1 /**
2 ******************************************************************************
3 * @file stm32l1xx_ll_tim.h
4 * @author MCD Application Team
5 * @brief Header file of TIM LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * Copyright (c) 2016 STMicroelectronics.
10 * All rights reserved.
11 *
12 * This software is licensed under terms that can be found in the LICENSE file
13 * in the root directory of this software component.
14 * If no LICENSE file comes with this software, it is provided AS-IS.
15 *
16 ******************************************************************************
17 */
18
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32L1xx_LL_TIM_H
21 #define __STM32L1xx_LL_TIM_H
22
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32l1xx.h"
29
30 /** @addtogroup STM32L1xx_LL_Driver
31 * @{
32 */
33
34 #if defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM6) || defined (TIM7)
35
36 /** @defgroup TIM_LL TIM
37 * @{
38 */
39
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43 * @{
44 */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47 0x00U, /* 0: TIMx_CH1 */
48 0x00U, /* 1: NA */
49 0x00U, /* 2: TIMx_CH2 */
50 0x00U, /* 3: NA */
51 0x04U, /* 4: TIMx_CH3 */
52 0x00U, /* 5: NA */
53 0x04U /* 6: TIMx_CH4 */
54 };
55
56 static const uint8_t SHIFT_TAB_OCxx[] =
57 {
58 0U, /* 0: OC1M, OC1FE, OC1PE */
59 0U, /* 1: - NA */
60 8U, /* 2: OC2M, OC2FE, OC2PE */
61 0U, /* 3: - NA */
62 0U, /* 4: OC3M, OC3FE, OC3PE */
63 0U, /* 5: - NA */
64 8U /* 6: OC4M, OC4FE, OC4PE */
65 };
66
67 static const uint8_t SHIFT_TAB_ICxx[] =
68 {
69 0U, /* 0: CC1S, IC1PSC, IC1F */
70 0U, /* 1: - NA */
71 8U, /* 2: CC2S, IC2PSC, IC2F */
72 0U, /* 3: - NA */
73 0U, /* 4: CC3S, IC3PSC, IC3F */
74 0U, /* 5: - NA */
75 8U /* 6: CC4S, IC4PSC, IC4F */
76 };
77
78 static const uint8_t SHIFT_TAB_CCxP[] =
79 {
80 0U, /* 0: CC1P */
81 0U, /* 1: NA */
82 4U, /* 2: CC2P */
83 0U, /* 3: NA */
84 8U, /* 4: CC3P */
85 0U, /* 5: NA */
86 12U /* 6: CC4P */
87 };
88
89 /**
90 * @}
91 */
92
93 /* Private constants ---------------------------------------------------------*/
94 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
95 * @{
96 */
97
98
99 #define TIMx_OR_RMP_SHIFT 16U
100 #define TIMx_OR_RMP_MASK 0x0000FFFFU
101 #define TIM_OR_RMP_MASK ((TIM_OR_TI1RMP | TIM_OR_ETR_RMP | TIM_OR_TI1_RMP_RI) << TIMx_OR_RMP_SHIFT)
102 #define TIM9_OR_RMP_MASK ((TIM_OR_TI1RMP | TIM9_OR_ITR1_RMP) << TIMx_OR_RMP_SHIFT)
103 #define TIM2_OR_RMP_MASK (TIM2_OR_ITR1_RMP << TIMx_OR_RMP_SHIFT)
104 #define TIM3_OR_RMP_MASK (TIM3_OR_ITR2_RMP << TIMx_OR_RMP_SHIFT)
105
106
107
108 /**
109 * @}
110 */
111
112 /* Private macros ------------------------------------------------------------*/
113 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
114 * @{
115 */
116 /** @brief Convert channel id into channel index.
117 * @param __CHANNEL__ This parameter can be one of the following values:
118 * @arg @ref LL_TIM_CHANNEL_CH1
119 * @arg @ref LL_TIM_CHANNEL_CH2
120 * @arg @ref LL_TIM_CHANNEL_CH3
121 * @arg @ref LL_TIM_CHANNEL_CH4
122 * @retval none
123 */
124 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
125 (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
126 ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
127 ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U : 6U)
128
129 /**
130 * @}
131 */
132
133
134 /* Exported types ------------------------------------------------------------*/
135 #if defined(USE_FULL_LL_DRIVER)
136 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
137 * @{
138 */
139
140 /**
141 * @brief TIM Time Base configuration structure definition.
142 */
143 typedef struct
144 {
145 uint16_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock.
146 This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
147
148 This feature can be modified afterwards using unitary function
149 @ref LL_TIM_SetPrescaler().*/
150
151 uint32_t CounterMode; /*!< Specifies the counter mode.
152 This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
153
154 This feature can be modified afterwards using unitary function
155 @ref LL_TIM_SetCounterMode().*/
156
157 uint32_t Autoreload; /*!< Specifies the auto reload value to be loaded into the active
158 Auto-Reload Register at the next update event.
159 This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
160 Some timer instances may support 32 bits counters. In that case this parameter must
161 be a number between 0x0000 and 0xFFFFFFFF.
162
163 This feature can be modified afterwards using unitary function
164 @ref LL_TIM_SetAutoReload().*/
165
166 uint32_t ClockDivision; /*!< Specifies the clock division.
167 This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
168
169 This feature can be modified afterwards using unitary function
170 @ref LL_TIM_SetClockDivision().*/
171 } LL_TIM_InitTypeDef;
172
173 /**
174 * @brief TIM Output Compare configuration structure definition.
175 */
176 typedef struct
177 {
178 uint32_t OCMode; /*!< Specifies the output mode.
179 This parameter can be a value of @ref TIM_LL_EC_OCMODE.
180
181 This feature can be modified afterwards using unitary function
182 @ref LL_TIM_OC_SetMode().*/
183
184 uint32_t OCState; /*!< Specifies the TIM Output Compare state.
185 This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
186
187 This feature can be modified afterwards using unitary functions
188 @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
189
190 uint32_t CompareValue; /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
191 This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
192
193 This feature can be modified afterwards using unitary function
194 LL_TIM_OC_SetCompareCHx (x=1..6).*/
195
196 uint32_t OCPolarity; /*!< Specifies the output polarity.
197 This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
198
199 This feature can be modified afterwards using unitary function
200 @ref LL_TIM_OC_SetPolarity().*/
201
202
203 } LL_TIM_OC_InitTypeDef;
204
205 /**
206 * @brief TIM Input Capture configuration structure definition.
207 */
208
209 typedef struct
210 {
211
212 uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
213 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
214
215 This feature can be modified afterwards using unitary function
216 @ref LL_TIM_IC_SetPolarity().*/
217
218 uint32_t ICActiveInput; /*!< Specifies the input.
219 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
220
221 This feature can be modified afterwards using unitary function
222 @ref LL_TIM_IC_SetActiveInput().*/
223
224 uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler.
225 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
226
227 This feature can be modified afterwards using unitary function
228 @ref LL_TIM_IC_SetPrescaler().*/
229
230 uint32_t ICFilter; /*!< Specifies the input capture filter.
231 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
232
233 This feature can be modified afterwards using unitary function
234 @ref LL_TIM_IC_SetFilter().*/
235 } LL_TIM_IC_InitTypeDef;
236
237
238 /**
239 * @brief TIM Encoder interface configuration structure definition.
240 */
241 typedef struct
242 {
243 uint32_t EncoderMode; /*!< Specifies the encoder resolution (x2 or x4).
244 This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
245
246 This feature can be modified afterwards using unitary function
247 @ref LL_TIM_SetEncoderMode().*/
248
249 uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input.
250 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
251
252 This feature can be modified afterwards using unitary function
253 @ref LL_TIM_IC_SetPolarity().*/
254
255 uint32_t IC1ActiveInput; /*!< Specifies the TI1 input source
256 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
257
258 This feature can be modified afterwards using unitary function
259 @ref LL_TIM_IC_SetActiveInput().*/
260
261 uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value.
262 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
263
264 This feature can be modified afterwards using unitary function
265 @ref LL_TIM_IC_SetPrescaler().*/
266
267 uint32_t IC1Filter; /*!< Specifies the TI1 input filter.
268 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
269
270 This feature can be modified afterwards using unitary function
271 @ref LL_TIM_IC_SetFilter().*/
272
273 uint32_t IC2Polarity; /*!< Specifies the active edge of TI2 input.
274 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
275
276 This feature can be modified afterwards using unitary function
277 @ref LL_TIM_IC_SetPolarity().*/
278
279 uint32_t IC2ActiveInput; /*!< Specifies the TI2 input source
280 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
281
282 This feature can be modified afterwards using unitary function
283 @ref LL_TIM_IC_SetActiveInput().*/
284
285 uint32_t IC2Prescaler; /*!< Specifies the TI2 input prescaler value.
286 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
287
288 This feature can be modified afterwards using unitary function
289 @ref LL_TIM_IC_SetPrescaler().*/
290
291 uint32_t IC2Filter; /*!< Specifies the TI2 input filter.
292 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
293
294 This feature can be modified afterwards using unitary function
295 @ref LL_TIM_IC_SetFilter().*/
296
297 } LL_TIM_ENCODER_InitTypeDef;
298
299
300 /**
301 * @}
302 */
303 #endif /* USE_FULL_LL_DRIVER */
304
305 /* Exported constants --------------------------------------------------------*/
306 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
307 * @{
308 */
309
310 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
311 * @brief Flags defines which can be used with LL_TIM_ReadReg function.
312 * @{
313 */
314 #define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */
315 #define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */
316 #define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */
317 #define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */
318 #define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */
319 #define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */
320 #define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */
321 #define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */
322 #define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */
323 #define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */
324 /**
325 * @}
326 */
327
328 /** @defgroup TIM_LL_EC_IT IT Defines
329 * @brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions.
330 * @{
331 */
332 #define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */
333 #define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */
334 #define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */
335 #define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */
336 #define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */
337 #define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */
338 /**
339 * @}
340 */
341
342 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
343 * @{
344 */
345 #define LL_TIM_UPDATESOURCE_REGULAR 0x00000000U /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
346 #define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */
347 /**
348 * @}
349 */
350
351 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
352 * @{
353 */
354 #define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */
355 #define LL_TIM_ONEPULSEMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */
356 /**
357 * @}
358 */
359
360 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
361 * @{
362 */
363 #define LL_TIM_COUNTERMODE_UP 0x00000000U /*!<Counter used as upcounter */
364 #define LL_TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as downcounter */
365 #define LL_TIM_COUNTERMODE_CENTER_DOWN TIM_CR1_CMS_0 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting down. */
366 #define LL_TIM_COUNTERMODE_CENTER_UP TIM_CR1_CMS_1 /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up */
367 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN TIM_CR1_CMS /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up or down. */
368 /**
369 * @}
370 */
371
372 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
373 * @{
374 */
375 #define LL_TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< tDTS=tCK_INT */
376 #define LL_TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< tDTS=2*tCK_INT */
377 #define LL_TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< tDTS=4*tCK_INT */
378 /**
379 * @}
380 */
381
382 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
383 * @{
384 */
385 #define LL_TIM_COUNTERDIRECTION_UP 0x00000000U /*!< Timer counter counts up */
386 #define LL_TIM_COUNTERDIRECTION_DOWN TIM_CR1_DIR /*!< Timer counter counts down */
387 /**
388 * @}
389 */
390
391
392 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
393 * @{
394 */
395 #define LL_TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when CCx event occurs */
396 #define LL_TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */
397 /**
398 * @}
399 */
400
401
402 /** @defgroup TIM_LL_EC_CHANNEL Channel
403 * @{
404 */
405 #define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */
406 #define LL_TIM_CHANNEL_CH2 TIM_CCER_CC2E /*!< Timer input/output channel 2 */
407 #define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */
408 #define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */
409 /**
410 * @}
411 */
412
413 #if defined(USE_FULL_LL_DRIVER)
414 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
415 * @{
416 */
417 #define LL_TIM_OCSTATE_DISABLE 0x00000000U /*!< OCx is not active */
418 #define LL_TIM_OCSTATE_ENABLE TIM_CCER_CC1E /*!< OCx signal is output on the corresponding output pin */
419 /**
420 * @}
421 */
422 #endif /* USE_FULL_LL_DRIVER */
423
424 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
425 * @{
426 */
427 #define LL_TIM_OCMODE_FROZEN 0x00000000U /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
428 #define LL_TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!<OCyREF is forced high on compare match*/
429 #define LL_TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!<OCyREF is forced low on compare match*/
430 #define LL_TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<OCyREF toggles on compare match*/
431 #define LL_TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!<OCyREF is forced low*/
432 #define LL_TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!<OCyREF is forced high*/
433 #define LL_TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive. In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
434 #define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active. In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
435 /**
436 * @}
437 */
438
439 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
440 * @{
441 */
442 #define LL_TIM_OCPOLARITY_HIGH 0x00000000U /*!< OCxactive high*/
443 #define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/
444 /**
445 * @}
446 */
447
448
449
450 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
451 * @{
452 */
453 #define LL_TIM_ACTIVEINPUT_DIRECTTI (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
454 #define LL_TIM_ACTIVEINPUT_INDIRECTTI (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
455 #define LL_TIM_ACTIVEINPUT_TRC (TIM_CCMR1_CC1S << 16U) /*!< ICx is mapped on TRC */
456 /**
457 * @}
458 */
459
460 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
461 * @{
462 */
463 #define LL_TIM_ICPSC_DIV1 0x00000000U /*!< No prescaler, capture is done each time an edge is detected on the capture input */
464 #define LL_TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0 << 16U) /*!< Capture is done once every 2 events */
465 #define LL_TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1 << 16U) /*!< Capture is done once every 4 events */
466 #define LL_TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC << 16U) /*!< Capture is done once every 8 events */
467 /**
468 * @}
469 */
470
471 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
472 * @{
473 */
474 #define LL_TIM_IC_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
475 #define LL_TIM_IC_FILTER_FDIV1_N2 (TIM_CCMR1_IC1F_0 << 16U) /*!< fSAMPLING=fCK_INT, N=2 */
476 #define LL_TIM_IC_FILTER_FDIV1_N4 (TIM_CCMR1_IC1F_1 << 16U) /*!< fSAMPLING=fCK_INT, N=4 */
477 #define LL_TIM_IC_FILTER_FDIV1_N8 ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fCK_INT, N=8 */
478 #define LL_TIM_IC_FILTER_FDIV2_N6 (TIM_CCMR1_IC1F_2 << 16U) /*!< fSAMPLING=fDTS/2, N=6 */
479 #define LL_TIM_IC_FILTER_FDIV2_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/2, N=8 */
480 #define LL_TIM_IC_FILTER_FDIV4_N6 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/4, N=6 */
481 #define LL_TIM_IC_FILTER_FDIV4_N8 ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/4, N=8 */
482 #define LL_TIM_IC_FILTER_FDIV8_N6 (TIM_CCMR1_IC1F_3 << 16U) /*!< fSAMPLING=fDTS/8, N=6 */
483 #define LL_TIM_IC_FILTER_FDIV8_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/8, N=8 */
484 #define LL_TIM_IC_FILTER_FDIV16_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/16, N=5 */
485 #define LL_TIM_IC_FILTER_FDIV16_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/16, N=6 */
486 #define LL_TIM_IC_FILTER_FDIV16_N8 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U) /*!< fSAMPLING=fDTS/16, N=8 */
487 #define LL_TIM_IC_FILTER_FDIV32_N5 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/32, N=5 */
488 #define LL_TIM_IC_FILTER_FDIV32_N6 ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/32, N=6 */
489 #define LL_TIM_IC_FILTER_FDIV32_N8 (TIM_CCMR1_IC1F << 16U) /*!< fSAMPLING=fDTS/32, N=8 */
490 /**
491 * @}
492 */
493
494 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
495 * @{
496 */
497 #define LL_TIM_IC_POLARITY_RISING 0x00000000U /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
498 #define LL_TIM_IC_POLARITY_FALLING TIM_CCER_CC1P /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
499 #define LL_TIM_IC_POLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
500 /**
501 * @}
502 */
503
504 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
505 * @{
506 */
507 #define LL_TIM_CLOCKSOURCE_INTERNAL 0x00000000U /*!< The timer is clocked by the internal clock provided from the RCC */
508 #define LL_TIM_CLOCKSOURCE_EXT_MODE1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Counter counts at each rising or falling edge on a selected input*/
509 #define LL_TIM_CLOCKSOURCE_EXT_MODE2 TIM_SMCR_ECE /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
510 /**
511 * @}
512 */
513
514 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
515 * @{
516 */
517 #define LL_TIM_ENCODERMODE_X2_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
518 #define LL_TIM_ENCODERMODE_X2_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
519 #define LL_TIM_ENCODERMODE_X4_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
520 /**
521 * @}
522 */
523
524 /** @defgroup TIM_LL_EC_TRGO Trigger Output
525 * @{
526 */
527 #define LL_TIM_TRGO_RESET 0x00000000U /*!< UG bit from the TIMx_EGR register is used as trigger output */
528 #define LL_TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output */
529 #define LL_TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output */
530 #define LL_TIM_TRGO_CC1IF (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< CC1 capture or a compare match is used as trigger output */
531 #define LL_TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output */
532 #define LL_TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output */
533 #define LL_TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output */
534 #define LL_TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
535 /**
536 * @}
537 */
538
539
540 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
541 * @{
542 */
543 #define LL_TIM_SLAVEMODE_DISABLED 0x00000000U /*!< Slave mode disabled */
544 #define LL_TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
545 #define LL_TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
546 #define LL_TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
547 /**
548 * @}
549 */
550
551 /** @defgroup TIM_LL_EC_TS Trigger Selection
552 * @{
553 */
554 #define LL_TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) is used as trigger input */
555 #define LL_TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) is used as trigger input */
556 #define LL_TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) is used as trigger input */
557 #define LL_TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) is used as trigger input */
558 #define LL_TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
559 #define LL_TIM_TS_TI1FP1 (TIM_SMCR_TS_2 | TIM_SMCR_TS_0) /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
560 #define LL_TIM_TS_TI2FP2 (TIM_SMCR_TS_2 | TIM_SMCR_TS_1) /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
561 #define LL_TIM_TS_ETRF (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0) /*!< Filtered external Trigger (ETRF) is used as trigger input */
562 /**
563 * @}
564 */
565
566 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
567 * @{
568 */
569 #define LL_TIM_ETR_POLARITY_NONINVERTED 0x00000000U /*!< ETR is non-inverted, active at high level or rising edge */
570 #define LL_TIM_ETR_POLARITY_INVERTED TIM_SMCR_ETP /*!< ETR is inverted, active at low level or falling edge */
571 /**
572 * @}
573 */
574
575 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
576 * @{
577 */
578 #define LL_TIM_ETR_PRESCALER_DIV1 0x00000000U /*!< ETR prescaler OFF */
579 #define LL_TIM_ETR_PRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR frequency is divided by 2 */
580 #define LL_TIM_ETR_PRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR frequency is divided by 4 */
581 #define LL_TIM_ETR_PRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR frequency is divided by 8 */
582 /**
583 * @}
584 */
585
586 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
587 * @{
588 */
589 #define LL_TIM_ETR_FILTER_FDIV1 0x00000000U /*!< No filter, sampling is done at fDTS */
590 #define LL_TIM_ETR_FILTER_FDIV1_N2 TIM_SMCR_ETF_0 /*!< fSAMPLING=fCK_INT, N=2 */
591 #define LL_TIM_ETR_FILTER_FDIV1_N4 TIM_SMCR_ETF_1 /*!< fSAMPLING=fCK_INT, N=4 */
592 #define LL_TIM_ETR_FILTER_FDIV1_N8 (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fCK_INT, N=8 */
593 #define LL_TIM_ETR_FILTER_FDIV2_N6 TIM_SMCR_ETF_2 /*!< fSAMPLING=fDTS/2, N=6 */
594 #define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */
595 #define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/4, N=6 */
596 #define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */
597 #define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */
598 #define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */
599 #define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=6 */
600 #define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
601 #define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=5 */
602 #define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */
603 #define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */
604 #define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */
605 /**
606 * @}
607 */
608
609
610
611
612
613
614
615 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
616 * @{
617 */
618 #define LL_TIM_DMABURST_BASEADDR_CR1 0x00000000U /*!< TIMx_CR1 register is the DMA base address for DMA burst */
619 #define LL_TIM_DMABURST_BASEADDR_CR2 TIM_DCR_DBA_0 /*!< TIMx_CR2 register is the DMA base address for DMA burst */
620 #define LL_TIM_DMABURST_BASEADDR_SMCR TIM_DCR_DBA_1 /*!< TIMx_SMCR register is the DMA base address for DMA burst */
621 #define LL_TIM_DMABURST_BASEADDR_DIER (TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_DIER register is the DMA base address for DMA burst */
622 #define LL_TIM_DMABURST_BASEADDR_SR TIM_DCR_DBA_2 /*!< TIMx_SR register is the DMA base address for DMA burst */
623 #define LL_TIM_DMABURST_BASEADDR_EGR (TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_EGR register is the DMA base address for DMA burst */
624 #define LL_TIM_DMABURST_BASEADDR_CCMR1 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
625 #define LL_TIM_DMABURST_BASEADDR_CCMR2 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
626 #define LL_TIM_DMABURST_BASEADDR_CCER TIM_DCR_DBA_3 /*!< TIMx_CCER register is the DMA base address for DMA burst */
627 #define LL_TIM_DMABURST_BASEADDR_CNT (TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_CNT register is the DMA base address for DMA burst */
628 #define LL_TIM_DMABURST_BASEADDR_PSC (TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_PSC register is the DMA base address for DMA burst */
629 #define LL_TIM_DMABURST_BASEADDR_ARR (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_ARR register is the DMA base address for DMA burst */
630 #define LL_TIM_DMABURST_BASEADDR_CCR1 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
631 #define LL_TIM_DMABURST_BASEADDR_CCR2 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
632 #define LL_TIM_DMABURST_BASEADDR_CCR3 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
633 #define LL_TIM_DMABURST_BASEADDR_CCR4 TIM_DCR_DBA_4 /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
634 #define LL_TIM_DMABURST_BASEADDR_OR (TIM_DCR_DBA_4 | TIM_DCR_DBA_2) /*!< TIMx_OR register is the DMA base address for DMA burst */
635 /**
636 * @}
637 */
638
639 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
640 * @{
641 */
642 #define LL_TIM_DMABURST_LENGTH_1TRANSFER 0x00000000U /*!< Transfer is done to 1 register starting from the DMA burst base address */
643 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS TIM_DCR_DBL_0 /*!< Transfer is done to 2 registers starting from the DMA burst base address */
644 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS TIM_DCR_DBL_1 /*!< Transfer is done to 3 registers starting from the DMA burst base address */
645 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS (TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 4 registers starting from the DMA burst base address */
646 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS TIM_DCR_DBL_2 /*!< Transfer is done to 5 registers starting from the DMA burst base address */
647 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 6 registers starting from the DMA burst base address */
648 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 7 registers starting from the DMA burst base address */
649 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 1 registers starting from the DMA burst base address */
650 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS TIM_DCR_DBL_3 /*!< Transfer is done to 9 registers starting from the DMA burst base address */
651 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_0) /*!< Transfer is done to 10 registers starting from the DMA burst base address */
652 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1) /*!< Transfer is done to 11 registers starting from the DMA burst base address */
653 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 12 registers starting from the DMA burst base address */
654 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2) /*!< Transfer is done to 13 registers starting from the DMA burst base address */
655 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 14 registers starting from the DMA burst base address */
656 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 15 registers starting from the DMA burst base address */
657 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
658 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS TIM_DCR_DBL_4 /*!< Transfer is done to 17 registers starting from the DMA burst base address */
659 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS (TIM_DCR_DBL_4 | TIM_DCR_DBL_0) /*!< Transfer is done to 18 registers starting from the DMA burst base address */
660 /**
661 * @}
662 */
663
664 /** @defgroup TIM_LL_EC_TIM10_TI1_RMP TIM10 input 1 remapping capability
665 * @{
666 */
667 #define LL_TIM_TIM10_TI1_RMP_GPIO TIM_OR_RMP_MASK /*!< TIM10 channel1 is connected to GPIO */
668 #define LL_TIM_TIM10_TI1_RMP_LSI (TIM_OR_TI1RMP_0 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to LSI internal clock */
669 #define LL_TIM_TIM10_TI1_RMP_LSE (TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to LSE internal clock */
670 #define LL_TIM_TIM10_TI1_RMP_RTC (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to RTC wakeup interrupt signal */
671 /**
672 * @}
673 */
674
675 /** @defgroup TIM_LL_EC_TIM10_ETR_RMP TIM10 ETR remap
676 * @{
677 */
678 #define LL_TIM_TIM10_ETR_RMP_LSE TIM_OR_RMP_MASK /*!< TIM10 ETR input is connected to LSE */
679 #define LL_TIM_TIM10_ETR_RMP_TIM9_TGO (TIM_OR_ETR_RMP | TIM_OR_RMP_MASK) /*!< TIM10 ETR input is connected to TIM9 TGO */
680 /**
681 * @}
682 */
683
684 /** @defgroup TIM_LL_EC_TIM10_TI1_RMP_RI TIM10 Input 1 remap for Routing Interface (RI)
685 * @{
686 */
687 #define LL_TIM_TIM10_TI1_RMP TIM_OR_RMP_MASK /*!< TIM10 Channel1 connection depends on TI1_RMP[1:0] bit values */
688 #define LL_TIM_TIM10_TI1_RMP_RI (TIM_OR_TI1_RMP_RI | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to RI */
689 /**
690 * @}
691 */
692
693 /** @defgroup TIM_LL_EC_TIM11_TI1_RMP TIM11 input 1 remapping capability
694 * @{
695 */
696 #define LL_TIM_TIM11_TI1_RMP_GPIO TIM_OR_RMP_MASK /*!< TIM11 channel1 is connected to GPIO */
697 #define LL_TIM_TIM11_TI1_RMP_MSI (TIM_OR_TI1RMP_0 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to MSI internal clock */
698 #define LL_TIM_TIM11_TI1_RMP_HSE_RTC (TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to HSE RTC clock */
699 #define LL_TIM_TIM11_TI1_RMP_GPIO1 (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to GPIO */
700 /**
701 * @}
702 */
703
704 /** @defgroup TIM_LL_EC_TIM11_ETR_RMP TIM11 ETR remap
705 * @{
706 */
707 #define LL_TIM_TIM11_ETR_RMP_LSE TIM_OR_RMP_MASK /*!< TIM11 ETR input is connected to LSE */
708 #define LL_TIM_TIM11_ETR_RMP_TIM9_TGO (TIM_OR_ETR_RMP | TIM_OR_RMP_MASK) /*!< TIM11 ETR input is connected to TIM9 TGO clock */
709 /**
710 * @}
711 */
712
713 /** @defgroup TIM_LL_EC_TIM11_TI1_RMP_RI TIM11 Input 1 remap for Routing Interface (RI)
714 * @{
715 */
716 #define LL_TIM_TIM11_TI1_RMP TIM_OR_RMP_MASK /*!< TIM11 Channel1 connection depends on TI1_RMP[1:0] bit values */
717 #define LL_TIM_TIM11_TI1_RMP_RI (TIM_OR_TI1_RMP_RI | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to RI */
718 /**
719 * @}
720 */
721
722 /** @defgroup TIM_LL_EC_TIM9_TI1_RMP TIM9 Input 1 remap
723 * @{
724 */
725 #define LL_TIM_TIM9_TI1_RMP_GPIO TIM9_OR_RMP_MASK /*!< TIM9 channel1 is connected to GPIO */
726 #define LL_TIM_TIM9_TI1_RMP_LSE (TIM_OR_TI1RMP_0 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to LSE internal clock */
727 #define LL_TIM_TIM9_TI1_RMP_GPIO1 (TIM_OR_TI1RMP_1 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to GPIO */
728 #define LL_TIM_TIM9_TI1_RMP_GPIO2 (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to GPIO */
729 /**
730 * @}
731 */
732
733 /** @defgroup TIM_LL_EC_TIM9_ITR1_RMP TIM9 ITR1 remap
734 * @{
735 */
736 #define LL_TIM_TIM9_ITR1_RMP_TIM3_TGO TIM9_OR_RMP_MASK /*!< TIM9 channel1 is connected to TIM3 TGO signal */
737 #define LL_TIM_TIM9_ITR1_RMP_TOUCH_IO (TIM9_OR_ITR1_RMP | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to touch sensing I/O */
738 /**
739 * @}
740 */
741
742 /** @defgroup TIM_LL_EC_TIM2_ITR1_RMP TIM2 internal trigger 1 remap
743 * @{
744 */
745 #define LL_TIM_TIM2_TIR1_RMP_TIM10_OC TIM9_OR_RMP_MASK /*!< TIM2 ITR1 input is connected to TIM10 OC*/
746 #define LL_TIM_TIM2_TIR1_RMP_TIM5_TGO (TIM2_OR_ITR1_RMP | TIM9_OR_RMP_MASK) /*!< TIM2 ITR1 input is connected to TIM5 TGO */
747 /**
748 * @}
749 */
750
751 /** @defgroup TIM_LL_EC_TIM3_ITR2_RMP TIM3 internal trigger 2 remap
752 * @{
753 */
754 #define LL_TIM_TIM3_TIR2_RMP_TIM11_OC TIM9_OR_RMP_MASK /*!< TIM3 ITR2 input is connected to TIM11 OC */
755 #define LL_TIM_TIM3_TIR2_RMP_TIM5_TGO (TIM3_OR_ITR2_RMP | TIM9_OR_RMP_MASK) /*!< TIM3 ITR2 input is connected to TIM5 TGO */
756 /**
757 * @}
758 */
759
760
761 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
762 * @{
763 */
764 #define LL_TIM_OCREF_CLR_INT_OCREF_CLR 0x00000000U /*!< OCREF_CLR_INT is connected to the OCREF_CLR input */
765 #define LL_TIM_OCREF_CLR_INT_ETR TIM_SMCR_OCCS /*!< OCREF_CLR_INT is connected to ETRF */
766 /**
767 * @}
768 */
769
770
771 /**
772 * @}
773 */
774
775 /* Exported macro ------------------------------------------------------------*/
776 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
777 * @{
778 */
779
780 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
781 * @{
782 */
783 /**
784 * @brief Write a value in TIM register.
785 * @param __INSTANCE__ TIM Instance
786 * @param __REG__ Register to be written
787 * @param __VALUE__ Value to be written in the register
788 * @retval None
789 */
790 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
791
792 /**
793 * @brief Read a value in TIM register.
794 * @param __INSTANCE__ TIM Instance
795 * @param __REG__ Register to be read
796 * @retval Register value
797 */
798 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
799 /**
800 * @}
801 */
802
803 /**
804 * @brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
805 * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
806 * @param __TIMCLK__ timer input clock frequency (in Hz)
807 * @param __CNTCLK__ counter clock frequency (in Hz)
808 * @retval Prescaler value (between Min_Data=0 and Max_Data=65535)
809 */
810 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \
811 (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
812
813 /**
814 * @brief HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
815 * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
816 * @param __TIMCLK__ timer input clock frequency (in Hz)
817 * @param __PSC__ prescaler
818 * @param __FREQ__ output signal frequency (in Hz)
819 * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
820 */
821 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
822 ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
823
824 /**
825 * @brief HELPER macro calculating the compare value required to achieve the required timer output compare
826 * active/inactive delay.
827 * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
828 * @param __TIMCLK__ timer input clock frequency (in Hz)
829 * @param __PSC__ prescaler
830 * @param __DELAY__ timer output compare active/inactive delay (in us)
831 * @retval Compare value (between Min_Data=0 and Max_Data=65535)
832 */
833 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \
834 ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
835 / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
836
837 /**
838 * @brief HELPER macro calculating the auto-reload value to achieve the required pulse duration
839 * (when the timer operates in one pulse mode).
840 * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
841 * @param __TIMCLK__ timer input clock frequency (in Hz)
842 * @param __PSC__ prescaler
843 * @param __DELAY__ timer output compare active/inactive delay (in us)
844 * @param __PULSE__ pulse duration (in us)
845 * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535)
846 */
847 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \
848 ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
849 + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
850
851 /**
852 * @brief HELPER macro retrieving the ratio of the input capture prescaler
853 * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
854 * @param __ICPSC__ This parameter can be one of the following values:
855 * @arg @ref LL_TIM_ICPSC_DIV1
856 * @arg @ref LL_TIM_ICPSC_DIV2
857 * @arg @ref LL_TIM_ICPSC_DIV4
858 * @arg @ref LL_TIM_ICPSC_DIV8
859 * @retval Input capture prescaler ratio (1, 2, 4 or 8)
860 */
861 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \
862 ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
863
864
865 /**
866 * @}
867 */
868
869 /* Exported functions --------------------------------------------------------*/
870 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
871 * @{
872 */
873
874 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
875 * @{
876 */
877 /**
878 * @brief Enable timer counter.
879 * @rmtoll CR1 CEN LL_TIM_EnableCounter
880 * @param TIMx Timer instance
881 * @retval None
882 */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)883 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
884 {
885 SET_BIT(TIMx->CR1, TIM_CR1_CEN);
886 }
887
888 /**
889 * @brief Disable timer counter.
890 * @rmtoll CR1 CEN LL_TIM_DisableCounter
891 * @param TIMx Timer instance
892 * @retval None
893 */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)894 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
895 {
896 CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
897 }
898
899 /**
900 * @brief Indicates whether the timer counter is enabled.
901 * @rmtoll CR1 CEN LL_TIM_IsEnabledCounter
902 * @param TIMx Timer instance
903 * @retval State of bit (1 or 0).
904 */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)905 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
906 {
907 return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
908 }
909
910 /**
911 * @brief Enable update event generation.
912 * @rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent
913 * @param TIMx Timer instance
914 * @retval None
915 */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)916 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
917 {
918 CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
919 }
920
921 /**
922 * @brief Disable update event generation.
923 * @rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent
924 * @param TIMx Timer instance
925 * @retval None
926 */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)927 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
928 {
929 SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
930 }
931
932 /**
933 * @brief Indicates whether update event generation is enabled.
934 * @rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent
935 * @param TIMx Timer instance
936 * @retval Inverted state of bit (0 or 1).
937 */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)938 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
939 {
940 return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
941 }
942
943 /**
944 * @brief Set update event source
945 * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
946 * generate an update interrupt or DMA request if enabled:
947 * - Counter overflow/underflow
948 * - Setting the UG bit
949 * - Update generation through the slave mode controller
950 * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
951 * overflow/underflow generates an update interrupt or DMA request if enabled.
952 * @rmtoll CR1 URS LL_TIM_SetUpdateSource
953 * @param TIMx Timer instance
954 * @param UpdateSource This parameter can be one of the following values:
955 * @arg @ref LL_TIM_UPDATESOURCE_REGULAR
956 * @arg @ref LL_TIM_UPDATESOURCE_COUNTER
957 * @retval None
958 */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)959 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
960 {
961 MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
962 }
963
964 /**
965 * @brief Get actual event update source
966 * @rmtoll CR1 URS LL_TIM_GetUpdateSource
967 * @param TIMx Timer instance
968 * @retval Returned value can be one of the following values:
969 * @arg @ref LL_TIM_UPDATESOURCE_REGULAR
970 * @arg @ref LL_TIM_UPDATESOURCE_COUNTER
971 */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)972 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
973 {
974 return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
975 }
976
977 /**
978 * @brief Set one pulse mode (one shot v.s. repetitive).
979 * @rmtoll CR1 OPM LL_TIM_SetOnePulseMode
980 * @param TIMx Timer instance
981 * @param OnePulseMode This parameter can be one of the following values:
982 * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
983 * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
984 * @retval None
985 */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)986 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
987 {
988 MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
989 }
990
991 /**
992 * @brief Get actual one pulse mode.
993 * @rmtoll CR1 OPM LL_TIM_GetOnePulseMode
994 * @param TIMx Timer instance
995 * @retval Returned value can be one of the following values:
996 * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
997 * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
998 */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)999 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1000 {
1001 return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1002 }
1003
1004 /**
1005 * @brief Set the timer counter counting mode.
1006 * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1007 * check whether or not the counter mode selection feature is supported
1008 * by a timer instance.
1009 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1010 * requires a timer reset to avoid unexpected direction
1011 * due to DIR bit readonly in center aligned mode.
1012 * @rmtoll CR1 DIR LL_TIM_SetCounterMode\n
1013 * CR1 CMS LL_TIM_SetCounterMode
1014 * @param TIMx Timer instance
1015 * @param CounterMode This parameter can be one of the following values:
1016 * @arg @ref LL_TIM_COUNTERMODE_UP
1017 * @arg @ref LL_TIM_COUNTERMODE_DOWN
1018 * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1019 * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1020 * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1021 * @retval None
1022 */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1023 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1024 {
1025 MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1026 }
1027
1028 /**
1029 * @brief Get actual counter mode.
1030 * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1031 * check whether or not the counter mode selection feature is supported
1032 * by a timer instance.
1033 * @rmtoll CR1 DIR LL_TIM_GetCounterMode\n
1034 * CR1 CMS LL_TIM_GetCounterMode
1035 * @param TIMx Timer instance
1036 * @retval Returned value can be one of the following values:
1037 * @arg @ref LL_TIM_COUNTERMODE_UP
1038 * @arg @ref LL_TIM_COUNTERMODE_DOWN
1039 * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1040 * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1041 * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1042 */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1043 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1044 {
1045 uint32_t counter_mode;
1046
1047 counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1048
1049 if (counter_mode == 0U)
1050 {
1051 counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1052 }
1053
1054 return counter_mode;
1055 }
1056
1057 /**
1058 * @brief Enable auto-reload (ARR) preload.
1059 * @rmtoll CR1 ARPE LL_TIM_EnableARRPreload
1060 * @param TIMx Timer instance
1061 * @retval None
1062 */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1063 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1064 {
1065 SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1066 }
1067
1068 /**
1069 * @brief Disable auto-reload (ARR) preload.
1070 * @rmtoll CR1 ARPE LL_TIM_DisableARRPreload
1071 * @param TIMx Timer instance
1072 * @retval None
1073 */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1074 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1075 {
1076 CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1077 }
1078
1079 /**
1080 * @brief Indicates whether auto-reload (ARR) preload is enabled.
1081 * @rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload
1082 * @param TIMx Timer instance
1083 * @retval State of bit (1 or 0).
1084 */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1085 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1086 {
1087 return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1088 }
1089
1090 /**
1091 * @brief Set the division ratio between the timer clock and the sampling clock used by the dead-time generators
1092 * (when supported) and the digital filters.
1093 * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1094 * whether or not the clock division feature is supported by the timer
1095 * instance.
1096 * @rmtoll CR1 CKD LL_TIM_SetClockDivision
1097 * @param TIMx Timer instance
1098 * @param ClockDivision This parameter can be one of the following values:
1099 * @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1100 * @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1101 * @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1102 * @retval None
1103 */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1104 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1105 {
1106 MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1107 }
1108
1109 /**
1110 * @brief Get the actual division ratio between the timer clock and the sampling clock used by the dead-time
1111 * generators (when supported) and the digital filters.
1112 * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1113 * whether or not the clock division feature is supported by the timer
1114 * instance.
1115 * @rmtoll CR1 CKD LL_TIM_GetClockDivision
1116 * @param TIMx Timer instance
1117 * @retval Returned value can be one of the following values:
1118 * @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1119 * @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1120 * @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1121 */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1122 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1123 {
1124 return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1125 }
1126
1127 /**
1128 * @brief Set the counter value.
1129 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1130 * whether or not a timer instance supports a 32 bits counter.
1131 * @rmtoll CNT CNT LL_TIM_SetCounter
1132 * @param TIMx Timer instance
1133 * @param Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1134 * @retval None
1135 */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1136 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1137 {
1138 WRITE_REG(TIMx->CNT, Counter);
1139 }
1140
1141 /**
1142 * @brief Get the counter value.
1143 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1144 * whether or not a timer instance supports a 32 bits counter.
1145 * @rmtoll CNT CNT LL_TIM_GetCounter
1146 * @param TIMx Timer instance
1147 * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1148 */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1149 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1150 {
1151 return (uint32_t)(READ_REG(TIMx->CNT));
1152 }
1153
1154 /**
1155 * @brief Get the current direction of the counter
1156 * @rmtoll CR1 DIR LL_TIM_GetDirection
1157 * @param TIMx Timer instance
1158 * @retval Returned value can be one of the following values:
1159 * @arg @ref LL_TIM_COUNTERDIRECTION_UP
1160 * @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1161 */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1162 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1163 {
1164 return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1165 }
1166
1167 /**
1168 * @brief Set the prescaler value.
1169 * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1170 * @note The prescaler can be changed on the fly as this control register is buffered. The new
1171 * prescaler ratio is taken into account at the next update event.
1172 * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1173 * @rmtoll PSC PSC LL_TIM_SetPrescaler
1174 * @param TIMx Timer instance
1175 * @param Prescaler between Min_Data=0 and Max_Data=65535
1176 * @retval None
1177 */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1178 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1179 {
1180 WRITE_REG(TIMx->PSC, Prescaler);
1181 }
1182
1183 /**
1184 * @brief Get the prescaler value.
1185 * @rmtoll PSC PSC LL_TIM_GetPrescaler
1186 * @param TIMx Timer instance
1187 * @retval Prescaler value between Min_Data=0 and Max_Data=65535
1188 */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1189 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1190 {
1191 return (uint32_t)(READ_REG(TIMx->PSC));
1192 }
1193
1194 /**
1195 * @brief Set the auto-reload value.
1196 * @note The counter is blocked while the auto-reload value is null.
1197 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1198 * whether or not a timer instance supports a 32 bits counter.
1199 * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1200 * @rmtoll ARR ARR LL_TIM_SetAutoReload
1201 * @param TIMx Timer instance
1202 * @param AutoReload between Min_Data=0 and Max_Data=65535
1203 * @retval None
1204 */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1205 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1206 {
1207 WRITE_REG(TIMx->ARR, AutoReload);
1208 }
1209
1210 /**
1211 * @brief Get the auto-reload value.
1212 * @rmtoll ARR ARR LL_TIM_GetAutoReload
1213 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1214 * whether or not a timer instance supports a 32 bits counter.
1215 * @param TIMx Timer instance
1216 * @retval Auto-reload value
1217 */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1218 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1219 {
1220 return (uint32_t)(READ_REG(TIMx->ARR));
1221 }
1222
1223 /**
1224 * @}
1225 */
1226
1227 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1228 * @{
1229 */
1230 /**
1231 * @brief Set the trigger of the capture/compare DMA request.
1232 * @rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger
1233 * @param TIMx Timer instance
1234 * @param DMAReqTrigger This parameter can be one of the following values:
1235 * @arg @ref LL_TIM_CCDMAREQUEST_CC
1236 * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1237 * @retval None
1238 */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1239 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1240 {
1241 MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1242 }
1243
1244 /**
1245 * @brief Get actual trigger of the capture/compare DMA request.
1246 * @rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger
1247 * @param TIMx Timer instance
1248 * @retval Returned value can be one of the following values:
1249 * @arg @ref LL_TIM_CCDMAREQUEST_CC
1250 * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1251 */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)1252 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1253 {
1254 return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1255 }
1256
1257 /**
1258 * @brief Enable capture/compare channels.
1259 * @rmtoll CCER CC1E LL_TIM_CC_EnableChannel\n
1260 * CCER CC2E LL_TIM_CC_EnableChannel\n
1261 * CCER CC3E LL_TIM_CC_EnableChannel\n
1262 * CCER CC4E LL_TIM_CC_EnableChannel
1263 * @param TIMx Timer instance
1264 * @param Channels This parameter can be a combination of the following values:
1265 * @arg @ref LL_TIM_CHANNEL_CH1
1266 * @arg @ref LL_TIM_CHANNEL_CH2
1267 * @arg @ref LL_TIM_CHANNEL_CH3
1268 * @arg @ref LL_TIM_CHANNEL_CH4
1269 * @retval None
1270 */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1271 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1272 {
1273 SET_BIT(TIMx->CCER, Channels);
1274 }
1275
1276 /**
1277 * @brief Disable capture/compare channels.
1278 * @rmtoll CCER CC1E LL_TIM_CC_DisableChannel\n
1279 * CCER CC2E LL_TIM_CC_DisableChannel\n
1280 * CCER CC3E LL_TIM_CC_DisableChannel\n
1281 * CCER CC4E LL_TIM_CC_DisableChannel
1282 * @param TIMx Timer instance
1283 * @param Channels This parameter can be a combination of the following values:
1284 * @arg @ref LL_TIM_CHANNEL_CH1
1285 * @arg @ref LL_TIM_CHANNEL_CH2
1286 * @arg @ref LL_TIM_CHANNEL_CH3
1287 * @arg @ref LL_TIM_CHANNEL_CH4
1288 * @retval None
1289 */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1290 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1291 {
1292 CLEAR_BIT(TIMx->CCER, Channels);
1293 }
1294
1295 /**
1296 * @brief Indicate whether channel(s) is(are) enabled.
1297 * @rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel\n
1298 * CCER CC2E LL_TIM_CC_IsEnabledChannel\n
1299 * CCER CC3E LL_TIM_CC_IsEnabledChannel\n
1300 * CCER CC4E LL_TIM_CC_IsEnabledChannel
1301 * @param TIMx Timer instance
1302 * @param Channels This parameter can be a combination of the following values:
1303 * @arg @ref LL_TIM_CHANNEL_CH1
1304 * @arg @ref LL_TIM_CHANNEL_CH2
1305 * @arg @ref LL_TIM_CHANNEL_CH3
1306 * @arg @ref LL_TIM_CHANNEL_CH4
1307 * @retval State of bit (1 or 0).
1308 */
LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef * TIMx,uint32_t Channels)1309 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
1310 {
1311 return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1312 }
1313
1314 /**
1315 * @}
1316 */
1317
1318 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1319 * @{
1320 */
1321 /**
1322 * @brief Configure an output channel.
1323 * @rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput\n
1324 * CCMR1 CC2S LL_TIM_OC_ConfigOutput\n
1325 * CCMR2 CC3S LL_TIM_OC_ConfigOutput\n
1326 * CCMR2 CC4S LL_TIM_OC_ConfigOutput\n
1327 * CCER CC1P LL_TIM_OC_ConfigOutput\n
1328 * CCER CC2P LL_TIM_OC_ConfigOutput\n
1329 * CCER CC3P LL_TIM_OC_ConfigOutput\n
1330 * CCER CC4P LL_TIM_OC_ConfigOutput\n
1331 * @param TIMx Timer instance
1332 * @param Channel This parameter can be one of the following values:
1333 * @arg @ref LL_TIM_CHANNEL_CH1
1334 * @arg @ref LL_TIM_CHANNEL_CH2
1335 * @arg @ref LL_TIM_CHANNEL_CH3
1336 * @arg @ref LL_TIM_CHANNEL_CH4
1337 * @param Configuration This parameter must be a combination of all the following values:
1338 * @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
1339 * @retval None
1340 */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)1341 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1342 {
1343 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1344 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1345 CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
1346 MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
1347 (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
1348 }
1349
1350 /**
1351 * @brief Define the behavior of the output reference signal OCxREF from which
1352 * OCx and OCxN (when relevant) are derived.
1353 * @rmtoll CCMR1 OC1M LL_TIM_OC_SetMode\n
1354 * CCMR1 OC2M LL_TIM_OC_SetMode\n
1355 * CCMR2 OC3M LL_TIM_OC_SetMode\n
1356 * CCMR2 OC4M LL_TIM_OC_SetMode
1357 * @param TIMx Timer instance
1358 * @param Channel This parameter can be one of the following values:
1359 * @arg @ref LL_TIM_CHANNEL_CH1
1360 * @arg @ref LL_TIM_CHANNEL_CH2
1361 * @arg @ref LL_TIM_CHANNEL_CH3
1362 * @arg @ref LL_TIM_CHANNEL_CH4
1363 * @param Mode This parameter can be one of the following values:
1364 * @arg @ref LL_TIM_OCMODE_FROZEN
1365 * @arg @ref LL_TIM_OCMODE_ACTIVE
1366 * @arg @ref LL_TIM_OCMODE_INACTIVE
1367 * @arg @ref LL_TIM_OCMODE_TOGGLE
1368 * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1369 * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1370 * @arg @ref LL_TIM_OCMODE_PWM1
1371 * @arg @ref LL_TIM_OCMODE_PWM2
1372 * @retval None
1373 */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)1374 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
1375 {
1376 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1377 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1378 MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
1379 }
1380
1381 /**
1382 * @brief Get the output compare mode of an output channel.
1383 * @rmtoll CCMR1 OC1M LL_TIM_OC_GetMode\n
1384 * CCMR1 OC2M LL_TIM_OC_GetMode\n
1385 * CCMR2 OC3M LL_TIM_OC_GetMode\n
1386 * CCMR2 OC4M LL_TIM_OC_GetMode
1387 * @param TIMx Timer instance
1388 * @param Channel This parameter can be one of the following values:
1389 * @arg @ref LL_TIM_CHANNEL_CH1
1390 * @arg @ref LL_TIM_CHANNEL_CH2
1391 * @arg @ref LL_TIM_CHANNEL_CH3
1392 * @arg @ref LL_TIM_CHANNEL_CH4
1393 * @retval Returned value can be one of the following values:
1394 * @arg @ref LL_TIM_OCMODE_FROZEN
1395 * @arg @ref LL_TIM_OCMODE_ACTIVE
1396 * @arg @ref LL_TIM_OCMODE_INACTIVE
1397 * @arg @ref LL_TIM_OCMODE_TOGGLE
1398 * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1399 * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1400 * @arg @ref LL_TIM_OCMODE_PWM1
1401 * @arg @ref LL_TIM_OCMODE_PWM2
1402 */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)1403 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
1404 {
1405 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1406 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1407 return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
1408 }
1409
1410 /**
1411 * @brief Set the polarity of an output channel.
1412 * @rmtoll CCER CC1P LL_TIM_OC_SetPolarity\n
1413 * CCER CC2P LL_TIM_OC_SetPolarity\n
1414 * CCER CC3P LL_TIM_OC_SetPolarity\n
1415 * CCER CC4P LL_TIM_OC_SetPolarity
1416 * @param TIMx Timer instance
1417 * @param Channel This parameter can be one of the following values:
1418 * @arg @ref LL_TIM_CHANNEL_CH1
1419 * @arg @ref LL_TIM_CHANNEL_CH2
1420 * @arg @ref LL_TIM_CHANNEL_CH3
1421 * @arg @ref LL_TIM_CHANNEL_CH4
1422 * @param Polarity This parameter can be one of the following values:
1423 * @arg @ref LL_TIM_OCPOLARITY_HIGH
1424 * @arg @ref LL_TIM_OCPOLARITY_LOW
1425 * @retval None
1426 */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)1427 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
1428 {
1429 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1430 MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), Polarity << SHIFT_TAB_CCxP[iChannel]);
1431 }
1432
1433 /**
1434 * @brief Get the polarity of an output channel.
1435 * @rmtoll CCER CC1P LL_TIM_OC_GetPolarity\n
1436 * CCER CC2P LL_TIM_OC_GetPolarity\n
1437 * CCER CC3P LL_TIM_OC_GetPolarity\n
1438 * CCER CC4P LL_TIM_OC_GetPolarity
1439 * @param TIMx Timer instance
1440 * @param Channel This parameter can be one of the following values:
1441 * @arg @ref LL_TIM_CHANNEL_CH1
1442 * @arg @ref LL_TIM_CHANNEL_CH2
1443 * @arg @ref LL_TIM_CHANNEL_CH3
1444 * @arg @ref LL_TIM_CHANNEL_CH4
1445 * @retval Returned value can be one of the following values:
1446 * @arg @ref LL_TIM_OCPOLARITY_HIGH
1447 * @arg @ref LL_TIM_OCPOLARITY_LOW
1448 */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)1449 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
1450 {
1451 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1452 return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
1453 }
1454
1455 /**
1456 * @brief Enable fast mode for the output channel.
1457 * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
1458 * @rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast\n
1459 * CCMR1 OC2FE LL_TIM_OC_EnableFast\n
1460 * CCMR2 OC3FE LL_TIM_OC_EnableFast\n
1461 * CCMR2 OC4FE LL_TIM_OC_EnableFast
1462 * @param TIMx Timer instance
1463 * @param Channel This parameter can be one of the following values:
1464 * @arg @ref LL_TIM_CHANNEL_CH1
1465 * @arg @ref LL_TIM_CHANNEL_CH2
1466 * @arg @ref LL_TIM_CHANNEL_CH3
1467 * @arg @ref LL_TIM_CHANNEL_CH4
1468 * @retval None
1469 */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)1470 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1471 {
1472 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1473 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1474 SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1475
1476 }
1477
1478 /**
1479 * @brief Disable fast mode for the output channel.
1480 * @rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast\n
1481 * CCMR1 OC2FE LL_TIM_OC_DisableFast\n
1482 * CCMR2 OC3FE LL_TIM_OC_DisableFast\n
1483 * CCMR2 OC4FE LL_TIM_OC_DisableFast
1484 * @param TIMx Timer instance
1485 * @param Channel This parameter can be one of the following values:
1486 * @arg @ref LL_TIM_CHANNEL_CH1
1487 * @arg @ref LL_TIM_CHANNEL_CH2
1488 * @arg @ref LL_TIM_CHANNEL_CH3
1489 * @arg @ref LL_TIM_CHANNEL_CH4
1490 * @retval None
1491 */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)1492 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1493 {
1494 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1495 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1496 CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1497
1498 }
1499
1500 /**
1501 * @brief Indicates whether fast mode is enabled for the output channel.
1502 * @rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast\n
1503 * CCMR1 OC2FE LL_TIM_OC_IsEnabledFast\n
1504 * CCMR2 OC3FE LL_TIM_OC_IsEnabledFast\n
1505 * CCMR2 OC4FE LL_TIM_OC_IsEnabledFast\n
1506 * @param TIMx Timer instance
1507 * @param Channel This parameter can be one of the following values:
1508 * @arg @ref LL_TIM_CHANNEL_CH1
1509 * @arg @ref LL_TIM_CHANNEL_CH2
1510 * @arg @ref LL_TIM_CHANNEL_CH3
1511 * @arg @ref LL_TIM_CHANNEL_CH4
1512 * @retval State of bit (1 or 0).
1513 */
LL_TIM_OC_IsEnabledFast(const TIM_TypeDef * TIMx,uint32_t Channel)1514 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
1515 {
1516 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1517 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1518 uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
1519 return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1520 }
1521
1522 /**
1523 * @brief Enable compare register (TIMx_CCRx) preload for the output channel.
1524 * @rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload\n
1525 * CCMR1 OC2PE LL_TIM_OC_EnablePreload\n
1526 * CCMR2 OC3PE LL_TIM_OC_EnablePreload\n
1527 * CCMR2 OC4PE LL_TIM_OC_EnablePreload
1528 * @param TIMx Timer instance
1529 * @param Channel This parameter can be one of the following values:
1530 * @arg @ref LL_TIM_CHANNEL_CH1
1531 * @arg @ref LL_TIM_CHANNEL_CH2
1532 * @arg @ref LL_TIM_CHANNEL_CH3
1533 * @arg @ref LL_TIM_CHANNEL_CH4
1534 * @retval None
1535 */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)1536 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1537 {
1538 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1539 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1540 SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1541 }
1542
1543 /**
1544 * @brief Disable compare register (TIMx_CCRx) preload for the output channel.
1545 * @rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload\n
1546 * CCMR1 OC2PE LL_TIM_OC_DisablePreload\n
1547 * CCMR2 OC3PE LL_TIM_OC_DisablePreload\n
1548 * CCMR2 OC4PE LL_TIM_OC_DisablePreload
1549 * @param TIMx Timer instance
1550 * @param Channel This parameter can be one of the following values:
1551 * @arg @ref LL_TIM_CHANNEL_CH1
1552 * @arg @ref LL_TIM_CHANNEL_CH2
1553 * @arg @ref LL_TIM_CHANNEL_CH3
1554 * @arg @ref LL_TIM_CHANNEL_CH4
1555 * @retval None
1556 */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)1557 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1558 {
1559 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1560 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1561 CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1562 }
1563
1564 /**
1565 * @brief Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
1566 * @rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload\n
1567 * CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload\n
1568 * CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload\n
1569 * CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload\n
1570 * @param TIMx Timer instance
1571 * @param Channel This parameter can be one of the following values:
1572 * @arg @ref LL_TIM_CHANNEL_CH1
1573 * @arg @ref LL_TIM_CHANNEL_CH2
1574 * @arg @ref LL_TIM_CHANNEL_CH3
1575 * @arg @ref LL_TIM_CHANNEL_CH4
1576 * @retval State of bit (1 or 0).
1577 */
LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef * TIMx,uint32_t Channel)1578 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
1579 {
1580 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1581 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1582 uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
1583 return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1584 }
1585
1586 /**
1587 * @brief Enable clearing the output channel on an external event.
1588 * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1589 * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1590 * or not a timer instance can clear the OCxREF signal on an external event.
1591 * @rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear\n
1592 * CCMR1 OC2CE LL_TIM_OC_EnableClear\n
1593 * CCMR2 OC3CE LL_TIM_OC_EnableClear\n
1594 * CCMR2 OC4CE LL_TIM_OC_EnableClear
1595 * @param TIMx Timer instance
1596 * @param Channel This parameter can be one of the following values:
1597 * @arg @ref LL_TIM_CHANNEL_CH1
1598 * @arg @ref LL_TIM_CHANNEL_CH2
1599 * @arg @ref LL_TIM_CHANNEL_CH3
1600 * @arg @ref LL_TIM_CHANNEL_CH4
1601 * @retval None
1602 */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)1603 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1604 {
1605 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1606 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1607 SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1608 }
1609
1610 /**
1611 * @brief Disable clearing the output channel on an external event.
1612 * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1613 * or not a timer instance can clear the OCxREF signal on an external event.
1614 * @rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear\n
1615 * CCMR1 OC2CE LL_TIM_OC_DisableClear\n
1616 * CCMR2 OC3CE LL_TIM_OC_DisableClear\n
1617 * CCMR2 OC4CE LL_TIM_OC_DisableClear
1618 * @param TIMx Timer instance
1619 * @param Channel This parameter can be one of the following values:
1620 * @arg @ref LL_TIM_CHANNEL_CH1
1621 * @arg @ref LL_TIM_CHANNEL_CH2
1622 * @arg @ref LL_TIM_CHANNEL_CH3
1623 * @arg @ref LL_TIM_CHANNEL_CH4
1624 * @retval None
1625 */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)1626 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1627 {
1628 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1629 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1630 CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1631 }
1632
1633 /**
1634 * @brief Indicates clearing the output channel on an external event is enabled for the output channel.
1635 * @note This function enables clearing the output channel on an external event.
1636 * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1637 * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1638 * or not a timer instance can clear the OCxREF signal on an external event.
1639 * @rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear\n
1640 * CCMR1 OC2CE LL_TIM_OC_IsEnabledClear\n
1641 * CCMR2 OC3CE LL_TIM_OC_IsEnabledClear\n
1642 * CCMR2 OC4CE LL_TIM_OC_IsEnabledClear\n
1643 * @param TIMx Timer instance
1644 * @param Channel This parameter can be one of the following values:
1645 * @arg @ref LL_TIM_CHANNEL_CH1
1646 * @arg @ref LL_TIM_CHANNEL_CH2
1647 * @arg @ref LL_TIM_CHANNEL_CH3
1648 * @arg @ref LL_TIM_CHANNEL_CH4
1649 * @retval State of bit (1 or 0).
1650 */
LL_TIM_OC_IsEnabledClear(const TIM_TypeDef * TIMx,uint32_t Channel)1651 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
1652 {
1653 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1654 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1655 uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
1656 return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1657 }
1658
1659 /**
1660 * @brief Set compare value for output channel 1 (TIMx_CCR1).
1661 * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
1662 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1663 * whether or not a timer instance supports a 32 bits counter.
1664 * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
1665 * output channel 1 is supported by a timer instance.
1666 * @rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1
1667 * @param TIMx Timer instance
1668 * @param CompareValue between Min_Data=0 and Max_Data=65535
1669 * @retval None
1670 */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)1671 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
1672 {
1673 WRITE_REG(TIMx->CCR1, CompareValue);
1674 }
1675
1676 /**
1677 * @brief Set compare value for output channel 2 (TIMx_CCR2).
1678 * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
1679 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1680 * whether or not a timer instance supports a 32 bits counter.
1681 * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
1682 * output channel 2 is supported by a timer instance.
1683 * @rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2
1684 * @param TIMx Timer instance
1685 * @param CompareValue between Min_Data=0 and Max_Data=65535
1686 * @retval None
1687 */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)1688 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
1689 {
1690 WRITE_REG(TIMx->CCR2, CompareValue);
1691 }
1692
1693 /**
1694 * @brief Set compare value for output channel 3 (TIMx_CCR3).
1695 * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
1696 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1697 * whether or not a timer instance supports a 32 bits counter.
1698 * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
1699 * output channel is supported by a timer instance.
1700 * @rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3
1701 * @param TIMx Timer instance
1702 * @param CompareValue between Min_Data=0 and Max_Data=65535
1703 * @retval None
1704 */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)1705 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
1706 {
1707 WRITE_REG(TIMx->CCR3, CompareValue);
1708 }
1709
1710 /**
1711 * @brief Set compare value for output channel 4 (TIMx_CCR4).
1712 * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
1713 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1714 * whether or not a timer instance supports a 32 bits counter.
1715 * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
1716 * output channel 4 is supported by a timer instance.
1717 * @rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4
1718 * @param TIMx Timer instance
1719 * @param CompareValue between Min_Data=0 and Max_Data=65535
1720 * @retval None
1721 */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)1722 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
1723 {
1724 WRITE_REG(TIMx->CCR4, CompareValue);
1725 }
1726
1727 /**
1728 * @brief Get compare value (TIMx_CCR1) set for output channel 1.
1729 * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
1730 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1731 * whether or not a timer instance supports a 32 bits counter.
1732 * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
1733 * output channel 1 is supported by a timer instance.
1734 * @rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1
1735 * @param TIMx Timer instance
1736 * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
1737 */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)1738 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
1739 {
1740 return (uint32_t)(READ_REG(TIMx->CCR1));
1741 }
1742
1743 /**
1744 * @brief Get compare value (TIMx_CCR2) set for output channel 2.
1745 * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
1746 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1747 * whether or not a timer instance supports a 32 bits counter.
1748 * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
1749 * output channel 2 is supported by a timer instance.
1750 * @rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2
1751 * @param TIMx Timer instance
1752 * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
1753 */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)1754 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
1755 {
1756 return (uint32_t)(READ_REG(TIMx->CCR2));
1757 }
1758
1759 /**
1760 * @brief Get compare value (TIMx_CCR3) set for output channel 3.
1761 * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
1762 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1763 * whether or not a timer instance supports a 32 bits counter.
1764 * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
1765 * output channel 3 is supported by a timer instance.
1766 * @rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3
1767 * @param TIMx Timer instance
1768 * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
1769 */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)1770 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
1771 {
1772 return (uint32_t)(READ_REG(TIMx->CCR3));
1773 }
1774
1775 /**
1776 * @brief Get compare value (TIMx_CCR4) set for output channel 4.
1777 * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
1778 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1779 * whether or not a timer instance supports a 32 bits counter.
1780 * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
1781 * output channel 4 is supported by a timer instance.
1782 * @rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4
1783 * @param TIMx Timer instance
1784 * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
1785 */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)1786 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
1787 {
1788 return (uint32_t)(READ_REG(TIMx->CCR4));
1789 }
1790
1791 /**
1792 * @}
1793 */
1794
1795 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
1796 * @{
1797 */
1798 /**
1799 * @brief Configure input channel.
1800 * @rmtoll CCMR1 CC1S LL_TIM_IC_Config\n
1801 * CCMR1 IC1PSC LL_TIM_IC_Config\n
1802 * CCMR1 IC1F LL_TIM_IC_Config\n
1803 * CCMR1 CC2S LL_TIM_IC_Config\n
1804 * CCMR1 IC2PSC LL_TIM_IC_Config\n
1805 * CCMR1 IC2F LL_TIM_IC_Config\n
1806 * CCMR2 CC3S LL_TIM_IC_Config\n
1807 * CCMR2 IC3PSC LL_TIM_IC_Config\n
1808 * CCMR2 IC3F LL_TIM_IC_Config\n
1809 * CCMR2 CC4S LL_TIM_IC_Config\n
1810 * CCMR2 IC4PSC LL_TIM_IC_Config\n
1811 * CCMR2 IC4F LL_TIM_IC_Config\n
1812 * CCER CC1P LL_TIM_IC_Config\n
1813 * CCER CC1NP LL_TIM_IC_Config\n
1814 * CCER CC2P LL_TIM_IC_Config\n
1815 * CCER CC2NP LL_TIM_IC_Config\n
1816 * CCER CC3P LL_TIM_IC_Config\n
1817 * CCER CC3NP LL_TIM_IC_Config\n
1818 * CCER CC4P LL_TIM_IC_Config\n
1819 * CCER CC4NP LL_TIM_IC_Config
1820 * @param TIMx Timer instance
1821 * @param Channel This parameter can be one of the following values:
1822 * @arg @ref LL_TIM_CHANNEL_CH1
1823 * @arg @ref LL_TIM_CHANNEL_CH2
1824 * @arg @ref LL_TIM_CHANNEL_CH3
1825 * @arg @ref LL_TIM_CHANNEL_CH4
1826 * @param Configuration This parameter must be a combination of all the following values:
1827 * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
1828 * @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
1829 * @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
1830 * @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
1831 * @retval None
1832 */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)1833 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1834 {
1835 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1836 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1837 MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
1838 ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S)) \
1839 << SHIFT_TAB_ICxx[iChannel]);
1840 MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
1841 (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
1842 }
1843
1844 /**
1845 * @brief Set the active input.
1846 * @rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput\n
1847 * CCMR1 CC2S LL_TIM_IC_SetActiveInput\n
1848 * CCMR2 CC3S LL_TIM_IC_SetActiveInput\n
1849 * CCMR2 CC4S LL_TIM_IC_SetActiveInput
1850 * @param TIMx Timer instance
1851 * @param Channel This parameter can be one of the following values:
1852 * @arg @ref LL_TIM_CHANNEL_CH1
1853 * @arg @ref LL_TIM_CHANNEL_CH2
1854 * @arg @ref LL_TIM_CHANNEL_CH3
1855 * @arg @ref LL_TIM_CHANNEL_CH4
1856 * @param ICActiveInput This parameter can be one of the following values:
1857 * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
1858 * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
1859 * @arg @ref LL_TIM_ACTIVEINPUT_TRC
1860 * @retval None
1861 */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)1862 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
1863 {
1864 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1865 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1866 MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
1867 }
1868
1869 /**
1870 * @brief Get the current active input.
1871 * @rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput\n
1872 * CCMR1 CC2S LL_TIM_IC_GetActiveInput\n
1873 * CCMR2 CC3S LL_TIM_IC_GetActiveInput\n
1874 * CCMR2 CC4S LL_TIM_IC_GetActiveInput
1875 * @param TIMx Timer instance
1876 * @param Channel This parameter can be one of the following values:
1877 * @arg @ref LL_TIM_CHANNEL_CH1
1878 * @arg @ref LL_TIM_CHANNEL_CH2
1879 * @arg @ref LL_TIM_CHANNEL_CH3
1880 * @arg @ref LL_TIM_CHANNEL_CH4
1881 * @retval Returned value can be one of the following values:
1882 * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
1883 * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
1884 * @arg @ref LL_TIM_ACTIVEINPUT_TRC
1885 */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)1886 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
1887 {
1888 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1889 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1890 return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
1891 }
1892
1893 /**
1894 * @brief Set the prescaler of input channel.
1895 * @rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler\n
1896 * CCMR1 IC2PSC LL_TIM_IC_SetPrescaler\n
1897 * CCMR2 IC3PSC LL_TIM_IC_SetPrescaler\n
1898 * CCMR2 IC4PSC LL_TIM_IC_SetPrescaler
1899 * @param TIMx Timer instance
1900 * @param Channel This parameter can be one of the following values:
1901 * @arg @ref LL_TIM_CHANNEL_CH1
1902 * @arg @ref LL_TIM_CHANNEL_CH2
1903 * @arg @ref LL_TIM_CHANNEL_CH3
1904 * @arg @ref LL_TIM_CHANNEL_CH4
1905 * @param ICPrescaler This parameter can be one of the following values:
1906 * @arg @ref LL_TIM_ICPSC_DIV1
1907 * @arg @ref LL_TIM_ICPSC_DIV2
1908 * @arg @ref LL_TIM_ICPSC_DIV4
1909 * @arg @ref LL_TIM_ICPSC_DIV8
1910 * @retval None
1911 */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)1912 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
1913 {
1914 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1915 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1916 MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
1917 }
1918
1919 /**
1920 * @brief Get the current prescaler value acting on an input channel.
1921 * @rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler\n
1922 * CCMR1 IC2PSC LL_TIM_IC_GetPrescaler\n
1923 * CCMR2 IC3PSC LL_TIM_IC_GetPrescaler\n
1924 * CCMR2 IC4PSC LL_TIM_IC_GetPrescaler
1925 * @param TIMx Timer instance
1926 * @param Channel This parameter can be one of the following values:
1927 * @arg @ref LL_TIM_CHANNEL_CH1
1928 * @arg @ref LL_TIM_CHANNEL_CH2
1929 * @arg @ref LL_TIM_CHANNEL_CH3
1930 * @arg @ref LL_TIM_CHANNEL_CH4
1931 * @retval Returned value can be one of the following values:
1932 * @arg @ref LL_TIM_ICPSC_DIV1
1933 * @arg @ref LL_TIM_ICPSC_DIV2
1934 * @arg @ref LL_TIM_ICPSC_DIV4
1935 * @arg @ref LL_TIM_ICPSC_DIV8
1936 */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)1937 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
1938 {
1939 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1940 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1941 return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
1942 }
1943
1944 /**
1945 * @brief Set the input filter duration.
1946 * @rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter\n
1947 * CCMR1 IC2F LL_TIM_IC_SetFilter\n
1948 * CCMR2 IC3F LL_TIM_IC_SetFilter\n
1949 * CCMR2 IC4F LL_TIM_IC_SetFilter
1950 * @param TIMx Timer instance
1951 * @param Channel This parameter can be one of the following values:
1952 * @arg @ref LL_TIM_CHANNEL_CH1
1953 * @arg @ref LL_TIM_CHANNEL_CH2
1954 * @arg @ref LL_TIM_CHANNEL_CH3
1955 * @arg @ref LL_TIM_CHANNEL_CH4
1956 * @param ICFilter This parameter can be one of the following values:
1957 * @arg @ref LL_TIM_IC_FILTER_FDIV1
1958 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
1959 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
1960 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
1961 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
1962 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
1963 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
1964 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
1965 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
1966 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
1967 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
1968 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
1969 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
1970 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
1971 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
1972 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
1973 * @retval None
1974 */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)1975 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
1976 {
1977 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1978 __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1979 MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
1980 }
1981
1982 /**
1983 * @brief Get the input filter duration.
1984 * @rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter\n
1985 * CCMR1 IC2F LL_TIM_IC_GetFilter\n
1986 * CCMR2 IC3F LL_TIM_IC_GetFilter\n
1987 * CCMR2 IC4F LL_TIM_IC_GetFilter
1988 * @param TIMx Timer instance
1989 * @param Channel This parameter can be one of the following values:
1990 * @arg @ref LL_TIM_CHANNEL_CH1
1991 * @arg @ref LL_TIM_CHANNEL_CH2
1992 * @arg @ref LL_TIM_CHANNEL_CH3
1993 * @arg @ref LL_TIM_CHANNEL_CH4
1994 * @retval Returned value can be one of the following values:
1995 * @arg @ref LL_TIM_IC_FILTER_FDIV1
1996 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
1997 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
1998 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
1999 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2000 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2001 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2002 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2003 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2004 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2005 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2006 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2007 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2008 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2009 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2010 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2011 */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)2012 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
2013 {
2014 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2015 const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2016 return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2017 }
2018
2019 /**
2020 * @brief Set the input channel polarity.
2021 * @rmtoll CCER CC1P LL_TIM_IC_SetPolarity\n
2022 * CCER CC1NP LL_TIM_IC_SetPolarity\n
2023 * CCER CC2P LL_TIM_IC_SetPolarity\n
2024 * CCER CC2NP LL_TIM_IC_SetPolarity\n
2025 * CCER CC3P LL_TIM_IC_SetPolarity\n
2026 * CCER CC3NP LL_TIM_IC_SetPolarity\n
2027 * CCER CC4P LL_TIM_IC_SetPolarity\n
2028 * CCER CC4NP LL_TIM_IC_SetPolarity
2029 * @param TIMx Timer instance
2030 * @param Channel This parameter can be one of the following values:
2031 * @arg @ref LL_TIM_CHANNEL_CH1
2032 * @arg @ref LL_TIM_CHANNEL_CH2
2033 * @arg @ref LL_TIM_CHANNEL_CH3
2034 * @arg @ref LL_TIM_CHANNEL_CH4
2035 * @param ICPolarity This parameter can be one of the following values:
2036 * @arg @ref LL_TIM_IC_POLARITY_RISING
2037 * @arg @ref LL_TIM_IC_POLARITY_FALLING
2038 * @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2039 * @retval None
2040 */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)2041 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2042 {
2043 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2044 MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2045 ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2046 }
2047
2048 /**
2049 * @brief Get the current input channel polarity.
2050 * @rmtoll CCER CC1P LL_TIM_IC_GetPolarity\n
2051 * CCER CC1NP LL_TIM_IC_GetPolarity\n
2052 * CCER CC2P LL_TIM_IC_GetPolarity\n
2053 * CCER CC2NP LL_TIM_IC_GetPolarity\n
2054 * CCER CC3P LL_TIM_IC_GetPolarity\n
2055 * CCER CC3NP LL_TIM_IC_GetPolarity\n
2056 * CCER CC4P LL_TIM_IC_GetPolarity\n
2057 * CCER CC4NP LL_TIM_IC_GetPolarity
2058 * @param TIMx Timer instance
2059 * @param Channel This parameter can be one of the following values:
2060 * @arg @ref LL_TIM_CHANNEL_CH1
2061 * @arg @ref LL_TIM_CHANNEL_CH2
2062 * @arg @ref LL_TIM_CHANNEL_CH3
2063 * @arg @ref LL_TIM_CHANNEL_CH4
2064 * @retval Returned value can be one of the following values:
2065 * @arg @ref LL_TIM_IC_POLARITY_RISING
2066 * @arg @ref LL_TIM_IC_POLARITY_FALLING
2067 * @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2068 */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2069 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2070 {
2071 uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2072 return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2073 SHIFT_TAB_CCxP[iChannel]);
2074 }
2075
2076 /**
2077 * @brief Connect the TIMx_CH1, CH2 and CH3 pins to the TI1 input (XOR combination).
2078 * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2079 * a timer instance provides an XOR input.
2080 * @rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination
2081 * @param TIMx Timer instance
2082 * @retval None
2083 */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)2084 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
2085 {
2086 SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
2087 }
2088
2089 /**
2090 * @brief Disconnect the TIMx_CH1, CH2 and CH3 pins from the TI1 input.
2091 * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2092 * a timer instance provides an XOR input.
2093 * @rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination
2094 * @param TIMx Timer instance
2095 * @retval None
2096 */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)2097 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
2098 {
2099 CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
2100 }
2101
2102 /**
2103 * @brief Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
2104 * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2105 * a timer instance provides an XOR input.
2106 * @rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination
2107 * @param TIMx Timer instance
2108 * @retval State of bit (1 or 0).
2109 */
LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef * TIMx)2110 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
2111 {
2112 return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
2113 }
2114
2115 /**
2116 * @brief Get captured value for input channel 1.
2117 * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2118 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2119 * whether or not a timer instance supports a 32 bits counter.
2120 * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2121 * input channel 1 is supported by a timer instance.
2122 * @rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1
2123 * @param TIMx Timer instance
2124 * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2125 */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)2126 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
2127 {
2128 return (uint32_t)(READ_REG(TIMx->CCR1));
2129 }
2130
2131 /**
2132 * @brief Get captured value for input channel 2.
2133 * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2134 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2135 * whether or not a timer instance supports a 32 bits counter.
2136 * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2137 * input channel 2 is supported by a timer instance.
2138 * @rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2
2139 * @param TIMx Timer instance
2140 * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2141 */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)2142 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
2143 {
2144 return (uint32_t)(READ_REG(TIMx->CCR2));
2145 }
2146
2147 /**
2148 * @brief Get captured value for input channel 3.
2149 * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2150 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2151 * whether or not a timer instance supports a 32 bits counter.
2152 * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2153 * input channel 3 is supported by a timer instance.
2154 * @rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3
2155 * @param TIMx Timer instance
2156 * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2157 */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)2158 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
2159 {
2160 return (uint32_t)(READ_REG(TIMx->CCR3));
2161 }
2162
2163 /**
2164 * @brief Get captured value for input channel 4.
2165 * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2166 * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2167 * whether or not a timer instance supports a 32 bits counter.
2168 * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2169 * input channel 4 is supported by a timer instance.
2170 * @rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4
2171 * @param TIMx Timer instance
2172 * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2173 */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)2174 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
2175 {
2176 return (uint32_t)(READ_REG(TIMx->CCR4));
2177 }
2178
2179 /**
2180 * @}
2181 */
2182
2183 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
2184 * @{
2185 */
2186 /**
2187 * @brief Enable external clock mode 2.
2188 * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
2189 * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2190 * whether or not a timer instance supports external clock mode2.
2191 * @rmtoll SMCR ECE LL_TIM_EnableExternalClock
2192 * @param TIMx Timer instance
2193 * @retval None
2194 */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)2195 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
2196 {
2197 SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2198 }
2199
2200 /**
2201 * @brief Disable external clock mode 2.
2202 * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2203 * whether or not a timer instance supports external clock mode2.
2204 * @rmtoll SMCR ECE LL_TIM_DisableExternalClock
2205 * @param TIMx Timer instance
2206 * @retval None
2207 */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)2208 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
2209 {
2210 CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2211 }
2212
2213 /**
2214 * @brief Indicate whether external clock mode 2 is enabled.
2215 * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2216 * whether or not a timer instance supports external clock mode2.
2217 * @rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock
2218 * @param TIMx Timer instance
2219 * @retval State of bit (1 or 0).
2220 */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)2221 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
2222 {
2223 return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
2224 }
2225
2226 /**
2227 * @brief Set the clock source of the counter clock.
2228 * @note when selected clock source is external clock mode 1, the timer input
2229 * the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
2230 * function. This timer input must be configured by calling
2231 * the @ref LL_TIM_IC_Config() function.
2232 * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
2233 * whether or not a timer instance supports external clock mode1.
2234 * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2235 * whether or not a timer instance supports external clock mode2.
2236 * @rmtoll SMCR SMS LL_TIM_SetClockSource\n
2237 * SMCR ECE LL_TIM_SetClockSource
2238 * @param TIMx Timer instance
2239 * @param ClockSource This parameter can be one of the following values:
2240 * @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
2241 * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
2242 * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
2243 * @retval None
2244 */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)2245 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
2246 {
2247 MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
2248 }
2249
2250 /**
2251 * @brief Set the encoder interface mode.
2252 * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
2253 * whether or not a timer instance supports the encoder mode.
2254 * @rmtoll SMCR SMS LL_TIM_SetEncoderMode
2255 * @param TIMx Timer instance
2256 * @param EncoderMode This parameter can be one of the following values:
2257 * @arg @ref LL_TIM_ENCODERMODE_X2_TI1
2258 * @arg @ref LL_TIM_ENCODERMODE_X2_TI2
2259 * @arg @ref LL_TIM_ENCODERMODE_X4_TI12
2260 * @retval None
2261 */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)2262 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
2263 {
2264 MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
2265 }
2266
2267 /**
2268 * @}
2269 */
2270
2271 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
2272 * @{
2273 */
2274 /**
2275 * @brief Set the trigger output (TRGO) used for timer synchronization .
2276 * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
2277 * whether or not a timer instance can operate as a master timer.
2278 * @rmtoll CR2 MMS LL_TIM_SetTriggerOutput
2279 * @param TIMx Timer instance
2280 * @param TimerSynchronization This parameter can be one of the following values:
2281 * @arg @ref LL_TIM_TRGO_RESET
2282 * @arg @ref LL_TIM_TRGO_ENABLE
2283 * @arg @ref LL_TIM_TRGO_UPDATE
2284 * @arg @ref LL_TIM_TRGO_CC1IF
2285 * @arg @ref LL_TIM_TRGO_OC1REF
2286 * @arg @ref LL_TIM_TRGO_OC2REF
2287 * @arg @ref LL_TIM_TRGO_OC3REF
2288 * @arg @ref LL_TIM_TRGO_OC4REF
2289 * @retval None
2290 */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)2291 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
2292 {
2293 MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
2294 }
2295
2296 /**
2297 * @brief Set the synchronization mode of a slave timer.
2298 * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2299 * a timer instance can operate as a slave timer.
2300 * @rmtoll SMCR SMS LL_TIM_SetSlaveMode
2301 * @param TIMx Timer instance
2302 * @param SlaveMode This parameter can be one of the following values:
2303 * @arg @ref LL_TIM_SLAVEMODE_DISABLED
2304 * @arg @ref LL_TIM_SLAVEMODE_RESET
2305 * @arg @ref LL_TIM_SLAVEMODE_GATED
2306 * @arg @ref LL_TIM_SLAVEMODE_TRIGGER
2307 * @retval None
2308 */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)2309 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
2310 {
2311 MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
2312 }
2313
2314 /**
2315 * @brief Set the selects the trigger input to be used to synchronize the counter.
2316 * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2317 * a timer instance can operate as a slave timer.
2318 * @rmtoll SMCR TS LL_TIM_SetTriggerInput
2319 * @param TIMx Timer instance
2320 * @param TriggerInput This parameter can be one of the following values:
2321 * @arg @ref LL_TIM_TS_ITR0
2322 * @arg @ref LL_TIM_TS_ITR1
2323 * @arg @ref LL_TIM_TS_ITR2
2324 * @arg @ref LL_TIM_TS_ITR3
2325 * @arg @ref LL_TIM_TS_TI1F_ED
2326 * @arg @ref LL_TIM_TS_TI1FP1
2327 * @arg @ref LL_TIM_TS_TI2FP2
2328 * @arg @ref LL_TIM_TS_ETRF
2329 * @retval None
2330 */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)2331 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
2332 {
2333 MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
2334 }
2335
2336 /**
2337 * @brief Enable the Master/Slave mode.
2338 * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2339 * a timer instance can operate as a slave timer.
2340 * @rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode
2341 * @param TIMx Timer instance
2342 * @retval None
2343 */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)2344 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
2345 {
2346 SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2347 }
2348
2349 /**
2350 * @brief Disable the Master/Slave mode.
2351 * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2352 * a timer instance can operate as a slave timer.
2353 * @rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode
2354 * @param TIMx Timer instance
2355 * @retval None
2356 */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)2357 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
2358 {
2359 CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2360 }
2361
2362 /**
2363 * @brief Indicates whether the Master/Slave mode is enabled.
2364 * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2365 * a timer instance can operate as a slave timer.
2366 * @rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode
2367 * @param TIMx Timer instance
2368 * @retval State of bit (1 or 0).
2369 */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)2370 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
2371 {
2372 return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
2373 }
2374
2375 /**
2376 * @brief Configure the external trigger (ETR) input.
2377 * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
2378 * a timer instance provides an external trigger input.
2379 * @rmtoll SMCR ETP LL_TIM_ConfigETR\n
2380 * SMCR ETPS LL_TIM_ConfigETR\n
2381 * SMCR ETF LL_TIM_ConfigETR
2382 * @param TIMx Timer instance
2383 * @param ETRPolarity This parameter can be one of the following values:
2384 * @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
2385 * @arg @ref LL_TIM_ETR_POLARITY_INVERTED
2386 * @param ETRPrescaler This parameter can be one of the following values:
2387 * @arg @ref LL_TIM_ETR_PRESCALER_DIV1
2388 * @arg @ref LL_TIM_ETR_PRESCALER_DIV2
2389 * @arg @ref LL_TIM_ETR_PRESCALER_DIV4
2390 * @arg @ref LL_TIM_ETR_PRESCALER_DIV8
2391 * @param ETRFilter This parameter can be one of the following values:
2392 * @arg @ref LL_TIM_ETR_FILTER_FDIV1
2393 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
2394 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
2395 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
2396 * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
2397 * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
2398 * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
2399 * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
2400 * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
2401 * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
2402 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
2403 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
2404 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
2405 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
2406 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
2407 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
2408 * @retval None
2409 */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)2410 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
2411 uint32_t ETRFilter)
2412 {
2413 MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
2414 }
2415
2416 /**
2417 * @}
2418 */
2419
2420 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
2421 * @{
2422 */
2423 /**
2424 * @brief Configures the timer DMA burst feature.
2425 * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
2426 * not a timer instance supports the DMA burst mode.
2427 * @rmtoll DCR DBL LL_TIM_ConfigDMABurst\n
2428 * DCR DBA LL_TIM_ConfigDMABurst
2429 * @param TIMx Timer instance
2430 * @param DMABurstBaseAddress This parameter can be one of the following values:
2431 * @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
2432 * @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
2433 * @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
2434 * @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
2435 * @arg @ref LL_TIM_DMABURST_BASEADDR_SR
2436 * @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
2437 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
2438 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
2439 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
2440 * @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
2441 * @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
2442 * @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
2443 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
2444 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
2445 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
2446 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
2447 * @arg @ref LL_TIM_DMABURST_BASEADDR_OR
2448 * @param DMABurstLength This parameter can be one of the following values:
2449 * @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
2450 * @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
2451 * @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
2452 * @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
2453 * @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
2454 * @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
2455 * @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
2456 * @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
2457 * @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
2458 * @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
2459 * @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
2460 * @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
2461 * @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
2462 * @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
2463 * @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
2464 * @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
2465 * @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
2466 * @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
2467 * @retval None
2468 */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)2469 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
2470 {
2471 MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
2472 }
2473
2474 /**
2475 * @}
2476 */
2477
2478 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
2479 * @{
2480 */
2481 /**
2482 * @brief Remap TIM inputs (input channel, internal/external triggers).
2483 * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
2484 * a some timer inputs can be remapped.
2485 * @rmtoll TIM2_OR ITR1_RMP LL_TIM_SetRemap\n
2486 * TIM3_OR ITR2_RMP LL_TIM_SetRemap\n
2487 * TIM9_OR TI1_RMP LL_TIM_SetRemap\n
2488 * TIM9_OR ITR1_RMP LL_TIM_SetRemap\n
2489 * TIM10_OR TI1_RMP LL_TIM_SetRemap\n
2490 * TIM10_OR ETR_RMP LL_TIM_SetRemap\n
2491 * TIM10_OR TI1_RMP_RI LL_TIM_SetRemap\n
2492 * TIM11_OR TI1_RMP LL_TIM_SetRemap\n
2493 * TIM11_OR ETR_RMP LL_TIM_SetRemap\n
2494 * TIM11_OR TI1_RMP_RI LL_TIM_SetRemap
2495 * @param TIMx Timer instance
2496 * @param Remap Remap params depends on the TIMx. Description available only
2497 * in CHM version of the User Manual (not in .pdf).
2498 * Otherwise see Reference Manual description of OR registers.
2499 *
2500 * Below description summarizes "Timer Instance" and "Remap" param combinations:
2501 *
2502 * TIM2: any combination of ITR1_RMP where
2503 *
2504 * . . ITR1_RMP can be one of the following values
2505 * @arg @ref LL_TIM_TIM2_TIR1_RMP_TIM10_OC (**)
2506 * @arg @ref LL_TIM_TIM2_TIR1_RMP_TIM5_TGO (**)
2507 *
2508 * TIM3: any combination of ITR2_RMP where
2509 *
2510 * . . ITR2_RMP can be one of the following values
2511 * @arg @ref LL_TIM_TIM3_TIR2_RMP_TIM11_OC (**)
2512 * @arg @ref LL_TIM_TIM3_TIR2_RMP_TIM5_TGO (**)
2513 *
2514 * TIM9: any combination of TI1_RMP, ITR1_RMP where
2515 *
2516 * . . TI1_RMP can be one of the following values
2517 * @arg @ref LL_TIM_TIM9_TI1_RMP_LSE
2518 * @arg @ref LL_TIM_TIM9_TI1_RMP_GPIO
2519 *
2520 * . . ITR1_RMP can be one of the following values
2521 * @arg @ref LL_TIM_TIM9_ITR1_RMP_TIM3_TGO (*)
2522 * @arg @ref LL_TIM_TIM9_ITR1_RMP_TOUCH_IO (*)
2523 *
2524 *
2525 * TIM10: any combination of TI1_RMP, ETR_RMP, TI1_RMP_RI where
2526 *
2527 * . . TI1_RMP can be one of the following values
2528 * @arg @ref LL_TIM_TIM10_TI1_RMP_GPIO
2529 * @arg @ref LL_TIM_TIM10_TI1_RMP_LSI
2530 * @arg @ref LL_TIM_TIM10_TI1_RMP_LSE
2531 * @arg @ref LL_TIM_TIM10_TI1_RMP_RTC
2532 *
2533 * . . ETR_RMP can be one of the following values
2534 * @arg @ref LL_TIM_TIM10_ETR_RMP_TIM9_TGO (*)
2535 *
2536 * . . TI1_RMP_RI can be one of the following values
2537 * @arg @ref LL_TIM_TIM10_TI1_RMP_RI (*)
2538 *
2539 *
2540 * TIM11: any combination of TI1_RMP, ETR_RMP, TI1_RMP_RI where
2541 *
2542 * . . TI1_RMP can be one of the following values
2543 * @arg @ref LL_TIM_TIM11_TI1_RMP_MSI
2544 * @arg @ref LL_TIM_TIM11_TI1_RMP_HSE_RTC
2545 * @arg @ref LL_TIM_TIM11_TI1_RMP
2546 *
2547 * . . ETR_RMP can be one of the following values
2548 * @arg @ref LL_TIM_TIM11_ETR_RMP_TIM9_TGO (*)
2549 *
2550 * . . TI1_RMP_RI can be one of the following values
2551 * @arg @ref LL_TIM_TIM11_TI1_RMP_RI (*)
2552 *
2553 * (*) value not available in all devices categories
2554 * (**) register not available in all devices categories
2555 *
2556 * @note Option registers are available only for cat.3, cat.4 and cat.5 devices
2557 * @retval None
2558 */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)2559 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
2560 {
2561 MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK));
2562 }
2563
2564 /**
2565 * @}
2566 */
2567
2568 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
2569 * @{
2570 */
2571 /**
2572 * @brief Set the OCREF clear input source
2573 * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
2574 * @note This function can only be used in Output compare and PWM modes.
2575 * @note the ETR signal can be connected to the output of a comparator to be used for current handling
2576 * @rmtoll SMCR OCCS LL_TIM_SetOCRefClearInputSource
2577 * @param TIMx Timer instance
2578 * @param OCRefClearInputSource This parameter can be one of the following values:
2579 * @arg @ref LL_TIM_OCREF_CLR_INT_OCREF_CLR
2580 * @arg @ref LL_TIM_OCREF_CLR_INT_ETR
2581 * @retval None
2582 */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)2583 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
2584 {
2585 MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource);
2586 }
2587 /**
2588 * @}
2589 */
2590
2591 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
2592 * @{
2593 */
2594 /**
2595 * @brief Clear the update interrupt flag (UIF).
2596 * @rmtoll SR UIF LL_TIM_ClearFlag_UPDATE
2597 * @param TIMx Timer instance
2598 * @retval None
2599 */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)2600 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
2601 {
2602 WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
2603 }
2604
2605 /**
2606 * @brief Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
2607 * @rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE
2608 * @param TIMx Timer instance
2609 * @retval State of bit (1 or 0).
2610 */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)2611 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
2612 {
2613 return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
2614 }
2615
2616 /**
2617 * @brief Clear the Capture/Compare 1 interrupt flag (CC1F).
2618 * @rmtoll SR CC1IF LL_TIM_ClearFlag_CC1
2619 * @param TIMx Timer instance
2620 * @retval None
2621 */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)2622 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
2623 {
2624 WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
2625 }
2626
2627 /**
2628 * @brief Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
2629 * @rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1
2630 * @param TIMx Timer instance
2631 * @retval State of bit (1 or 0).
2632 */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)2633 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
2634 {
2635 return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
2636 }
2637
2638 /**
2639 * @brief Clear the Capture/Compare 2 interrupt flag (CC2F).
2640 * @rmtoll SR CC2IF LL_TIM_ClearFlag_CC2
2641 * @param TIMx Timer instance
2642 * @retval None
2643 */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)2644 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
2645 {
2646 WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
2647 }
2648
2649 /**
2650 * @brief Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
2651 * @rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2
2652 * @param TIMx Timer instance
2653 * @retval State of bit (1 or 0).
2654 */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)2655 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
2656 {
2657 return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
2658 }
2659
2660 /**
2661 * @brief Clear the Capture/Compare 3 interrupt flag (CC3F).
2662 * @rmtoll SR CC3IF LL_TIM_ClearFlag_CC3
2663 * @param TIMx Timer instance
2664 * @retval None
2665 */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)2666 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
2667 {
2668 WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
2669 }
2670
2671 /**
2672 * @brief Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
2673 * @rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3
2674 * @param TIMx Timer instance
2675 * @retval State of bit (1 or 0).
2676 */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)2677 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
2678 {
2679 return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
2680 }
2681
2682 /**
2683 * @brief Clear the Capture/Compare 4 interrupt flag (CC4F).
2684 * @rmtoll SR CC4IF LL_TIM_ClearFlag_CC4
2685 * @param TIMx Timer instance
2686 * @retval None
2687 */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)2688 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
2689 {
2690 WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
2691 }
2692
2693 /**
2694 * @brief Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
2695 * @rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4
2696 * @param TIMx Timer instance
2697 * @retval State of bit (1 or 0).
2698 */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)2699 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
2700 {
2701 return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
2702 }
2703
2704 /**
2705 * @brief Clear the trigger interrupt flag (TIF).
2706 * @rmtoll SR TIF LL_TIM_ClearFlag_TRIG
2707 * @param TIMx Timer instance
2708 * @retval None
2709 */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)2710 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
2711 {
2712 WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
2713 }
2714
2715 /**
2716 * @brief Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
2717 * @rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG
2718 * @param TIMx Timer instance
2719 * @retval State of bit (1 or 0).
2720 */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)2721 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
2722 {
2723 return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
2724 }
2725
2726 /**
2727 * @brief Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
2728 * @rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR
2729 * @param TIMx Timer instance
2730 * @retval None
2731 */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)2732 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
2733 {
2734 WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
2735 }
2736
2737 /**
2738 * @brief Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
2739 * (Capture/Compare 1 interrupt is pending).
2740 * @rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR
2741 * @param TIMx Timer instance
2742 * @retval State of bit (1 or 0).
2743 */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)2744 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
2745 {
2746 return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
2747 }
2748
2749 /**
2750 * @brief Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
2751 * @rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR
2752 * @param TIMx Timer instance
2753 * @retval None
2754 */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)2755 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
2756 {
2757 WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
2758 }
2759
2760 /**
2761 * @brief Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
2762 * (Capture/Compare 2 over-capture interrupt is pending).
2763 * @rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR
2764 * @param TIMx Timer instance
2765 * @retval State of bit (1 or 0).
2766 */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)2767 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
2768 {
2769 return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
2770 }
2771
2772 /**
2773 * @brief Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
2774 * @rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR
2775 * @param TIMx Timer instance
2776 * @retval None
2777 */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)2778 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
2779 {
2780 WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
2781 }
2782
2783 /**
2784 * @brief Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
2785 * (Capture/Compare 3 over-capture interrupt is pending).
2786 * @rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR
2787 * @param TIMx Timer instance
2788 * @retval State of bit (1 or 0).
2789 */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)2790 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
2791 {
2792 return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
2793 }
2794
2795 /**
2796 * @brief Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
2797 * @rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR
2798 * @param TIMx Timer instance
2799 * @retval None
2800 */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)2801 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
2802 {
2803 WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
2804 }
2805
2806 /**
2807 * @brief Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
2808 * (Capture/Compare 4 over-capture interrupt is pending).
2809 * @rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR
2810 * @param TIMx Timer instance
2811 * @retval State of bit (1 or 0).
2812 */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)2813 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
2814 {
2815 return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
2816 }
2817
2818 /**
2819 * @}
2820 */
2821
2822 /** @defgroup TIM_LL_EF_IT_Management IT-Management
2823 * @{
2824 */
2825 /**
2826 * @brief Enable update interrupt (UIE).
2827 * @rmtoll DIER UIE LL_TIM_EnableIT_UPDATE
2828 * @param TIMx Timer instance
2829 * @retval None
2830 */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)2831 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
2832 {
2833 SET_BIT(TIMx->DIER, TIM_DIER_UIE);
2834 }
2835
2836 /**
2837 * @brief Disable update interrupt (UIE).
2838 * @rmtoll DIER UIE LL_TIM_DisableIT_UPDATE
2839 * @param TIMx Timer instance
2840 * @retval None
2841 */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)2842 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
2843 {
2844 CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
2845 }
2846
2847 /**
2848 * @brief Indicates whether the update interrupt (UIE) is enabled.
2849 * @rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE
2850 * @param TIMx Timer instance
2851 * @retval State of bit (1 or 0).
2852 */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)2853 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
2854 {
2855 return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
2856 }
2857
2858 /**
2859 * @brief Enable capture/compare 1 interrupt (CC1IE).
2860 * @rmtoll DIER CC1IE LL_TIM_EnableIT_CC1
2861 * @param TIMx Timer instance
2862 * @retval None
2863 */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)2864 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
2865 {
2866 SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
2867 }
2868
2869 /**
2870 * @brief Disable capture/compare 1 interrupt (CC1IE).
2871 * @rmtoll DIER CC1IE LL_TIM_DisableIT_CC1
2872 * @param TIMx Timer instance
2873 * @retval None
2874 */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)2875 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
2876 {
2877 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
2878 }
2879
2880 /**
2881 * @brief Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
2882 * @rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1
2883 * @param TIMx Timer instance
2884 * @retval State of bit (1 or 0).
2885 */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)2886 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
2887 {
2888 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
2889 }
2890
2891 /**
2892 * @brief Enable capture/compare 2 interrupt (CC2IE).
2893 * @rmtoll DIER CC2IE LL_TIM_EnableIT_CC2
2894 * @param TIMx Timer instance
2895 * @retval None
2896 */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)2897 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
2898 {
2899 SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
2900 }
2901
2902 /**
2903 * @brief Disable capture/compare 2 interrupt (CC2IE).
2904 * @rmtoll DIER CC2IE LL_TIM_DisableIT_CC2
2905 * @param TIMx Timer instance
2906 * @retval None
2907 */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)2908 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
2909 {
2910 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
2911 }
2912
2913 /**
2914 * @brief Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
2915 * @rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2
2916 * @param TIMx Timer instance
2917 * @retval State of bit (1 or 0).
2918 */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)2919 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
2920 {
2921 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
2922 }
2923
2924 /**
2925 * @brief Enable capture/compare 3 interrupt (CC3IE).
2926 * @rmtoll DIER CC3IE LL_TIM_EnableIT_CC3
2927 * @param TIMx Timer instance
2928 * @retval None
2929 */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)2930 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
2931 {
2932 SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
2933 }
2934
2935 /**
2936 * @brief Disable capture/compare 3 interrupt (CC3IE).
2937 * @rmtoll DIER CC3IE LL_TIM_DisableIT_CC3
2938 * @param TIMx Timer instance
2939 * @retval None
2940 */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)2941 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
2942 {
2943 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
2944 }
2945
2946 /**
2947 * @brief Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
2948 * @rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3
2949 * @param TIMx Timer instance
2950 * @retval State of bit (1 or 0).
2951 */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)2952 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
2953 {
2954 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
2955 }
2956
2957 /**
2958 * @brief Enable capture/compare 4 interrupt (CC4IE).
2959 * @rmtoll DIER CC4IE LL_TIM_EnableIT_CC4
2960 * @param TIMx Timer instance
2961 * @retval None
2962 */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)2963 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
2964 {
2965 SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
2966 }
2967
2968 /**
2969 * @brief Disable capture/compare 4 interrupt (CC4IE).
2970 * @rmtoll DIER CC4IE LL_TIM_DisableIT_CC4
2971 * @param TIMx Timer instance
2972 * @retval None
2973 */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)2974 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
2975 {
2976 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
2977 }
2978
2979 /**
2980 * @brief Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
2981 * @rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4
2982 * @param TIMx Timer instance
2983 * @retval State of bit (1 or 0).
2984 */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)2985 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
2986 {
2987 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
2988 }
2989
2990 /**
2991 * @brief Enable trigger interrupt (TIE).
2992 * @rmtoll DIER TIE LL_TIM_EnableIT_TRIG
2993 * @param TIMx Timer instance
2994 * @retval None
2995 */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)2996 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
2997 {
2998 SET_BIT(TIMx->DIER, TIM_DIER_TIE);
2999 }
3000
3001 /**
3002 * @brief Disable trigger interrupt (TIE).
3003 * @rmtoll DIER TIE LL_TIM_DisableIT_TRIG
3004 * @param TIMx Timer instance
3005 * @retval None
3006 */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)3007 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
3008 {
3009 CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
3010 }
3011
3012 /**
3013 * @brief Indicates whether the trigger interrupt (TIE) is enabled.
3014 * @rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG
3015 * @param TIMx Timer instance
3016 * @retval State of bit (1 or 0).
3017 */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)3018 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
3019 {
3020 return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
3021 }
3022
3023 /**
3024 * @}
3025 */
3026
3027 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
3028 * @{
3029 */
3030 /**
3031 * @brief Enable update DMA request (UDE).
3032 * @rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE
3033 * @param TIMx Timer instance
3034 * @retval None
3035 */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)3036 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3037 {
3038 SET_BIT(TIMx->DIER, TIM_DIER_UDE);
3039 }
3040
3041 /**
3042 * @brief Disable update DMA request (UDE).
3043 * @rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE
3044 * @param TIMx Timer instance
3045 * @retval None
3046 */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)3047 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3048 {
3049 CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
3050 }
3051
3052 /**
3053 * @brief Indicates whether the update DMA request (UDE) is enabled.
3054 * @rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE
3055 * @param TIMx Timer instance
3056 * @retval State of bit (1 or 0).
3057 */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)3058 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
3059 {
3060 return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
3061 }
3062
3063 /**
3064 * @brief Enable capture/compare 1 DMA request (CC1DE).
3065 * @rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1
3066 * @param TIMx Timer instance
3067 * @retval None
3068 */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)3069 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
3070 {
3071 SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3072 }
3073
3074 /**
3075 * @brief Disable capture/compare 1 DMA request (CC1DE).
3076 * @rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1
3077 * @param TIMx Timer instance
3078 * @retval None
3079 */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)3080 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
3081 {
3082 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3083 }
3084
3085 /**
3086 * @brief Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
3087 * @rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1
3088 * @param TIMx Timer instance
3089 * @retval State of bit (1 or 0).
3090 */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)3091 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
3092 {
3093 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
3094 }
3095
3096 /**
3097 * @brief Enable capture/compare 2 DMA request (CC2DE).
3098 * @rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2
3099 * @param TIMx Timer instance
3100 * @retval None
3101 */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)3102 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
3103 {
3104 SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3105 }
3106
3107 /**
3108 * @brief Disable capture/compare 2 DMA request (CC2DE).
3109 * @rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2
3110 * @param TIMx Timer instance
3111 * @retval None
3112 */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)3113 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
3114 {
3115 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3116 }
3117
3118 /**
3119 * @brief Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
3120 * @rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2
3121 * @param TIMx Timer instance
3122 * @retval State of bit (1 or 0).
3123 */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)3124 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
3125 {
3126 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
3127 }
3128
3129 /**
3130 * @brief Enable capture/compare 3 DMA request (CC3DE).
3131 * @rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3
3132 * @param TIMx Timer instance
3133 * @retval None
3134 */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)3135 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
3136 {
3137 SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3138 }
3139
3140 /**
3141 * @brief Disable capture/compare 3 DMA request (CC3DE).
3142 * @rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3
3143 * @param TIMx Timer instance
3144 * @retval None
3145 */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)3146 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
3147 {
3148 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3149 }
3150
3151 /**
3152 * @brief Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
3153 * @rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3
3154 * @param TIMx Timer instance
3155 * @retval State of bit (1 or 0).
3156 */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)3157 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
3158 {
3159 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
3160 }
3161
3162 /**
3163 * @brief Enable capture/compare 4 DMA request (CC4DE).
3164 * @rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4
3165 * @param TIMx Timer instance
3166 * @retval None
3167 */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)3168 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
3169 {
3170 SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3171 }
3172
3173 /**
3174 * @brief Disable capture/compare 4 DMA request (CC4DE).
3175 * @rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4
3176 * @param TIMx Timer instance
3177 * @retval None
3178 */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)3179 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
3180 {
3181 CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3182 }
3183
3184 /**
3185 * @brief Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
3186 * @rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4
3187 * @param TIMx Timer instance
3188 * @retval State of bit (1 or 0).
3189 */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)3190 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
3191 {
3192 return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
3193 }
3194
3195 /**
3196 * @brief Enable trigger interrupt (TDE).
3197 * @rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG
3198 * @param TIMx Timer instance
3199 * @retval None
3200 */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)3201 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
3202 {
3203 SET_BIT(TIMx->DIER, TIM_DIER_TDE);
3204 }
3205
3206 /**
3207 * @brief Disable trigger interrupt (TDE).
3208 * @rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG
3209 * @param TIMx Timer instance
3210 * @retval None
3211 */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)3212 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
3213 {
3214 CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
3215 }
3216
3217 /**
3218 * @brief Indicates whether the trigger interrupt (TDE) is enabled.
3219 * @rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG
3220 * @param TIMx Timer instance
3221 * @retval State of bit (1 or 0).
3222 */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)3223 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
3224 {
3225 return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
3226 }
3227
3228 /**
3229 * @}
3230 */
3231
3232 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
3233 * @{
3234 */
3235 /**
3236 * @brief Generate an update event.
3237 * @rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE
3238 * @param TIMx Timer instance
3239 * @retval None
3240 */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)3241 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
3242 {
3243 SET_BIT(TIMx->EGR, TIM_EGR_UG);
3244 }
3245
3246 /**
3247 * @brief Generate Capture/Compare 1 event.
3248 * @rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1
3249 * @param TIMx Timer instance
3250 * @retval None
3251 */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)3252 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
3253 {
3254 SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
3255 }
3256
3257 /**
3258 * @brief Generate Capture/Compare 2 event.
3259 * @rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2
3260 * @param TIMx Timer instance
3261 * @retval None
3262 */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)3263 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
3264 {
3265 SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
3266 }
3267
3268 /**
3269 * @brief Generate Capture/Compare 3 event.
3270 * @rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3
3271 * @param TIMx Timer instance
3272 * @retval None
3273 */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)3274 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
3275 {
3276 SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
3277 }
3278
3279 /**
3280 * @brief Generate Capture/Compare 4 event.
3281 * @rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4
3282 * @param TIMx Timer instance
3283 * @retval None
3284 */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)3285 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
3286 {
3287 SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
3288 }
3289
3290 /**
3291 * @brief Generate trigger event.
3292 * @rmtoll EGR TG LL_TIM_GenerateEvent_TRIG
3293 * @param TIMx Timer instance
3294 * @retval None
3295 */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)3296 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
3297 {
3298 SET_BIT(TIMx->EGR, TIM_EGR_TG);
3299 }
3300
3301 /**
3302 * @}
3303 */
3304
3305 #if defined(USE_FULL_LL_DRIVER)
3306 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
3307 * @{
3308 */
3309
3310 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
3311 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
3312 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
3313 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3314 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3315 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
3316 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
3317 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3318 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3319 /**
3320 * @}
3321 */
3322 #endif /* USE_FULL_LL_DRIVER */
3323
3324 /**
3325 * @}
3326 */
3327
3328 /**
3329 * @}
3330 */
3331
3332 #endif /* TIM2 || TIM3 || TIM4 || TIM5 || TIM9 || TIM10 || TIM11 TIM6 || TIM7 */
3333
3334 /**
3335 * @}
3336 */
3337
3338 #ifdef __cplusplus
3339 }
3340 #endif
3341
3342 #endif /* __STM32L1xx_LL_TIM_H */
3343