1 /**
2 ******************************************************************************
3 * @file stm32l1xx_hal_uart.c
4 * @author MCD Application Team
5 * @brief UART HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + IO operation functions
10 * + Peripheral Control functions
11 * + Peripheral State and Errors functions
12 *
13 ******************************************************************************
14 * @attention
15 *
16 * Copyright (c) 2016 STMicroelectronics.
17 * All rights reserved.
18 *
19 * This software is licensed under terms that can be found in the LICENSE file
20 * in the root directory of this software component.
21 * If no LICENSE file comes with this software, it is provided AS-IS.
22 *
23 ******************************************************************************
24 @verbatim
25 ==============================================================================
26 ##### How to use this driver #####
27 ==============================================================================
28 [..]
29 The UART HAL driver can be used as follows:
30
31 (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
32 (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
33 (##) Enable the USARTx interface clock.
34 (##) UART pins configuration:
35 (+++) Enable the clock for the UART GPIOs.
36 (+++) Configure the UART TX/RX pins as alternate function pull-up.
37 (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
38 and HAL_UART_Receive_IT() APIs):
39 (+++) Configure the USARTx interrupt priority.
40 (+++) Enable the NVIC USART IRQ handle.
41 (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
42 and HAL_UART_Receive_DMA() APIs):
43 (+++) Declare a DMA handle structure for the Tx/Rx channel.
44 (+++) Enable the DMAx interface clock.
45 (+++) Configure the declared DMA handle structure with the required
46 Tx/Rx parameters.
47 (+++) Configure the DMA Tx/Rx channel.
48 (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
49 (+++) Configure the priority and enable the NVIC for the transfer complete
50 interrupt on the DMA Tx/Rx channel.
51 (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
52 (used for last byte sending completion detection in DMA non circular mode)
53
54 (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
55 flow control and Mode(Receiver/Transmitter) in the huart Init structure.
56
57 (#) For the UART asynchronous mode, initialize the UART registers by calling
58 the HAL_UART_Init() API.
59
60 (#) For the UART Half duplex mode, initialize the UART registers by calling
61 the HAL_HalfDuplex_Init() API.
62
63 (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
64
65 (#) For the Multi-Processor mode, initialize the UART registers by calling
66 the HAL_MultiProcessor_Init() API.
67
68 [..]
69 (@) The specific UART interrupts (Transmission complete interrupt,
70 RXNE interrupt and Error Interrupts) will be managed using the macros
71 __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
72 and receive process.
73
74 [..]
75 (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
76 low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
77 HAL_UART_MspInit() API.
78
79 ##### Callback registration #####
80 ==================================
81
82 [..]
83 The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
84 allows the user to configure dynamically the driver callbacks.
85
86 [..]
87 Use Function HAL_UART_RegisterCallback() to register a user callback.
88 Function HAL_UART_RegisterCallback() allows to register following callbacks:
89 (+) TxHalfCpltCallback : Tx Half Complete Callback.
90 (+) TxCpltCallback : Tx Complete Callback.
91 (+) RxHalfCpltCallback : Rx Half Complete Callback.
92 (+) RxCpltCallback : Rx Complete Callback.
93 (+) ErrorCallback : Error Callback.
94 (+) AbortCpltCallback : Abort Complete Callback.
95 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
96 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
97 (+) MspInitCallback : UART MspInit.
98 (+) MspDeInitCallback : UART MspDeInit.
99 This function takes as parameters the HAL peripheral handle, the Callback ID
100 and a pointer to the user callback function.
101
102 [..]
103 Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
104 weak (surcharged) function.
105 HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
106 and the Callback ID.
107 This function allows to reset following callbacks:
108 (+) TxHalfCpltCallback : Tx Half Complete Callback.
109 (+) TxCpltCallback : Tx Complete Callback.
110 (+) RxHalfCpltCallback : Rx Half Complete Callback.
111 (+) RxCpltCallback : Rx Complete Callback.
112 (+) ErrorCallback : Error Callback.
113 (+) AbortCpltCallback : Abort Complete Callback.
114 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
115 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
116 (+) MspInitCallback : UART MspInit.
117 (+) MspDeInitCallback : UART MspDeInit.
118
119 [..]
120 For specific callback RxEventCallback, use dedicated registration/reset functions:
121 respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
122
123 [..]
124 By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
125 all callbacks are set to the corresponding weak (surcharged) functions:
126 examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
127 Exception done for MspInit and MspDeInit functions that are respectively
128 reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
129 and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
130 If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
131 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
132
133 [..]
134 Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
135 Exception done MspInit/MspDeInit that can be registered/unregistered
136 in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
137 MspInit/DeInit callbacks can be used during the Init/DeInit.
138 In that case first register the MspInit/MspDeInit user callbacks
139 using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
140 or HAL_UART_Init() function.
141
142 [..]
143 When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
144 not defined, the callback registration feature is not available
145 and weak (surcharged) callbacks are used.
146
147 [..]
148 Three operation modes are available within this driver :
149
150 *** Polling mode IO operation ***
151 =================================
152 [..]
153 (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
154 (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
155
156 *** Interrupt mode IO operation ***
157 ===================================
158 [..]
159 (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
160 (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
161 add his own code by customization of function pointer HAL_UART_TxCpltCallback
162 (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
163 (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
164 add his own code by customization of function pointer HAL_UART_RxCpltCallback
165 (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
166 add his own code by customization of function pointer HAL_UART_ErrorCallback
167
168 *** DMA mode IO operation ***
169 ==============================
170 [..]
171 (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
172 (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
173 add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
174 (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
175 add his own code by customization of function pointer HAL_UART_TxCpltCallback
176 (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
177 (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
178 add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
179 (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
180 add his own code by customization of function pointer HAL_UART_RxCpltCallback
181 (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
182 add his own code by customization of function pointer HAL_UART_ErrorCallback
183 (+) Pause the DMA Transfer using HAL_UART_DMAPause()
184 (+) Resume the DMA Transfer using HAL_UART_DMAResume()
185 (+) Stop the DMA Transfer using HAL_UART_DMAStop()
186
187
188 [..] This subsection also provides a set of additional functions providing enhanced reception
189 services to user. (For example, these functions allow application to handle use cases
190 where number of data to be received is unknown).
191
192 (#) Compared to standard reception services which only consider number of received
193 data elements as reception completion criteria, these functions also consider additional events
194 as triggers for updating reception status to caller :
195 (+) Detection of inactivity period (RX line has not been active for a given period).
196 (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
197 for 1 frame time, after last received byte.
198
199 (#) There are two mode of transfer:
200 (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
201 or till IDLE event occurs. Reception is handled only during function execution.
202 When function exits, no data reception could occur. HAL status and number of actually received data elements,
203 are returned by function after finishing transfer.
204 (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
205 These API's return the HAL status.
206 The end of the data processing will be indicated through the
207 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
208 The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
209 The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
210
211 (#) Blocking mode API:
212 (+) HAL_UARTEx_ReceiveToIdle()
213
214 (#) Non-Blocking mode API with Interrupt:
215 (+) HAL_UARTEx_ReceiveToIdle_IT()
216
217 (#) Non-Blocking mode API with DMA:
218 (+) HAL_UARTEx_ReceiveToIdle_DMA()
219
220
221 *** UART HAL driver macros list ***
222 =============================================
223 [..]
224 Below the list of most used macros in UART HAL driver.
225
226 (+) __HAL_UART_ENABLE: Enable the UART peripheral
227 (+) __HAL_UART_DISABLE: Disable the UART peripheral
228 (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
229 (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
230 (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
231 (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
232 (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
233
234 [..]
235 (@) You can refer to the UART HAL driver header file for more useful macros
236
237 @endverbatim
238 [..]
239 (@) Additional remark: If the parity is enabled, then the MSB bit of the data written
240 in the data register is transmitted but is changed by the parity bit.
241 Depending on the frame length defined by the M bit (8-bits or 9-bits),
242 the possible UART frame formats are as listed in the following table:
243 +-------------------------------------------------------------+
244 | M bit | PCE bit | UART frame |
245 |---------------------|---------------------------------------|
246 | 0 | 0 | | SB | 8 bit data | STB | |
247 |---------|-----------|---------------------------------------|
248 | 0 | 1 | | SB | 7 bit data | PB | STB | |
249 |---------|-----------|---------------------------------------|
250 | 1 | 0 | | SB | 9 bit data | STB | |
251 |---------|-----------|---------------------------------------|
252 | 1 | 1 | | SB | 8 bit data | PB | STB | |
253 +-------------------------------------------------------------+
254 ******************************************************************************
255 */
256
257 /* Includes ------------------------------------------------------------------*/
258 #include "stm32l1xx_hal.h"
259
260 /** @addtogroup STM32L1xx_HAL_Driver
261 * @{
262 */
263
264 /** @defgroup UART UART
265 * @brief HAL UART module driver
266 * @{
267 */
268 #ifdef HAL_UART_MODULE_ENABLED
269
270 /* Private typedef -----------------------------------------------------------*/
271 /* Private define ------------------------------------------------------------*/
272 /** @addtogroup UART_Private_Constants
273 * @{
274 */
275 /**
276 * @}
277 */
278 /* Private macro -------------------------------------------------------------*/
279 /* Private variables ---------------------------------------------------------*/
280 /* Private function prototypes -----------------------------------------------*/
281 /** @addtogroup UART_Private_Functions UART Private Functions
282 * @{
283 */
284
285 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
286 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart);
287 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
288 static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
289 static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
290 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
291 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
292 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
293 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
294 static void UART_DMAError(DMA_HandleTypeDef *hdma);
295 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
296 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
297 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
298 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
299 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
300 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
301 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
302 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
303 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
304 uint32_t Tickstart, uint32_t Timeout);
305 static void UART_SetConfig(UART_HandleTypeDef *huart);
306
307 /**
308 * @}
309 */
310
311 /* Exported functions ---------------------------------------------------------*/
312 /** @defgroup UART_Exported_Functions UART Exported Functions
313 * @{
314 */
315
316 /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
317 * @brief Initialization and Configuration functions
318 *
319 @verbatim
320 ===============================================================================
321 ##### Initialization and Configuration functions #####
322 ===============================================================================
323 [..]
324 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
325 in asynchronous mode.
326 (+) For the asynchronous mode only these parameters can be configured:
327 (++) Baud Rate
328 (++) Word Length
329 (++) Stop Bit
330 (++) Parity: If the parity is enabled, then the MSB bit of the data written
331 in the data register is transmitted but is changed by the parity bit.
332 Depending on the frame length defined by the M bit (8-bits or 9-bits),
333 please refer to Reference manual for possible UART frame formats.
334 (++) Hardware flow control
335 (++) Receiver/transmitter modes
336 (++) Over Sampling Method
337 [..]
338 The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
339 follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration
340 procedures (details for the procedures are available in reference manual (RM0038)).
341
342 @endverbatim
343 * @{
344 */
345
346 /**
347 * @brief Initializes the UART mode according to the specified parameters in
348 * the UART_InitTypeDef and create the associated handle.
349 * @param huart Pointer to a UART_HandleTypeDef structure that contains
350 * the configuration information for the specified UART module.
351 * @retval HAL status
352 */
HAL_UART_Init(UART_HandleTypeDef * huart)353 HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
354 {
355 /* Check the UART handle allocation */
356 if (huart == NULL)
357 {
358 return HAL_ERROR;
359 }
360
361 /* Check the parameters */
362 if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
363 {
364 /* The hardware flow control is available only for USART1, USART2 and USART3 */
365 assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
366 assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
367 }
368 else
369 {
370 assert_param(IS_UART_INSTANCE(huart->Instance));
371 }
372 assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
373 assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
374
375 if (huart->gState == HAL_UART_STATE_RESET)
376 {
377 /* Allocate lock resource and initialize it */
378 huart->Lock = HAL_UNLOCKED;
379
380 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
381 UART_InitCallbacksToDefault(huart);
382
383 if (huart->MspInitCallback == NULL)
384 {
385 huart->MspInitCallback = HAL_UART_MspInit;
386 }
387
388 /* Init the low level hardware */
389 huart->MspInitCallback(huart);
390 #else
391 /* Init the low level hardware : GPIO, CLOCK */
392 HAL_UART_MspInit(huart);
393 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
394 }
395
396 huart->gState = HAL_UART_STATE_BUSY;
397
398 /* Disable the peripheral */
399 __HAL_UART_DISABLE(huart);
400
401 /* Set the UART Communication parameters */
402 UART_SetConfig(huart);
403
404 /* In asynchronous mode, the following bits must be kept cleared:
405 - LINEN and CLKEN bits in the USART_CR2 register,
406 - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
407 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
408 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
409
410 /* Enable the peripheral */
411 __HAL_UART_ENABLE(huart);
412
413 /* Initialize the UART state */
414 huart->ErrorCode = HAL_UART_ERROR_NONE;
415 huart->gState = HAL_UART_STATE_READY;
416 huart->RxState = HAL_UART_STATE_READY;
417 huart->RxEventType = HAL_UART_RXEVENT_TC;
418
419 return HAL_OK;
420 }
421
422 /**
423 * @brief Initializes the half-duplex mode according to the specified
424 * parameters in the UART_InitTypeDef and create the associated handle.
425 * @param huart Pointer to a UART_HandleTypeDef structure that contains
426 * the configuration information for the specified UART module.
427 * @retval HAL status
428 */
HAL_HalfDuplex_Init(UART_HandleTypeDef * huart)429 HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
430 {
431 /* Check the UART handle allocation */
432 if (huart == NULL)
433 {
434 return HAL_ERROR;
435 }
436
437 /* Check the parameters */
438 assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
439 assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
440 assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
441
442 if (huart->gState == HAL_UART_STATE_RESET)
443 {
444 /* Allocate lock resource and initialize it */
445 huart->Lock = HAL_UNLOCKED;
446
447 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
448 UART_InitCallbacksToDefault(huart);
449
450 if (huart->MspInitCallback == NULL)
451 {
452 huart->MspInitCallback = HAL_UART_MspInit;
453 }
454
455 /* Init the low level hardware */
456 huart->MspInitCallback(huart);
457 #else
458 /* Init the low level hardware : GPIO, CLOCK */
459 HAL_UART_MspInit(huart);
460 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
461 }
462
463 huart->gState = HAL_UART_STATE_BUSY;
464
465 /* Disable the peripheral */
466 __HAL_UART_DISABLE(huart);
467
468 /* Set the UART Communication parameters */
469 UART_SetConfig(huart);
470
471 /* In half-duplex mode, the following bits must be kept cleared:
472 - LINEN and CLKEN bits in the USART_CR2 register,
473 - SCEN and IREN bits in the USART_CR3 register.*/
474 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
475 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
476
477 /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
478 SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
479
480 /* Enable the peripheral */
481 __HAL_UART_ENABLE(huart);
482
483 /* Initialize the UART state*/
484 huart->ErrorCode = HAL_UART_ERROR_NONE;
485 huart->gState = HAL_UART_STATE_READY;
486 huart->RxState = HAL_UART_STATE_READY;
487 huart->RxEventType = HAL_UART_RXEVENT_TC;
488
489 return HAL_OK;
490 }
491
492 /**
493 * @brief Initializes the LIN mode according to the specified
494 * parameters in the UART_InitTypeDef and create the associated handle.
495 * @param huart Pointer to a UART_HandleTypeDef structure that contains
496 * the configuration information for the specified UART module.
497 * @param BreakDetectLength Specifies the LIN break detection length.
498 * This parameter can be one of the following values:
499 * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
500 * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
501 * @retval HAL status
502 */
HAL_LIN_Init(UART_HandleTypeDef * huart,uint32_t BreakDetectLength)503 HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
504 {
505 /* Check the UART handle allocation */
506 if (huart == NULL)
507 {
508 return HAL_ERROR;
509 }
510
511 /* Check the LIN UART instance */
512 assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
513
514 /* Check the Break detection length parameter */
515 assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
516 assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
517 assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
518
519 if (huart->gState == HAL_UART_STATE_RESET)
520 {
521 /* Allocate lock resource and initialize it */
522 huart->Lock = HAL_UNLOCKED;
523
524 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
525 UART_InitCallbacksToDefault(huart);
526
527 if (huart->MspInitCallback == NULL)
528 {
529 huart->MspInitCallback = HAL_UART_MspInit;
530 }
531
532 /* Init the low level hardware */
533 huart->MspInitCallback(huart);
534 #else
535 /* Init the low level hardware : GPIO, CLOCK */
536 HAL_UART_MspInit(huart);
537 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
538 }
539
540 huart->gState = HAL_UART_STATE_BUSY;
541
542 /* Disable the peripheral */
543 __HAL_UART_DISABLE(huart);
544
545 /* Set the UART Communication parameters */
546 UART_SetConfig(huart);
547
548 /* In LIN mode, the following bits must be kept cleared:
549 - CLKEN bits in the USART_CR2 register,
550 - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
551 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN));
552 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
553
554 /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
555 SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
556
557 /* Set the USART LIN Break detection length. */
558 CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
559 SET_BIT(huart->Instance->CR2, BreakDetectLength);
560
561 /* Enable the peripheral */
562 __HAL_UART_ENABLE(huart);
563
564 /* Initialize the UART state*/
565 huart->ErrorCode = HAL_UART_ERROR_NONE;
566 huart->gState = HAL_UART_STATE_READY;
567 huart->RxState = HAL_UART_STATE_READY;
568 huart->RxEventType = HAL_UART_RXEVENT_TC;
569
570 return HAL_OK;
571 }
572
573 /**
574 * @brief Initializes the Multi-Processor mode according to the specified
575 * parameters in the UART_InitTypeDef and create the associated handle.
576 * @param huart Pointer to a UART_HandleTypeDef structure that contains
577 * the configuration information for the specified UART module.
578 * @param Address USART address
579 * @param WakeUpMethod specifies the USART wake-up method.
580 * This parameter can be one of the following values:
581 * @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
582 * @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
583 * @retval HAL status
584 */
HAL_MultiProcessor_Init(UART_HandleTypeDef * huart,uint8_t Address,uint32_t WakeUpMethod)585 HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
586 {
587 /* Check the UART handle allocation */
588 if (huart == NULL)
589 {
590 return HAL_ERROR;
591 }
592
593 /* Check the parameters */
594 assert_param(IS_UART_MULTIPROCESSOR_INSTANCE(huart->Instance));
595
596 /* Check the Address & wake up method parameters */
597 assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
598 assert_param(IS_UART_ADDRESS(Address));
599 assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
600 assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
601
602 if (huart->gState == HAL_UART_STATE_RESET)
603 {
604 /* Allocate lock resource and initialize it */
605 huart->Lock = HAL_UNLOCKED;
606
607 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
608 UART_InitCallbacksToDefault(huart);
609
610 if (huart->MspInitCallback == NULL)
611 {
612 huart->MspInitCallback = HAL_UART_MspInit;
613 }
614
615 /* Init the low level hardware */
616 huart->MspInitCallback(huart);
617 #else
618 /* Init the low level hardware : GPIO, CLOCK */
619 HAL_UART_MspInit(huart);
620 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
621 }
622
623 huart->gState = HAL_UART_STATE_BUSY;
624
625 /* Disable the peripheral */
626 __HAL_UART_DISABLE(huart);
627
628 /* Set the UART Communication parameters */
629 UART_SetConfig(huart);
630
631 /* In Multi-Processor mode, the following bits must be kept cleared:
632 - LINEN and CLKEN bits in the USART_CR2 register,
633 - SCEN, HDSEL and IREN bits in the USART_CR3 register */
634 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
635 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
636
637 /* Set the USART address node */
638 CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
639 SET_BIT(huart->Instance->CR2, Address);
640
641 /* Set the wake up method by setting the WAKE bit in the CR1 register */
642 CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
643 SET_BIT(huart->Instance->CR1, WakeUpMethod);
644
645 /* Enable the peripheral */
646 __HAL_UART_ENABLE(huart);
647
648 /* Initialize the UART state */
649 huart->ErrorCode = HAL_UART_ERROR_NONE;
650 huart->gState = HAL_UART_STATE_READY;
651 huart->RxState = HAL_UART_STATE_READY;
652 huart->RxEventType = HAL_UART_RXEVENT_TC;
653
654 return HAL_OK;
655 }
656
657 /**
658 * @brief DeInitializes the UART peripheral.
659 * @param huart Pointer to a UART_HandleTypeDef structure that contains
660 * the configuration information for the specified UART module.
661 * @retval HAL status
662 */
HAL_UART_DeInit(UART_HandleTypeDef * huart)663 HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
664 {
665 /* Check the UART handle allocation */
666 if (huart == NULL)
667 {
668 return HAL_ERROR;
669 }
670
671 /* Check the parameters */
672 assert_param(IS_UART_INSTANCE(huart->Instance));
673
674 huart->gState = HAL_UART_STATE_BUSY;
675
676 /* Disable the Peripheral */
677 __HAL_UART_DISABLE(huart);
678
679 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
680 if (huart->MspDeInitCallback == NULL)
681 {
682 huart->MspDeInitCallback = HAL_UART_MspDeInit;
683 }
684 /* DeInit the low level hardware */
685 huart->MspDeInitCallback(huart);
686 #else
687 /* DeInit the low level hardware */
688 HAL_UART_MspDeInit(huart);
689 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
690
691 huart->ErrorCode = HAL_UART_ERROR_NONE;
692 huart->gState = HAL_UART_STATE_RESET;
693 huart->RxState = HAL_UART_STATE_RESET;
694 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
695 huart->RxEventType = HAL_UART_RXEVENT_TC;
696
697 /* Process Unlock */
698 __HAL_UNLOCK(huart);
699
700 return HAL_OK;
701 }
702
703 /**
704 * @brief UART MSP Init.
705 * @param huart Pointer to a UART_HandleTypeDef structure that contains
706 * the configuration information for the specified UART module.
707 * @retval None
708 */
HAL_UART_MspInit(UART_HandleTypeDef * huart)709 __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
710 {
711 /* Prevent unused argument(s) compilation warning */
712 UNUSED(huart);
713 /* NOTE: This function should not be modified, when the callback is needed,
714 the HAL_UART_MspInit could be implemented in the user file
715 */
716 }
717
718 /**
719 * @brief UART MSP DeInit.
720 * @param huart Pointer to a UART_HandleTypeDef structure that contains
721 * the configuration information for the specified UART module.
722 * @retval None
723 */
HAL_UART_MspDeInit(UART_HandleTypeDef * huart)724 __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
725 {
726 /* Prevent unused argument(s) compilation warning */
727 UNUSED(huart);
728 /* NOTE: This function should not be modified, when the callback is needed,
729 the HAL_UART_MspDeInit could be implemented in the user file
730 */
731 }
732
733 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
734 /**
735 * @brief Register a User UART Callback
736 * To be used instead of the weak predefined callback
737 * @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(),
738 * HAL_MultiProcessor_Init() to register callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
739 * @param huart uart handle
740 * @param CallbackID ID of the callback to be registered
741 * This parameter can be one of the following values:
742 * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
743 * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
744 * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
745 * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
746 * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
747 * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
748 * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
749 * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
750 * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
751 * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
752 * @param pCallback pointer to the Callback function
753 * @retval HAL status
754 */
HAL_UART_RegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID,pUART_CallbackTypeDef pCallback)755 HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
756 pUART_CallbackTypeDef pCallback)
757 {
758 HAL_StatusTypeDef status = HAL_OK;
759
760 if (pCallback == NULL)
761 {
762 /* Update the error code */
763 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
764
765 return HAL_ERROR;
766 }
767
768 if (huart->gState == HAL_UART_STATE_READY)
769 {
770 switch (CallbackID)
771 {
772 case HAL_UART_TX_HALFCOMPLETE_CB_ID :
773 huart->TxHalfCpltCallback = pCallback;
774 break;
775
776 case HAL_UART_TX_COMPLETE_CB_ID :
777 huart->TxCpltCallback = pCallback;
778 break;
779
780 case HAL_UART_RX_HALFCOMPLETE_CB_ID :
781 huart->RxHalfCpltCallback = pCallback;
782 break;
783
784 case HAL_UART_RX_COMPLETE_CB_ID :
785 huart->RxCpltCallback = pCallback;
786 break;
787
788 case HAL_UART_ERROR_CB_ID :
789 huart->ErrorCallback = pCallback;
790 break;
791
792 case HAL_UART_ABORT_COMPLETE_CB_ID :
793 huart->AbortCpltCallback = pCallback;
794 break;
795
796 case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
797 huart->AbortTransmitCpltCallback = pCallback;
798 break;
799
800 case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
801 huart->AbortReceiveCpltCallback = pCallback;
802 break;
803
804 case HAL_UART_MSPINIT_CB_ID :
805 huart->MspInitCallback = pCallback;
806 break;
807
808 case HAL_UART_MSPDEINIT_CB_ID :
809 huart->MspDeInitCallback = pCallback;
810 break;
811
812 default :
813 /* Update the error code */
814 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
815
816 /* Return error status */
817 status = HAL_ERROR;
818 break;
819 }
820 }
821 else if (huart->gState == HAL_UART_STATE_RESET)
822 {
823 switch (CallbackID)
824 {
825 case HAL_UART_MSPINIT_CB_ID :
826 huart->MspInitCallback = pCallback;
827 break;
828
829 case HAL_UART_MSPDEINIT_CB_ID :
830 huart->MspDeInitCallback = pCallback;
831 break;
832
833 default :
834 /* Update the error code */
835 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
836
837 /* Return error status */
838 status = HAL_ERROR;
839 break;
840 }
841 }
842 else
843 {
844 /* Update the error code */
845 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
846
847 /* Return error status */
848 status = HAL_ERROR;
849 }
850
851 return status;
852 }
853
854 /**
855 * @brief Unregister an UART Callback
856 * UART callaback is redirected to the weak predefined callback
857 * @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
858 * HAL_LIN_Init(), HAL_MultiProcessor_Init() to un-register callbacks for HAL_UART_MSPINIT_CB_ID
859 * and HAL_UART_MSPDEINIT_CB_ID
860 * @param huart uart handle
861 * @param CallbackID ID of the callback to be unregistered
862 * This parameter can be one of the following values:
863 * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
864 * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
865 * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
866 * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
867 * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
868 * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
869 * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
870 * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
871 * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
872 * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
873 * @retval HAL status
874 */
HAL_UART_UnRegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID)875 HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
876 {
877 HAL_StatusTypeDef status = HAL_OK;
878
879 if (HAL_UART_STATE_READY == huart->gState)
880 {
881 switch (CallbackID)
882 {
883 case HAL_UART_TX_HALFCOMPLETE_CB_ID :
884 huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
885 break;
886
887 case HAL_UART_TX_COMPLETE_CB_ID :
888 huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
889 break;
890
891 case HAL_UART_RX_HALFCOMPLETE_CB_ID :
892 huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
893 break;
894
895 case HAL_UART_RX_COMPLETE_CB_ID :
896 huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
897 break;
898
899 case HAL_UART_ERROR_CB_ID :
900 huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
901 break;
902
903 case HAL_UART_ABORT_COMPLETE_CB_ID :
904 huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
905 break;
906
907 case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
908 huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
909 break;
910
911 case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
912 huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
913 break;
914
915 case HAL_UART_MSPINIT_CB_ID :
916 huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
917 break;
918
919 case HAL_UART_MSPDEINIT_CB_ID :
920 huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
921 break;
922
923 default :
924 /* Update the error code */
925 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
926
927 /* Return error status */
928 status = HAL_ERROR;
929 break;
930 }
931 }
932 else if (HAL_UART_STATE_RESET == huart->gState)
933 {
934 switch (CallbackID)
935 {
936 case HAL_UART_MSPINIT_CB_ID :
937 huart->MspInitCallback = HAL_UART_MspInit;
938 break;
939
940 case HAL_UART_MSPDEINIT_CB_ID :
941 huart->MspDeInitCallback = HAL_UART_MspDeInit;
942 break;
943
944 default :
945 /* Update the error code */
946 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
947
948 /* Return error status */
949 status = HAL_ERROR;
950 break;
951 }
952 }
953 else
954 {
955 /* Update the error code */
956 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
957
958 /* Return error status */
959 status = HAL_ERROR;
960 }
961
962 return status;
963 }
964
965 /**
966 * @brief Register a User UART Rx Event Callback
967 * To be used instead of the weak predefined callback
968 * @param huart Uart handle
969 * @param pCallback Pointer to the Rx Event Callback function
970 * @retval HAL status
971 */
HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef * huart,pUART_RxEventCallbackTypeDef pCallback)972 HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
973 {
974 HAL_StatusTypeDef status = HAL_OK;
975
976 if (pCallback == NULL)
977 {
978 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
979
980 return HAL_ERROR;
981 }
982
983 /* Process locked */
984 __HAL_LOCK(huart);
985
986 if (huart->gState == HAL_UART_STATE_READY)
987 {
988 huart->RxEventCallback = pCallback;
989 }
990 else
991 {
992 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
993
994 status = HAL_ERROR;
995 }
996
997 /* Release Lock */
998 __HAL_UNLOCK(huart);
999
1000 return status;
1001 }
1002
1003 /**
1004 * @brief UnRegister the UART Rx Event Callback
1005 * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
1006 * @param huart Uart handle
1007 * @retval HAL status
1008 */
HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef * huart)1009 HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
1010 {
1011 HAL_StatusTypeDef status = HAL_OK;
1012
1013 /* Process locked */
1014 __HAL_LOCK(huart);
1015
1016 if (huart->gState == HAL_UART_STATE_READY)
1017 {
1018 huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
1019 }
1020 else
1021 {
1022 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
1023
1024 status = HAL_ERROR;
1025 }
1026
1027 /* Release Lock */
1028 __HAL_UNLOCK(huart);
1029 return status;
1030 }
1031 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1032
1033 /**
1034 * @}
1035 */
1036
1037 /** @defgroup UART_Exported_Functions_Group2 IO operation functions
1038 * @brief UART Transmit and Receive functions
1039 *
1040 @verbatim
1041 ===============================================================================
1042 ##### IO operation functions #####
1043 ===============================================================================
1044 This subsection provides a set of functions allowing to manage the UART asynchronous
1045 and Half duplex data transfers.
1046
1047 (#) There are two modes of transfer:
1048 (+) Blocking mode: The communication is performed in polling mode.
1049 The HAL status of all data processing is returned by the same function
1050 after finishing transfer.
1051 (+) Non-Blocking mode: The communication is performed using Interrupts
1052 or DMA, these API's return the HAL status.
1053 The end of the data processing will be indicated through the
1054 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
1055 using DMA mode.
1056 The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
1057 will be executed respectively at the end of the transmit or receive process
1058 The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected.
1059
1060 (#) Blocking mode API's are :
1061 (+) HAL_UART_Transmit()
1062 (+) HAL_UART_Receive()
1063
1064 (#) Non-Blocking mode API's with Interrupt are :
1065 (+) HAL_UART_Transmit_IT()
1066 (+) HAL_UART_Receive_IT()
1067 (+) HAL_UART_IRQHandler()
1068
1069 (#) Non-Blocking mode API's with DMA are :
1070 (+) HAL_UART_Transmit_DMA()
1071 (+) HAL_UART_Receive_DMA()
1072 (+) HAL_UART_DMAPause()
1073 (+) HAL_UART_DMAResume()
1074 (+) HAL_UART_DMAStop()
1075
1076 (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
1077 (+) HAL_UART_TxHalfCpltCallback()
1078 (+) HAL_UART_TxCpltCallback()
1079 (+) HAL_UART_RxHalfCpltCallback()
1080 (+) HAL_UART_RxCpltCallback()
1081 (+) HAL_UART_ErrorCallback()
1082
1083 (#) Non-Blocking mode transfers could be aborted using Abort API's :
1084 (+) HAL_UART_Abort()
1085 (+) HAL_UART_AbortTransmit()
1086 (+) HAL_UART_AbortReceive()
1087 (+) HAL_UART_Abort_IT()
1088 (+) HAL_UART_AbortTransmit_IT()
1089 (+) HAL_UART_AbortReceive_IT()
1090
1091 (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
1092 (+) HAL_UART_AbortCpltCallback()
1093 (+) HAL_UART_AbortTransmitCpltCallback()
1094 (+) HAL_UART_AbortReceiveCpltCallback()
1095
1096 (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services:
1097 (+) HAL_UARTEx_RxEventCallback()
1098
1099 (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
1100 Errors are handled as follows :
1101 (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
1102 to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
1103 Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
1104 and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
1105 If user wants to abort it, Abort services should be called by user.
1106 (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
1107 This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
1108 Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
1109
1110 -@- In the Half duplex communication, it is forbidden to run the transmit
1111 and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
1112
1113 @endverbatim
1114 * @{
1115 */
1116
1117 /**
1118 * @brief Sends an amount of data in blocking mode.
1119 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1120 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1121 * of u16 provided through pData.
1122 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1123 * the configuration information for the specified UART module.
1124 * @param pData Pointer to data buffer (u8 or u16 data elements).
1125 * @param Size Amount of data elements (u8 or u16) to be sent
1126 * @param Timeout Timeout duration
1127 * @retval HAL status
1128 */
HAL_UART_Transmit(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size,uint32_t Timeout)1129 HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
1130 {
1131 const uint8_t *pdata8bits;
1132 const uint16_t *pdata16bits;
1133 uint32_t tickstart = 0U;
1134
1135 /* Check that a Tx process is not already ongoing */
1136 if (huart->gState == HAL_UART_STATE_READY)
1137 {
1138 if ((pData == NULL) || (Size == 0U))
1139 {
1140 return HAL_ERROR;
1141 }
1142
1143 huart->ErrorCode = HAL_UART_ERROR_NONE;
1144 huart->gState = HAL_UART_STATE_BUSY_TX;
1145
1146 /* Init tickstart for timeout management */
1147 tickstart = HAL_GetTick();
1148
1149 huart->TxXferSize = Size;
1150 huart->TxXferCount = Size;
1151
1152 /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
1153 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1154 {
1155 pdata8bits = NULL;
1156 pdata16bits = (const uint16_t *) pData;
1157 }
1158 else
1159 {
1160 pdata8bits = pData;
1161 pdata16bits = NULL;
1162 }
1163
1164 while (huart->TxXferCount > 0U)
1165 {
1166 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1167 {
1168 return HAL_TIMEOUT;
1169 }
1170 if (pdata8bits == NULL)
1171 {
1172 huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU);
1173 pdata16bits++;
1174 }
1175 else
1176 {
1177 huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU);
1178 pdata8bits++;
1179 }
1180 huart->TxXferCount--;
1181 }
1182
1183 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
1184 {
1185 return HAL_TIMEOUT;
1186 }
1187
1188 /* At end of Tx process, restore huart->gState to Ready */
1189 huart->gState = HAL_UART_STATE_READY;
1190
1191 return HAL_OK;
1192 }
1193 else
1194 {
1195 return HAL_BUSY;
1196 }
1197 }
1198
1199 /**
1200 * @brief Receives an amount of data in blocking mode.
1201 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1202 * the received data is handled as a set of u16. In this case, Size must indicate the number
1203 * of u16 available through pData.
1204 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1205 * the configuration information for the specified UART module.
1206 * @param pData Pointer to data buffer (u8 or u16 data elements).
1207 * @param Size Amount of data elements (u8 or u16) to be received.
1208 * @param Timeout Timeout duration
1209 * @retval HAL status
1210 */
HAL_UART_Receive(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint32_t Timeout)1211 HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1212 {
1213 uint8_t *pdata8bits;
1214 uint16_t *pdata16bits;
1215 uint32_t tickstart = 0U;
1216
1217 /* Check that a Rx process is not already ongoing */
1218 if (huart->RxState == HAL_UART_STATE_READY)
1219 {
1220 if ((pData == NULL) || (Size == 0U))
1221 {
1222 return HAL_ERROR;
1223 }
1224
1225 huart->ErrorCode = HAL_UART_ERROR_NONE;
1226 huart->RxState = HAL_UART_STATE_BUSY_RX;
1227 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1228
1229 /* Init tickstart for timeout management */
1230 tickstart = HAL_GetTick();
1231
1232 huart->RxXferSize = Size;
1233 huart->RxXferCount = Size;
1234
1235 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1236 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1237 {
1238 pdata8bits = NULL;
1239 pdata16bits = (uint16_t *) pData;
1240 }
1241 else
1242 {
1243 pdata8bits = pData;
1244 pdata16bits = NULL;
1245 }
1246
1247 /* Check the remain data to be received */
1248 while (huart->RxXferCount > 0U)
1249 {
1250 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
1251 {
1252 return HAL_TIMEOUT;
1253 }
1254 if (pdata8bits == NULL)
1255 {
1256 *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF);
1257 pdata16bits++;
1258 }
1259 else
1260 {
1261 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1262 {
1263 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1264 }
1265 else
1266 {
1267 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1268 }
1269 pdata8bits++;
1270 }
1271 huart->RxXferCount--;
1272 }
1273
1274 /* At end of Rx process, restore huart->RxState to Ready */
1275 huart->RxState = HAL_UART_STATE_READY;
1276
1277 return HAL_OK;
1278 }
1279 else
1280 {
1281 return HAL_BUSY;
1282 }
1283 }
1284
1285 /**
1286 * @brief Sends an amount of data in non blocking mode.
1287 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1288 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1289 * of u16 provided through pData.
1290 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1291 * the configuration information for the specified UART module.
1292 * @param pData Pointer to data buffer (u8 or u16 data elements).
1293 * @param Size Amount of data elements (u8 or u16) to be sent
1294 * @retval HAL status
1295 */
HAL_UART_Transmit_IT(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1296 HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1297 {
1298 /* Check that a Tx process is not already ongoing */
1299 if (huart->gState == HAL_UART_STATE_READY)
1300 {
1301 if ((pData == NULL) || (Size == 0U))
1302 {
1303 return HAL_ERROR;
1304 }
1305
1306 huart->pTxBuffPtr = pData;
1307 huart->TxXferSize = Size;
1308 huart->TxXferCount = Size;
1309
1310 huart->ErrorCode = HAL_UART_ERROR_NONE;
1311 huart->gState = HAL_UART_STATE_BUSY_TX;
1312
1313 /* Enable the UART Transmit data register empty Interrupt */
1314 __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
1315
1316 return HAL_OK;
1317 }
1318 else
1319 {
1320 return HAL_BUSY;
1321 }
1322 }
1323
1324 /**
1325 * @brief Receives an amount of data in non blocking mode.
1326 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1327 * the received data is handled as a set of u16. In this case, Size must indicate the number
1328 * of u16 available through pData.
1329 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1330 * the configuration information for the specified UART module.
1331 * @param pData Pointer to data buffer (u8 or u16 data elements).
1332 * @param Size Amount of data elements (u8 or u16) to be received.
1333 * @retval HAL status
1334 */
HAL_UART_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1335 HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1336 {
1337 /* Check that a Rx process is not already ongoing */
1338 if (huart->RxState == HAL_UART_STATE_READY)
1339 {
1340 if ((pData == NULL) || (Size == 0U))
1341 {
1342 return HAL_ERROR;
1343 }
1344
1345 /* Set Reception type to Standard reception */
1346 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1347
1348 return (UART_Start_Receive_IT(huart, pData, Size));
1349 }
1350 else
1351 {
1352 return HAL_BUSY;
1353 }
1354 }
1355
1356 /**
1357 * @brief Sends an amount of data in DMA mode.
1358 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1359 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1360 * of u16 provided through pData.
1361 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1362 * the configuration information for the specified UART module.
1363 * @param pData Pointer to data buffer (u8 or u16 data elements).
1364 * @param Size Amount of data elements (u8 or u16) to be sent
1365 * @retval HAL status
1366 */
HAL_UART_Transmit_DMA(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1367 HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1368 {
1369 const uint32_t *tmp;
1370
1371 /* Check that a Tx process is not already ongoing */
1372 if (huart->gState == HAL_UART_STATE_READY)
1373 {
1374 if ((pData == NULL) || (Size == 0U))
1375 {
1376 return HAL_ERROR;
1377 }
1378
1379 huart->pTxBuffPtr = pData;
1380 huart->TxXferSize = Size;
1381 huart->TxXferCount = Size;
1382
1383 huart->ErrorCode = HAL_UART_ERROR_NONE;
1384 huart->gState = HAL_UART_STATE_BUSY_TX;
1385
1386 /* Set the UART DMA transfer complete callback */
1387 huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
1388
1389 /* Set the UART DMA Half transfer complete callback */
1390 huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
1391
1392 /* Set the DMA error callback */
1393 huart->hdmatx->XferErrorCallback = UART_DMAError;
1394
1395 /* Set the DMA abort callback */
1396 huart->hdmatx->XferAbortCallback = NULL;
1397
1398 /* Enable the UART transmit DMA channel */
1399 tmp = (const uint32_t *)&pData;
1400 HAL_DMA_Start_IT(huart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
1401
1402 /* Clear the TC flag in the SR register by writing 0 to it */
1403 __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
1404
1405 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1406 in the UART CR3 register */
1407 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1408
1409 return HAL_OK;
1410 }
1411 else
1412 {
1413 return HAL_BUSY;
1414 }
1415 }
1416
1417 /**
1418 * @brief Receives an amount of data in DMA mode.
1419 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1420 * the received data is handled as a set of u16. In this case, Size must indicate the number
1421 * of u16 available through pData.
1422 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1423 * the configuration information for the specified UART module.
1424 * @param pData Pointer to data buffer (u8 or u16 data elements).
1425 * @param Size Amount of data elements (u8 or u16) to be received.
1426 * @note When the UART parity is enabled (PCE = 1) the received data contains the parity bit.
1427 * @retval HAL status
1428 */
HAL_UART_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1429 HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1430 {
1431 /* Check that a Rx process is not already ongoing */
1432 if (huart->RxState == HAL_UART_STATE_READY)
1433 {
1434 if ((pData == NULL) || (Size == 0U))
1435 {
1436 return HAL_ERROR;
1437 }
1438
1439 /* Set Reception type to Standard reception */
1440 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1441
1442 return (UART_Start_Receive_DMA(huart, pData, Size));
1443 }
1444 else
1445 {
1446 return HAL_BUSY;
1447 }
1448 }
1449
1450 /**
1451 * @brief Pauses the DMA Transfer.
1452 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1453 * the configuration information for the specified UART module.
1454 * @retval HAL status
1455 */
HAL_UART_DMAPause(UART_HandleTypeDef * huart)1456 HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
1457 {
1458 uint32_t dmarequest = 0x00U;
1459
1460 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1461 if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1462 {
1463 /* Disable the UART DMA Tx request */
1464 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1465 }
1466
1467 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1468 if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1469 {
1470 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1471 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1472 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1473
1474 /* Disable the UART DMA Rx request */
1475 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1476 }
1477
1478 return HAL_OK;
1479 }
1480
1481 /**
1482 * @brief Resumes the DMA Transfer.
1483 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1484 * the configuration information for the specified UART module.
1485 * @retval HAL status
1486 */
HAL_UART_DMAResume(UART_HandleTypeDef * huart)1487 HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
1488 {
1489
1490 if (huart->gState == HAL_UART_STATE_BUSY_TX)
1491 {
1492 /* Enable the UART DMA Tx request */
1493 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1494 }
1495
1496 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
1497 {
1498 /* Clear the Overrun flag before resuming the Rx transfer*/
1499 __HAL_UART_CLEAR_OREFLAG(huart);
1500
1501 /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1502 if (huart->Init.Parity != UART_PARITY_NONE)
1503 {
1504 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1505 }
1506 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1507
1508 /* Enable the UART DMA Rx request */
1509 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1510 }
1511
1512 return HAL_OK;
1513 }
1514
1515 /**
1516 * @brief Stops the DMA Transfer.
1517 * @param huart Pointer to a UART_HandleTypeDef structure that contains
1518 * the configuration information for the specified UART module.
1519 * @retval HAL status
1520 */
HAL_UART_DMAStop(UART_HandleTypeDef * huart)1521 HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
1522 {
1523 uint32_t dmarequest = 0x00U;
1524 /* The Lock is not implemented on this API to allow the user application
1525 to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
1526 when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
1527 and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
1528 */
1529
1530 /* Stop UART DMA Tx request if ongoing */
1531 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1532 if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1533 {
1534 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1535
1536 /* Abort the UART DMA Tx channel */
1537 if (huart->hdmatx != NULL)
1538 {
1539 HAL_DMA_Abort(huart->hdmatx);
1540 }
1541 UART_EndTxTransfer(huart);
1542 }
1543
1544 /* Stop UART DMA Rx request if ongoing */
1545 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1546 if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1547 {
1548 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1549
1550 /* Abort the UART DMA Rx channel */
1551 if (huart->hdmarx != NULL)
1552 {
1553 HAL_DMA_Abort(huart->hdmarx);
1554 }
1555 UART_EndRxTransfer(huart);
1556 }
1557
1558 return HAL_OK;
1559 }
1560
1561 /**
1562 * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs.
1563 * @note HAL_OK is returned if reception is completed (expected number of data has been received)
1564 * or if reception is stopped after IDLE event (less than the expected number of data has been received)
1565 * In this case, RxLen output parameter indicates number of data available in reception buffer.
1566 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1567 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1568 * of uint16_t available through pData.
1569 * @param huart UART handle.
1570 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1571 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
1572 * @param RxLen Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event)
1573 * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
1574 * @retval HAL status
1575 */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)1576 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
1577 uint32_t Timeout)
1578 {
1579 uint8_t *pdata8bits;
1580 uint16_t *pdata16bits;
1581 uint32_t tickstart;
1582
1583 /* Check that a Rx process is not already ongoing */
1584 if (huart->RxState == HAL_UART_STATE_READY)
1585 {
1586 if ((pData == NULL) || (Size == 0U))
1587 {
1588 return HAL_ERROR;
1589 }
1590
1591 huart->ErrorCode = HAL_UART_ERROR_NONE;
1592 huart->RxState = HAL_UART_STATE_BUSY_RX;
1593 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1594 huart->RxEventType = HAL_UART_RXEVENT_TC;
1595
1596 /* Init tickstart for timeout management */
1597 tickstart = HAL_GetTick();
1598
1599 huart->RxXferSize = Size;
1600 huart->RxXferCount = Size;
1601
1602 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1603 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1604 {
1605 pdata8bits = NULL;
1606 pdata16bits = (uint16_t *) pData;
1607 }
1608 else
1609 {
1610 pdata8bits = pData;
1611 pdata16bits = NULL;
1612 }
1613
1614 /* Initialize output number of received elements */
1615 *RxLen = 0U;
1616
1617 /* as long as data have to be received */
1618 while (huart->RxXferCount > 0U)
1619 {
1620 /* Check if IDLE flag is set */
1621 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
1622 {
1623 /* Clear IDLE flag in ISR */
1624 __HAL_UART_CLEAR_IDLEFLAG(huart);
1625
1626 /* If Set, but no data ever received, clear flag without exiting loop */
1627 /* If Set, and data has already been received, this means Idle Event is valid : End reception */
1628 if (*RxLen > 0U)
1629 {
1630 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
1631 huart->RxState = HAL_UART_STATE_READY;
1632
1633 return HAL_OK;
1634 }
1635 }
1636
1637 /* Check if RXNE flag is set */
1638 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
1639 {
1640 if (pdata8bits == NULL)
1641 {
1642 *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
1643 pdata16bits++;
1644 }
1645 else
1646 {
1647 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1648 {
1649 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1650 }
1651 else
1652 {
1653 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1654 }
1655
1656 pdata8bits++;
1657 }
1658 /* Increment number of received elements */
1659 *RxLen += 1U;
1660 huart->RxXferCount--;
1661 }
1662
1663 /* Check for the Timeout */
1664 if (Timeout != HAL_MAX_DELAY)
1665 {
1666 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1667 {
1668 huart->RxState = HAL_UART_STATE_READY;
1669
1670 return HAL_TIMEOUT;
1671 }
1672 }
1673 }
1674
1675 /* Set number of received elements in output parameter : RxLen */
1676 *RxLen = huart->RxXferSize - huart->RxXferCount;
1677 /* At end of Rx process, restore huart->RxState to Ready */
1678 huart->RxState = HAL_UART_STATE_READY;
1679
1680 return HAL_OK;
1681 }
1682 else
1683 {
1684 return HAL_BUSY;
1685 }
1686 }
1687
1688 /**
1689 * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs.
1690 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
1691 * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
1692 * number of received data elements.
1693 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1694 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1695 * of uint16_t available through pData.
1696 * @param huart UART handle.
1697 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1698 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
1699 * @retval HAL status
1700 */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1701 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1702 {
1703 HAL_StatusTypeDef status;
1704
1705 /* Check that a Rx process is not already ongoing */
1706 if (huart->RxState == HAL_UART_STATE_READY)
1707 {
1708 if ((pData == NULL) || (Size == 0U))
1709 {
1710 return HAL_ERROR;
1711 }
1712
1713 /* Set Reception type to reception till IDLE Event*/
1714 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1715 huart->RxEventType = HAL_UART_RXEVENT_TC;
1716
1717 status = UART_Start_Receive_IT(huart, pData, Size);
1718
1719 /* Check Rx process has been successfully started */
1720 if (status == HAL_OK)
1721 {
1722 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1723 {
1724 __HAL_UART_CLEAR_IDLEFLAG(huart);
1725 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1726 }
1727 else
1728 {
1729 /* In case of errors already pending when reception is started,
1730 Interrupts may have already been raised and lead to reception abortion.
1731 (Overrun error for instance).
1732 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1733 status = HAL_ERROR;
1734 }
1735 }
1736
1737 return status;
1738 }
1739 else
1740 {
1741 return HAL_BUSY;
1742 }
1743 }
1744
1745 /**
1746 * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs.
1747 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
1748 * to DMA services, transferring automatically received data elements in user reception buffer and
1749 * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
1750 * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
1751 * @note When the UART parity is enabled (PCE = 1), the received data contain
1752 * the parity bit (MSB position).
1753 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1754 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1755 * of uint16_t available through pData.
1756 * @param huart UART handle.
1757 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1758 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
1759 * @retval HAL status
1760 */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1761 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1762 {
1763 HAL_StatusTypeDef status;
1764
1765 /* Check that a Rx process is not already ongoing */
1766 if (huart->RxState == HAL_UART_STATE_READY)
1767 {
1768 if ((pData == NULL) || (Size == 0U))
1769 {
1770 return HAL_ERROR;
1771 }
1772
1773 /* Set Reception type to reception till IDLE Event*/
1774 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1775 huart->RxEventType = HAL_UART_RXEVENT_TC;
1776
1777 status = UART_Start_Receive_DMA(huart, pData, Size);
1778
1779 /* Check Rx process has been successfully started */
1780 if (status == HAL_OK)
1781 {
1782 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1783 {
1784 __HAL_UART_CLEAR_IDLEFLAG(huart);
1785 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1786 }
1787 else
1788 {
1789 /* In case of errors already pending when reception is started,
1790 Interrupts may have already been raised and lead to reception abortion.
1791 (Overrun error for instance).
1792 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1793 status = HAL_ERROR;
1794 }
1795 }
1796
1797 return status;
1798 }
1799 else
1800 {
1801 return HAL_BUSY;
1802 }
1803 }
1804
1805 /**
1806 * @brief Provide Rx Event type that has lead to RxEvent callback execution.
1807 * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
1808 * of reception process is provided to application through calls of Rx Event callback (either default one
1809 * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
1810 * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
1811 * to Rx Event callback execution.
1812 * @note This function is expected to be called within the user implementation of Rx Event Callback,
1813 * in order to provide the accurate value :
1814 * In Interrupt Mode :
1815 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1816 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1817 * received data is lower than expected one)
1818 * In DMA Mode :
1819 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1820 * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
1821 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1822 * received data is lower than expected one).
1823 * In DMA mode, RxEvent callback could be called several times;
1824 * When DMA is configured in Normal Mode, HT event does not stop Reception process;
1825 * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
1826 * @param huart UART handle.
1827 * @retval Rx Event Type (returned value will be a value of @ref UART_RxEvent_Type_Values)
1828 */
HAL_UARTEx_GetRxEventType(UART_HandleTypeDef * huart)1829 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
1830 {
1831 /* Return Rx Event type value, as stored in UART handle */
1832 return(huart->RxEventType);
1833 }
1834
1835 /**
1836 * @brief Abort ongoing transfers (blocking mode).
1837 * @param huart UART handle.
1838 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1839 * This procedure performs following operations :
1840 * - Disable UART Interrupts (Tx and Rx)
1841 * - Disable the DMA transfer in the peripheral register (if enabled)
1842 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1843 * - Set handle State to READY
1844 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1845 * @retval HAL status
1846 */
HAL_UART_Abort(UART_HandleTypeDef * huart)1847 HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
1848 {
1849 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1850 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1851 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1852
1853 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1854 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1855 {
1856 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1857 }
1858
1859 /* Disable the UART DMA Tx request if enabled */
1860 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1861 {
1862 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1863
1864 /* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */
1865 if (huart->hdmatx != NULL)
1866 {
1867 /* Set the UART DMA Abort callback to Null.
1868 No call back execution at end of DMA abort procedure */
1869 huart->hdmatx->XferAbortCallback = NULL;
1870
1871 if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1872 {
1873 if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1874 {
1875 /* Set error code to DMA */
1876 huart->ErrorCode = HAL_UART_ERROR_DMA;
1877
1878 return HAL_TIMEOUT;
1879 }
1880 }
1881 }
1882 }
1883
1884 /* Disable the UART DMA Rx request if enabled */
1885 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1886 {
1887 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1888
1889 /* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */
1890 if (huart->hdmarx != NULL)
1891 {
1892 /* Set the UART DMA Abort callback to Null.
1893 No call back execution at end of DMA abort procedure */
1894 huart->hdmarx->XferAbortCallback = NULL;
1895
1896 if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1897 {
1898 if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1899 {
1900 /* Set error code to DMA */
1901 huart->ErrorCode = HAL_UART_ERROR_DMA;
1902
1903 return HAL_TIMEOUT;
1904 }
1905 }
1906 }
1907 }
1908
1909 /* Reset Tx and Rx transfer counters */
1910 huart->TxXferCount = 0x00U;
1911 huart->RxXferCount = 0x00U;
1912
1913 /* Reset ErrorCode */
1914 huart->ErrorCode = HAL_UART_ERROR_NONE;
1915
1916 /* Restore huart->RxState and huart->gState to Ready */
1917 huart->RxState = HAL_UART_STATE_READY;
1918 huart->gState = HAL_UART_STATE_READY;
1919 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1920
1921 return HAL_OK;
1922 }
1923
1924 /**
1925 * @brief Abort ongoing Transmit transfer (blocking mode).
1926 * @param huart UART handle.
1927 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1928 * This procedure performs following operations :
1929 * - Disable UART Interrupts (Tx)
1930 * - Disable the DMA transfer in the peripheral register (if enabled)
1931 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1932 * - Set handle State to READY
1933 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1934 * @retval HAL status
1935 */
HAL_UART_AbortTransmit(UART_HandleTypeDef * huart)1936 HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
1937 {
1938 /* Disable TXEIE and TCIE interrupts */
1939 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1940
1941 /* Disable the UART DMA Tx request if enabled */
1942 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1943 {
1944 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1945
1946 /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
1947 if (huart->hdmatx != NULL)
1948 {
1949 /* Set the UART DMA Abort callback to Null.
1950 No call back execution at end of DMA abort procedure */
1951 huart->hdmatx->XferAbortCallback = NULL;
1952
1953 if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1954 {
1955 if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1956 {
1957 /* Set error code to DMA */
1958 huart->ErrorCode = HAL_UART_ERROR_DMA;
1959
1960 return HAL_TIMEOUT;
1961 }
1962 }
1963 }
1964 }
1965
1966 /* Reset Tx transfer counter */
1967 huart->TxXferCount = 0x00U;
1968
1969 /* Restore huart->gState to Ready */
1970 huart->gState = HAL_UART_STATE_READY;
1971
1972 return HAL_OK;
1973 }
1974
1975 /**
1976 * @brief Abort ongoing Receive transfer (blocking mode).
1977 * @param huart UART handle.
1978 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1979 * This procedure performs following operations :
1980 * - Disable UART Interrupts (Rx)
1981 * - Disable the DMA transfer in the peripheral register (if enabled)
1982 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1983 * - Set handle State to READY
1984 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1985 * @retval HAL status
1986 */
HAL_UART_AbortReceive(UART_HandleTypeDef * huart)1987 HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
1988 {
1989 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1990 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1991 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1992
1993 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1994 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1995 {
1996 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1997 }
1998
1999 /* Disable the UART DMA Rx request if enabled */
2000 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2001 {
2002 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2003
2004 /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
2005 if (huart->hdmarx != NULL)
2006 {
2007 /* Set the UART DMA Abort callback to Null.
2008 No call back execution at end of DMA abort procedure */
2009 huart->hdmarx->XferAbortCallback = NULL;
2010
2011 if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
2012 {
2013 if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
2014 {
2015 /* Set error code to DMA */
2016 huart->ErrorCode = HAL_UART_ERROR_DMA;
2017
2018 return HAL_TIMEOUT;
2019 }
2020 }
2021 }
2022 }
2023
2024 /* Reset Rx transfer counter */
2025 huart->RxXferCount = 0x00U;
2026
2027 /* Restore huart->RxState to Ready */
2028 huart->RxState = HAL_UART_STATE_READY;
2029 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2030
2031 return HAL_OK;
2032 }
2033
2034 /**
2035 * @brief Abort ongoing transfers (Interrupt mode).
2036 * @param huart UART handle.
2037 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
2038 * This procedure performs following operations :
2039 * - Disable UART Interrupts (Tx and Rx)
2040 * - Disable the DMA transfer in the peripheral register (if enabled)
2041 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2042 * - Set handle State to READY
2043 * - At abort completion, call user abort complete callback
2044 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
2045 * considered as completed only when user abort complete callback is executed (not when exiting function).
2046 * @retval HAL status
2047 */
HAL_UART_Abort_IT(UART_HandleTypeDef * huart)2048 HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
2049 {
2050 uint32_t AbortCplt = 0x01U;
2051
2052 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2053 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
2054 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2055
2056 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2057 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2058 {
2059 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2060 }
2061
2062 /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
2063 before any call to DMA Abort functions */
2064 /* DMA Tx Handle is valid */
2065 if (huart->hdmatx != NULL)
2066 {
2067 /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
2068 Otherwise, set it to NULL */
2069 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2070 {
2071 huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
2072 }
2073 else
2074 {
2075 huart->hdmatx->XferAbortCallback = NULL;
2076 }
2077 }
2078 /* DMA Rx Handle is valid */
2079 if (huart->hdmarx != NULL)
2080 {
2081 /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
2082 Otherwise, set it to NULL */
2083 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2084 {
2085 huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
2086 }
2087 else
2088 {
2089 huart->hdmarx->XferAbortCallback = NULL;
2090 }
2091 }
2092
2093 /* Disable the UART DMA Tx request if enabled */
2094 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2095 {
2096 /* Disable DMA Tx at UART level */
2097 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2098
2099 /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
2100 if (huart->hdmatx != NULL)
2101 {
2102 /* UART Tx DMA Abort callback has already been initialised :
2103 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2104
2105 /* Abort DMA TX */
2106 if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2107 {
2108 huart->hdmatx->XferAbortCallback = NULL;
2109 }
2110 else
2111 {
2112 AbortCplt = 0x00U;
2113 }
2114 }
2115 }
2116
2117 /* Disable the UART DMA Rx request if enabled */
2118 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2119 {
2120 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2121
2122 /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
2123 if (huart->hdmarx != NULL)
2124 {
2125 /* UART Rx DMA Abort callback has already been initialised :
2126 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2127
2128 /* Abort DMA RX */
2129 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2130 {
2131 huart->hdmarx->XferAbortCallback = NULL;
2132 AbortCplt = 0x01U;
2133 }
2134 else
2135 {
2136 AbortCplt = 0x00U;
2137 }
2138 }
2139 }
2140
2141 /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
2142 if (AbortCplt == 0x01U)
2143 {
2144 /* Reset Tx and Rx transfer counters */
2145 huart->TxXferCount = 0x00U;
2146 huart->RxXferCount = 0x00U;
2147
2148 /* Reset ErrorCode */
2149 huart->ErrorCode = HAL_UART_ERROR_NONE;
2150
2151 /* Restore huart->gState and huart->RxState to Ready */
2152 huart->gState = HAL_UART_STATE_READY;
2153 huart->RxState = HAL_UART_STATE_READY;
2154 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2155
2156 /* As no DMA to be aborted, call directly user Abort complete callback */
2157 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2158 /* Call registered Abort complete callback */
2159 huart->AbortCpltCallback(huart);
2160 #else
2161 /* Call legacy weak Abort complete callback */
2162 HAL_UART_AbortCpltCallback(huart);
2163 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2164 }
2165
2166 return HAL_OK;
2167 }
2168
2169 /**
2170 * @brief Abort ongoing Transmit transfer (Interrupt mode).
2171 * @param huart UART handle.
2172 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
2173 * This procedure performs following operations :
2174 * - Disable UART Interrupts (Tx)
2175 * - Disable the DMA transfer in the peripheral register (if enabled)
2176 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2177 * - Set handle State to READY
2178 * - At abort completion, call user abort complete callback
2179 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
2180 * considered as completed only when user abort complete callback is executed (not when exiting function).
2181 * @retval HAL status
2182 */
HAL_UART_AbortTransmit_IT(UART_HandleTypeDef * huart)2183 HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
2184 {
2185 /* Disable TXEIE and TCIE interrupts */
2186 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
2187
2188 /* Disable the UART DMA Tx request if enabled */
2189 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2190 {
2191 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2192
2193 /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
2194 if (huart->hdmatx != NULL)
2195 {
2196 /* Set the UART DMA Abort callback :
2197 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2198 huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
2199
2200 /* Abort DMA TX */
2201 if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2202 {
2203 /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
2204 huart->hdmatx->XferAbortCallback(huart->hdmatx);
2205 }
2206 }
2207 else
2208 {
2209 /* Reset Tx transfer counter */
2210 huart->TxXferCount = 0x00U;
2211
2212 /* Restore huart->gState to Ready */
2213 huart->gState = HAL_UART_STATE_READY;
2214
2215 /* As no DMA to be aborted, call directly user Abort complete callback */
2216 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2217 /* Call registered Abort Transmit Complete Callback */
2218 huart->AbortTransmitCpltCallback(huart);
2219 #else
2220 /* Call legacy weak Abort Transmit Complete Callback */
2221 HAL_UART_AbortTransmitCpltCallback(huart);
2222 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2223 }
2224 }
2225 else
2226 {
2227 /* Reset Tx transfer counter */
2228 huart->TxXferCount = 0x00U;
2229
2230 /* Restore huart->gState to Ready */
2231 huart->gState = HAL_UART_STATE_READY;
2232
2233 /* As no DMA to be aborted, call directly user Abort complete callback */
2234 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2235 /* Call registered Abort Transmit Complete Callback */
2236 huart->AbortTransmitCpltCallback(huart);
2237 #else
2238 /* Call legacy weak Abort Transmit Complete Callback */
2239 HAL_UART_AbortTransmitCpltCallback(huart);
2240 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2241 }
2242
2243 return HAL_OK;
2244 }
2245
2246 /**
2247 * @brief Abort ongoing Receive transfer (Interrupt mode).
2248 * @param huart UART handle.
2249 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
2250 * This procedure performs following operations :
2251 * - Disable UART Interrupts (Rx)
2252 * - Disable the DMA transfer in the peripheral register (if enabled)
2253 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2254 * - Set handle State to READY
2255 * - At abort completion, call user abort complete callback
2256 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
2257 * considered as completed only when user abort complete callback is executed (not when exiting function).
2258 * @retval HAL status
2259 */
HAL_UART_AbortReceive_IT(UART_HandleTypeDef * huart)2260 HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
2261 {
2262 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2263 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2264 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2265
2266 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2267 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2268 {
2269 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2270 }
2271
2272 /* Disable the UART DMA Rx request if enabled */
2273 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2274 {
2275 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2276
2277 /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
2278 if (huart->hdmarx != NULL)
2279 {
2280 /* Set the UART DMA Abort callback :
2281 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2282 huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
2283
2284 /* Abort DMA RX */
2285 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2286 {
2287 /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
2288 huart->hdmarx->XferAbortCallback(huart->hdmarx);
2289 }
2290 }
2291 else
2292 {
2293 /* Reset Rx transfer counter */
2294 huart->RxXferCount = 0x00U;
2295
2296 /* Restore huart->RxState to Ready */
2297 huart->RxState = HAL_UART_STATE_READY;
2298 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2299
2300 /* As no DMA to be aborted, call directly user Abort complete callback */
2301 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2302 /* Call registered Abort Receive Complete Callback */
2303 huart->AbortReceiveCpltCallback(huart);
2304 #else
2305 /* Call legacy weak Abort Receive Complete Callback */
2306 HAL_UART_AbortReceiveCpltCallback(huart);
2307 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2308 }
2309 }
2310 else
2311 {
2312 /* Reset Rx transfer counter */
2313 huart->RxXferCount = 0x00U;
2314
2315 /* Restore huart->RxState to Ready */
2316 huart->RxState = HAL_UART_STATE_READY;
2317 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2318
2319 /* As no DMA to be aborted, call directly user Abort complete callback */
2320 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2321 /* Call registered Abort Receive Complete Callback */
2322 huart->AbortReceiveCpltCallback(huart);
2323 #else
2324 /* Call legacy weak Abort Receive Complete Callback */
2325 HAL_UART_AbortReceiveCpltCallback(huart);
2326 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2327 }
2328
2329 return HAL_OK;
2330 }
2331
2332 /**
2333 * @brief This function handles UART interrupt request.
2334 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2335 * the configuration information for the specified UART module.
2336 * @retval None
2337 */
HAL_UART_IRQHandler(UART_HandleTypeDef * huart)2338 void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
2339 {
2340 uint32_t isrflags = READ_REG(huart->Instance->SR);
2341 uint32_t cr1its = READ_REG(huart->Instance->CR1);
2342 uint32_t cr3its = READ_REG(huart->Instance->CR3);
2343 uint32_t errorflags = 0x00U;
2344 uint32_t dmarequest = 0x00U;
2345
2346 /* If no error occurs */
2347 errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
2348 if (errorflags == RESET)
2349 {
2350 /* UART in mode Receiver -------------------------------------------------*/
2351 if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2352 {
2353 UART_Receive_IT(huart);
2354 return;
2355 }
2356 }
2357
2358 /* If some errors occur */
2359 if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET)
2360 || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
2361 {
2362 /* UART parity error interrupt occurred ----------------------------------*/
2363 if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
2364 {
2365 huart->ErrorCode |= HAL_UART_ERROR_PE;
2366 }
2367
2368 /* UART noise error interrupt occurred -----------------------------------*/
2369 if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2370 {
2371 huart->ErrorCode |= HAL_UART_ERROR_NE;
2372 }
2373
2374 /* UART frame error interrupt occurred -----------------------------------*/
2375 if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2376 {
2377 huart->ErrorCode |= HAL_UART_ERROR_FE;
2378 }
2379
2380 /* UART Over-Run interrupt occurred --------------------------------------*/
2381 if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET)
2382 || ((cr3its & USART_CR3_EIE) != RESET)))
2383 {
2384 huart->ErrorCode |= HAL_UART_ERROR_ORE;
2385 }
2386
2387 /* Call UART Error Call back function if need be --------------------------*/
2388 if (huart->ErrorCode != HAL_UART_ERROR_NONE)
2389 {
2390 /* UART in mode Receiver -----------------------------------------------*/
2391 if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2392 {
2393 UART_Receive_IT(huart);
2394 }
2395
2396 /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2397 consider error as blocking */
2398 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
2399 if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
2400 {
2401 /* Blocking error : transfer is aborted
2402 Set the UART state ready to be able to start again the process,
2403 Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2404 UART_EndRxTransfer(huart);
2405
2406 /* Disable the UART DMA Rx request if enabled */
2407 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2408 {
2409 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2410
2411 /* Abort the UART DMA Rx channel */
2412 if (huart->hdmarx != NULL)
2413 {
2414 /* Set the UART DMA Abort callback :
2415 will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
2416 huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
2417 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2418 {
2419 /* Call Directly XferAbortCallback function in case of error */
2420 huart->hdmarx->XferAbortCallback(huart->hdmarx);
2421 }
2422 }
2423 else
2424 {
2425 /* Call user error callback */
2426 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2427 /*Call registered error callback*/
2428 huart->ErrorCallback(huart);
2429 #else
2430 /*Call legacy weak error callback*/
2431 HAL_UART_ErrorCallback(huart);
2432 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2433 }
2434 }
2435 else
2436 {
2437 /* Call user error callback */
2438 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2439 /*Call registered error callback*/
2440 huart->ErrorCallback(huart);
2441 #else
2442 /*Call legacy weak error callback*/
2443 HAL_UART_ErrorCallback(huart);
2444 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2445 }
2446 }
2447 else
2448 {
2449 /* Non Blocking error : transfer could go on.
2450 Error is notified to user through user error callback */
2451 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2452 /*Call registered error callback*/
2453 huart->ErrorCallback(huart);
2454 #else
2455 /*Call legacy weak error callback*/
2456 HAL_UART_ErrorCallback(huart);
2457 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2458
2459 huart->ErrorCode = HAL_UART_ERROR_NONE;
2460 }
2461 }
2462 return;
2463 } /* End if some error occurs */
2464
2465 /* Check current reception Mode :
2466 If Reception till IDLE event has been selected : */
2467 if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2468 && ((isrflags & USART_SR_IDLE) != 0U)
2469 && ((cr1its & USART_SR_IDLE) != 0U))
2470 {
2471 __HAL_UART_CLEAR_IDLEFLAG(huart);
2472
2473 /* Check if DMA mode is enabled in UART */
2474 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2475 {
2476 /* DMA mode enabled */
2477 /* Check received length : If all expected data are received, do nothing,
2478 (DMA cplt callback will be called).
2479 Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2480 uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
2481 if ((nb_remaining_rx_data > 0U)
2482 && (nb_remaining_rx_data < huart->RxXferSize))
2483 {
2484 /* Reception is not complete */
2485 huart->RxXferCount = nb_remaining_rx_data;
2486
2487 /* In Normal mode, end DMA xfer and HAL UART Rx process*/
2488 if (huart->hdmarx->Init.Mode != DMA_CIRCULAR)
2489 {
2490 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2491 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
2492 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2493
2494 /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2495 in the UART CR3 register */
2496 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2497
2498 /* At end of Rx process, restore huart->RxState to Ready */
2499 huart->RxState = HAL_UART_STATE_READY;
2500 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2501
2502 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2503
2504 /* Last bytes received, so no need as the abort is immediate */
2505 (void)HAL_DMA_Abort(huart->hdmarx);
2506 }
2507
2508 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2509 In this case, Rx Event type is Idle Event */
2510 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2511
2512 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2513 /*Call registered Rx Event callback*/
2514 huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2515 #else
2516 /*Call legacy weak Rx Event callback*/
2517 HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2518 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2519 }
2520 return;
2521 }
2522 else
2523 {
2524 /* DMA mode not enabled */
2525 /* Check received length : If all expected data are received, do nothing.
2526 Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2527 uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
2528 if ((huart->RxXferCount > 0U)
2529 && (nb_rx_data > 0U))
2530 {
2531 /* Disable the UART Parity Error Interrupt and RXNE interrupts */
2532 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2533
2534 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
2535 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2536
2537 /* Rx process is completed, restore huart->RxState to Ready */
2538 huart->RxState = HAL_UART_STATE_READY;
2539 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2540
2541 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2542
2543 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2544 In this case, Rx Event type is Idle Event */
2545 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2546
2547 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2548 /*Call registered Rx complete callback*/
2549 huart->RxEventCallback(huart, nb_rx_data);
2550 #else
2551 /*Call legacy weak Rx Event callback*/
2552 HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
2553 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2554 }
2555 return;
2556 }
2557 }
2558
2559 /* UART in mode Transmitter ------------------------------------------------*/
2560 if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
2561 {
2562 UART_Transmit_IT(huart);
2563 return;
2564 }
2565
2566 /* UART in mode Transmitter end --------------------------------------------*/
2567 if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
2568 {
2569 UART_EndTransmit_IT(huart);
2570 return;
2571 }
2572 }
2573
2574 /**
2575 * @brief Tx Transfer completed callbacks.
2576 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2577 * the configuration information for the specified UART module.
2578 * @retval None
2579 */
HAL_UART_TxCpltCallback(UART_HandleTypeDef * huart)2580 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
2581 {
2582 /* Prevent unused argument(s) compilation warning */
2583 UNUSED(huart);
2584 /* NOTE: This function should not be modified, when the callback is needed,
2585 the HAL_UART_TxCpltCallback could be implemented in the user file
2586 */
2587 }
2588
2589 /**
2590 * @brief Tx Half Transfer completed callbacks.
2591 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2592 * the configuration information for the specified UART module.
2593 * @retval None
2594 */
HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef * huart)2595 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
2596 {
2597 /* Prevent unused argument(s) compilation warning */
2598 UNUSED(huart);
2599 /* NOTE: This function should not be modified, when the callback is needed,
2600 the HAL_UART_TxHalfCpltCallback could be implemented in the user file
2601 */
2602 }
2603
2604 /**
2605 * @brief Rx Transfer completed callbacks.
2606 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2607 * the configuration information for the specified UART module.
2608 * @retval None
2609 */
HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)2610 __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
2611 {
2612 /* Prevent unused argument(s) compilation warning */
2613 UNUSED(huart);
2614 /* NOTE: This function should not be modified, when the callback is needed,
2615 the HAL_UART_RxCpltCallback could be implemented in the user file
2616 */
2617 }
2618
2619 /**
2620 * @brief Rx Half Transfer completed callbacks.
2621 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2622 * the configuration information for the specified UART module.
2623 * @retval None
2624 */
HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef * huart)2625 __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
2626 {
2627 /* Prevent unused argument(s) compilation warning */
2628 UNUSED(huart);
2629 /* NOTE: This function should not be modified, when the callback is needed,
2630 the HAL_UART_RxHalfCpltCallback could be implemented in the user file
2631 */
2632 }
2633
2634 /**
2635 * @brief UART error callbacks.
2636 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2637 * the configuration information for the specified UART module.
2638 * @retval None
2639 */
HAL_UART_ErrorCallback(UART_HandleTypeDef * huart)2640 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
2641 {
2642 /* Prevent unused argument(s) compilation warning */
2643 UNUSED(huart);
2644 /* NOTE: This function should not be modified, when the callback is needed,
2645 the HAL_UART_ErrorCallback could be implemented in the user file
2646 */
2647 }
2648
2649 /**
2650 * @brief UART Abort Complete callback.
2651 * @param huart UART handle.
2652 * @retval None
2653 */
HAL_UART_AbortCpltCallback(UART_HandleTypeDef * huart)2654 __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
2655 {
2656 /* Prevent unused argument(s) compilation warning */
2657 UNUSED(huart);
2658
2659 /* NOTE : This function should not be modified, when the callback is needed,
2660 the HAL_UART_AbortCpltCallback can be implemented in the user file.
2661 */
2662 }
2663
2664 /**
2665 * @brief UART Abort Complete callback.
2666 * @param huart UART handle.
2667 * @retval None
2668 */
HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef * huart)2669 __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
2670 {
2671 /* Prevent unused argument(s) compilation warning */
2672 UNUSED(huart);
2673
2674 /* NOTE : This function should not be modified, when the callback is needed,
2675 the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
2676 */
2677 }
2678
2679 /**
2680 * @brief UART Abort Receive Complete callback.
2681 * @param huart UART handle.
2682 * @retval None
2683 */
HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef * huart)2684 __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
2685 {
2686 /* Prevent unused argument(s) compilation warning */
2687 UNUSED(huart);
2688
2689 /* NOTE : This function should not be modified, when the callback is needed,
2690 the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
2691 */
2692 }
2693
2694 /**
2695 * @brief Reception Event Callback (Rx event notification called after use of advanced reception service).
2696 * @param huart UART handle
2697 * @param Size Number of data available in application reception buffer (indicates a position in
2698 * reception buffer until which, data are available)
2699 * @retval None
2700 */
HAL_UARTEx_RxEventCallback(UART_HandleTypeDef * huart,uint16_t Size)2701 __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
2702 {
2703 /* Prevent unused argument(s) compilation warning */
2704 UNUSED(huart);
2705 UNUSED(Size);
2706
2707 /* NOTE : This function should not be modified, when the callback is needed,
2708 the HAL_UARTEx_RxEventCallback can be implemented in the user file.
2709 */
2710 }
2711
2712 /**
2713 * @}
2714 */
2715
2716 /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
2717 * @brief UART control functions
2718 *
2719 @verbatim
2720 ==============================================================================
2721 ##### Peripheral Control functions #####
2722 ==============================================================================
2723 [..]
2724 This subsection provides a set of functions allowing to control the UART:
2725 (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
2726 (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
2727 (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
2728 (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
2729 (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
2730
2731 @endverbatim
2732 * @{
2733 */
2734
2735 /**
2736 * @brief Transmits break characters.
2737 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2738 * the configuration information for the specified UART module.
2739 * @retval HAL status
2740 */
HAL_LIN_SendBreak(UART_HandleTypeDef * huart)2741 HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
2742 {
2743 /* Check the parameters */
2744 assert_param(IS_UART_INSTANCE(huart->Instance));
2745
2746 /* Process Locked */
2747 __HAL_LOCK(huart);
2748
2749 huart->gState = HAL_UART_STATE_BUSY;
2750
2751 /* Send break characters */
2752 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
2753
2754 huart->gState = HAL_UART_STATE_READY;
2755
2756 /* Process Unlocked */
2757 __HAL_UNLOCK(huart);
2758
2759 return HAL_OK;
2760 }
2761
2762 /**
2763 * @brief Enters the UART in mute mode.
2764 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2765 * the configuration information for the specified UART module.
2766 * @retval HAL status
2767 */
HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef * huart)2768 HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
2769 {
2770 /* Check the parameters */
2771 assert_param(IS_UART_INSTANCE(huart->Instance));
2772
2773 /* Process Locked */
2774 __HAL_LOCK(huart);
2775
2776 huart->gState = HAL_UART_STATE_BUSY;
2777
2778 /* Enable the USART mute mode by setting the RWU bit in the CR1 register */
2779 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
2780
2781 huart->gState = HAL_UART_STATE_READY;
2782 huart->RxEventType = HAL_UART_RXEVENT_TC;
2783
2784 /* Process Unlocked */
2785 __HAL_UNLOCK(huart);
2786
2787 return HAL_OK;
2788 }
2789
2790 /**
2791 * @brief Exits the UART mute mode: wake up software.
2792 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2793 * the configuration information for the specified UART module.
2794 * @retval HAL status
2795 */
HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef * huart)2796 HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
2797 {
2798 /* Check the parameters */
2799 assert_param(IS_UART_INSTANCE(huart->Instance));
2800
2801 /* Process Locked */
2802 __HAL_LOCK(huart);
2803
2804 huart->gState = HAL_UART_STATE_BUSY;
2805
2806 /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
2807 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
2808
2809 huart->gState = HAL_UART_STATE_READY;
2810 huart->RxEventType = HAL_UART_RXEVENT_TC;
2811
2812 /* Process Unlocked */
2813 __HAL_UNLOCK(huart);
2814
2815 return HAL_OK;
2816 }
2817
2818 /**
2819 * @brief Enables the UART transmitter and disables the UART receiver.
2820 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2821 * the configuration information for the specified UART module.
2822 * @retval HAL status
2823 */
HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef * huart)2824 HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
2825 {
2826 uint32_t tmpreg = 0x00U;
2827
2828 /* Process Locked */
2829 __HAL_LOCK(huart);
2830
2831 huart->gState = HAL_UART_STATE_BUSY;
2832
2833 /*-------------------------- USART CR1 Configuration -----------------------*/
2834 tmpreg = huart->Instance->CR1;
2835
2836 /* Clear TE and RE bits */
2837 tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2838
2839 /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
2840 tmpreg |= (uint32_t)USART_CR1_TE;
2841
2842 /* Write to USART CR1 */
2843 WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2844
2845 huart->gState = HAL_UART_STATE_READY;
2846
2847 /* Process Unlocked */
2848 __HAL_UNLOCK(huart);
2849
2850 return HAL_OK;
2851 }
2852
2853 /**
2854 * @brief Enables the UART receiver and disables the UART transmitter.
2855 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2856 * the configuration information for the specified UART module.
2857 * @retval HAL status
2858 */
HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef * huart)2859 HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
2860 {
2861 uint32_t tmpreg = 0x00U;
2862
2863 /* Process Locked */
2864 __HAL_LOCK(huart);
2865
2866 huart->gState = HAL_UART_STATE_BUSY;
2867
2868 /*-------------------------- USART CR1 Configuration -----------------------*/
2869 tmpreg = huart->Instance->CR1;
2870
2871 /* Clear TE and RE bits */
2872 tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2873
2874 /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
2875 tmpreg |= (uint32_t)USART_CR1_RE;
2876
2877 /* Write to USART CR1 */
2878 WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2879
2880 huart->gState = HAL_UART_STATE_READY;
2881
2882 /* Process Unlocked */
2883 __HAL_UNLOCK(huart);
2884
2885 return HAL_OK;
2886 }
2887
2888 /**
2889 * @}
2890 */
2891
2892 /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
2893 * @brief UART State and Errors functions
2894 *
2895 @verbatim
2896 ==============================================================================
2897 ##### Peripheral State and Errors functions #####
2898 ==============================================================================
2899 [..]
2900 This subsection provides a set of functions allowing to return the State of
2901 UART communication process, return Peripheral Errors occurred during communication
2902 process
2903 (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
2904 (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
2905
2906 @endverbatim
2907 * @{
2908 */
2909
2910 /**
2911 * @brief Returns the UART state.
2912 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2913 * the configuration information for the specified UART module.
2914 * @retval HAL state
2915 */
HAL_UART_GetState(const UART_HandleTypeDef * huart)2916 HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
2917 {
2918 uint32_t temp1 = 0x00U, temp2 = 0x00U;
2919 temp1 = huart->gState;
2920 temp2 = huart->RxState;
2921
2922 return (HAL_UART_StateTypeDef)(temp1 | temp2);
2923 }
2924
2925 /**
2926 * @brief Return the UART error code
2927 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2928 * the configuration information for the specified UART.
2929 * @retval UART Error Code
2930 */
HAL_UART_GetError(const UART_HandleTypeDef * huart)2931 uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
2932 {
2933 return huart->ErrorCode;
2934 }
2935
2936 /**
2937 * @}
2938 */
2939
2940 /**
2941 * @}
2942 */
2943
2944 /** @defgroup UART_Private_Functions UART Private Functions
2945 * @{
2946 */
2947
2948 /**
2949 * @brief Initialize the callbacks to their default values.
2950 * @param huart UART handle.
2951 * @retval none
2952 */
2953 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(UART_HandleTypeDef * huart)2954 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
2955 {
2956 /* Init the UART Callback settings */
2957 huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
2958 huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
2959 huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
2960 huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
2961 huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
2962 huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
2963 huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2964 huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
2965 huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */
2966
2967 }
2968 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2969
2970 /**
2971 * @brief DMA UART transmit process complete callback.
2972 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2973 * the configuration information for the specified DMA module.
2974 * @retval None
2975 */
UART_DMATransmitCplt(DMA_HandleTypeDef * hdma)2976 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2977 {
2978 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2979 /* DMA Normal mode*/
2980 if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
2981 {
2982 huart->TxXferCount = 0x00U;
2983
2984 /* Disable the DMA transfer for transmit request by setting the DMAT bit
2985 in the UART CR3 register */
2986 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2987
2988 /* Enable the UART Transmit Complete Interrupt */
2989 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
2990
2991 }
2992 /* DMA Circular mode */
2993 else
2994 {
2995 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2996 /*Call registered Tx complete callback*/
2997 huart->TxCpltCallback(huart);
2998 #else
2999 /*Call legacy weak Tx complete callback*/
3000 HAL_UART_TxCpltCallback(huart);
3001 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3002 }
3003 }
3004
3005 /**
3006 * @brief DMA UART transmit process half complete callback
3007 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3008 * the configuration information for the specified DMA module.
3009 * @retval None
3010 */
UART_DMATxHalfCplt(DMA_HandleTypeDef * hdma)3011 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
3012 {
3013 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3014
3015 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3016 /*Call registered Tx complete callback*/
3017 huart->TxHalfCpltCallback(huart);
3018 #else
3019 /*Call legacy weak Tx complete callback*/
3020 HAL_UART_TxHalfCpltCallback(huart);
3021 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3022 }
3023
3024 /**
3025 * @brief DMA UART receive process complete callback.
3026 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3027 * the configuration information for the specified DMA module.
3028 * @retval None
3029 */
UART_DMAReceiveCplt(DMA_HandleTypeDef * hdma)3030 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
3031 {
3032 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3033
3034 /* DMA Normal mode*/
3035 if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
3036 {
3037 huart->RxXferCount = 0U;
3038
3039 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3040 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3041 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3042
3043 /* Disable the DMA transfer for the receiver request by setting the DMAR bit
3044 in the UART CR3 register */
3045 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3046
3047 /* At end of Rx process, restore huart->RxState to Ready */
3048 huart->RxState = HAL_UART_STATE_READY;
3049
3050 /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
3051 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3052 {
3053 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3054 }
3055 }
3056
3057 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3058 In this case, Rx Event type is Transfer Complete */
3059 huart->RxEventType = HAL_UART_RXEVENT_TC;
3060
3061 /* Check current reception Mode :
3062 If Reception till IDLE event has been selected : use Rx Event callback */
3063 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3064 {
3065 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3066 /*Call registered Rx Event callback*/
3067 huart->RxEventCallback(huart, huart->RxXferSize);
3068 #else
3069 /*Call legacy weak Rx Event callback*/
3070 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3071 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3072 }
3073 else
3074 {
3075 /* In other cases : use Rx Complete callback */
3076 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3077 /*Call registered Rx complete callback*/
3078 huart->RxCpltCallback(huart);
3079 #else
3080 /*Call legacy weak Rx complete callback*/
3081 HAL_UART_RxCpltCallback(huart);
3082 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3083 }
3084 }
3085
3086 /**
3087 * @brief DMA UART receive process half complete callback
3088 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3089 * the configuration information for the specified DMA module.
3090 * @retval None
3091 */
UART_DMARxHalfCplt(DMA_HandleTypeDef * hdma)3092 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
3093 {
3094 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3095
3096 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3097 In this case, Rx Event type is Half Transfer */
3098 huart->RxEventType = HAL_UART_RXEVENT_HT;
3099
3100 /* Check current reception Mode :
3101 If Reception till IDLE event has been selected : use Rx Event callback */
3102 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3103 {
3104 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3105 /*Call registered Rx Event callback*/
3106 huart->RxEventCallback(huart, huart->RxXferSize / 2U);
3107 #else
3108 /*Call legacy weak Rx Event callback*/
3109 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
3110 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3111 }
3112 else
3113 {
3114 /* In other cases : use Rx Half Complete callback */
3115 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3116 /*Call registered Rx Half complete callback*/
3117 huart->RxHalfCpltCallback(huart);
3118 #else
3119 /*Call legacy weak Rx Half complete callback*/
3120 HAL_UART_RxHalfCpltCallback(huart);
3121 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3122 }
3123 }
3124
3125 /**
3126 * @brief DMA UART communication error callback.
3127 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3128 * the configuration information for the specified DMA module.
3129 * @retval None
3130 */
UART_DMAError(DMA_HandleTypeDef * hdma)3131 static void UART_DMAError(DMA_HandleTypeDef *hdma)
3132 {
3133 uint32_t dmarequest = 0x00U;
3134 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3135
3136 /* Stop UART DMA Tx request if ongoing */
3137 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
3138 if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
3139 {
3140 huart->TxXferCount = 0x00U;
3141 UART_EndTxTransfer(huart);
3142 }
3143
3144 /* Stop UART DMA Rx request if ongoing */
3145 dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
3146 if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
3147 {
3148 huart->RxXferCount = 0x00U;
3149 UART_EndRxTransfer(huart);
3150 }
3151
3152 huart->ErrorCode |= HAL_UART_ERROR_DMA;
3153 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3154 /*Call registered error callback*/
3155 huart->ErrorCallback(huart);
3156 #else
3157 /*Call legacy weak error callback*/
3158 HAL_UART_ErrorCallback(huart);
3159 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3160 }
3161
3162 /**
3163 * @brief This function handles UART Communication Timeout. It waits
3164 * until a flag is no longer in the specified status.
3165 * @param huart Pointer to a UART_HandleTypeDef structure that contains
3166 * the configuration information for the specified UART module.
3167 * @param Flag specifies the UART flag to check.
3168 * @param Status The actual Flag status (SET or RESET).
3169 * @param Tickstart Tick start value
3170 * @param Timeout Timeout duration
3171 * @retval HAL status
3172 */
UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef * huart,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)3173 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
3174 uint32_t Tickstart, uint32_t Timeout)
3175 {
3176 /* Wait until flag is set */
3177 while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
3178 {
3179 /* Check for the Timeout */
3180 if (Timeout != HAL_MAX_DELAY)
3181 {
3182 if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout))
3183 {
3184 /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
3185 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
3186 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3187
3188 huart->gState = HAL_UART_STATE_READY;
3189 huart->RxState = HAL_UART_STATE_READY;
3190
3191 /* Process Unlocked */
3192 __HAL_UNLOCK(huart);
3193
3194 return HAL_TIMEOUT;
3195 }
3196 }
3197 }
3198 return HAL_OK;
3199 }
3200
3201 /**
3202 * @brief Start Receive operation in interrupt mode.
3203 * @note This function could be called by all HAL UART API providing reception in Interrupt mode.
3204 * @note When calling this function, parameters validity is considered as already checked,
3205 * i.e. Rx State, buffer address, ...
3206 * UART Handle is assumed as Locked.
3207 * @param huart UART handle.
3208 * @param pData Pointer to data buffer (u8 or u16 data elements).
3209 * @param Size Amount of data elements (u8 or u16) to be received.
3210 * @retval HAL status
3211 */
UART_Start_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3212 HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3213 {
3214 huart->pRxBuffPtr = pData;
3215 huart->RxXferSize = Size;
3216 huart->RxXferCount = Size;
3217
3218 huart->ErrorCode = HAL_UART_ERROR_NONE;
3219 huart->RxState = HAL_UART_STATE_BUSY_RX;
3220
3221 if (huart->Init.Parity != UART_PARITY_NONE)
3222 {
3223 /* Enable the UART Parity Error Interrupt */
3224 __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
3225 }
3226
3227 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3228 __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
3229
3230 /* Enable the UART Data Register not empty Interrupt */
3231 __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
3232
3233 return HAL_OK;
3234 }
3235
3236 /**
3237 * @brief Start Receive operation in DMA mode.
3238 * @note This function could be called by all HAL UART API providing reception in DMA mode.
3239 * @note When calling this function, parameters validity is considered as already checked,
3240 * i.e. Rx State, buffer address, ...
3241 * UART Handle is assumed as Locked.
3242 * @param huart UART handle.
3243 * @param pData Pointer to data buffer (u8 or u16 data elements).
3244 * @param Size Amount of data elements (u8 or u16) to be received.
3245 * @retval HAL status
3246 */
UART_Start_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3247 HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3248 {
3249 uint32_t *tmp;
3250
3251 huart->pRxBuffPtr = pData;
3252 huart->RxXferSize = Size;
3253
3254 huart->ErrorCode = HAL_UART_ERROR_NONE;
3255 huart->RxState = HAL_UART_STATE_BUSY_RX;
3256
3257 /* Set the UART DMA transfer complete callback */
3258 huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
3259
3260 /* Set the UART DMA Half transfer complete callback */
3261 huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
3262
3263 /* Set the DMA error callback */
3264 huart->hdmarx->XferErrorCallback = UART_DMAError;
3265
3266 /* Set the DMA abort callback */
3267 huart->hdmarx->XferAbortCallback = NULL;
3268
3269 /* Enable the DMA stream */
3270 tmp = (uint32_t *)&pData;
3271 HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size);
3272
3273 /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
3274 __HAL_UART_CLEAR_OREFLAG(huart);
3275
3276 if (huart->Init.Parity != UART_PARITY_NONE)
3277 {
3278 /* Enable the UART Parity Error Interrupt */
3279 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3280 }
3281
3282 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3283 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
3284
3285 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
3286 in the UART CR3 register */
3287 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3288
3289 return HAL_OK;
3290 }
3291
3292 /**
3293 * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
3294 * @param huart UART handle.
3295 * @retval None
3296 */
UART_EndTxTransfer(UART_HandleTypeDef * huart)3297 static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
3298 {
3299 /* Disable TXEIE and TCIE interrupts */
3300 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
3301
3302 /* At end of Tx process, restore huart->gState to Ready */
3303 huart->gState = HAL_UART_STATE_READY;
3304 }
3305
3306 /**
3307 * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
3308 * @param huart UART handle.
3309 * @retval None
3310 */
UART_EndRxTransfer(UART_HandleTypeDef * huart)3311 static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
3312 {
3313 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3314 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
3315 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3316
3317 /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
3318 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3319 {
3320 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3321 }
3322
3323 /* At end of Rx process, restore huart->RxState to Ready */
3324 huart->RxState = HAL_UART_STATE_READY;
3325 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3326 }
3327
3328 /**
3329 * @brief DMA UART communication abort callback, when initiated by HAL services on Error
3330 * (To be called at end of DMA Abort procedure following error occurrence).
3331 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3332 * the configuration information for the specified DMA module.
3333 * @retval None
3334 */
UART_DMAAbortOnError(DMA_HandleTypeDef * hdma)3335 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
3336 {
3337 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3338 huart->RxXferCount = 0x00U;
3339 huart->TxXferCount = 0x00U;
3340
3341 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3342 /*Call registered error callback*/
3343 huart->ErrorCallback(huart);
3344 #else
3345 /*Call legacy weak error callback*/
3346 HAL_UART_ErrorCallback(huart);
3347 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3348 }
3349
3350 /**
3351 * @brief DMA UART Tx communication abort callback, when initiated by user
3352 * (To be called at end of DMA Tx Abort procedure following user abort request).
3353 * @note When this callback is executed, User Abort complete call back is called only if no
3354 * Abort still ongoing for Rx DMA Handle.
3355 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3356 * the configuration information for the specified DMA module.
3357 * @retval None
3358 */
UART_DMATxAbortCallback(DMA_HandleTypeDef * hdma)3359 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
3360 {
3361 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3362
3363 huart->hdmatx->XferAbortCallback = NULL;
3364
3365 /* Check if an Abort process is still ongoing */
3366 if (huart->hdmarx != NULL)
3367 {
3368 if (huart->hdmarx->XferAbortCallback != NULL)
3369 {
3370 return;
3371 }
3372 }
3373
3374 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3375 huart->TxXferCount = 0x00U;
3376 huart->RxXferCount = 0x00U;
3377
3378 /* Reset ErrorCode */
3379 huart->ErrorCode = HAL_UART_ERROR_NONE;
3380
3381 /* Restore huart->gState and huart->RxState to Ready */
3382 huart->gState = HAL_UART_STATE_READY;
3383 huart->RxState = HAL_UART_STATE_READY;
3384 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3385
3386 /* Call user Abort complete callback */
3387 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3388 /* Call registered Abort complete callback */
3389 huart->AbortCpltCallback(huart);
3390 #else
3391 /* Call legacy weak Abort complete callback */
3392 HAL_UART_AbortCpltCallback(huart);
3393 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3394 }
3395
3396 /**
3397 * @brief DMA UART Rx communication abort callback, when initiated by user
3398 * (To be called at end of DMA Rx Abort procedure following user abort request).
3399 * @note When this callback is executed, User Abort complete call back is called only if no
3400 * Abort still ongoing for Tx DMA Handle.
3401 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3402 * the configuration information for the specified DMA module.
3403 * @retval None
3404 */
UART_DMARxAbortCallback(DMA_HandleTypeDef * hdma)3405 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
3406 {
3407 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3408
3409 huart->hdmarx->XferAbortCallback = NULL;
3410
3411 /* Check if an Abort process is still ongoing */
3412 if (huart->hdmatx != NULL)
3413 {
3414 if (huart->hdmatx->XferAbortCallback != NULL)
3415 {
3416 return;
3417 }
3418 }
3419
3420 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3421 huart->TxXferCount = 0x00U;
3422 huart->RxXferCount = 0x00U;
3423
3424 /* Reset ErrorCode */
3425 huart->ErrorCode = HAL_UART_ERROR_NONE;
3426
3427 /* Restore huart->gState and huart->RxState to Ready */
3428 huart->gState = HAL_UART_STATE_READY;
3429 huart->RxState = HAL_UART_STATE_READY;
3430 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3431
3432 /* Call user Abort complete callback */
3433 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3434 /* Call registered Abort complete callback */
3435 huart->AbortCpltCallback(huart);
3436 #else
3437 /* Call legacy weak Abort complete callback */
3438 HAL_UART_AbortCpltCallback(huart);
3439 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3440 }
3441
3442 /**
3443 * @brief DMA UART Tx communication abort callback, when initiated by user by a call to
3444 * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
3445 * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
3446 * and leads to user Tx Abort Complete callback execution).
3447 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3448 * the configuration information for the specified DMA module.
3449 * @retval None
3450 */
UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3451 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3452 {
3453 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3454
3455 huart->TxXferCount = 0x00U;
3456
3457 /* Restore huart->gState to Ready */
3458 huart->gState = HAL_UART_STATE_READY;
3459
3460 /* Call user Abort complete callback */
3461 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3462 /* Call registered Abort Transmit Complete Callback */
3463 huart->AbortTransmitCpltCallback(huart);
3464 #else
3465 /* Call legacy weak Abort Transmit Complete Callback */
3466 HAL_UART_AbortTransmitCpltCallback(huart);
3467 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3468 }
3469
3470 /**
3471 * @brief DMA UART Rx communication abort callback, when initiated by user by a call to
3472 * HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
3473 * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
3474 * and leads to user Rx Abort Complete callback execution).
3475 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
3476 * the configuration information for the specified DMA module.
3477 * @retval None
3478 */
UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3479 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3480 {
3481 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3482
3483 huart->RxXferCount = 0x00U;
3484
3485 /* Restore huart->RxState to Ready */
3486 huart->RxState = HAL_UART_STATE_READY;
3487 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3488
3489 /* Call user Abort complete callback */
3490 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3491 /* Call registered Abort Receive Complete Callback */
3492 huart->AbortReceiveCpltCallback(huart);
3493 #else
3494 /* Call legacy weak Abort Receive Complete Callback */
3495 HAL_UART_AbortReceiveCpltCallback(huart);
3496 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3497 }
3498
3499 /**
3500 * @brief Sends an amount of data in non blocking mode.
3501 * @param huart Pointer to a UART_HandleTypeDef structure that contains
3502 * the configuration information for the specified UART module.
3503 * @retval HAL status
3504 */
UART_Transmit_IT(UART_HandleTypeDef * huart)3505 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
3506 {
3507 const uint16_t *tmp;
3508
3509 /* Check that a Tx process is ongoing */
3510 if (huart->gState == HAL_UART_STATE_BUSY_TX)
3511 {
3512 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3513 {
3514 tmp = (const uint16_t *) huart->pTxBuffPtr;
3515 huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
3516 huart->pTxBuffPtr += 2U;
3517 }
3518 else
3519 {
3520 huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
3521 }
3522
3523 if (--huart->TxXferCount == 0U)
3524 {
3525 /* Disable the UART Transmit Data Register Empty Interrupt */
3526 __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
3527
3528 /* Enable the UART Transmit Complete Interrupt */
3529 __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
3530 }
3531 return HAL_OK;
3532 }
3533 else
3534 {
3535 return HAL_BUSY;
3536 }
3537 }
3538
3539 /**
3540 * @brief Wraps up transmission in non blocking mode.
3541 * @param huart Pointer to a UART_HandleTypeDef structure that contains
3542 * the configuration information for the specified UART module.
3543 * @retval HAL status
3544 */
UART_EndTransmit_IT(UART_HandleTypeDef * huart)3545 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
3546 {
3547 /* Disable the UART Transmit Complete Interrupt */
3548 __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
3549
3550 /* Tx process is ended, restore huart->gState to Ready */
3551 huart->gState = HAL_UART_STATE_READY;
3552
3553 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3554 /*Call registered Tx complete callback*/
3555 huart->TxCpltCallback(huart);
3556 #else
3557 /*Call legacy weak Tx complete callback*/
3558 HAL_UART_TxCpltCallback(huart);
3559 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3560
3561 return HAL_OK;
3562 }
3563
3564 /**
3565 * @brief Receives an amount of data in non blocking mode
3566 * @param huart Pointer to a UART_HandleTypeDef structure that contains
3567 * the configuration information for the specified UART module.
3568 * @retval HAL status
3569 */
UART_Receive_IT(UART_HandleTypeDef * huart)3570 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
3571 {
3572 uint8_t *pdata8bits;
3573 uint16_t *pdata16bits;
3574
3575 /* Check that a Rx process is ongoing */
3576 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
3577 {
3578 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3579 {
3580 pdata8bits = NULL;
3581 pdata16bits = (uint16_t *) huart->pRxBuffPtr;
3582 *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
3583 huart->pRxBuffPtr += 2U;
3584 }
3585 else
3586 {
3587 pdata8bits = (uint8_t *) huart->pRxBuffPtr;
3588 pdata16bits = NULL;
3589
3590 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
3591 {
3592 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
3593 }
3594 else
3595 {
3596 *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
3597 }
3598 huart->pRxBuffPtr += 1U;
3599 }
3600
3601 if (--huart->RxXferCount == 0U)
3602 {
3603 /* Disable the UART Data Register not empty Interrupt */
3604 __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
3605
3606 /* Disable the UART Parity Error Interrupt */
3607 __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
3608
3609 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3610 __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
3611
3612 /* Rx process is completed, restore huart->RxState to Ready */
3613 huart->RxState = HAL_UART_STATE_READY;
3614
3615 /* Initialize type of RxEvent to Transfer Complete */
3616 huart->RxEventType = HAL_UART_RXEVENT_TC;
3617
3618 /* Check current reception Mode :
3619 If Reception till IDLE event has been selected : */
3620 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3621 {
3622 /* Set reception type to Standard */
3623 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3624
3625 /* Disable IDLE interrupt */
3626 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3627
3628 /* Check if IDLE flag is set */
3629 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
3630 {
3631 /* Clear IDLE flag in ISR */
3632 __HAL_UART_CLEAR_IDLEFLAG(huart);
3633 }
3634
3635 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3636 /*Call registered Rx Event callback*/
3637 huart->RxEventCallback(huart, huart->RxXferSize);
3638 #else
3639 /*Call legacy weak Rx Event callback*/
3640 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3641 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3642 }
3643 else
3644 {
3645 /* Standard reception API called */
3646 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3647 /*Call registered Rx complete callback*/
3648 huart->RxCpltCallback(huart);
3649 #else
3650 /*Call legacy weak Rx complete callback*/
3651 HAL_UART_RxCpltCallback(huart);
3652 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3653 }
3654
3655 return HAL_OK;
3656 }
3657 return HAL_OK;
3658 }
3659 else
3660 {
3661 return HAL_BUSY;
3662 }
3663 }
3664
3665 /**
3666 * @brief Configures the UART peripheral.
3667 * @param huart Pointer to a UART_HandleTypeDef structure that contains
3668 * the configuration information for the specified UART module.
3669 * @retval None
3670 */
UART_SetConfig(UART_HandleTypeDef * huart)3671 static void UART_SetConfig(UART_HandleTypeDef *huart)
3672 {
3673 uint32_t tmpreg;
3674 uint32_t pclk;
3675
3676 /* Check the parameters */
3677 assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
3678 assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
3679 assert_param(IS_UART_PARITY(huart->Init.Parity));
3680 assert_param(IS_UART_MODE(huart->Init.Mode));
3681
3682 /*-------------------------- USART CR2 Configuration -----------------------*/
3683 /* Configure the UART Stop Bits: Set STOP[13:12] bits
3684 according to huart->Init.StopBits value */
3685 MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
3686
3687 /*-------------------------- USART CR1 Configuration -----------------------*/
3688 /* Configure the UART Word Length, Parity and mode:
3689 Set the M bits according to huart->Init.WordLength value
3690 Set PCE and PS bits according to huart->Init.Parity value
3691 Set TE and RE bits according to huart->Init.Mode value
3692 Set OVER8 bit according to huart->Init.OverSampling value */
3693
3694 tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
3695 MODIFY_REG(huart->Instance->CR1,
3696 (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
3697 tmpreg);
3698
3699 /*-------------------------- USART CR3 Configuration -----------------------*/
3700 /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
3701 MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
3702
3703
3704 if((huart->Instance == USART1))
3705 {
3706 pclk = HAL_RCC_GetPCLK2Freq();
3707 }
3708 else
3709 {
3710 pclk = HAL_RCC_GetPCLK1Freq();
3711 }
3712
3713 /*-------------------------- USART BRR Configuration ---------------------*/
3714 if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
3715 {
3716 huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate);
3717 }
3718 else
3719 {
3720 huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate);
3721 }
3722 }
3723
3724 /**
3725 * @}
3726 */
3727
3728 #endif /* HAL_UART_MODULE_ENABLED */
3729 /**
3730 * @}
3731 */
3732
3733 /**
3734 * @}
3735 */
3736
3737