1 /**
2   ******************************************************************************
3   * @file    stm32l4xx_hal_rtc.c
4   * @author  MCD Application Team
5   * @brief   RTC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Real-Time Clock (RTC) peripheral:
8   *           + Initialization/de-initialization functions
9   *           + Calendar (Time and Date) configuration
10   *           + Alarms (Alarm A and Alarm B) configuration
11   *           + WakeUp Timer configuration
12   *           + TimeStamp configuration
13   *           + Tampers configuration
14   *           + Backup Data Registers configuration
15   *           + RTC Tamper and TimeStamp Pins Selection
16   *           + Interrupts and flags management
17   *
18   ******************************************************************************
19   * @attention
20   *
21   * Copyright (c) 2017 STMicroelectronics.
22   * All rights reserved.
23   *
24   * This software is licensed under terms that can be found in the LICENSE file
25   * in the root directory of this software component.
26   * If no LICENSE file comes with this software, it is provided AS-IS.
27   *
28   ******************************************************************************
29   @verbatim
30  ===============================================================================
31                           ##### RTC Operating Condition #####
32  ===============================================================================
33   [..] The real-time clock (RTC) and the RTC backup registers can be powered
34        from the VBAT voltage when the main VDD supply is powered off.
35        To retain the content of the RTC backup registers and supply the RTC
36        when VDD is turned off, VBAT pin can be connected to an optional
37        standby voltage supplied by a battery or by another source.
38 
39                    ##### Backup Domain Reset #####
40  ===============================================================================
41   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42        to their reset values.
43        A backup domain reset is generated when one of the following events occurs:
44     (#) Software reset, triggered by setting the BDRST bit in the
45         RCC Backup domain control register (RCC_BDCR).
46     (#) VDD or VBAT power on, if both supplies have previously been powered off.
47     (#) Tamper detection event resets all data backup registers.
48 
49                    ##### Backup Domain Access #####
50   ==================================================================
51   [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52        is protected against possible unwanted write accesses.
53   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54     (+) Enable the Power Controller (PWR) APB1 interface clock using the
55         __HAL_RCC_PWR_CLK_ENABLE() function.
56     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59 
60   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61     (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62         PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63     (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64 
65                   ##### How to use RTC Driver #####
66  ===================================================================
67   [..]
68     (+) Enable the RTC domain access (see description in the section above).
69     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70         format using the HAL_RTC_Init() function.
71 
72   *** Time and Date configuration ***
73   ===================================
74   [..]
75     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76         and HAL_RTC_SetDate() functions.
77     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78 
79   *** Alarm configuration ***
80   ===========================
81   [..]
82     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83             You can also configure the RTC Alarm with interrupt mode using the
84             HAL_RTC_SetAlarm_IT() function.
85     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86 
87                   ##### RTC and low power modes #####
88   ==================================================================
89   [..] The MCU can be woken up from a low power mode by an RTC alternate
90        function.
91   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92        RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93        These RTC alternate functions can wake up the system from the Stop and
94        Standby low power modes.
95   [..] The system can also wake up from low power modes without depending
96        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97        or the RTC wakeup events.
98   [..] The RTC provides a programmable time base for waking up from the
99        Stop or Standby mode at regular intervals.
100        Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101        is LSE or LSI.
102 
103   *** Callback registration ***
104   =============================================
105 
106   [..]
107   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
108   not defined, the callback registration feature is not available and all callbacks
109   are set to the corresponding weak functions. This is the recommended configuration
110   in order to optimize memory/code consumption footprint/performances.
111 
112   [..]
113   The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115   Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
116 
117   [..]
118   Function HAL_RTC_RegisterCallback() allows to register following callbacks:
119     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
120     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
121     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
122     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
123 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
124     (+) SSRUEventCallback            : RTC SSRU Event callback.
125 #endif
126     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
127     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
128     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
129     (+) MspInitCallback              : RTC MspInit callback.
130     (+) MspDeInitCallback            : RTC MspDeInit callback.
131   This function takes as parameters the HAL peripheral handle, the Callback ID
132   and a pointer to the user callback function.
133 
134   [..]
135   Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
136   weak function.
137   HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
138   and the Callback ID.
139   This function allows to reset following callbacks:
140     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
141     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
142     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
143     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
144 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
145     (+) SSRUEventCallback            : RTC SSRU Event callback.
146 #endif
147     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
148     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
149     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
150     (+) MspInitCallback              : RTC MspInit callback.
151     (+) MspDeInitCallback            : RTC MspDeInit callback.
152 
153   [..]
154   By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
155   all callbacks are set to the corresponding weak functions :
156   examples AlarmAEventCallback(), TimeStampEventCallback().
157   Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
158   in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
159   (not registered beforehand).
160   If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
161   keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
162 
163   [..]
164   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
165   Exception done MspInit/MspDeInit that can be registered/unregistered
166   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
167   thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
168   In that case first register the MspInit/MspDeInit user callbacks
169   using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
170   or HAL_RTC_Init() function.
171 
172   [..]
173   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
174   not defined, the callback registration feature is not available and all callbacks
175   are set to the corresponding weak functions.
176 
177   @endverbatim
178   ******************************************************************************
179   */
180 
181 /* Includes ------------------------------------------------------------------*/
182 #include "stm32l4xx_hal.h"
183 
184 /** @addtogroup STM32L4xx_HAL_Driver
185   * @{
186   */
187 
188 
189 /** @addtogroup RTC
190   * @brief RTC HAL module driver
191   * @{
192   */
193 
194 #ifdef HAL_RTC_MODULE_ENABLED
195 
196 /* Private typedef -----------------------------------------------------------*/
197 /* Private define ------------------------------------------------------------*/
198 /* Private macro -------------------------------------------------------------*/
199 /* Private variables ---------------------------------------------------------*/
200 /* Private function prototypes -----------------------------------------------*/
201 /* Exported functions --------------------------------------------------------*/
202 
203 /** @addtogroup RTC_Exported_Functions
204   * @{
205   */
206 
207 /** @addtogroup RTC_Exported_Functions_Group1
208  *  @brief    Initialization and Configuration functions
209  *
210 @verbatim
211  ===============================================================================
212               ##### Initialization and de-initialization functions #####
213  ===============================================================================
214    [..] This section provides functions allowing to initialize and configure the
215          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
216          RTC registers Write protection, enter and exit the RTC initialization mode,
217          RTC registers synchronization check and reference clock detection enable.
218          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
219              It is split into 2 programmable prescalers to minimize power consumption.
220              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
221              (++) When both prescalers are used, it is recommended to configure the
222                  asynchronous prescaler to a high value to minimize power consumption.
223          (#) All RTC registers are Write protected. Writing to the RTC registers
224              is enabled by writing a key into the Write Protection register, RTC_WPR.
225          (#) To configure the RTC Calendar, user application should enter
226              initialization mode. In this mode, the calendar counter is stopped
227              and its value can be updated. When the initialization sequence is
228              complete, the calendar restarts counting after 4 RTCCLK cycles.
229          (#) To read the calendar through the shadow registers after Calendar
230              initialization, calendar update or after wakeup from low power modes
231              the software must first clear the RSF flag. The software must then
232              wait until it is set again before reading the calendar, which means
233              that the calendar registers have been correctly copied into the
234              RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
235              implements the above software sequence (RSF clear and RSF check).
236 
237 @endverbatim
238   * @{
239   */
240 
241 /**
242   * @brief  Initialize the RTC peripheral
243   * @param  hrtc RTC handle
244   * @retval HAL status
245   */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)246 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
247 {
248   HAL_StatusTypeDef status = HAL_ERROR;
249 
250   /* Check the RTC peripheral state */
251   if (hrtc != NULL)
252   {
253     /* Check the parameters */
254     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
255     assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
256     assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
257     assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
258     assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
259     assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
260     assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
261     assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
262 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
263     assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
264 #endif
265 
266 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
267     assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
268     assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
269 #endif
270 
271 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
272     if (hrtc->State == HAL_RTC_STATE_RESET)
273     {
274       /* Allocate lock resource and initialize it */
275       hrtc->Lock = HAL_UNLOCKED;
276       hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback      */
277       hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback      */
278       hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;        /* Legacy weak TimeStampEventCallback   */
279       hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback;      /* Legacy weak WakeUpTimerEventCallback */
280 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
281       hrtc->SSRUEventCallback            =  HAL_RTCEx_SSRUEventCallback;             /* Legacy weak SSRUEventCallback */
282 #endif
283 
284 #if defined(RTC_TAMPER1_SUPPORT)
285       hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;          /* Legacy weak Tamper1EventCallback     */
286 #endif /* RTC_TAMPER1_SUPPORT */
287       hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;          /* Legacy weak Tamper2EventCallback     */
288 #if defined(RTC_TAMPER3_SUPPORT)
289       hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;          /* Legacy weak Tamper3EventCallback     */
290 #endif /* RTC_TAMPER3_SUPPORT */
291 
292       if (hrtc->MspInitCallback == NULL)
293       {
294         hrtc->MspInitCallback = HAL_RTC_MspInit;
295       }
296       /* Init the low level hardware */
297       hrtc->MspInitCallback(hrtc);
298 
299       if (hrtc->MspDeInitCallback == NULL)
300       {
301         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
302       }
303     }
304 #else /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
305     if (hrtc->State == HAL_RTC_STATE_RESET)
306     {
307       /* Allocate lock resource and initialize it */
308       hrtc->Lock = HAL_UNLOCKED;
309 
310       /* Initialize RTC MSP */
311       HAL_RTC_MspInit(hrtc);
312     }
313 #endif /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
314 
315 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
316     /* Process TAMP ip offset from RTC one */
317     hrtc->TampOffset = (TAMP_BASE - RTC_BASE);
318 #endif
319     /* Set RTC state */
320     hrtc->State = HAL_RTC_STATE_BUSY;
321 
322     /* Disable the write protection for RTC registers */
323     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
324 
325     /* Enter Initialization mode */
326     status = RTC_EnterInitMode(hrtc);
327 
328     if (status == HAL_OK)
329     {
330 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
331       /* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */
332       hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
333 #else
334       /* Clear RTC_CR FMT, OSEL and POL Bits */
335       hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL);
336 #endif
337       /* Set RTC_CR register */
338       hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
339 
340       /* Configure the RTC PRER */
341       hrtc->Instance->PRER = (hrtc->Init.SynchPrediv);
342       hrtc->Instance->PRER |= (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
343 
344 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
345       /* Configure the Binary mode */
346       MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
347 #endif
348 
349       /* Exit Initialization mode */
350       status = RTC_ExitInitMode(hrtc);
351 
352       if (status == HAL_OK)
353       {
354 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
355         hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
356         hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
357 #else
358         hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP);
359         hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
360 #endif
361 
362         /* Enable the write protection for RTC registers */
363         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
364 
365         hrtc->State = HAL_RTC_STATE_READY;
366       }
367     }
368   }
369 
370   return status;
371 }
372 
373 /**
374   * @brief  DeInitialize the RTC peripheral.
375   * @note   This function does not reset the RTC Backup Data registers.
376   * @param  hrtc RTC handle
377   * @retval HAL status
378   */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)379 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
380 {
381   HAL_StatusTypeDef status = HAL_ERROR;
382 
383   /* Check the RTC peripheral state */
384   if (hrtc != NULL)
385   {
386     /* Check the parameters */
387     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
388 
389     /* Set RTC state */
390     hrtc->State = HAL_RTC_STATE_BUSY;
391 
392     /* Disable the write protection for RTC registers */
393     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
394 
395     /* Enter Initialization mode */
396     status = RTC_EnterInitMode(hrtc);
397 
398     if (status == HAL_OK)
399     {
400       /* Reset all RTC CR register bits */
401       hrtc->Instance->TR = 0x00000000U;
402       hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
403       hrtc->Instance->CR &= 0x00000000U;
404 
405       hrtc->Instance->WUTR = RTC_WUTR_WUT;
406       hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
407       hrtc->Instance->ALRMAR = 0x00000000U;
408       hrtc->Instance->ALRMBR = 0x00000000U;
409       hrtc->Instance->SHIFTR = 0x00000000U;
410       hrtc->Instance->CALR = 0x00000000U;
411       hrtc->Instance->ALRMASSR = 0x00000000U;
412       hrtc->Instance->ALRMBSSR = 0x00000000U;
413 
414       /* Exit initialization mode */
415       status = RTC_ExitInitMode(hrtc);
416 
417 
418       if (status == HAL_OK)
419       {
420 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
421         /* Reset TAMP registers */
422         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR1 = 0xFFFF0000U;
423         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR2 = 0x00000000U;
424 #else
425         /* Reset Tamper configuration register */
426         hrtc->Instance->TAMPCR = 0x00000000U;
427 
428         /* Reset Option register */
429         hrtc->Instance->OR = 0x00000000U;
430 #endif
431 
432         /* Enable the write protection for RTC registers */
433         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
434 
435 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
436         if (hrtc->MspDeInitCallback == NULL)
437         {
438           hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
439         }
440 
441         /* DeInit the low level hardware: CLOCK, NVIC.*/
442         hrtc->MspDeInitCallback(hrtc);
443 #else
444         /* De-Initialize RTC MSP */
445         HAL_RTC_MspDeInit(hrtc);
446 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
447 
448         hrtc->State = HAL_RTC_STATE_RESET;
449 
450         /* Release Lock */
451         __HAL_UNLOCK(hrtc);
452       }
453     }
454   }
455 
456   return status;
457 }
458 
459 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
460 /**
461   * @brief  Register a User RTC Callback
462   *         To be used instead of the weak predefined callback
463   * @param  hrtc RTC handle
464   * @param  CallbackID ID of the callback to be registered
465   *         This parameter can be one of the following values:
466   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
467   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
468   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
469   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
470   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
471   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
472   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
473   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
474   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
475   * @param  pCallback pointer to the Callback function
476   * @retval HAL status
477   */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)478 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
479 {
480   HAL_StatusTypeDef status = HAL_OK;
481 
482   if (pCallback == NULL)
483   {
484     return HAL_ERROR;
485   }
486 
487   /* Process locked */
488   __HAL_LOCK(hrtc);
489 
490   if (HAL_RTC_STATE_READY == hrtc->State)
491   {
492     switch (CallbackID)
493     {
494       case HAL_RTC_ALARM_A_EVENT_CB_ID :
495         hrtc->AlarmAEventCallback = pCallback;
496         break;
497 
498       case HAL_RTC_ALARM_B_EVENT_CB_ID :
499         hrtc->AlarmBEventCallback = pCallback;
500         break;
501 
502       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
503         hrtc->TimeStampEventCallback = pCallback;
504         break;
505 
506       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
507         hrtc->WakeUpTimerEventCallback = pCallback;
508         break;
509 
510 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
511       case HAL_RTC_SSRU_EVENT_CB_ID :
512         hrtc->SSRUEventCallback = pCallback;
513         break;
514 #endif
515 
516 #if defined(RTC_TAMPER1_SUPPORT)
517       case HAL_RTC_TAMPER1_EVENT_CB_ID :
518         hrtc->Tamper1EventCallback = pCallback;
519         break;
520 #endif /* RTC_TAMPER1_SUPPORT */
521 
522       case HAL_RTC_TAMPER2_EVENT_CB_ID :
523         hrtc->Tamper2EventCallback = pCallback;
524         break;
525 
526 #if defined(RTC_TAMPER3_SUPPORT)
527       case HAL_RTC_TAMPER3_EVENT_CB_ID :
528         hrtc->Tamper3EventCallback = pCallback;
529         break;
530 #endif /* RTC_TAMPER3_SUPPORT */
531 
532       case HAL_RTC_MSPINIT_CB_ID :
533         hrtc->MspInitCallback = pCallback;
534         break;
535 
536       case HAL_RTC_MSPDEINIT_CB_ID :
537         hrtc->MspDeInitCallback = pCallback;
538         break;
539 
540       default :
541         /* Return error status */
542         status =  HAL_ERROR;
543         break;
544     }
545   }
546   else if (HAL_RTC_STATE_RESET == hrtc->State)
547   {
548     switch (CallbackID)
549     {
550       case HAL_RTC_MSPINIT_CB_ID :
551         hrtc->MspInitCallback = pCallback;
552         break;
553 
554       case HAL_RTC_MSPDEINIT_CB_ID :
555         hrtc->MspDeInitCallback = pCallback;
556         break;
557 
558       default :
559         /* Return error status */
560         status =  HAL_ERROR;
561         break;
562     }
563   }
564   else
565   {
566     /* Return error status */
567     status =  HAL_ERROR;
568   }
569 
570   /* Release Lock */
571   __HAL_UNLOCK(hrtc);
572 
573   return status;
574 }
575 
576 /**
577   * @brief  Unregister an RTC Callback
578   *         RTC callback is redirected to the weak predefined callback
579   * @param  hrtc RTC handle
580   * @param  CallbackID ID of the callback to be unregistered
581   *         This parameter can be one of the following values:
582   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
583   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
584   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
585 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
586   *          @arg @ref HAL_RTC_SSRU_EVENT_CB_ID             SSRU Callback ID
587 #endif
588   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
589   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
590   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
591   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
592   *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
593   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
594   * @retval HAL status
595   */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)596 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
597 {
598   HAL_StatusTypeDef status = HAL_OK;
599 
600   /* Process locked */
601   __HAL_LOCK(hrtc);
602 
603   if (HAL_RTC_STATE_READY == hrtc->State)
604   {
605     switch (CallbackID)
606     {
607       case HAL_RTC_ALARM_A_EVENT_CB_ID :
608         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
609         break;
610 
611       case HAL_RTC_ALARM_B_EVENT_CB_ID :
612         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
613         break;
614 
615       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
616         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
617         break;
618 
619       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
620         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
621         break;
622 
623 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
624       case HAL_RTC_SSRU_EVENT_CB_ID :
625         hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;               /* Legacy weak SSRUEventCallback */
626         break;
627 #endif
628 
629 #if defined(RTC_TAMPER1_SUPPORT)
630       case HAL_RTC_TAMPER1_EVENT_CB_ID :
631         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
632         break;
633 #endif /* RTC_TAMPER1_SUPPORT */
634 
635       case HAL_RTC_TAMPER2_EVENT_CB_ID :
636         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
637         break;
638 
639 #if defined(RTC_TAMPER3_SUPPORT)
640       case HAL_RTC_TAMPER3_EVENT_CB_ID :
641         hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
642         break;
643 #endif /* RTC_TAMPER3_SUPPORT */
644 
645       case HAL_RTC_MSPINIT_CB_ID :
646         hrtc->MspInitCallback = HAL_RTC_MspInit;
647         break;
648 
649       case HAL_RTC_MSPDEINIT_CB_ID :
650         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
651         break;
652 
653       default :
654         /* Return error status */
655         status =  HAL_ERROR;
656         break;
657     }
658   }
659   else if (HAL_RTC_STATE_RESET == hrtc->State)
660   {
661     switch (CallbackID)
662     {
663       case HAL_RTC_MSPINIT_CB_ID :
664         hrtc->MspInitCallback = HAL_RTC_MspInit;
665         break;
666 
667       case HAL_RTC_MSPDEINIT_CB_ID :
668         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
669         break;
670 
671       default :
672         /* Return error status */
673         status =  HAL_ERROR;
674         break;
675     }
676   }
677   else
678   {
679     /* Return error status */
680     status =  HAL_ERROR;
681   }
682 
683   /* Release Lock */
684   __HAL_UNLOCK(hrtc);
685 
686   return status;
687 }
688 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
689 
690 /**
691   * @brief  Initialize the RTC MSP.
692   * @param  hrtc RTC handle
693   * @retval None
694   */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)695 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
696 {
697   /* Prevent unused argument(s) compilation warning */
698   UNUSED(hrtc);
699 
700   /* NOTE : This function should not be modified, when the callback is needed,
701             the HAL_RTC_MspInit could be implemented in the user file
702    */
703 }
704 
705 /**
706   * @brief  DeInitialize the RTC MSP.
707   * @param  hrtc RTC handle
708   * @retval None
709   */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)710 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
711 {
712   /* Prevent unused argument(s) compilation warning */
713   UNUSED(hrtc);
714 
715   /* NOTE : This function should not be modified, when the callback is needed,
716             the HAL_RTC_MspDeInit could be implemented in the user file
717    */
718 }
719 
720 /**
721   * @}
722   */
723 
724 /** @addtogroup RTC_Exported_Functions_Group2
725  *  @brief   RTC Time and Date functions
726  *
727 @verbatim
728  ===============================================================================
729                  ##### RTC Time and Date functions #####
730  ===============================================================================
731 
732  [..] This section provides functions allowing to configure Time and Date features
733 
734 @endverbatim
735   * @{
736   */
737 
738 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
739 /**
740   * @brief  Set RTC current time.
741   * @param  hrtc RTC handle
742   * @param  sTime Pointer to Time structure
743   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically reset to 0xFFFFFFFF
744              else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the A 7-bit async prescaler (RTC_PRER_PREDIV_A)
745   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
746   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
747   *          else this parameter can be one of the following values
748   *             @arg RTC_FORMAT_BIN: Binary format
749   *             @arg RTC_FORMAT_BCD: BCD format
750   * @retval HAL status
751   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)752 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
753 {
754   uint32_t tmpreg;
755   HAL_StatusTypeDef status;
756 
757 #ifdef USE_FULL_ASSERT
758   /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
759   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
760   {
761     /* Check the parameters */
762     assert_param(IS_RTC_FORMAT(Format));
763     assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
764     assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
765   }
766 #endif
767 
768   /* Process Locked */
769   __HAL_LOCK(hrtc);
770 
771   hrtc->State = HAL_RTC_STATE_BUSY;
772 
773   /* Disable the write protection for RTC registers */
774   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
775 
776   /* Enter Initialization mode */
777   status = RTC_EnterInitMode(hrtc);
778   if (status == HAL_OK)
779   {
780     /* Check Binary mode ((32-bit free-running counter) */
781     if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
782     {
783       if (Format == RTC_FORMAT_BIN)
784       {
785         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
786         {
787           assert_param(IS_RTC_HOUR12(sTime->Hours));
788           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
789         }
790         else
791         {
792           sTime->TimeFormat = 0x00U;
793           assert_param(IS_RTC_HOUR24(sTime->Hours));
794         }
795         assert_param(IS_RTC_MINUTES(sTime->Minutes));
796         assert_param(IS_RTC_SECONDS(sTime->Seconds));
797 
798         tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
799                             ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
800                             ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
801                             (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
802 
803       }
804       else
805       {
806         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
807         {
808           assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
809           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
810         }
811         else
812         {
813           sTime->TimeFormat = 0x00U;
814           assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
815         }
816         assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
817         assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
818         tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
819                   ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
820                   ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
821                   ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
822       }
823 
824       /* Set the RTC_TR register */
825       WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
826 
827       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
828       CLEAR_BIT(RTC->CR, RTC_CR_BKP);
829 
830       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
831       SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
832     }
833   }
834 
835   /* Exit Initialization mode */
836   status = RTC_ExitInitMode(hrtc);
837 
838 
839   /* Enable the write protection for RTC registers */
840   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
841 
842   if (status == HAL_OK)
843   {
844     hrtc->State = HAL_RTC_STATE_READY;
845   }
846 
847   /* Process Unlocked */
848   __HAL_UNLOCK(hrtc);
849 
850   return status;
851 }
852 
853 /**
854   * @brief  Get RTC current time.
855   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
856   *        value in second fraction ratio with time unit following generic formula:
857   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
858   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
859   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
860   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
861   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
862   *        to ensure consistency between the time and date values.
863   * @param  hrtc RTC handle
864   * @param  sTime
865   *          if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
866   *          else
867   *             Pointer to Time structure with Hours, Minutes and Seconds fields returned
868 *               with input format (BIN or BCD), also SubSeconds field returning the
869 *               RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
870 *               factor to be used for second fraction ratio computation.
871   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
872   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
873   *          else this parameter can be one of the following values:
874   *            @arg RTC_FORMAT_BIN: Binary format
875   *            @arg RTC_FORMAT_BCD: BCD format
876   * @retval HAL status
877   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)878 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
879 {
880   uint32_t tmpreg;
881 
882   UNUSED(hrtc);
883   /* Get subseconds structure field from the corresponding register*/
884   sTime->SubSeconds = READ_REG(RTC->SSR);
885 
886   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
887   {
888     /* Check the parameters */
889     assert_param(IS_RTC_FORMAT(Format));
890 
891     /* Get SecondFraction structure field from the corresponding register field*/
892     sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
893 
894     /* Get the TR register */
895     tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
896 
897     /* Fill the structure fields with the read parameters */
898     sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
899     sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
900     sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
901     sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
902 
903     /* Check the input parameters format */
904     if (Format == RTC_FORMAT_BIN)
905     {
906       /* Convert the time structure parameters to Binary format */
907       sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
908       sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
909       sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
910     }
911   }
912 
913   return HAL_OK;
914 }
915 
916 /**
917   * @brief  Set RTC current date.
918   * @param  hrtc RTC handle
919   * @param  sDate Pointer to date structure
920   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
921   *          This parameter can be one of the following values:
922   *            @arg RTC_FORMAT_BIN: Binary format
923   *            @arg RTC_FORMAT_BCD: BCD format
924   * @retval HAL status
925   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)926 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
927 {
928   uint32_t datetmpreg;
929   HAL_StatusTypeDef status;
930 
931   /* Check the parameters */
932   assert_param(IS_RTC_FORMAT(Format));
933 
934   /* Process Locked */
935   __HAL_LOCK(hrtc);
936 
937   hrtc->State = HAL_RTC_STATE_BUSY;
938 
939   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
940   {
941     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
942   }
943 
944   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
945 
946   if (Format == RTC_FORMAT_BIN)
947   {
948     assert_param(IS_RTC_YEAR(sDate->Year));
949     assert_param(IS_RTC_MONTH(sDate->Month));
950     assert_param(IS_RTC_DATE(sDate->Date));
951 
952     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
953                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
954                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
955                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
956   }
957   else
958   {
959     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
960     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
961     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
962 
963     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
964                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
965                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
966                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
967   }
968 
969   /* Disable the write protection for RTC registers */
970   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
971 
972   /* Enter Initialization mode */
973   status = RTC_EnterInitMode(hrtc);
974   if (status == HAL_OK)
975   {
976     /* Set the RTC_DR register */
977     WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
978 
979     /* Exit Initialization mode */
980     status = RTC_ExitInitMode(hrtc);
981   }
982 
983   /* Enable the write protection for RTC registers */
984   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
985 
986   if (status == HAL_OK)
987   {
988     hrtc->State = HAL_RTC_STATE_READY ;
989   }
990 
991   /* Process Unlocked */
992   __HAL_UNLOCK(hrtc);
993 
994   return status;
995 }
996 
997 /**
998   * @brief  Get RTC current date.
999   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1000   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1001   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1002   * @param  hrtc RTC handle
1003   * @param  sDate Pointer to Date structure
1004   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1005   *          This parameter can be one of the following values:
1006   *            @arg RTC_FORMAT_BIN: Binary format
1007   *            @arg RTC_FORMAT_BCD: BCD format
1008   * @retval HAL status
1009   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1010 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1011 {
1012   uint32_t datetmpreg;
1013 
1014   UNUSED(hrtc);
1015   /* Check the parameters */
1016   assert_param(IS_RTC_FORMAT(Format));
1017 
1018   /* Get the DR register */
1019   datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1020 
1021   /* Fill the structure fields with the read parameters */
1022   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1023   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1024   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1025   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1026 
1027   /* Check the input parameters format */
1028   if (Format == RTC_FORMAT_BIN)
1029   {
1030     /* Convert the date structure parameters to Binary format */
1031     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1032     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1033     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1034   }
1035   return HAL_OK;
1036 }
1037 
1038 /**
1039   * @}
1040   */
1041 
1042 /** @addtogroup RTC_Exported_Functions_Group3
1043  *  @brief   RTC Alarm functions
1044  *
1045 @verbatim
1046  ===============================================================================
1047                  ##### RTC Alarm functions #####
1048  ===============================================================================
1049 
1050  [..] This section provides functions allowing to configure Alarm feature
1051 
1052 @endverbatim
1053   * @{
1054   */
1055 /**
1056   * @brief  Set the specified RTC Alarm.
1057   * @param  hrtc RTC handle
1058   * @param  sAlarm Pointer to Alarm structure
1059   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1060   *             sAlarm->AlarmTime.SubSeconds
1061   *             sAlarm->AlarmSubSecondMask
1062   *             sAlarm->BinaryAutoClr
1063   * @param  Format of the entered parameters.
1064   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1065   *          else this parameter can be one of the following values
1066   *             @arg RTC_FORMAT_BIN: Binary format
1067   *             @arg RTC_FORMAT_BCD: BCD format
1068   * @retval HAL status
1069   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1070 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1071 {
1072   uint32_t tmpreg = 0, binaryMode;
1073 
1074   __HAL_LOCK(hrtc);
1075   hrtc->State = HAL_RTC_STATE_BUSY;
1076 
1077 #ifdef  USE_FULL_ASSERT
1078   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1079   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1080   {
1081     assert_param(IS_RTC_FORMAT(Format));
1082     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1083     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1084     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1085     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1086     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1087   }
1088   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1089   {
1090     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1091     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1092   }
1093   else /* RTC_BINARY_MIX */
1094   {
1095     assert_param(IS_RTC_FORMAT(Format));
1096     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1097     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1098     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1099     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
1100     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1101   }
1102 #endif
1103 
1104   /* Get Binary mode (32-bit free-running counter configuration) */
1105   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1106 
1107   if (binaryMode != RTC_BINARY_ONLY)
1108   {
1109     if (Format == RTC_FORMAT_BIN)
1110     {
1111       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1112       {
1113         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1114         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1115       }
1116       else
1117       {
1118         sAlarm->AlarmTime.TimeFormat = 0x00U;
1119         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1120       }
1121       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1122       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1123 
1124       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1125       {
1126         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1127       }
1128       else
1129       {
1130         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1131       }
1132       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1133                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1134                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1135                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1136                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1137                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1138                 ((uint32_t)sAlarm->AlarmMask));
1139     }
1140     else /* format BCD */
1141     {
1142       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1143       {
1144         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1145         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1146       }
1147       else
1148       {
1149         sAlarm->AlarmTime.TimeFormat = 0x00U;
1150         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1151       }
1152 
1153       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1154       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1155 
1156 #ifdef  USE_FULL_ASSERT
1157       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1158       {
1159         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1160       }
1161       else
1162       {
1163         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1164       }
1165 
1166 #endif /* USE_FULL_ASSERT */
1167       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1168                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1169                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1170                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1171                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1172                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1173                 ((uint32_t)sAlarm->AlarmMask));
1174     }
1175   }
1176 
1177   /* Disable the write protection for RTC registers */
1178   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1179 
1180   /* Configure the Alarm register */
1181   if (sAlarm->Alarm == RTC_ALARM_A)
1182   {
1183     /* Disable the Alarm A interrupt */
1184     /* In case of interrupt mode is used, the interrupt source must disabled */
1185     CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1186 
1187     /* Clear flag alarm A */
1188     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1189 
1190     if (binaryMode == RTC_BINARY_ONLY)
1191     {
1192       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1193     }
1194     else
1195     {
1196       WRITE_REG(RTC->ALRMAR, tmpreg);
1197       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1198     }
1199 
1200     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1201 
1202     /* Configure the Alarm state: Enable Alarm */
1203     SET_BIT(RTC->CR, RTC_CR_ALRAE);
1204   }
1205   else
1206   {
1207     /* Disable the Alarm B interrupt */
1208     /* In case of interrupt mode is used, the interrupt source must disabled */
1209     CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1210 
1211     /* Clear flag alarm B */
1212     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1213 
1214     if (binaryMode == RTC_BINARY_ONLY)
1215     {
1216       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1217     }
1218     else
1219     {
1220       WRITE_REG(RTC->ALRMBR, tmpreg);
1221       WRITE_REG(RTC->ALRMBSSR,  sAlarm->AlarmSubSecondMask);
1222     }
1223 
1224     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1225 
1226     /* Configure the Alarm state: Enable Alarm */
1227     SET_BIT(RTC->CR, RTC_CR_ALRBE);
1228   }
1229 
1230   /* Enable the write protection for RTC registers */
1231   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1232 
1233   /* Change RTC state */
1234   hrtc->State = HAL_RTC_STATE_READY;
1235 
1236   /* Process Unlocked */
1237   __HAL_UNLOCK(hrtc);
1238 
1239   return HAL_OK;
1240 }
1241 
1242 /**
1243   * @brief  Set the specified RTC Alarm with Interrupt.
1244   * @param  hrtc RTC handle
1245   * @param  sAlarm Pointer to Alarm structure
1246   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1247   *             sAlarm->AlarmTime.SubSeconds
1248   *             sAlarm->AlarmSubSecondMask
1249   *             sAlarm->BinaryAutoClr
1250   * @param  Format Specifies the format of the entered parameters.
1251   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1252   *          else this parameter can be one of the following values
1253   *             @arg RTC_FORMAT_BIN: Binary format
1254   *             @arg RTC_FORMAT_BCD: BCD format
1255   * @retval HAL status
1256   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1257 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1258 {
1259   uint32_t tmpreg = 0, binaryMode;
1260 
1261   /* Process Locked */
1262   __HAL_LOCK(hrtc);
1263   hrtc->State = HAL_RTC_STATE_BUSY;
1264 
1265 #ifdef  USE_FULL_ASSERT
1266   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1267   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1268   {
1269     assert_param(IS_RTC_FORMAT(Format));
1270     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1271     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1272     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1273     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1274     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1275   }
1276   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1277   {
1278     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1279     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1280   }
1281   else /* RTC_BINARY_MIX */
1282   {
1283     assert_param(IS_RTC_FORMAT(Format));
1284     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1285     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1286     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1287     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
1288     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1289   }
1290 #endif
1291 
1292   /* Get Binary mode (32-bit free-running counter configuration) */
1293   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1294 
1295   if (binaryMode != RTC_BINARY_ONLY)
1296   {
1297     if (Format == RTC_FORMAT_BIN)
1298     {
1299       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1300       {
1301         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1302         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1303       }
1304       else
1305       {
1306         sAlarm->AlarmTime.TimeFormat = 0x00U;
1307         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1308       }
1309       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1310       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1311 
1312       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1313       {
1314         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1315       }
1316       else
1317       {
1318         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1319       }
1320       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1321                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1322                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1323                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1324                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1325                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1326                 ((uint32_t)sAlarm->AlarmMask));
1327     }
1328     else /* Format BCD */
1329     {
1330       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1331       {
1332         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1333         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1334       }
1335       else
1336       {
1337         sAlarm->AlarmTime.TimeFormat = 0x00U;
1338         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1339       }
1340 
1341       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1342       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1343 
1344 #ifdef  USE_FULL_ASSERT
1345       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1346       {
1347         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1348       }
1349       else
1350       {
1351         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1352       }
1353 
1354 #endif /* USE_FULL_ASSERT */
1355       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1356                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1357                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1358                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1359                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1360                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1361                 ((uint32_t)sAlarm->AlarmMask));
1362 
1363     }
1364   }
1365 
1366   /* Disable the write protection for RTC registers */
1367   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1368 
1369   /* Configure the Alarm register */
1370   if (sAlarm->Alarm == RTC_ALARM_A)
1371   {
1372     /* Disable the Alarm A interrupt */
1373     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1374     /* Clear flag alarm A */
1375     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1376 
1377     if (binaryMode == RTC_BINARY_ONLY)
1378     {
1379       RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
1380     }
1381     else
1382     {
1383       WRITE_REG(RTC->ALRMAR, tmpreg);
1384       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1385     }
1386 
1387     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1388 
1389     /* Configure the Alarm interrupt */
1390     SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1391   }
1392   else
1393   {
1394     /* Disable the Alarm B interrupt */
1395     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1396     /* Clear flag alarm B */
1397     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1398 
1399     if (binaryMode == RTC_BINARY_ONLY)
1400     {
1401       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1402     }
1403     else
1404     {
1405       WRITE_REG(RTC->ALRMBR, tmpreg);
1406       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1407     }
1408 
1409     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1410 
1411     /* Configure the Alarm interrupt */
1412     SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1413   }
1414 
1415   /* RTC Alarm Interrupt Configuration: EXTI configuration */
1416   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1417   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1418 
1419   /* Enable the write protection for RTC registers */
1420   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1421 
1422   hrtc->State = HAL_RTC_STATE_READY;
1423 
1424   /* Process Unlocked */
1425   __HAL_UNLOCK(hrtc);
1426 
1427   return HAL_OK;
1428 }
1429 
1430 #else /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
1431 
1432 /**
1433   * @brief  Set RTC current time.
1434   * @param  hrtc RTC handle
1435   * @param  sTime Pointer to Time structure
1436   * @param  Format Specifies the format of the entered parameters.
1437   *          This parameter can be one of the following values:
1438   *            @arg RTC_FORMAT_BIN: Binary data format
1439   *            @arg RTC_FORMAT_BCD: BCD data format
1440   * @retval HAL status
1441   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1442 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1443 {
1444   uint32_t tmpreg;
1445   HAL_StatusTypeDef status;
1446 
1447   /* Check the parameters */
1448   assert_param(IS_RTC_FORMAT(Format));
1449   assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
1450   assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
1451 
1452   /* Process Locked */
1453   __HAL_LOCK(hrtc);
1454 
1455   hrtc->State = HAL_RTC_STATE_BUSY;
1456 
1457   /* Disable the write protection for RTC registers */
1458   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1459 
1460   /* Enter Initialization mode */
1461   status = RTC_EnterInitMode(hrtc);
1462   if (status == HAL_OK)
1463   {
1464     if (Format == RTC_FORMAT_BIN)
1465     {
1466       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1467       {
1468         assert_param(IS_RTC_HOUR12(sTime->Hours));
1469         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1470       }
1471       else
1472       {
1473         sTime->TimeFormat = 0x00U;
1474         assert_param(IS_RTC_HOUR24(sTime->Hours));
1475       }
1476       assert_param(IS_RTC_MINUTES(sTime->Minutes));
1477       assert_param(IS_RTC_SECONDS(sTime->Seconds));
1478 
1479       tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
1480                           ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1481                           ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
1482                           (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
1483     }
1484     else
1485     {
1486       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1487       {
1488         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
1489         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1490       }
1491       else
1492       {
1493         sTime->TimeFormat = 0x00U;
1494         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
1495       }
1496       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
1497       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
1498       tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
1499                 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1500                 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
1501                 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
1502     }
1503 
1504     /* Set the RTC_TR register */
1505     hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
1506 
1507     /* Clear the bits to be configured */
1508     hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);
1509 
1510     /* Configure the RTC_CR register */
1511     hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
1512 
1513     /* Exit Initialization mode */
1514     status = RTC_ExitInitMode(hrtc);
1515   }
1516 
1517   /* Enable the write protection for RTC registers */
1518   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1519 
1520   if (status == HAL_OK)
1521   {
1522     hrtc->State = HAL_RTC_STATE_READY;
1523   }
1524 
1525   /* Process Unlocked */
1526   __HAL_UNLOCK(hrtc);
1527 
1528   return status;
1529 }
1530 
1531 /**
1532   * @brief  Get RTC current time.
1533   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
1534   *        value in second fraction ratio with time unit following generic formula:
1535   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
1536   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
1537   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1538   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1539   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
1540   *        to ensure consistency between the time and date values.
1541   * @param  hrtc RTC handle
1542   * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
1543   *                with input format (BIN or BCD), also SubSeconds field returning the
1544   *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
1545   *                factor to be used for second fraction ratio computation.
1546   * @param  Format Specifies the format of the entered parameters.
1547   *          This parameter can be one of the following values:
1548   *            @arg RTC_FORMAT_BIN: Binary data format
1549   *            @arg RTC_FORMAT_BCD: BCD data format
1550   * @retval HAL status
1551   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1552 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1553 {
1554   uint32_t tmpreg;
1555 
1556   /* Check the parameters */
1557   assert_param(IS_RTC_FORMAT(Format));
1558 
1559   /* Get subseconds structure field from the corresponding register*/
1560   sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
1561 
1562   /* Get SecondFraction structure field from the corresponding register field*/
1563   sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
1564 
1565   /* Get the TR register */
1566   tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
1567 
1568   /* Fill the structure fields with the read parameters */
1569   sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
1570   sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
1571   sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
1572   sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
1573 
1574   /* Check the input parameters format */
1575   if (Format == RTC_FORMAT_BIN)
1576   {
1577     /* Convert the time structure parameters to Binary format */
1578     sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
1579     sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
1580     sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
1581   }
1582 
1583   return HAL_OK;
1584 }
1585 
1586 /**
1587   * @brief  Set RTC current date.
1588   * @param  hrtc RTC handle
1589   * @param  sDate Pointer to date structure
1590   * @param  Format specifies the format of the entered parameters.
1591   *          This parameter can be one of the following values:
1592   *            @arg RTC_FORMAT_BIN: Binary data format
1593   *            @arg RTC_FORMAT_BCD: BCD data format
1594   * @retval HAL status
1595   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1596 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1597 {
1598   uint32_t datetmpreg;
1599   HAL_StatusTypeDef status;
1600 
1601   /* Check the parameters */
1602   assert_param(IS_RTC_FORMAT(Format));
1603 
1604   /* Process Locked */
1605   __HAL_LOCK(hrtc);
1606 
1607   hrtc->State = HAL_RTC_STATE_BUSY;
1608 
1609   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
1610   {
1611     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
1612   }
1613 
1614   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
1615 
1616   if (Format == RTC_FORMAT_BIN)
1617   {
1618     assert_param(IS_RTC_YEAR(sDate->Year));
1619     assert_param(IS_RTC_MONTH(sDate->Month));
1620     assert_param(IS_RTC_DATE(sDate->Date));
1621 
1622     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
1623                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
1624                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
1625                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
1626   }
1627   else
1628   {
1629     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
1630     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
1631     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
1632 
1633     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
1634                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
1635                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
1636                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
1637   }
1638 
1639   /* Disable the write protection for RTC registers */
1640   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1641 
1642   /* Enter Initialization mode */
1643   status = RTC_EnterInitMode(hrtc);
1644   if (status == HAL_OK)
1645   {
1646     /* Set the RTC_DR register */
1647     hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
1648 
1649     /* Exit Initialization mode */
1650     status = RTC_ExitInitMode(hrtc);
1651   }
1652 
1653   /* Enable the write protection for RTC registers */
1654   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1655 
1656   if (status == HAL_OK)
1657   {
1658     hrtc->State = HAL_RTC_STATE_READY ;
1659   }
1660 
1661   /* Process Unlocked */
1662   __HAL_UNLOCK(hrtc);
1663 
1664   return status;
1665 }
1666 
1667 /**
1668   * @brief  Get RTC current date.
1669   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1670   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1671   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1672   * @param  hrtc RTC handle
1673   * @param  sDate Pointer to Date structure
1674   * @param  Format Specifies the format of the entered parameters.
1675   *          This parameter can be one of the following values:
1676   *            @arg RTC_FORMAT_BIN:  Binary data format
1677   *            @arg RTC_FORMAT_BCD:  BCD data format
1678   * @retval HAL status
1679   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1680 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1681 {
1682   uint32_t datetmpreg;
1683 
1684   /* Check the parameters */
1685   assert_param(IS_RTC_FORMAT(Format));
1686 
1687   /* Get the DR register */
1688   datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
1689 
1690   /* Fill the structure fields with the read parameters */
1691   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1692   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1693   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1694   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1695 
1696   /* Check the input parameters format */
1697   if (Format == RTC_FORMAT_BIN)
1698   {
1699     /* Convert the date structure parameters to Binary format */
1700     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1701     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1702     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1703   }
1704   return HAL_OK;
1705 }
1706 
1707 /**
1708   * @}
1709   */
1710 
1711 /** @addtogroup RTC_Exported_Functions_Group3
1712  *  @brief   RTC Alarm functions
1713  *
1714 @verbatim
1715  ===============================================================================
1716                  ##### RTC Alarm functions #####
1717  ===============================================================================
1718 
1719  [..] This section provides functions allowing to configure Alarm feature
1720 
1721 @endverbatim
1722   * @{
1723   */
1724 /**
1725   * @brief  Set the specified RTC Alarm.
1726   * @param  hrtc RTC handle
1727   * @param  sAlarm Pointer to Alarm structure
1728   * @param  Format Specifies the format of the entered parameters.
1729   *          This parameter can be one of the following values:
1730   *             @arg RTC_FORMAT_BIN: Binary data format
1731   *             @arg RTC_FORMAT_BCD: BCD data format
1732   * @retval HAL status
1733   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1734 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1735 {
1736   uint32_t tmpreg, subsecondtmpreg;
1737 
1738   /* Check the parameters */
1739   assert_param(IS_RTC_FORMAT(Format));
1740   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1741   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1742   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1743   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1744   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1745 
1746   /* Process Locked */
1747   __HAL_LOCK(hrtc);
1748 
1749   hrtc->State = HAL_RTC_STATE_BUSY;
1750 
1751   if (Format == RTC_FORMAT_BIN)
1752   {
1753     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1754     {
1755       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1756       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1757     }
1758     else
1759     {
1760       sAlarm->AlarmTime.TimeFormat = 0x00U;
1761       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1762     }
1763     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1764     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1765 
1766     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1767     {
1768       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1769     }
1770     else
1771     {
1772       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1773     }
1774     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1775               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1776               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1777               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1778               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1779               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1780               ((uint32_t)sAlarm->AlarmMask));
1781   }
1782   else
1783   {
1784     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1785     {
1786       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1787       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1788     }
1789     else
1790     {
1791       sAlarm->AlarmTime.TimeFormat = 0x00U;
1792       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1793     }
1794 
1795     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1796     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1797 
1798 #ifdef  USE_FULL_ASSERT
1799     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1800     {
1801       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1802     }
1803     else
1804     {
1805       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1806     }
1807 
1808 #endif /* USE_FULL_ASSERT */
1809     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1810               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1811               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1812               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1813               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1814               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1815               ((uint32_t)sAlarm->AlarmMask));
1816   }
1817 
1818   /* Configure the Alarm A or Alarm B Sub Second registers */
1819   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1820 
1821   /* Disable the write protection for RTC registers */
1822   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1823 
1824   /* Configure the Alarm register */
1825   if (sAlarm->Alarm == RTC_ALARM_A)
1826   {
1827     /* Disable the Alarm A interrupt */
1828     __HAL_RTC_ALARMA_DISABLE(hrtc);
1829     /* Clear flag alarm A */
1830     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1831     /* In case of interrupt mode is used, the interrupt source must disabled */
1832     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1833 
1834 #if defined (RTC_FLAG_ALRAWF)
1835     uint32_t tickstart = HAL_GetTick();
1836     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
1837     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1838     {
1839       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1840       {
1841         /* Enable the write protection for RTC registers */
1842         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1843 
1844         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1845 
1846         /* Process Unlocked */
1847         __HAL_UNLOCK(hrtc);
1848 
1849         return HAL_TIMEOUT;
1850       }
1851     }
1852 #endif
1853 
1854     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1855     /* Configure the Alarm A Sub Second register */
1856     hrtc->Instance->ALRMASSR = subsecondtmpreg;
1857     /* Configure the Alarm state: Enable Alarm */
1858     __HAL_RTC_ALARMA_ENABLE(hrtc);
1859   }
1860   else
1861   {
1862     /* Disable the Alarm B interrupt */
1863     __HAL_RTC_ALARMB_DISABLE(hrtc);
1864     /* Clear flag alarm B */
1865     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1866     /* In case of interrupt mode is used, the interrupt source must disabled */
1867     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1868 
1869 #if defined (RTC_FLAG_ALRBWF)
1870     uint32_t tickstart = HAL_GetTick();
1871     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
1872     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1873     {
1874       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1875       {
1876         /* Enable the write protection for RTC registers */
1877         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1878 
1879         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1880 
1881         /* Process Unlocked */
1882         __HAL_UNLOCK(hrtc);
1883 
1884         return HAL_TIMEOUT;
1885       }
1886     }
1887 #endif
1888 
1889     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1890     /* Configure the Alarm B Sub Second register */
1891     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1892     /* Configure the Alarm state: Enable Alarm */
1893     __HAL_RTC_ALARMB_ENABLE(hrtc);
1894   }
1895 
1896   /* Enable the write protection for RTC registers */
1897   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1898 
1899   /* Change RTC state */
1900   hrtc->State = HAL_RTC_STATE_READY;
1901 
1902   /* Process Unlocked */
1903   __HAL_UNLOCK(hrtc);
1904 
1905   return HAL_OK;
1906 }
1907 
1908 /**
1909   * @brief  Set the specified RTC Alarm with Interrupt.
1910   * @note   The Alarm register can only be written when the corresponding Alarm
1911   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
1912   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1913   * @param  hrtc RTC handle
1914   * @param  sAlarm Pointer to Alarm structure
1915   * @param  Format Specifies the format of the entered parameters.
1916   *          This parameter can be one of the following values:
1917   *             @arg RTC_FORMAT_BIN: Binary data format
1918   *             @arg RTC_FORMAT_BCD: BCD data format
1919   * @retval HAL status
1920   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1921 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1922 {
1923   uint32_t tmpreg, subsecondtmpreg;
1924 
1925   /* Check the parameters */
1926   assert_param(IS_RTC_FORMAT(Format));
1927   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1928   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1929   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1930   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1931   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1932 
1933   /* Process Locked */
1934   __HAL_LOCK(hrtc);
1935 
1936   hrtc->State = HAL_RTC_STATE_BUSY;
1937 
1938   if (Format == RTC_FORMAT_BIN)
1939   {
1940     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1941     {
1942       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1943       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1944     }
1945     else
1946     {
1947       sAlarm->AlarmTime.TimeFormat = 0x00U;
1948       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1949     }
1950     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1951     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1952 
1953     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1954     {
1955       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1956     }
1957     else
1958     {
1959       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1960     }
1961 
1962     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1963               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1964               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1965               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1966               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1967               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1968               ((uint32_t)sAlarm->AlarmMask));
1969   }
1970   else
1971   {
1972     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1973     {
1974       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1975       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1976     }
1977     else
1978     {
1979       sAlarm->AlarmTime.TimeFormat = 0x00U;
1980       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1981     }
1982 
1983     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1984     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1985 
1986 #ifdef  USE_FULL_ASSERT
1987     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1988     {
1989       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1990     }
1991     else
1992     {
1993       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1994     }
1995 
1996 #endif /* USE_FULL_ASSERT */
1997     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1998               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1999               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
2000               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
2001               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
2002               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
2003               ((uint32_t)sAlarm->AlarmMask));
2004   }
2005   /* Configure the Alarm A or Alarm B Sub Second registers */
2006   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
2007 
2008   /* Disable the write protection for RTC registers */
2009   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2010 
2011   /* Configure the Alarm register */
2012   if (sAlarm->Alarm == RTC_ALARM_A)
2013   {
2014     /* Disable the Alarm A interrupt */
2015     __HAL_RTC_ALARMA_DISABLE(hrtc);
2016 
2017     /* Clear flag alarm A */
2018     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2019 
2020 #if defined (RTC_FLAG_ALRAWF)
2021     uint32_t tickstart = HAL_GetTick();
2022     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
2023     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
2024     {
2025       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2026       {
2027         /* Enable the write protection for RTC registers */
2028         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2029 
2030         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2031 
2032         /* Process Unlocked */
2033         __HAL_UNLOCK(hrtc);
2034 
2035         return HAL_TIMEOUT;
2036       }
2037     }
2038 #endif
2039 
2040     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
2041     /* Configure the Alarm A Sub Second register */
2042     hrtc->Instance->ALRMASSR = subsecondtmpreg;
2043     /* Configure the Alarm state: Enable Alarm */
2044     __HAL_RTC_ALARMA_ENABLE(hrtc);
2045     /* Configure the Alarm interrupt */
2046     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
2047   }
2048   else
2049   {
2050     /* Disable the Alarm B interrupt */
2051     __HAL_RTC_ALARMB_DISABLE(hrtc);
2052 
2053     /* Clear flag alarm B */
2054     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
2055 
2056 #if defined (RTC_FLAG_ALRBWF)
2057     uint32_t tickstart = HAL_GetTick();
2058     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
2059     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
2060     {
2061       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2062       {
2063         /* Enable the write protection for RTC registers */
2064         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2065 
2066         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2067 
2068         /* Process Unlocked */
2069         __HAL_UNLOCK(hrtc);
2070 
2071         return HAL_TIMEOUT;
2072       }
2073     }
2074 #endif
2075 
2076     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
2077     /* Configure the Alarm B Sub Second register */
2078     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
2079     /* Configure the Alarm state: Enable Alarm */
2080     __HAL_RTC_ALARMB_ENABLE(hrtc);
2081     /* Configure the Alarm interrupt */
2082     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
2083   }
2084 
2085   /* RTC Alarm Interrupt Configuration: EXTI configuration */
2086   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
2087   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
2088 
2089   /* Enable the write protection for RTC registers */
2090   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2091 
2092   hrtc->State = HAL_RTC_STATE_READY;
2093 
2094   /* Process Unlocked */
2095   __HAL_UNLOCK(hrtc);
2096 
2097   return HAL_OK;
2098 }
2099 
2100 #endif /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2101 
2102 /**
2103   * @brief  Deactivate the specified RTC Alarm.
2104   * @param  hrtc RTC handle
2105   * @param  Alarm Specifies the Alarm.
2106   *          This parameter can be one of the following values:
2107   *            @arg RTC_ALARM_A:  AlarmA
2108   *            @arg RTC_ALARM_B:  AlarmB
2109   * @retval HAL status
2110   */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)2111 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
2112 {
2113   /* Check the parameters */
2114   assert_param(IS_RTC_ALARM(Alarm));
2115 
2116   /* Process Locked */
2117   __HAL_LOCK(hrtc);
2118 
2119   hrtc->State = HAL_RTC_STATE_BUSY;
2120 
2121   /* Disable the write protection for RTC registers */
2122   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2123 
2124   if (Alarm == RTC_ALARM_A)
2125   {
2126     /* AlarmA */
2127 #if defined (RTC_ALRMASSR_SSCLR)
2128     CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
2129 #endif
2130 
2131     __HAL_RTC_ALARMA_DISABLE(hrtc);
2132 
2133     /* In case of interrupt mode is used, the interrupt source must disabled */
2134     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
2135 
2136 #if defined (RTC_FLAG_ALRAWF)
2137     uint32_t tickstart = HAL_GetTick();
2138     /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
2139     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
2140     {
2141       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2142       {
2143         /* Enable the write protection for RTC registers */
2144         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2145 
2146         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2147 
2148         /* Process Unlocked */
2149         __HAL_UNLOCK(hrtc);
2150 
2151         return HAL_TIMEOUT;
2152       }
2153     }
2154 #endif
2155   }
2156   else
2157   {
2158     /* AlarmB */
2159 #if defined (RTC_ALRMBSSR_SSCLR)
2160     CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMASSR_SSCLR);
2161 #endif
2162 
2163     __HAL_RTC_ALARMB_DISABLE(hrtc);
2164 
2165     /* In case of interrupt mode is used, the interrupt source must disabled */
2166     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
2167 
2168 #if defined (RTC_FLAG_ALRBWF)
2169     uint32_t tickstart = HAL_GetTick();
2170     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
2171     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
2172     {
2173       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2174       {
2175         /* Enable the write protection for RTC registers */
2176         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2177 
2178         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2179 
2180         /* Process Unlocked */
2181         __HAL_UNLOCK(hrtc);
2182 
2183         return HAL_TIMEOUT;
2184       }
2185     }
2186 #endif
2187   }
2188   /* Enable the write protection for RTC registers */
2189   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2190 
2191   hrtc->State = HAL_RTC_STATE_READY;
2192 
2193   /* Process Unlocked */
2194   __HAL_UNLOCK(hrtc);
2195 
2196   return HAL_OK;
2197 }
2198 
2199 /**
2200   * @brief  Get the RTC Alarm value and masks.
2201   * @param  hrtc RTC handle
2202   * @param  sAlarm Pointer to Date structure
2203   * @param  Alarm Specifies the Alarm.
2204   *          This parameter can be one of the following values:
2205   *             @arg RTC_ALARM_A: AlarmA
2206   *             @arg RTC_ALARM_B: AlarmB
2207   * @param  Format Specifies the format of the entered parameters.
2208   *          This parameter can be one of the following values:
2209   *             @arg RTC_FORMAT_BIN: Binary data format
2210   *             @arg RTC_FORMAT_BCD: BCD data format
2211   * @retval HAL status
2212   */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)2213 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
2214 {
2215   uint32_t tmpreg, subsecondtmpreg;
2216 
2217   /* Check the parameters */
2218   assert_param(IS_RTC_FORMAT(Format));
2219   assert_param(IS_RTC_ALARM(Alarm));
2220 
2221   if (Alarm == RTC_ALARM_A)
2222   {
2223     /* AlarmA */
2224     sAlarm->Alarm = RTC_ALARM_A;
2225 
2226     tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
2227     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
2228 
2229     /* Fill the structure with the read parameters */
2230     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
2231     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
2232     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
2233     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
2234     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
2235     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
2236     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
2237     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
2238   }
2239   else
2240   {
2241     sAlarm->Alarm = RTC_ALARM_B;
2242 
2243     tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
2244     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
2245 
2246     /* Fill the structure with the read parameters */
2247     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
2248     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
2249     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
2250     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
2251     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
2252     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
2253     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
2254     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
2255   }
2256 
2257   if (Format == RTC_FORMAT_BIN)
2258   {
2259     sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
2260     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
2261     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
2262     sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
2263   }
2264 
2265   return HAL_OK;
2266 }
2267 
2268 
2269 /**
2270   * @brief  Daylight Saving Time, Add one hour to the calendar in one single operation
2271   *         without going through the initialization procedure.
2272   * @param  hrtc RTC handle
2273   * @retval None
2274   */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)2275 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
2276 {
2277   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2278   SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
2279   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2280 }
2281 
2282 /**
2283   * @brief  Daylight Saving Time, Subtract one hour from the calendar in one
2284   *         single operation without going through the initialization procedure.
2285   * @param  hrtc RTC handle
2286   * @retval None
2287   */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)2288 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
2289 {
2290   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2291   SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
2292   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2293 }
2294 
2295 /**
2296   * @brief  Daylight Saving Time, Set the store operation bit.
2297   * @note   It can be used by the software in order to memorize the DST status.
2298   * @param  hrtc RTC handle
2299   * @retval None
2300   */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)2301 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
2302 {
2303   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2304   SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2305   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2306 }
2307 
2308 /**
2309   * @brief  Daylight Saving Time, Clear the store operation bit.
2310   * @param  hrtc RTC handle
2311   * @retval None
2312   */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)2313 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
2314 {
2315   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2316   CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2317   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2318 }
2319 
2320 /**
2321   * @brief  Daylight Saving Time, Read the store operation bit.
2322   * @param  hrtc RTC handle
2323   * @retval operation see RTC_StoreOperation_Definitions
2324   */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)2325 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
2326 {
2327   return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2328 }
2329 
2330 /**
2331   * @brief  Handle Alarm interrupt request.
2332   * @param  hrtc RTC handle
2333   * @retval None
2334   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)2335 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
2336 {
2337   /* Clear the EXTI's line Flag for RTC Alarm */
2338   __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
2339 
2340 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2341   /* Get interrupt status */
2342   uint32_t tmp = hrtc->Instance->MISR;
2343 
2344   if ((tmp & RTC_MISR_ALRAMF) != 0u)
2345   {
2346     /* Clear the AlarmA interrupt pending bit */
2347     hrtc->Instance->SCR = RTC_SCR_CALRAF;
2348 
2349 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2350     /* Call Compare Match registered Callback */
2351     hrtc->AlarmAEventCallback(hrtc);
2352 #else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
2353     HAL_RTC_AlarmAEventCallback(hrtc);
2354 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
2355   }
2356 
2357   if ((tmp & RTC_MISR_ALRBMF) != 0u)
2358   {
2359     /* Clear the AlarmB interrupt pending bit */
2360     hrtc->Instance->SCR = RTC_SCR_CALRBF;
2361 
2362 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2363     /* Call Compare Match registered Callback */
2364     hrtc->AlarmBEventCallback(hrtc);
2365 #else
2366     HAL_RTCEx_AlarmBEventCallback(hrtc);
2367 #endif
2368   }
2369 
2370 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2371 
2372   /* Get the AlarmA interrupt source enable status */
2373   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
2374   {
2375     /* Get the pending status of the AlarmA Interrupt */
2376     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
2377     {
2378       /* Clear the AlarmA interrupt pending bit */
2379       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2380 
2381 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2382       hrtc->AlarmAEventCallback(hrtc);
2383 #else
2384       HAL_RTC_AlarmAEventCallback(hrtc);
2385 #endif
2386     }
2387   }
2388 
2389   /* Get the AlarmB interrupt source enable status */
2390   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
2391   {
2392     /* Get the pending status of the AlarmB Interrupt */
2393     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
2394     {
2395       /* Clear the AlarmB interrupt pending bit */
2396       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
2397 
2398 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2399       hrtc->AlarmBEventCallback(hrtc);
2400 #else
2401       HAL_RTCEx_AlarmBEventCallback(hrtc);
2402 #endif
2403     }
2404   }
2405 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2406 
2407   /* Change RTC state */
2408   hrtc->State = HAL_RTC_STATE_READY;
2409 }
2410 
2411 /**
2412   * @brief  Alarm A callback.
2413   * @param  hrtc RTC handle
2414   * @retval None
2415   */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)2416 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
2417 {
2418   /* Prevent unused argument(s) compilation warning */
2419   UNUSED(hrtc);
2420 
2421   /* NOTE : This function should not be modified, when the callback is needed,
2422             the HAL_RTC_AlarmAEventCallback could be implemented in the user file
2423    */
2424 }
2425 
2426 /**
2427   * @brief  Handle AlarmA Polling request.
2428   * @param  hrtc RTC handle
2429   * @param  Timeout Timeout duration
2430   * @retval HAL status
2431   */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)2432 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
2433 {
2434 
2435   uint32_t tickstart = HAL_GetTick();
2436 
2437   while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
2438   {
2439     if (Timeout != HAL_MAX_DELAY)
2440     {
2441       if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2442       {
2443         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2444         return HAL_TIMEOUT;
2445       }
2446     }
2447   }
2448 
2449   /* Clear the Alarm interrupt pending bit */
2450   __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2451 
2452   /* Change RTC state */
2453   hrtc->State = HAL_RTC_STATE_READY;
2454 
2455   return HAL_OK;
2456 }
2457 
2458 /**
2459   * @}
2460   */
2461 
2462 /** @addtogroup RTC_Exported_Functions_Group4
2463  *  @brief   Peripheral Control functions
2464  *
2465 @verbatim
2466  ===============================================================================
2467                      ##### Peripheral Control functions #####
2468  ===============================================================================
2469     [..]
2470     This subsection provides functions allowing to
2471       (+) Wait for RTC Time and Date Synchronization
2472 
2473 @endverbatim
2474   * @{
2475   */
2476 
2477 /**
2478   * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
2479   *         synchronized with RTC APB clock.
2480   * @note   The RTC Resynchronization mode is write protected, use the
2481   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2482   * @note   To read the calendar through the shadow registers after Calendar
2483   *         initialization, calendar update or after wakeup from low power modes
2484   *         the software must first clear the RSF flag.
2485   *         The software must then wait until it is set again before reading
2486   *         the calendar, which means that the calendar registers have been
2487   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
2488   * @param  hrtc RTC handle
2489   * @retval HAL status
2490   */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)2491 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
2492 {
2493   uint32_t tickstart;
2494 
2495   /* Clear RSF flag */
2496 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2497   hrtc->Instance->ICSR &= (uint32_t)RTC_RSF_MASK;
2498 #else
2499   hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
2500 #endif
2501 
2502   tickstart = HAL_GetTick();
2503 
2504   /* Wait the registers to be synchronised */
2505 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2506   while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
2507 #else
2508   while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
2509 #endif
2510   {
2511     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2512     {
2513       return HAL_TIMEOUT;
2514     }
2515   }
2516 
2517   return HAL_OK;
2518 }
2519 
2520 /**
2521   * @}
2522   */
2523 
2524 /** @addtogroup RTC_Exported_Functions_Group5
2525  *  @brief   Peripheral State functions
2526  *
2527 @verbatim
2528  ===============================================================================
2529                      ##### Peripheral State functions #####
2530  ===============================================================================
2531     [..]
2532     This subsection provides functions allowing to
2533       (+) Get RTC state
2534 
2535 @endverbatim
2536   * @{
2537   */
2538 /**
2539   * @brief  Return the RTC handle state.
2540   * @param  hrtc RTC handle
2541   * @retval HAL state
2542   */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)2543 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
2544 {
2545   /* Return RTC handle state */
2546   return hrtc->State;
2547 }
2548 
2549 /**
2550   * @}
2551   */
2552 
2553 /**
2554   * @}
2555   */
2556 
2557 /** @addtogroup RTC_Private_Functions
2558   * @{
2559   */
2560 /**
2561   * @brief  Enter the RTC Initialization mode.
2562   * @note   The RTC Initialization mode is write protected, use the
2563   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2564   * @param  hrtc RTC handle
2565   * @retval HAL status
2566   */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)2567 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
2568 {
2569   uint32_t tickstart;
2570   HAL_StatusTypeDef status = HAL_OK;
2571 
2572   /* Check if the Initialization mode is set */
2573 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2574   if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
2575   {
2576     /* Set the Initialization mode */
2577     SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);
2578 
2579     tickstart = HAL_GetTick();
2580     /* Wait till RTC is in INIT state and if Time out is reached exit */
2581     while ((READ_BIT(hrtc->Instance->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
2582     {
2583       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2584       {
2585         status = HAL_TIMEOUT;
2586         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2587       }
2588     }
2589   }
2590 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2591   if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U)
2592   {
2593     /* Set the Initialization mode */
2594     hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
2595 
2596     tickstart = HAL_GetTick();
2597     /* Wait till RTC is in INIT state and if Time out is reached exit */
2598     while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT))
2599     {
2600       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2601       {
2602         status = HAL_TIMEOUT;
2603         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2604       }
2605     }
2606   }
2607 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2608 
2609   return status;
2610 }
2611 
2612 /**
2613   * @brief  Exit the RTC Initialization mode.
2614   * @param  hrtc RTC handle
2615   * @retval HAL status
2616   */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)2617 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
2618 {
2619   HAL_StatusTypeDef status = HAL_OK;
2620 
2621   /* Exit Initialization mode */
2622 #if defined(STM32L412xx) || defined(STM32L422xx) || defined(STM32L4P5xx) || defined(STM32L4Q5xx)
2623   CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
2624 #else
2625   /* Exit Initialization mode */
2626   CLEAR_BIT(RTC->ISR, RTC_ISR_INIT);
2627 #endif
2628 
2629   /* If CR_BYPSHAD bit = 0, wait for synchro */
2630   if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
2631   {
2632     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2633     {
2634       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2635       status = HAL_TIMEOUT;
2636     }
2637   }
2638   else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry */
2639   {
2640     /* Clear BYPSHAD bit */
2641     CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
2642     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2643     {
2644       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2645       status = HAL_TIMEOUT;
2646     }
2647     /* Restore BYPSHAD bit */
2648     SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
2649   }
2650 
2651   return status;
2652 }
2653 
2654 
2655 
2656 /**
2657   * @brief  Convert a 2 digit decimal to BCD format.
2658   * @param  Value Byte to be converted
2659   * @retval Converted byte
2660   */
RTC_ByteToBcd2(uint8_t Value)2661 uint8_t RTC_ByteToBcd2(uint8_t Value)
2662 {
2663   uint32_t bcdhigh = 0U;
2664   uint8_t temp = Value;
2665 
2666   while (temp >= 10U)
2667   {
2668     bcdhigh++;
2669     temp -= 10U;
2670   }
2671 
2672   return ((uint8_t)(bcdhigh << 4U) | temp);
2673 }
2674 
2675 /**
2676   * @brief  Convert from 2 digit BCD to Binary.
2677   * @param  Value BCD value to be converted
2678   * @retval Converted word
2679   */
RTC_Bcd2ToByte(uint8_t Value)2680 uint8_t RTC_Bcd2ToByte(uint8_t Value)
2681 {
2682   uint8_t tmp;
2683   tmp = ((Value & 0xF0U) >> 4U) * 10U;
2684   return (tmp + (Value & 0x0FU));
2685 }
2686 
2687 /**
2688   * @}
2689   */
2690 
2691 #endif /* HAL_RTC_MODULE_ENABLED */
2692 /**
2693   * @}
2694   */
2695 
2696 /**
2697   * @}
2698   */
2699