.
3453   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3454   *       a timer instance provides a break input.
3455   * @note Bidirectional mode is only supported by advanced timer instances.
3456   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3457   *       a timer instance is an advanced-control timer.
3458   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
3459   *        in input mode and in open drain output mode. Any active Break event will
3460   *        assert a low logic level on the Break input to indicate an internal break
3461   *        event to external devices.
3462   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
3463   *       LL_TIM_BREAK_AFMODE_INPUT.
3464   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3465   *         BDTR         BKF           LL_TIM_ConfigBRK\n
3466   *         BDTR         BKBID         LL_TIM_ConfigBRK
3467   * @param  TIMx Timer instance
3468   * @param  BreakPolarity This parameter can be one of the following values:
3469   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3470   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3471   * @param  BreakFilter This parameter can be one of the following values:
3472   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3473   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3474   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3475   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3476   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3477   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3478   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3479   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3480   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3481   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3482   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3483   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3484   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3485   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3486   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3487   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3488   * @param  BreakAFMode This parameter can be one of the following values:
3489   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
3490   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
3491   * @retval None
3492   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)3493 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
3494                                       uint32_t BreakAFMode)
3495 {
3496   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
3497 }
3498 
3499 /**
3500   * @brief  Disarm the break input (when it operates in bidirectional mode).
3501   * @note  The break input can be disarmed only when it is configured in
3502   *        bidirectional mode and when when MOE is reset.
3503   * @note  Purpose is to be able to have the input voltage back to high-state,
3504   *        whatever the time constant on the output .
3505   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
3506   * @param  TIMx Timer instance
3507   * @retval None
3508   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)3509 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
3510 {
3511   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3512 }
3513 
3514 /**
3515   * @brief  Re-arm the break input (when it operates in bidirectional mode).
3516   * @note  The Break input is automatically armed as soon as MOE bit is set.
3517   * @rmtoll BDTR         BKDSRM        LL_TIM_ReArmBRK
3518   * @param  TIMx Timer instance
3519   * @retval None
3520   */
LL_TIM_ReArmBRK(TIM_TypeDef * TIMx)3521 __STATIC_INLINE void LL_TIM_ReArmBRK(TIM_TypeDef *TIMx)
3522 {
3523   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3524 }
3525 
3526 /**
3527   * @brief  Enable the break 2 function.
3528   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3529   *       a timer instance provides a second break input.
3530   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3531   * @param  TIMx Timer instance
3532   * @retval None
3533   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3534 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3535 {
3536   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3537 }
3538 
3539 /**
3540   * @brief  Disable the break  2 function.
3541   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3542   *       a timer instance provides a second break input.
3543   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3544   * @param  TIMx Timer instance
3545   * @retval None
3546   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3547 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3548 {
3549   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3550 }
3551 
3552 /**
3553   * @brief  Configure the break 2 input.
3554   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3555   *       a timer instance provides a second break input.
3556   * @note Bidirectional mode is only supported by advanced timer instances.
3557   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3558   *       a timer instance is an advanced-control timer.
3559   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
3560   *        in input mode and in open drain output mode. Any active Break event will
3561   *        assert a low logic level on the Break 2 input to indicate an internal break
3562   *        event to external devices.
3563   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
3564   *       LL_TIM_BREAK2_AFMODE_INPUT.
3565   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3566   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
3567   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
3568   * @param  TIMx Timer instance
3569   * @param  Break2Polarity This parameter can be one of the following values:
3570   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3571   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3572   * @param  Break2Filter This parameter can be one of the following values:
3573   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3574   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3575   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3576   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3577   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3578   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3579   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3580   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3581   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3582   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3583   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3584   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3585   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3586   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3587   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3588   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3589   * @param  Break2AFMode This parameter can be one of the following values:
3590   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
3591   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
3592   * @retval None
3593   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)3594 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
3595                                        uint32_t Break2AFMode)
3596 {
3597   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
3598 }
3599 
3600 /**
3601   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
3602   * @note  The break 2 input can be disarmed only when it is configured in
3603   *        bidirectional mode and when when MOE is reset.
3604   * @note  Purpose is to be able to have the input voltage back to high-state,
3605   *        whatever the time constant on the output.
3606   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
3607   * @param  TIMx Timer instance
3608   * @retval None
3609   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)3610 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
3611 {
3612   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3613 }
3614 
3615 /**
3616   * @brief  Re-arm the break 2 input (when it operates in bidirectional mode).
3617   * @note  The Break 2 input is automatically armed as soon as MOE bit is set.
3618   * @rmtoll BDTR         BK2DSRM       LL_TIM_ReArmBRK2
3619   * @param  TIMx Timer instance
3620   * @retval None
3621   */
LL_TIM_ReArmBRK2(TIM_TypeDef * TIMx)3622 __STATIC_INLINE void LL_TIM_ReArmBRK2(TIM_TypeDef *TIMx)
3623 {
3624   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3625 }
3626 
3627 /**
3628   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3629   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3630   *       a timer instance provides a break input.
3631   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3632   *         BDTR         OSSR          LL_TIM_SetOffStates
3633   * @param  TIMx Timer instance
3634   * @param  OffStateIdle This parameter can be one of the following values:
3635   *         @arg @ref LL_TIM_OSSI_DISABLE
3636   *         @arg @ref LL_TIM_OSSI_ENABLE
3637   * @param  OffStateRun This parameter can be one of the following values:
3638   *         @arg @ref LL_TIM_OSSR_DISABLE
3639   *         @arg @ref LL_TIM_OSSR_ENABLE
3640   * @retval None
3641   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3642 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3643 {
3644   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3645 }
3646 
3647 /**
3648   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3649   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3650   *       a timer instance provides a break input.
3651   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3652   * @param  TIMx Timer instance
3653   * @retval None
3654   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3655 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3656 {
3657   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3658 }
3659 
3660 /**
3661   * @brief  Disable automatic output (MOE can be set only by software).
3662   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3663   *       a timer instance provides a break input.
3664   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3665   * @param  TIMx Timer instance
3666   * @retval None
3667   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3668 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3669 {
3670   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3671 }
3672 
3673 /**
3674   * @brief  Indicate whether automatic output is enabled.
3675   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3676   *       a timer instance provides a break input.
3677   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3678   * @param  TIMx Timer instance
3679   * @retval State of bit (1 or 0).
3680   */
LL_TIM_IsEnabledAutomaticOutput(TIM_TypeDef * TIMx)3681 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(TIM_TypeDef *TIMx)
3682 {
3683   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3684 }
3685 
3686 /**
3687   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3688   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3689   *       software and is reset in case of break or break2 event
3690   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3691   *       a timer instance provides a break input.
3692   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3693   * @param  TIMx Timer instance
3694   * @retval None
3695   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3696 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3697 {
3698   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3699 }
3700 
3701 /**
3702   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3703   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3704   *       software and is reset in case of break or break2 event.
3705   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3706   *       a timer instance provides a break input.
3707   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3708   * @param  TIMx Timer instance
3709   * @retval None
3710   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3711 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3712 {
3713   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3714 }
3715 
3716 /**
3717   * @brief  Indicates whether outputs are enabled.
3718   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3719   *       a timer instance provides a break input.
3720   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3721   * @param  TIMx Timer instance
3722   * @retval State of bit (1 or 0).
3723   */
LL_TIM_IsEnabledAllOutputs(TIM_TypeDef * TIMx)3724 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(TIM_TypeDef *TIMx)
3725 {
3726   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3727 }
3728 
3729 /**
3730   * @brief  Enable the signals connected to the designated timer break input.
3731   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3732   *       or not a timer instance allows for break input selection.
3733   * @rmtoll AF1          BKINE         LL_TIM_EnableBreakInputSource\n
3734   *         AF1          BKDF1BK0E     LL_TIM_EnableBreakInputSource\n
3735   *         AF2          BK2INE        LL_TIM_EnableBreakInputSource\n
3736   *         AF2          BK2DF1BK1E    LL_TIM_EnableBreakInputSource
3737   * @param  TIMx Timer instance
3738   * @param  BreakInput This parameter can be one of the following values:
3739   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3740   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3741   * @param  Source This parameter can be one of the following values:
3742   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3743   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3744   * @retval None
3745   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3746 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3747 {
3748   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3749   SET_BIT(*pReg, Source);
3750 }
3751 
3752 /**
3753   * @brief  Disable the signals connected to the designated timer break input.
3754   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3755   *       or not a timer instance allows for break input selection.
3756   * @rmtoll AF1          BKINE         LL_TIM_DisableBreakInputSource\n
3757   *         AF1          BKDF1BK0E     LL_TIM_DisableBreakInputSource\n
3758   *         AF2          BK2INE        LL_TIM_DisableBreakInputSource\n
3759   *         AF2          BK2DF1BK1E    LL_TIM_DisableBreakInputSource
3760   * @param  TIMx Timer instance
3761   * @param  BreakInput This parameter can be one of the following values:
3762   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3763   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3764   * @param  Source This parameter can be one of the following values:
3765   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3766   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3767   * @retval None
3768   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3769 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3770 {
3771   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3772   CLEAR_BIT(*pReg, Source);
3773 }
3774 
3775 /**
3776   * @brief  Set the polarity of the break signal for the timer break input.
3777   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3778   *       or not a timer instance allows for break input selection.
3779   * @rmtoll AF1          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3780   *         AF2          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3781   * @param  TIMx Timer instance
3782   * @param  BreakInput This parameter can be one of the following values:
3783   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3784   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3785   * @param  Source This parameter can be one of the following values:
3786   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3787   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3788   * @param  Polarity This parameter can be one of the following values:
3789   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
3790   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
3791   * @retval None
3792   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)3793 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
3794                                                         uint32_t Polarity)
3795 {
3796   register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3797   MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
3798 }
3799 /**
3800   * @}
3801   */
3802 
3803 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
3804   * @{
3805   */
3806 /**
3807   * @brief  Configures the timer DMA burst feature.
3808   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
3809   *       not a timer instance supports the DMA burst mode.
3810   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
3811   *         DCR          DBA           LL_TIM_ConfigDMABurst
3812   * @param  TIMx Timer instance
3813   * @param  DMABurstBaseAddress This parameter can be one of the following values:
3814   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
3815   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3816   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3817   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3818   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3819   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3820   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3821   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3822   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3823   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3824   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3825   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3826   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3827   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3828   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3829   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3830   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3831   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3832   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
3833   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
3834   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
3835   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
3836   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
3837   *         @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
3838   * @param  DMABurstLength This parameter can be one of the following values:
3839   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3840   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3841   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3842   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3843   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3844   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3845   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3846   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3847   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3848   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3849   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3850   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3851   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3852   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3853   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3854   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3855   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3856   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3857   * @retval None
3858   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)3859 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3860 {
3861   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3862 }
3863 
3864 /**
3865   * @}
3866   */
3867 
3868 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3869   * @{
3870   */
3871 /**
3872   * @brief  Remap TIM inputs (input channel, internal/external triggers).
3873   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3874   *       a some timer inputs can be remapped.
3875   * @rmtoll TIM1_TISEL    TI1SEL      LL_TIM_SetRemap\n
3876   *         TIM1_TISEL    TI2SEL      LL_TIM_SetRemap\n
3877   *         TIM1_TISEL    TI3SEL      LL_TIM_SetRemap\n
3878   *         TIM1_TISEL    TI4SEL      LL_TIM_SetRemap\n
3879   *         TIM8_TISEL    TI1SEL      LL_TIM_SetRemap\n
3880   *         TIM8_TISEL    TI2SEL      LL_TIM_SetRemap\n
3881   *         TIM8_TISEL    TI3SEL      LL_TIM_SetRemap\n
3882   *         TIM8_TISEL    TI4SEL      LL_TIM_SetRemap\n
3883   *         TIM2_TISEL    TI1SEL      LL_TIM_SetRemap\n
3884   *         TIM2_TISEL    TI2SEL      LL_TIM_SetRemap\n
3885   *         TIM2_TISEL    TI3SEL      LL_TIM_SetRemap\n
3886   *         TIM2_TISEL    TI4SEL      LL_TIM_SetRemap\n
3887   *         TIM3_TISEL    TI1SEL      LL_TIM_SetRemap\n
3888   *         TIM3_TISEL    TI2SEL      LL_TIM_SetRemap\n
3889   *         TIM3_TISEL    TI3SEL      LL_TIM_SetRemap\n
3890   *         TIM4_TISEL    TI1SEL      LL_TIM_SetRemap\n
3891   *         TIM4_TISEL    TI2SEL      LL_TIM_SetRemap\n
3892   *         TIM4_TISEL    TI3SEL      LL_TIM_SetRemap\n
3893   *         TIM4_TISEL    TI4SEL      LL_TIM_SetRemap\n
3894   *         TIM5_TISEL    TI1SEL      LL_TIM_SetRemap\n
3895   *         TIM5_TISEL    TI2SEL      LL_TIM_SetRemap\n
3896   *         TIM5_TISEL    TI3SEL      LL_TIM_SetRemap\n
3897   *         TIM5_TISEL    TI4SEL      LL_TIM_SetRemap\n
3898   *         TIM12_TISEL   TI1SEL      LL_TIM_SetRemap\n
3899   *         TIM12_TISEL   TI2SEL      LL_TIM_SetRemap\n
3900   *         TIM13_TISEL   TI1SEL      LL_TIM_SetRemap\n
3901   *         TIM14_TISEL   TI1SEL      LL_TIM_SetRemap\n
3902   *         TIM15_TISEL   TI1SEL      LL_TIM_SetRemap\n
3903   *         TIM16_TISEL   TI1SEL      LL_TIM_SetRemap\n
3904   *         TIM17_TISEL   TI1SEL      LL_TIM_SetRemap
3905   * @param  TIMx Timer instance
3906   * @param  Remap Remap param depends on the TIMx. Description available only
3907   *         in CHM version of the User Manual (not in .pdf).
3908   *         Otherwise see Reference Manual description of TISEL registers.
3909   *
3910   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
3911   *
3912   *         TIM1: any combination of TI1_RMP, TI2_RMP, TI3_RMP and TI4_RMP where
3913   *
3914   *            @arg @ref LL_TIM_TIM1_TI1_RMP_GPIO
3915   *            @arg @ref LL_TIM_TIM1_TI2_RMP_GPIO
3916   *            @arg @ref LL_TIM_TIM1_TI3_RMP_GPIO
3917   *            @arg @ref LL_TIM_TIM1_TI4_RMP_GPIO
3918   *
3919   *         TIM8: any combination of TI1_RMP, TI2_RMP, TI3_RMP and TI4_RMP where
3920   *
3921   *            @arg @ref LL_TIM_TIM8_TI1_RMP_GPIO
3922   *            @arg @ref LL_TIM_TIM8_TI2_RMP_GPIO
3923   *            @arg @ref LL_TIM_TIM8_TI3_RMP_GPIO
3924   *            @arg @ref LL_TIM_TIM8_TI4_RMP_GPIO
3925   *
3926   *         TIM2: any combination of TI1_RMP, TI2_RMP, TI3_RMP and TI4_RMP where
3927   *
3928   *            @arg @ref LL_TIM_TIM2_TI1_RMP_GPIO
3929   *            @arg @ref LL_TIM_TIM2_TI2_RMP_GPIO
3930   *            @arg @ref LL_TIM_TIM2_TI3_RMP_GPIO
3931   *            @arg @ref LL_TIM_TIM2_TI4_RMP_GPIO
3932   *
3933   *         TIM3: any combination of TI1_RMP, TI2_RMP, TI3_RMP and TI4_RMP where
3934   *
3935   *            @arg @ref LL_TIM_TIM3_TI1_RMP_GPIO
3936   *            @arg @ref LL_TIM_TIM3_TI2_RMP_GPIO
3937   *            @arg @ref LL_TIM_TIM3_TI3_RMP_GPIO
3938   *            @arg @ref LL_TIM_TIM3_TI4_RMP_GPIO
3939   *
3940   *         TIM4: any combination of TI1_RMP, TI2_RMP, TI3_RMP and TI4_RMP where
3941   *
3942   *            @arg @ref LL_TIM_TIM4_TI1_RMP_GPIO
3943   *            @arg @ref LL_TIM_TIM4_TI2_RMP_GPIO
3944   *            @arg @ref LL_TIM_TIM4_TI3_RMP_GPIO
3945   *            @arg @ref LL_TIM_TIM4_TI4_RMP_GPIO
3946   *
3947   *
3948   *         TIM5: any combination of TI1_RMP and TI2_RMP, TI3_RMP and TI4_RMP where
3949   *
3950   *            . . TI1_RMP can be one of the following values
3951   *            @arg @ref LL_TIM_TIM5_TI1_RMP_GPIO
3952   *            @arg @ref LL_TIM_TIM5_TI1_RMP_FDCAN1_TMP
3953   *            @arg @ref LL_TIM_TIM5_TI1_RMP_FDCAN1_RTP
3954   *
3955   *            . . TI2_RMP can be one of the following values
3956   *            @arg @ref LL_TIM_TIM5_TI2_RMP_GPIO
3957   *
3958   *            . . TI3_RMP can be one of the following values
3959   *            @arg @ref LL_TIM_TIM5_TI3_RMP_GPIO
3960   *
3961   *            . . TI4_RMP can be one of the following values
3962   *            @arg @ref LL_TIM_TIM5_TI4_RMP_GPIO
3963   *
3964   *         TIM12: any combination of TI1_RMP and TI2_RMP where
3965   *
3966   *            @arg @ref LL_TIM_TIM12_TI1_RMP_GPIO
3967   *            @arg @ref LL_TIM_TIM12_TI1_RMP_HSI_CAL_CK
3968   *            @arg @ref LL_TIM_TIM12_TI1_RMP_CSI_CAL_CK
3969   *            @arg @ref LL_TIM_TIM12_TI2_RMP_GPIO
3970   *
3971   *         TIM13: any combination of TI1_RMP where
3972   *
3973   *            @arg @ref LL_TIM_TIM13_TI1_RMP_GPIO
3974   *
3975   *         TIM14: any combination of TI1_RMP where
3976   *
3977   *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
3978   *
3979   *         TIM15: any combination of TI1_RMP and TI2_RMP where
3980   *
3981   *            . . TI1_RMP can be one of the following values
3982   *            @arg @ref LL_TIM_TIM15_TI1_RMP_GPIO
3983   *            @arg @ref LL_TIM_TIM15_TI1_RMP_TIM2_CH1
3984   *            @arg @ref LL_TIM_TIM15_TI1_RMP_TIM3_CH1
3985   *            @arg @ref LL_TIM_TIM15_TI1_RMP_TIM4_CH1
3986   *            @arg @ref LL_TIM_TIM15_TI1_RMP_RCC_LSE
3987   *            @arg @ref LL_TIM_TIM15_TI1_RMP_RCC_CSI
3988   *            @arg @ref LL_TIM_TIM15_TI1_RMP_RCC_MCO2
3989   *            @arg @ref LL_TIM_TIM15_TI1_RMP_HSI_CAL_CK
3990   *            @arg @ref LL_TIM_TIM15_TI1_RMP_CSI_CAL_CK
3991   *
3992   *            . . TI2_RMP can be one of the following values
3993   *            @arg @ref LL_TIM_TIM15_TI2_RMP_GPIO
3994   *            @arg @ref LL_TIM_TIM15_TI2_RMP_TIM2_CH2
3995   *            @arg @ref LL_TIM_TIM15_TI2_RMP_TIM3_CH2
3996   *            @arg @ref LL_TIM_TIM15_TI2_RMP_TIM4_CH2
3997   *
3998   *         TIM16: one of the following values
3999   *
4000   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
4001   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RCC_LSI
4002   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RCC_LSE
4003   *            @arg @ref LL_TIM_TIM16_TI1_RMP_WKUP_IT
4004   *
4005   *         TIM17: one of the following values
4006   *
4007   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
4008   *            @arg @ref LL_TIM_TIM17_TI1_RMP_SPDIFRX_FS
4009   *            @arg @ref LL_TIM_TIM17_TI1_RMP_RCC_HSE_RTC
4010   *            @arg @ref LL_TIM_TIM17_TI1_RMP_RCC_MCO1
4011   *
4012   *
4013   * @retval None
4014   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)4015 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
4016 {
4017   MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
4018 }
4019 
4020 /**
4021   * @}
4022   */
4023 
4024 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
4025   * @{
4026   */
4027 /**
4028   * @brief  Clear the update interrupt flag (UIF).
4029   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
4030   * @param  TIMx Timer instance
4031   * @retval None
4032   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)4033 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
4034 {
4035   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
4036 }
4037 
4038 /**
4039   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
4040   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
4041   * @param  TIMx Timer instance
4042   * @retval State of bit (1 or 0).
4043   */
LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef * TIMx)4044 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx)
4045 {
4046   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
4047 }
4048 
4049 /**
4050   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
4051   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
4052   * @param  TIMx Timer instance
4053   * @retval None
4054   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)4055 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
4056 {
4057   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
4058 }
4059 
4060 /**
4061   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
4062   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
4063   * @param  TIMx Timer instance
4064   * @retval State of bit (1 or 0).
4065   */
LL_TIM_IsActiveFlag_CC1(TIM_TypeDef * TIMx)4066 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx)
4067 {
4068   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
4069 }
4070 
4071 /**
4072   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
4073   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
4074   * @param  TIMx Timer instance
4075   * @retval None
4076   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)4077 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
4078 {
4079   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
4080 }
4081 
4082 /**
4083   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
4084   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
4085   * @param  TIMx Timer instance
4086   * @retval State of bit (1 or 0).
4087   */
LL_TIM_IsActiveFlag_CC2(TIM_TypeDef * TIMx)4088 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx)
4089 {
4090   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
4091 }
4092 
4093 /**
4094   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
4095   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
4096   * @param  TIMx Timer instance
4097   * @retval None
4098   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)4099 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
4100 {
4101   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
4102 }
4103 
4104 /**
4105   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
4106   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
4107   * @param  TIMx Timer instance
4108   * @retval State of bit (1 or 0).
4109   */
LL_TIM_IsActiveFlag_CC3(TIM_TypeDef * TIMx)4110 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx)
4111 {
4112   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
4113 }
4114 
4115 /**
4116   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
4117   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
4118   * @param  TIMx Timer instance
4119   * @retval None
4120   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)4121 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
4122 {
4123   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4124 }
4125 
4126 /**
4127   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4128   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4129   * @param  TIMx Timer instance
4130   * @retval State of bit (1 or 0).
4131   */
LL_TIM_IsActiveFlag_CC4(TIM_TypeDef * TIMx)4132 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx)
4133 {
4134   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4135 }
4136 
4137 /**
4138   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4139   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4140   * @param  TIMx Timer instance
4141   * @retval None
4142   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4143 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4144 {
4145   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4146 }
4147 
4148 /**
4149   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4150   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4151   * @param  TIMx Timer instance
4152   * @retval State of bit (1 or 0).
4153   */
LL_TIM_IsActiveFlag_CC5(TIM_TypeDef * TIMx)4154 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(TIM_TypeDef *TIMx)
4155 {
4156   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4157 }
4158 
4159 /**
4160   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4161   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4162   * @param  TIMx Timer instance
4163   * @retval None
4164   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4165 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4166 {
4167   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4168 }
4169 
4170 /**
4171   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4172   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4173   * @param  TIMx Timer instance
4174   * @retval State of bit (1 or 0).
4175   */
LL_TIM_IsActiveFlag_CC6(TIM_TypeDef * TIMx)4176 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(TIM_TypeDef *TIMx)
4177 {
4178   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4179 }
4180 
4181 /**
4182   * @brief  Clear the commutation interrupt flag (COMIF).
4183   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4184   * @param  TIMx Timer instance
4185   * @retval None
4186   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4187 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4188 {
4189   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4190 }
4191 
4192 /**
4193   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4194   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4195   * @param  TIMx Timer instance
4196   * @retval State of bit (1 or 0).
4197   */
LL_TIM_IsActiveFlag_COM(TIM_TypeDef * TIMx)4198 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(TIM_TypeDef *TIMx)
4199 {
4200   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4201 }
4202 
4203 /**
4204   * @brief  Clear the trigger interrupt flag (TIF).
4205   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4206   * @param  TIMx Timer instance
4207   * @retval None
4208   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4209 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4210 {
4211   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4212 }
4213 
4214 /**
4215   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4216   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4217   * @param  TIMx Timer instance
4218   * @retval State of bit (1 or 0).
4219   */
LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef * TIMx)4220 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx)
4221 {
4222   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4223 }
4224 
4225 /**
4226   * @brief  Clear the break interrupt flag (BIF).
4227   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4228   * @param  TIMx Timer instance
4229   * @retval None
4230   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4231 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4232 {
4233   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4234 }
4235 
4236 /**
4237   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4238   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4239   * @param  TIMx Timer instance
4240   * @retval State of bit (1 or 0).
4241   */
LL_TIM_IsActiveFlag_BRK(TIM_TypeDef * TIMx)4242 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(TIM_TypeDef *TIMx)
4243 {
4244   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4245 }
4246 
4247 /**
4248   * @brief  Clear the break 2 interrupt flag (B2IF).
4249   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4250   * @param  TIMx Timer instance
4251   * @retval None
4252   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4253 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4254 {
4255   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4256 }
4257 
4258 /**
4259   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4260   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4261   * @param  TIMx Timer instance
4262   * @retval State of bit (1 or 0).
4263   */
LL_TIM_IsActiveFlag_BRK2(TIM_TypeDef * TIMx)4264 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(TIM_TypeDef *TIMx)
4265 {
4266   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4267 }
4268 
4269 /**
4270   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4271   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4272   * @param  TIMx Timer instance
4273   * @retval None
4274   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4275 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4276 {
4277   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4278 }
4279 
4280 /**
4281   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set (Capture/Compare 1 interrupt is pending).
4282   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4283   * @param  TIMx Timer instance
4284   * @retval State of bit (1 or 0).
4285   */
LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef * TIMx)4286 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx)
4287 {
4288   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4289 }
4290 
4291 /**
4292   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4293   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4294   * @param  TIMx Timer instance
4295   * @retval None
4296   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4297 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4298 {
4299   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4300 }
4301 
4302 /**
4303   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set (Capture/Compare 2 over-capture interrupt is pending).
4304   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4305   * @param  TIMx Timer instance
4306   * @retval State of bit (1 or 0).
4307   */
LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef * TIMx)4308 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx)
4309 {
4310   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4311 }
4312 
4313 /**
4314   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4315   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4316   * @param  TIMx Timer instance
4317   * @retval None
4318   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4319 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4320 {
4321   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4322 }
4323 
4324 /**
4325   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set (Capture/Compare 3 over-capture interrupt is pending).
4326   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4327   * @param  TIMx Timer instance
4328   * @retval State of bit (1 or 0).
4329   */
LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef * TIMx)4330 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx)
4331 {
4332   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4333 }
4334 
4335 /**
4336   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4337   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4338   * @param  TIMx Timer instance
4339   * @retval None
4340   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4341 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4342 {
4343   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4344 }
4345 
4346 /**
4347   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set (Capture/Compare 4 over-capture interrupt is pending).
4348   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4349   * @param  TIMx Timer instance
4350   * @retval State of bit (1 or 0).
4351   */
LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef * TIMx)4352 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx)
4353 {
4354   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4355 }
4356 
4357 /**
4358   * @brief  Clear the system break interrupt flag (SBIF).
4359   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4360   * @param  TIMx Timer instance
4361   * @retval None
4362   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4363 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4364 {
4365   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4366 }
4367 
4368 /**
4369   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4370   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4371   * @param  TIMx Timer instance
4372   * @retval State of bit (1 or 0).
4373   */
LL_TIM_IsActiveFlag_SYSBRK(TIM_TypeDef * TIMx)4374 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(TIM_TypeDef *TIMx)
4375 {
4376   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4377 }
4378 
4379 /**
4380   * @}
4381   */
4382 
4383 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4384   * @{
4385   */
4386 /**
4387   * @brief  Enable update interrupt (UIE).
4388   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4389   * @param  TIMx Timer instance
4390   * @retval None
4391   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4392 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4393 {
4394   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4395 }
4396 
4397 /**
4398   * @brief  Disable update interrupt (UIE).
4399   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4400   * @param  TIMx Timer instance
4401   * @retval None
4402   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4403 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4404 {
4405   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4406 }
4407 
4408 /**
4409   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4410   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4411   * @param  TIMx Timer instance
4412   * @retval State of bit (1 or 0).
4413   */
LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef * TIMx)4414 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx)
4415 {
4416   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4417 }
4418 
4419 /**
4420   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4421   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4422   * @param  TIMx Timer instance
4423   * @retval None
4424   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4425 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4426 {
4427   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4428 }
4429 
4430 /**
4431   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4432   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4433   * @param  TIMx Timer instance
4434   * @retval None
4435   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4436 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4437 {
4438   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4439 }
4440 
4441 /**
4442   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4443   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4444   * @param  TIMx Timer instance
4445   * @retval State of bit (1 or 0).
4446   */
LL_TIM_IsEnabledIT_CC1(TIM_TypeDef * TIMx)4447 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx)
4448 {
4449   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4450 }
4451 
4452 /**
4453   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4454   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4455   * @param  TIMx Timer instance
4456   * @retval None
4457   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4458 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4459 {
4460   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4461 }
4462 
4463 /**
4464   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4465   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4466   * @param  TIMx Timer instance
4467   * @retval None
4468   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4469 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4470 {
4471   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4472 }
4473 
4474 /**
4475   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4476   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4477   * @param  TIMx Timer instance
4478   * @retval State of bit (1 or 0).
4479   */
LL_TIM_IsEnabledIT_CC2(TIM_TypeDef * TIMx)4480 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx)
4481 {
4482   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4483 }
4484 
4485 /**
4486   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4487   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4488   * @param  TIMx Timer instance
4489   * @retval None
4490   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4491 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4492 {
4493   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4494 }
4495 
4496 /**
4497   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4498   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4499   * @param  TIMx Timer instance
4500   * @retval None
4501   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4502 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4503 {
4504   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4505 }
4506 
4507 /**
4508   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4509   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4510   * @param  TIMx Timer instance
4511   * @retval State of bit (1 or 0).
4512   */
LL_TIM_IsEnabledIT_CC3(TIM_TypeDef * TIMx)4513 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx)
4514 {
4515   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4516 }
4517 
4518 /**
4519   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4520   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4521   * @param  TIMx Timer instance
4522   * @retval None
4523   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4524 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4525 {
4526   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4527 }
4528 
4529 /**
4530   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4531   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4532   * @param  TIMx Timer instance
4533   * @retval None
4534   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4535 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4536 {
4537   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4538 }
4539 
4540 /**
4541   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4542   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4543   * @param  TIMx Timer instance
4544   * @retval State of bit (1 or 0).
4545   */
LL_TIM_IsEnabledIT_CC4(TIM_TypeDef * TIMx)4546 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx)
4547 {
4548   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4549 }
4550 
4551 /**
4552   * @brief  Enable commutation interrupt (COMIE).
4553   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4554   * @param  TIMx Timer instance
4555   * @retval None
4556   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4557 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4558 {
4559   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4560 }
4561 
4562 /**
4563   * @brief  Disable commutation interrupt (COMIE).
4564   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4565   * @param  TIMx Timer instance
4566   * @retval None
4567   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4568 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4569 {
4570   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4571 }
4572 
4573 /**
4574   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4575   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4576   * @param  TIMx Timer instance
4577   * @retval State of bit (1 or 0).
4578   */
LL_TIM_IsEnabledIT_COM(TIM_TypeDef * TIMx)4579 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(TIM_TypeDef *TIMx)
4580 {
4581   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4582 }
4583 
4584 /**
4585   * @brief  Enable trigger interrupt (TIE).
4586   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4587   * @param  TIMx Timer instance
4588   * @retval None
4589   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4590 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4591 {
4592   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4593 }
4594 
4595 /**
4596   * @brief  Disable trigger interrupt (TIE).
4597   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4598   * @param  TIMx Timer instance
4599   * @retval None
4600   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4601 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4602 {
4603   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4604 }
4605 
4606 /**
4607   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4608   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4609   * @param  TIMx Timer instance
4610   * @retval State of bit (1 or 0).
4611   */
LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef * TIMx)4612 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx)
4613 {
4614   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4615 }
4616 
4617 /**
4618   * @brief  Enable break interrupt (BIE).
4619   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4620   * @param  TIMx Timer instance
4621   * @retval None
4622   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4623 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4624 {
4625   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4626 }
4627 
4628 /**
4629   * @brief  Disable break interrupt (BIE).
4630   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4631   * @param  TIMx Timer instance
4632   * @retval None
4633   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4634 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4635 {
4636   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4637 }
4638 
4639 /**
4640   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4641   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4642   * @param  TIMx Timer instance
4643   * @retval State of bit (1 or 0).
4644   */
LL_TIM_IsEnabledIT_BRK(TIM_TypeDef * TIMx)4645 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(TIM_TypeDef *TIMx)
4646 {
4647   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4648 }
4649 
4650 /**
4651   * @}
4652   */
4653 
4654 /** @defgroup TIM_LL_EF_DMA_Management DMA-Management
4655   * @{
4656   */
4657 /**
4658   * @brief  Enable update DMA request (UDE).
4659   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4660   * @param  TIMx Timer instance
4661   * @retval None
4662   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4663 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4664 {
4665   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4666 }
4667 
4668 /**
4669   * @brief  Disable update DMA request (UDE).
4670   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4671   * @param  TIMx Timer instance
4672   * @retval None
4673   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4674 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4675 {
4676   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4677 }
4678 
4679 /**
4680   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4681   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4682   * @param  TIMx Timer instance
4683   * @retval State of bit (1 or 0).
4684   */
LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef * TIMx)4685 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx)
4686 {
4687   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4688 }
4689 
4690 /**
4691   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4692   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4693   * @param  TIMx Timer instance
4694   * @retval None
4695   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4696 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4697 {
4698   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4699 }
4700 
4701 /**
4702   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4703   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4704   * @param  TIMx Timer instance
4705   * @retval None
4706   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4707 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4708 {
4709   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4710 }
4711 
4712 /**
4713   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4714   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4715   * @param  TIMx Timer instance
4716   * @retval State of bit (1 or 0).
4717   */
LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef * TIMx)4718 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx)
4719 {
4720   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4721 }
4722 
4723 /**
4724   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4725   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4726   * @param  TIMx Timer instance
4727   * @retval None
4728   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4729 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4730 {
4731   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4732 }
4733 
4734 /**
4735   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4736   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4737   * @param  TIMx Timer instance
4738   * @retval None
4739   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4740 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4741 {
4742   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4743 }
4744 
4745 /**
4746   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4747   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4748   * @param  TIMx Timer instance
4749   * @retval State of bit (1 or 0).
4750   */
LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef * TIMx)4751 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx)
4752 {
4753   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4754 }
4755 
4756 /**
4757   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4758   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4759   * @param  TIMx Timer instance
4760   * @retval None
4761   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4762 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4763 {
4764   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4765 }
4766 
4767 /**
4768   * @brief  Disable capture/compare 3  DMA request (CC3DE).
4769   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
4770   * @param  TIMx Timer instance
4771   * @retval None
4772   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)4773 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
4774 {
4775   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4776 }
4777 
4778 /**
4779   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
4780   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
4781   * @param  TIMx Timer instance
4782   * @retval State of bit (1 or 0).
4783   */
LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef * TIMx)4784 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx)
4785 {
4786   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
4787 }
4788 
4789 /**
4790   * @brief  Enable capture/compare 4 DMA request (CC4DE).
4791   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
4792   * @param  TIMx Timer instance
4793   * @retval None
4794   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)4795 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
4796 {
4797   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4798 }
4799 
4800 /**
4801   * @brief  Disable capture/compare 4  DMA request (CC4DE).
4802   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
4803   * @param  TIMx Timer instance
4804   * @retval None
4805   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)4806 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
4807 {
4808   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4809 }
4810 
4811 /**
4812   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
4813   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
4814   * @param  TIMx Timer instance
4815   * @retval State of bit (1 or 0).
4816   */
LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef * TIMx)4817 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx)
4818 {
4819   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
4820 }
4821 
4822 /**
4823   * @brief  Enable commutation DMA request (COMDE).
4824   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
4825   * @param  TIMx Timer instance
4826   * @retval None
4827   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)4828 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
4829 {
4830   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
4831 }
4832 
4833 /**
4834   * @brief  Disable commutation DMA request (COMDE).
4835   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
4836   * @param  TIMx Timer instance
4837   * @retval None
4838   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)4839 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
4840 {
4841   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
4842 }
4843 
4844 /**
4845   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
4846   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
4847   * @param  TIMx Timer instance
4848   * @retval State of bit (1 or 0).
4849   */
LL_TIM_IsEnabledDMAReq_COM(TIM_TypeDef * TIMx)4850 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(TIM_TypeDef *TIMx)
4851 {
4852   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
4853 }
4854 
4855 /**
4856   * @brief  Enable trigger interrupt (TDE).
4857   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
4858   * @param  TIMx Timer instance
4859   * @retval None
4860   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)4861 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
4862 {
4863   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
4864 }
4865 
4866 /**
4867   * @brief  Disable trigger interrupt (TDE).
4868   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
4869   * @param  TIMx Timer instance
4870   * @retval None
4871   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)4872 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
4873 {
4874   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
4875 }
4876 
4877 /**
4878   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
4879   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
4880   * @param  TIMx Timer instance
4881   * @retval State of bit (1 or 0).
4882   */
LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef * TIMx)4883 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx)
4884 {
4885   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
4886 }
4887 
4888 /**
4889   * @}
4890   */
4891 
4892 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
4893   * @{
4894   */
4895 /**
4896   * @brief  Generate an update event.
4897   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
4898   * @param  TIMx Timer instance
4899   * @retval None
4900   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)4901 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
4902 {
4903   SET_BIT(TIMx->EGR, TIM_EGR_UG);
4904 }
4905 
4906 /**
4907   * @brief  Generate Capture/Compare 1 event.
4908   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
4909   * @param  TIMx Timer instance
4910   * @retval None
4911   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)4912 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
4913 {
4914   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
4915 }
4916 
4917 /**
4918   * @brief  Generate Capture/Compare 2 event.
4919   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
4920   * @param  TIMx Timer instance
4921   * @retval None
4922   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)4923 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
4924 {
4925   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
4926 }
4927 
4928 /**
4929   * @brief  Generate Capture/Compare 3 event.
4930   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
4931   * @param  TIMx Timer instance
4932   * @retval None
4933   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)4934 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
4935 {
4936   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
4937 }
4938 
4939 /**
4940   * @brief  Generate Capture/Compare 4 event.
4941   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
4942   * @param  TIMx Timer instance
4943   * @retval None
4944   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)4945 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
4946 {
4947   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
4948 }
4949 
4950 /**
4951   * @brief  Generate commutation event.
4952   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
4953   * @param  TIMx Timer instance
4954   * @retval None
4955   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)4956 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
4957 {
4958   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
4959 }
4960 
4961 /**
4962   * @brief  Generate trigger event.
4963   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
4964   * @param  TIMx Timer instance
4965   * @retval None
4966   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)4967 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
4968 {
4969   SET_BIT(TIMx->EGR, TIM_EGR_TG);
4970 }
4971 
4972 /**
4973   * @brief  Generate break event.
4974   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
4975   * @param  TIMx Timer instance
4976   * @retval None
4977   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)4978 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
4979 {
4980   SET_BIT(TIMx->EGR, TIM_EGR_BG);
4981 }
4982 
4983 /**
4984   * @brief  Generate break 2 event.
4985   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
4986   * @param  TIMx Timer instance
4987   * @retval None
4988   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)4989 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
4990 {
4991   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
4992 }
4993 
4994 /**
4995   * @}
4996   */
4997 
4998 #if defined(USE_FULL_LL_DRIVER)
4999 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
5000   * @{
5001   */
5002 
5003 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
5004 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
5005 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct);
5006 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5007 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5008 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
5009 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
5010 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5011 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5012 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5013 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5014 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5015 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5016 /**
5017   * @}
5018   */
5019 #endif /* USE_FULL_LL_DRIVER */
5020 
5021 /**
5022   * @}
5023   */
5024 
5025 /**
5026   * @}
5027   */
5028 
5029 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 */
5030 
5031 /**
5032   * @}
5033   */
5034 
5035 #ifdef __cplusplus
5036 }
5037 #endif
5038 
5039 #endif /* __STM32MP1xx_LL_TIM_H */
5040