1 /**
2 ******************************************************************************
3 * @file stm32l1xx_ll_spi.h
4 * @author MCD Application Team
5 * @brief Header file of SPI LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * Copyright (c) 2016 STMicroelectronics.
10 * All rights reserved.
11 *
12 * This software is licensed under terms that can be found in the LICENSE file
13 * in the root directory of this software component.
14 * If no LICENSE file comes with this software, it is provided AS-IS.
15 *
16 ******************************************************************************
17 */
18
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef STM32L1xx_LL_SPI_H
21 #define STM32L1xx_LL_SPI_H
22
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32l1xx.h"
29
30 /** @addtogroup STM32L1xx_LL_Driver
31 * @{
32 */
33
34 #if defined (SPI1) || defined (SPI2) || defined (SPI3)
35
36 /** @defgroup SPI_LL SPI
37 * @{
38 */
39
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private macros ------------------------------------------------------------*/
43
44 /* Exported types ------------------------------------------------------------*/
45 #if defined(USE_FULL_LL_DRIVER)
46 /** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
47 * @{
48 */
49
50 /**
51 * @brief SPI Init structures definition
52 */
53 typedef struct
54 {
55 uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
56 This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
57
58 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
59
60 uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
61 This parameter can be a value of @ref SPI_LL_EC_MODE.
62
63 This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
64
65 uint32_t DataWidth; /*!< Specifies the SPI data width.
66 This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
67
68 This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
69
70 uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
71 This parameter can be a value of @ref SPI_LL_EC_POLARITY.
72
73 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
74
75 uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
76 This parameter can be a value of @ref SPI_LL_EC_PHASE.
77
78 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
79
80 uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
81 This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
82
83 This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
84
85 uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
86 This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
87 @note The communication clock is derived from the master clock. The slave clock does not need to be set.
88
89 This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
90
91 uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
92 This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
93
94 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
95
96 uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
97 This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
98
99 This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
100
101 uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
102 This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
103
104 This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
105
106 } LL_SPI_InitTypeDef;
107
108 /**
109 * @}
110 */
111 #endif /* USE_FULL_LL_DRIVER */
112
113 /* Exported constants --------------------------------------------------------*/
114 /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
115 * @{
116 */
117
118 /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
119 * @brief Flags defines which can be used with LL_SPI_ReadReg function
120 * @{
121 */
122 #define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */
123 #define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */
124 #define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */
125 #define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */
126 #define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */
127 #define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */
128 #define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */
129 /**
130 * @}
131 */
132
133 /** @defgroup SPI_LL_EC_IT IT Defines
134 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
135 * @{
136 */
137 #define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
138 #define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
139 #define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */
140 /**
141 * @}
142 */
143
144 /** @defgroup SPI_LL_EC_MODE Operation Mode
145 * @{
146 */
147 #define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */
148 #define LL_SPI_MODE_SLAVE 0x00000000U /*!< Slave configuration */
149 /**
150 * @}
151 */
152
153 /** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
154 * @brief SPI TI Mode not supported for Category 1 and 2
155 * @{
156 */
157 #define LL_SPI_PROTOCOL_MOTOROLA 0x00000000U /*!< Motorola mode. Used as default value */
158 #if defined(SPI_CR2_FRF)
159 #define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */
160 #endif /* SPI_CR2_FRF */
161 /**
162 * @}
163 */
164
165 /** @defgroup SPI_LL_EC_PHASE Clock Phase
166 * @{
167 */
168 #define LL_SPI_PHASE_1EDGE 0x00000000U /*!< First clock transition is the first data capture edge */
169 #define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */
170 /**
171 * @}
172 */
173
174 /** @defgroup SPI_LL_EC_POLARITY Clock Polarity
175 * @{
176 */
177 #define LL_SPI_POLARITY_LOW 0x00000000U /*!< Clock to 0 when idle */
178 #define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */
179 /**
180 * @}
181 */
182
183 /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
184 * @{
185 */
186 #define LL_SPI_BAUDRATEPRESCALER_DIV2 0x00000000U /*!< BaudRate control equal to fPCLK/2 */
187 #define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */
188 #define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */
189 #define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */
190 #define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */
191 #define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */
192 #define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */
193 #define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */
194 /**
195 * @}
196 */
197
198 /** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
199 * @{
200 */
201 #define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */
202 #define LL_SPI_MSB_FIRST 0x00000000U /*!< Data is transmitted/received with the MSB first */
203 /**
204 * @}
205 */
206
207 /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
208 * @{
209 */
210 #define LL_SPI_FULL_DUPLEX 0x00000000U /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
211 #define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */
212 #define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */
213 #define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */
214 /**
215 * @}
216 */
217
218 /** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
219 * @{
220 */
221 #define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */
222 #define LL_SPI_NSS_HARD_INPUT 0x00000000U /*!< NSS pin used in Input. Only used in Master mode */
223 #define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
224 /**
225 * @}
226 */
227
228 /** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
229 * @{
230 */
231 #define LL_SPI_DATAWIDTH_8BIT 0x00000000U /*!< Data length for SPI transfer: 8 bits */
232 #define LL_SPI_DATAWIDTH_16BIT (SPI_CR1_DFF) /*!< Data length for SPI transfer: 16 bits */
233 /**
234 * @}
235 */
236 #if defined(USE_FULL_LL_DRIVER)
237
238 /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
239 * @{
240 */
241 #define LL_SPI_CRCCALCULATION_DISABLE 0x00000000U /*!< CRC calculation disabled */
242 #define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */
243 /**
244 * @}
245 */
246 #endif /* USE_FULL_LL_DRIVER */
247
248 /**
249 * @}
250 */
251
252 /* Exported macro ------------------------------------------------------------*/
253 /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
254 * @{
255 */
256
257 /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
258 * @{
259 */
260
261 /**
262 * @brief Write a value in SPI register
263 * @param __INSTANCE__ SPI Instance
264 * @param __REG__ Register to be written
265 * @param __VALUE__ Value to be written in the register
266 * @retval None
267 */
268 #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
269
270 /**
271 * @brief Read a value in SPI register
272 * @param __INSTANCE__ SPI Instance
273 * @param __REG__ Register to be read
274 * @retval Register value
275 */
276 #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
277 /**
278 * @}
279 */
280
281 /**
282 * @}
283 */
284
285 /* Exported functions --------------------------------------------------------*/
286 /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
287 * @{
288 */
289
290 /** @defgroup SPI_LL_EF_Configuration Configuration
291 * @{
292 */
293
294 /**
295 * @brief Enable SPI peripheral
296 * @rmtoll CR1 SPE LL_SPI_Enable
297 * @param SPIx SPI Instance
298 * @retval None
299 */
LL_SPI_Enable(SPI_TypeDef * SPIx)300 __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
301 {
302 SET_BIT(SPIx->CR1, SPI_CR1_SPE);
303 }
304
305 /**
306 * @brief Disable SPI peripheral
307 * @note When disabling the SPI, follow the procedure described in the Reference Manual.
308 * @rmtoll CR1 SPE LL_SPI_Disable
309 * @param SPIx SPI Instance
310 * @retval None
311 */
LL_SPI_Disable(SPI_TypeDef * SPIx)312 __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
313 {
314 CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
315 }
316
317 /**
318 * @brief Check if SPI peripheral is enabled
319 * @rmtoll CR1 SPE LL_SPI_IsEnabled
320 * @param SPIx SPI Instance
321 * @retval State of bit (1 or 0).
322 */
LL_SPI_IsEnabled(SPI_TypeDef * SPIx)323 __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
324 {
325 return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL);
326 }
327
328 /**
329 * @brief Set SPI operation mode to Master or Slave
330 * @note This bit should not be changed when communication is ongoing.
331 * @rmtoll CR1 MSTR LL_SPI_SetMode\n
332 * CR1 SSI LL_SPI_SetMode
333 * @param SPIx SPI Instance
334 * @param Mode This parameter can be one of the following values:
335 * @arg @ref LL_SPI_MODE_MASTER
336 * @arg @ref LL_SPI_MODE_SLAVE
337 * @retval None
338 */
LL_SPI_SetMode(SPI_TypeDef * SPIx,uint32_t Mode)339 __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
340 {
341 MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
342 }
343
344 /**
345 * @brief Get SPI operation mode (Master or Slave)
346 * @rmtoll CR1 MSTR LL_SPI_GetMode\n
347 * CR1 SSI LL_SPI_GetMode
348 * @param SPIx SPI Instance
349 * @retval Returned value can be one of the following values:
350 * @arg @ref LL_SPI_MODE_MASTER
351 * @arg @ref LL_SPI_MODE_SLAVE
352 */
LL_SPI_GetMode(SPI_TypeDef * SPIx)353 __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
354 {
355 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
356 }
357
358 #if defined(SPI_CR2_FRF)
359 /**
360 * @brief Set serial protocol used. TI Mode not supported for Category 1 and 2.
361 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
362 * @rmtoll CR2 FRF LL_SPI_SetStandard
363 * @param SPIx SPI Instance
364 * @param Standard This parameter can be one of the following values:
365 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
366 * @arg @ref LL_SPI_PROTOCOL_TI
367 * @retval None
368 */
LL_SPI_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)369 __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
370 {
371 MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
372 }
373
374 /**
375 * @brief Get serial protocol used
376 * @rmtoll CR2 FRF LL_SPI_GetStandard
377 * @param SPIx SPI Instance
378 * @retval Returned value can be one of the following values:
379 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
380 * @arg @ref LL_SPI_PROTOCOL_TI
381 */
LL_SPI_GetStandard(SPI_TypeDef * SPIx)382 __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
383 {
384 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
385 }
386 #endif /* SPI_CR2_FRF */
387
388 /**
389 * @brief Set clock phase
390 * @note This bit should not be changed when communication is ongoing.
391 * This bit is not used in SPI TI mode.
392 * @rmtoll CR1 CPHA LL_SPI_SetClockPhase
393 * @param SPIx SPI Instance
394 * @param ClockPhase This parameter can be one of the following values:
395 * @arg @ref LL_SPI_PHASE_1EDGE
396 * @arg @ref LL_SPI_PHASE_2EDGE
397 * @retval None
398 */
LL_SPI_SetClockPhase(SPI_TypeDef * SPIx,uint32_t ClockPhase)399 __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
400 {
401 MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
402 }
403
404 /**
405 * @brief Get clock phase
406 * @rmtoll CR1 CPHA LL_SPI_GetClockPhase
407 * @param SPIx SPI Instance
408 * @retval Returned value can be one of the following values:
409 * @arg @ref LL_SPI_PHASE_1EDGE
410 * @arg @ref LL_SPI_PHASE_2EDGE
411 */
LL_SPI_GetClockPhase(SPI_TypeDef * SPIx)412 __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
413 {
414 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
415 }
416
417 /**
418 * @brief Set clock polarity
419 * @note This bit should not be changed when communication is ongoing.
420 * This bit is not used in SPI TI mode.
421 * @rmtoll CR1 CPOL LL_SPI_SetClockPolarity
422 * @param SPIx SPI Instance
423 * @param ClockPolarity This parameter can be one of the following values:
424 * @arg @ref LL_SPI_POLARITY_LOW
425 * @arg @ref LL_SPI_POLARITY_HIGH
426 * @retval None
427 */
LL_SPI_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)428 __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
429 {
430 MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
431 }
432
433 /**
434 * @brief Get clock polarity
435 * @rmtoll CR1 CPOL LL_SPI_GetClockPolarity
436 * @param SPIx SPI Instance
437 * @retval Returned value can be one of the following values:
438 * @arg @ref LL_SPI_POLARITY_LOW
439 * @arg @ref LL_SPI_POLARITY_HIGH
440 */
LL_SPI_GetClockPolarity(SPI_TypeDef * SPIx)441 __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
442 {
443 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
444 }
445
446 /**
447 * @brief Set baud rate prescaler
448 * @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
449 * @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler
450 * @param SPIx SPI Instance
451 * @param BaudRate This parameter can be one of the following values:
452 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
453 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
454 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
455 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
456 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
457 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
458 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
459 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
460 * @retval None
461 */
LL_SPI_SetBaudRatePrescaler(SPI_TypeDef * SPIx,uint32_t BaudRate)462 __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
463 {
464 MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
465 }
466
467 /**
468 * @brief Get baud rate prescaler
469 * @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler
470 * @param SPIx SPI Instance
471 * @retval Returned value can be one of the following values:
472 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
473 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
474 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
475 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
476 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
477 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
478 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
479 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
480 */
LL_SPI_GetBaudRatePrescaler(SPI_TypeDef * SPIx)481 __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
482 {
483 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
484 }
485
486 /**
487 * @brief Set transfer bit order
488 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
489 * @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder
490 * @param SPIx SPI Instance
491 * @param BitOrder This parameter can be one of the following values:
492 * @arg @ref LL_SPI_LSB_FIRST
493 * @arg @ref LL_SPI_MSB_FIRST
494 * @retval None
495 */
LL_SPI_SetTransferBitOrder(SPI_TypeDef * SPIx,uint32_t BitOrder)496 __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
497 {
498 MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
499 }
500
501 /**
502 * @brief Get transfer bit order
503 * @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder
504 * @param SPIx SPI Instance
505 * @retval Returned value can be one of the following values:
506 * @arg @ref LL_SPI_LSB_FIRST
507 * @arg @ref LL_SPI_MSB_FIRST
508 */
LL_SPI_GetTransferBitOrder(SPI_TypeDef * SPIx)509 __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
510 {
511 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
512 }
513
514 /**
515 * @brief Set transfer direction mode
516 * @note For Half-Duplex mode, Rx Direction is set by default.
517 * In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
518 * @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n
519 * CR1 BIDIMODE LL_SPI_SetTransferDirection\n
520 * CR1 BIDIOE LL_SPI_SetTransferDirection
521 * @param SPIx SPI Instance
522 * @param TransferDirection This parameter can be one of the following values:
523 * @arg @ref LL_SPI_FULL_DUPLEX
524 * @arg @ref LL_SPI_SIMPLEX_RX
525 * @arg @ref LL_SPI_HALF_DUPLEX_RX
526 * @arg @ref LL_SPI_HALF_DUPLEX_TX
527 * @retval None
528 */
LL_SPI_SetTransferDirection(SPI_TypeDef * SPIx,uint32_t TransferDirection)529 __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
530 {
531 MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
532 }
533
534 /**
535 * @brief Get transfer direction mode
536 * @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n
537 * CR1 BIDIMODE LL_SPI_GetTransferDirection\n
538 * CR1 BIDIOE LL_SPI_GetTransferDirection
539 * @param SPIx SPI Instance
540 * @retval Returned value can be one of the following values:
541 * @arg @ref LL_SPI_FULL_DUPLEX
542 * @arg @ref LL_SPI_SIMPLEX_RX
543 * @arg @ref LL_SPI_HALF_DUPLEX_RX
544 * @arg @ref LL_SPI_HALF_DUPLEX_TX
545 */
LL_SPI_GetTransferDirection(SPI_TypeDef * SPIx)546 __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
547 {
548 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
549 }
550
551 /**
552 * @brief Set frame data width
553 * @rmtoll CR1 DFF LL_SPI_SetDataWidth
554 * @param SPIx SPI Instance
555 * @param DataWidth This parameter can be one of the following values:
556 * @arg @ref LL_SPI_DATAWIDTH_8BIT
557 * @arg @ref LL_SPI_DATAWIDTH_16BIT
558 * @retval None
559 */
LL_SPI_SetDataWidth(SPI_TypeDef * SPIx,uint32_t DataWidth)560 __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
561 {
562 MODIFY_REG(SPIx->CR1, SPI_CR1_DFF, DataWidth);
563 }
564
565 /**
566 * @brief Get frame data width
567 * @rmtoll CR1 DFF LL_SPI_GetDataWidth
568 * @param SPIx SPI Instance
569 * @retval Returned value can be one of the following values:
570 * @arg @ref LL_SPI_DATAWIDTH_8BIT
571 * @arg @ref LL_SPI_DATAWIDTH_16BIT
572 */
LL_SPI_GetDataWidth(SPI_TypeDef * SPIx)573 __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
574 {
575 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_DFF));
576 }
577
578 /**
579 * @}
580 */
581
582 /** @defgroup SPI_LL_EF_CRC_Management CRC Management
583 * @{
584 */
585
586 /**
587 * @brief Enable CRC
588 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
589 * @rmtoll CR1 CRCEN LL_SPI_EnableCRC
590 * @param SPIx SPI Instance
591 * @retval None
592 */
LL_SPI_EnableCRC(SPI_TypeDef * SPIx)593 __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
594 {
595 SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
596 }
597
598 /**
599 * @brief Disable CRC
600 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
601 * @rmtoll CR1 CRCEN LL_SPI_DisableCRC
602 * @param SPIx SPI Instance
603 * @retval None
604 */
LL_SPI_DisableCRC(SPI_TypeDef * SPIx)605 __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
606 {
607 CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
608 }
609
610 /**
611 * @brief Check if CRC is enabled
612 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
613 * @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC
614 * @param SPIx SPI Instance
615 * @retval State of bit (1 or 0).
616 */
LL_SPI_IsEnabledCRC(SPI_TypeDef * SPIx)617 __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
618 {
619 return ((READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN)) ? 1UL : 0UL);
620 }
621
622 /**
623 * @brief Set CRCNext to transfer CRC on the line
624 * @note This bit has to be written as soon as the last data is written in the SPIx_DR register.
625 * @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext
626 * @param SPIx SPI Instance
627 * @retval None
628 */
LL_SPI_SetCRCNext(SPI_TypeDef * SPIx)629 __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
630 {
631 SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
632 }
633
634 /**
635 * @brief Set polynomial for CRC calculation
636 * @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial
637 * @param SPIx SPI Instance
638 * @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
639 * @retval None
640 */
LL_SPI_SetCRCPolynomial(SPI_TypeDef * SPIx,uint32_t CRCPoly)641 __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
642 {
643 WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
644 }
645
646 /**
647 * @brief Get polynomial for CRC calculation
648 * @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial
649 * @param SPIx SPI Instance
650 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
651 */
LL_SPI_GetCRCPolynomial(SPI_TypeDef * SPIx)652 __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
653 {
654 return (uint32_t)(READ_REG(SPIx->CRCPR));
655 }
656
657 /**
658 * @brief Get Rx CRC
659 * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC
660 * @param SPIx SPI Instance
661 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
662 */
LL_SPI_GetRxCRC(SPI_TypeDef * SPIx)663 __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
664 {
665 return (uint32_t)(READ_REG(SPIx->RXCRCR));
666 }
667
668 /**
669 * @brief Get Tx CRC
670 * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC
671 * @param SPIx SPI Instance
672 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
673 */
LL_SPI_GetTxCRC(SPI_TypeDef * SPIx)674 __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
675 {
676 return (uint32_t)(READ_REG(SPIx->TXCRCR));
677 }
678
679 /**
680 * @}
681 */
682
683 /** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
684 * @{
685 */
686
687 /**
688 * @brief Set NSS mode
689 * @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
690 * @rmtoll CR1 SSM LL_SPI_SetNSSMode\n
691 * @rmtoll CR2 SSOE LL_SPI_SetNSSMode
692 * @param SPIx SPI Instance
693 * @param NSS This parameter can be one of the following values:
694 * @arg @ref LL_SPI_NSS_SOFT
695 * @arg @ref LL_SPI_NSS_HARD_INPUT
696 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
697 * @retval None
698 */
LL_SPI_SetNSSMode(SPI_TypeDef * SPIx,uint32_t NSS)699 __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
700 {
701 MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS);
702 MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
703 }
704
705 /**
706 * @brief Get NSS mode
707 * @rmtoll CR1 SSM LL_SPI_GetNSSMode\n
708 * @rmtoll CR2 SSOE LL_SPI_GetNSSMode
709 * @param SPIx SPI Instance
710 * @retval Returned value can be one of the following values:
711 * @arg @ref LL_SPI_NSS_SOFT
712 * @arg @ref LL_SPI_NSS_HARD_INPUT
713 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
714 */
LL_SPI_GetNSSMode(SPI_TypeDef * SPIx)715 __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
716 {
717 uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
718 uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U);
719 return (Ssm | Ssoe);
720 }
721
722 /**
723 * @}
724 */
725
726 /** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
727 * @{
728 */
729
730 /**
731 * @brief Check if Rx buffer is not empty
732 * @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE
733 * @param SPIx SPI Instance
734 * @retval State of bit (1 or 0).
735 */
LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)736 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
737 {
738 return ((READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)) ? 1UL : 0UL);
739 }
740
741 /**
742 * @brief Check if Tx buffer is empty
743 * @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE
744 * @param SPIx SPI Instance
745 * @retval State of bit (1 or 0).
746 */
LL_SPI_IsActiveFlag_TXE(SPI_TypeDef * SPIx)747 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
748 {
749 return ((READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)) ? 1UL : 0UL);
750 }
751
752 /**
753 * @brief Get CRC error flag
754 * @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR
755 * @param SPIx SPI Instance
756 * @retval State of bit (1 or 0).
757 */
LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef * SPIx)758 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
759 {
760 return ((READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR)) ? 1UL : 0UL);
761 }
762
763 /**
764 * @brief Get mode fault error flag
765 * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF
766 * @param SPIx SPI Instance
767 * @retval State of bit (1 or 0).
768 */
LL_SPI_IsActiveFlag_MODF(SPI_TypeDef * SPIx)769 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
770 {
771 return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL);
772 }
773
774 /**
775 * @brief Get overrun error flag
776 * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR
777 * @param SPIx SPI Instance
778 * @retval State of bit (1 or 0).
779 */
LL_SPI_IsActiveFlag_OVR(SPI_TypeDef * SPIx)780 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
781 {
782 return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL);
783 }
784
785 /**
786 * @brief Get busy flag
787 * @note The BSY flag is cleared under any one of the following conditions:
788 * -When the SPI is correctly disabled
789 * -When a fault is detected in Master mode (MODF bit set to 1)
790 * -In Master mode, when it finishes a data transmission and no new data is ready to be
791 * sent
792 * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
793 * each data transfer.
794 * @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY
795 * @param SPIx SPI Instance
796 * @retval State of bit (1 or 0).
797 */
LL_SPI_IsActiveFlag_BSY(SPI_TypeDef * SPIx)798 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
799 {
800 return ((READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)) ? 1UL : 0UL);
801 }
802
803 #if defined(SPI_CR2_FRF)
804 /**
805 * @brief Get frame format error flag
806 * @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE
807 * @param SPIx SPI Instance
808 * @retval State of bit (1 or 0).
809 */
LL_SPI_IsActiveFlag_FRE(SPI_TypeDef * SPIx)810 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
811 {
812 return ((READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE)) ? 1UL : 0UL);
813 }
814 #endif /* SPI_CR2_FRF */
815
816 /**
817 * @brief Clear CRC error flag
818 * @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR
819 * @param SPIx SPI Instance
820 * @retval None
821 */
LL_SPI_ClearFlag_CRCERR(SPI_TypeDef * SPIx)822 __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
823 {
824 CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
825 }
826
827 /**
828 * @brief Clear mode fault error flag
829 * @note Clearing this flag is done by a read access to the SPIx_SR
830 * register followed by a write access to the SPIx_CR1 register
831 * @rmtoll SR MODF LL_SPI_ClearFlag_MODF
832 * @param SPIx SPI Instance
833 * @retval None
834 */
LL_SPI_ClearFlag_MODF(SPI_TypeDef * SPIx)835 __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
836 {
837 __IO uint32_t tmpreg_sr;
838 tmpreg_sr = SPIx->SR;
839 (void) tmpreg_sr;
840 CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
841 }
842
843 /**
844 * @brief Clear overrun error flag
845 * @note Clearing this flag is done by a read access to the SPIx_DR
846 * register followed by a read access to the SPIx_SR register
847 * @rmtoll SR OVR LL_SPI_ClearFlag_OVR
848 * @param SPIx SPI Instance
849 * @retval None
850 */
LL_SPI_ClearFlag_OVR(SPI_TypeDef * SPIx)851 __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
852 {
853 __IO uint32_t tmpreg;
854 tmpreg = SPIx->DR;
855 (void) tmpreg;
856 tmpreg = SPIx->SR;
857 (void) tmpreg;
858 }
859
860 /**
861 * @brief Clear frame format error flag
862 * @note Clearing this flag is done by reading SPIx_SR register
863 * @rmtoll SR FRE LL_SPI_ClearFlag_FRE
864 * @param SPIx SPI Instance
865 * @retval None
866 */
LL_SPI_ClearFlag_FRE(SPI_TypeDef * SPIx)867 __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
868 {
869 __IO uint32_t tmpreg;
870 tmpreg = SPIx->SR;
871 (void) tmpreg;
872 }
873
874 /**
875 * @}
876 */
877
878 /** @defgroup SPI_LL_EF_IT_Management Interrupt Management
879 * @{
880 */
881
882 /**
883 * @brief Enable error interrupt
884 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
885 * @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR
886 * @param SPIx SPI Instance
887 * @retval None
888 */
LL_SPI_EnableIT_ERR(SPI_TypeDef * SPIx)889 __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
890 {
891 SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
892 }
893
894 /**
895 * @brief Enable Rx buffer not empty interrupt
896 * @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE
897 * @param SPIx SPI Instance
898 * @retval None
899 */
LL_SPI_EnableIT_RXNE(SPI_TypeDef * SPIx)900 __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
901 {
902 SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
903 }
904
905 /**
906 * @brief Enable Tx buffer empty interrupt
907 * @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE
908 * @param SPIx SPI Instance
909 * @retval None
910 */
LL_SPI_EnableIT_TXE(SPI_TypeDef * SPIx)911 __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
912 {
913 SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
914 }
915
916 /**
917 * @brief Disable error interrupt
918 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
919 * @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR
920 * @param SPIx SPI Instance
921 * @retval None
922 */
LL_SPI_DisableIT_ERR(SPI_TypeDef * SPIx)923 __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
924 {
925 CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
926 }
927
928 /**
929 * @brief Disable Rx buffer not empty interrupt
930 * @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE
931 * @param SPIx SPI Instance
932 * @retval None
933 */
LL_SPI_DisableIT_RXNE(SPI_TypeDef * SPIx)934 __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
935 {
936 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
937 }
938
939 /**
940 * @brief Disable Tx buffer empty interrupt
941 * @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE
942 * @param SPIx SPI Instance
943 * @retval None
944 */
LL_SPI_DisableIT_TXE(SPI_TypeDef * SPIx)945 __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
946 {
947 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
948 }
949
950 /**
951 * @brief Check if error interrupt is enabled
952 * @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR
953 * @param SPIx SPI Instance
954 * @retval State of bit (1 or 0).
955 */
LL_SPI_IsEnabledIT_ERR(SPI_TypeDef * SPIx)956 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
957 {
958 return ((READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)) ? 1UL : 0UL);
959 }
960
961 /**
962 * @brief Check if Rx buffer not empty interrupt is enabled
963 * @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE
964 * @param SPIx SPI Instance
965 * @retval State of bit (1 or 0).
966 */
LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)967 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
968 {
969 return ((READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)) ? 1UL : 0UL);
970 }
971
972 /**
973 * @brief Check if Tx buffer empty interrupt
974 * @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE
975 * @param SPIx SPI Instance
976 * @retval State of bit (1 or 0).
977 */
LL_SPI_IsEnabledIT_TXE(SPI_TypeDef * SPIx)978 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
979 {
980 return ((READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)) ? 1UL : 0UL);
981 }
982
983 /**
984 * @}
985 */
986
987 /** @defgroup SPI_LL_EF_DMA_Management DMA Management
988 * @{
989 */
990
991 /**
992 * @brief Enable DMA Rx
993 * @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX
994 * @param SPIx SPI Instance
995 * @retval None
996 */
LL_SPI_EnableDMAReq_RX(SPI_TypeDef * SPIx)997 __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
998 {
999 SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1000 }
1001
1002 /**
1003 * @brief Disable DMA Rx
1004 * @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX
1005 * @param SPIx SPI Instance
1006 * @retval None
1007 */
LL_SPI_DisableDMAReq_RX(SPI_TypeDef * SPIx)1008 __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
1009 {
1010 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1011 }
1012
1013 /**
1014 * @brief Check if DMA Rx is enabled
1015 * @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX
1016 * @param SPIx SPI Instance
1017 * @retval State of bit (1 or 0).
1018 */
LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)1019 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
1020 {
1021 return ((READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)) ? 1UL : 0UL);
1022 }
1023
1024 /**
1025 * @brief Enable DMA Tx
1026 * @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX
1027 * @param SPIx SPI Instance
1028 * @retval None
1029 */
LL_SPI_EnableDMAReq_TX(SPI_TypeDef * SPIx)1030 __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
1031 {
1032 SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1033 }
1034
1035 /**
1036 * @brief Disable DMA Tx
1037 * @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX
1038 * @param SPIx SPI Instance
1039 * @retval None
1040 */
LL_SPI_DisableDMAReq_TX(SPI_TypeDef * SPIx)1041 __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
1042 {
1043 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1044 }
1045
1046 /**
1047 * @brief Check if DMA Tx is enabled
1048 * @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX
1049 * @param SPIx SPI Instance
1050 * @retval State of bit (1 or 0).
1051 */
LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)1052 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
1053 {
1054 return ((READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)) ? 1UL : 0UL);
1055 }
1056
1057 /**
1058 * @brief Get the data register address used for DMA transfer
1059 * @rmtoll DR DR LL_SPI_DMA_GetRegAddr
1060 * @param SPIx SPI Instance
1061 * @retval Address of data register
1062 */
LL_SPI_DMA_GetRegAddr(SPI_TypeDef * SPIx)1063 __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
1064 {
1065 return (uint32_t) &(SPIx->DR);
1066 }
1067
1068 /**
1069 * @}
1070 */
1071
1072 /** @defgroup SPI_LL_EF_DATA_Management DATA Management
1073 * @{
1074 */
1075
1076 /**
1077 * @brief Read 8-Bits in the data register
1078 * @rmtoll DR DR LL_SPI_ReceiveData8
1079 * @param SPIx SPI Instance
1080 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
1081 */
LL_SPI_ReceiveData8(SPI_TypeDef * SPIx)1082 __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
1083 {
1084 return (*((__IO uint8_t *)&SPIx->DR));
1085 }
1086
1087 /**
1088 * @brief Read 16-Bits in the data register
1089 * @rmtoll DR DR LL_SPI_ReceiveData16
1090 * @param SPIx SPI Instance
1091 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1092 */
LL_SPI_ReceiveData16(SPI_TypeDef * SPIx)1093 __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
1094 {
1095 return (uint16_t)(READ_REG(SPIx->DR));
1096 }
1097
1098 /**
1099 * @brief Write 8-Bits in the data register
1100 * @rmtoll DR DR LL_SPI_TransmitData8
1101 * @param SPIx SPI Instance
1102 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFF
1103 * @retval None
1104 */
LL_SPI_TransmitData8(SPI_TypeDef * SPIx,uint8_t TxData)1105 __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
1106 {
1107 #if defined (__GNUC__)
1108 __IO uint8_t *spidr = ((__IO uint8_t *)&SPIx->DR);
1109 *spidr = TxData;
1110 #else
1111 *((__IO uint8_t *)&SPIx->DR) = TxData;
1112 #endif /* __GNUC__ */
1113 }
1114
1115 /**
1116 * @brief Write 16-Bits in the data register
1117 * @rmtoll DR DR LL_SPI_TransmitData16
1118 * @param SPIx SPI Instance
1119 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1120 * @retval None
1121 */
LL_SPI_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)1122 __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
1123 {
1124 #if defined (__GNUC__)
1125 __IO uint16_t *spidr = ((__IO uint16_t *)&SPIx->DR);
1126 *spidr = TxData;
1127 #else
1128 SPIx->DR = TxData;
1129 #endif /* __GNUC__ */
1130 }
1131
1132 /**
1133 * @}
1134 */
1135 #if defined(USE_FULL_LL_DRIVER)
1136 /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
1137 * @{
1138 */
1139
1140 ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
1141 ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
1142 void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
1143
1144 /**
1145 * @}
1146 */
1147 #endif /* USE_FULL_LL_DRIVER */
1148 /**
1149 * @}
1150 */
1151
1152 /**
1153 * @}
1154 */
1155
1156 #if defined(SPI_I2S_SUPPORT)
1157 /** @defgroup I2S_LL I2S
1158 * @{
1159 */
1160
1161 /* Private variables ---------------------------------------------------------*/
1162 /* Private constants ---------------------------------------------------------*/
1163 /* Private macros ------------------------------------------------------------*/
1164
1165 /* Exported types ------------------------------------------------------------*/
1166 #if defined(USE_FULL_LL_DRIVER)
1167 /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
1168 * @{
1169 */
1170
1171 /**
1172 * @brief I2S Init structure definition
1173 */
1174
1175 typedef struct
1176 {
1177 uint32_t Mode; /*!< Specifies the I2S operating mode.
1178 This parameter can be a value of @ref I2S_LL_EC_MODE
1179
1180 This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
1181
1182 uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
1183 This parameter can be a value of @ref I2S_LL_EC_STANDARD
1184
1185 This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
1186
1187
1188 uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
1189 This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
1190
1191 This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
1192
1193
1194 uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
1195 This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
1196
1197 This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
1198
1199
1200 uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
1201 This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
1202
1203 Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
1204 and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
1205
1206
1207 uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
1208 This parameter can be a value of @ref I2S_LL_EC_POLARITY
1209
1210 This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
1211
1212 } LL_I2S_InitTypeDef;
1213
1214 /**
1215 * @}
1216 */
1217 #endif /*USE_FULL_LL_DRIVER*/
1218
1219 /* Exported constants --------------------------------------------------------*/
1220 /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
1221 * @{
1222 */
1223
1224 /** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
1225 * @brief Flags defines which can be used with LL_I2S_ReadReg function
1226 * @{
1227 */
1228 #define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */
1229 #define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */
1230 #define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */
1231 #define LL_I2S_SR_UDR SPI_SR_UDR /*!< Underrun flag */
1232 #define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */
1233 #define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */
1234 /**
1235 * @}
1236 */
1237
1238 /** @defgroup SPI_LL_EC_IT IT Defines
1239 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
1240 * @{
1241 */
1242 #define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
1243 #define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
1244 #define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */
1245 /**
1246 * @}
1247 */
1248
1249 /** @defgroup I2S_LL_EC_DATA_FORMAT Data format
1250 * @{
1251 */
1252 #define LL_I2S_DATAFORMAT_16B 0x00000000U /*!< Data length 16 bits, Channel length 16bit */
1253 #define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel length 32bit */
1254 #define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel length 32bit */
1255 #define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel length 32bit */
1256 /**
1257 * @}
1258 */
1259
1260 /** @defgroup I2S_LL_EC_POLARITY Clock Polarity
1261 * @{
1262 */
1263 #define LL_I2S_POLARITY_LOW 0x00000000U /*!< Clock steady state is low level */
1264 #define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */
1265 /**
1266 * @}
1267 */
1268
1269 /** @defgroup I2S_LL_EC_STANDARD I2s Standard
1270 * @{
1271 */
1272 #define LL_I2S_STANDARD_PHILIPS 0x00000000U /*!< I2S standard philips */
1273 #define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */
1274 #define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */
1275 #define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */
1276 #define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */
1277 /**
1278 * @}
1279 */
1280
1281 /** @defgroup I2S_LL_EC_MODE Operation Mode
1282 * @{
1283 */
1284 #define LL_I2S_MODE_SLAVE_TX 0x00000000U /*!< Slave Tx configuration */
1285 #define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */
1286 #define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */
1287 #define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
1288 /**
1289 * @}
1290 */
1291
1292 /** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
1293 * @{
1294 */
1295 #define LL_I2S_PRESCALER_PARITY_EVEN 0x00000000U /*!< Odd factor: Real divider value is = I2SDIV * 2 */
1296 #define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
1297 /**
1298 * @}
1299 */
1300
1301 #if defined(USE_FULL_LL_DRIVER)
1302
1303 /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
1304 * @{
1305 */
1306 #define LL_I2S_MCLK_OUTPUT_DISABLE 0x00000000U /*!< Master clock output is disabled */
1307 #define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */
1308 /**
1309 * @}
1310 */
1311
1312 /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
1313 * @{
1314 */
1315
1316 #define LL_I2S_AUDIOFREQ_192K 192000U /*!< Audio Frequency configuration 192000 Hz */
1317 #define LL_I2S_AUDIOFREQ_96K 96000U /*!< Audio Frequency configuration 96000 Hz */
1318 #define LL_I2S_AUDIOFREQ_48K 48000U /*!< Audio Frequency configuration 48000 Hz */
1319 #define LL_I2S_AUDIOFREQ_44K 44100U /*!< Audio Frequency configuration 44100 Hz */
1320 #define LL_I2S_AUDIOFREQ_32K 32000U /*!< Audio Frequency configuration 32000 Hz */
1321 #define LL_I2S_AUDIOFREQ_22K 22050U /*!< Audio Frequency configuration 22050 Hz */
1322 #define LL_I2S_AUDIOFREQ_16K 16000U /*!< Audio Frequency configuration 16000 Hz */
1323 #define LL_I2S_AUDIOFREQ_11K 11025U /*!< Audio Frequency configuration 11025 Hz */
1324 #define LL_I2S_AUDIOFREQ_8K 8000U /*!< Audio Frequency configuration 8000 Hz */
1325 #define LL_I2S_AUDIOFREQ_DEFAULT 2U /*!< Audio Freq not specified. Register I2SDIV = 2 */
1326 /**
1327 * @}
1328 */
1329 #endif /* USE_FULL_LL_DRIVER */
1330
1331 /**
1332 * @}
1333 */
1334
1335 /* Exported macro ------------------------------------------------------------*/
1336 /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
1337 * @{
1338 */
1339
1340 /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
1341 * @{
1342 */
1343
1344 /**
1345 * @brief Write a value in I2S register
1346 * @param __INSTANCE__ I2S Instance
1347 * @param __REG__ Register to be written
1348 * @param __VALUE__ Value to be written in the register
1349 * @retval None
1350 */
1351 #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
1352
1353 /**
1354 * @brief Read a value in I2S register
1355 * @param __INSTANCE__ I2S Instance
1356 * @param __REG__ Register to be read
1357 * @retval Register value
1358 */
1359 #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
1360 /**
1361 * @}
1362 */
1363
1364 /**
1365 * @}
1366 */
1367
1368
1369 /* Exported functions --------------------------------------------------------*/
1370
1371 /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
1372 * @{
1373 */
1374
1375 /** @defgroup I2S_LL_EF_Configuration Configuration
1376 * @{
1377 */
1378
1379 /**
1380 * @brief Select I2S mode and Enable I2S peripheral
1381 * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n
1382 * I2SCFGR I2SE LL_I2S_Enable
1383 * @param SPIx SPI Instance
1384 * @retval None
1385 */
LL_I2S_Enable(SPI_TypeDef * SPIx)1386 __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
1387 {
1388 SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1389 }
1390
1391 /**
1392 * @brief Disable I2S peripheral
1393 * @rmtoll I2SCFGR I2SE LL_I2S_Disable
1394 * @param SPIx SPI Instance
1395 * @retval None
1396 */
LL_I2S_Disable(SPI_TypeDef * SPIx)1397 __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
1398 {
1399 CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1400 }
1401
1402 /**
1403 * @brief Check if I2S peripheral is enabled
1404 * @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled
1405 * @param SPIx SPI Instance
1406 * @retval State of bit (1 or 0).
1407 */
LL_I2S_IsEnabled(SPI_TypeDef * SPIx)1408 __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
1409 {
1410 return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE)) ? 1UL : 0UL);
1411 }
1412
1413 /**
1414 * @brief Set I2S data frame length
1415 * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n
1416 * I2SCFGR CHLEN LL_I2S_SetDataFormat
1417 * @param SPIx SPI Instance
1418 * @param DataFormat This parameter can be one of the following values:
1419 * @arg @ref LL_I2S_DATAFORMAT_16B
1420 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1421 * @arg @ref LL_I2S_DATAFORMAT_24B
1422 * @arg @ref LL_I2S_DATAFORMAT_32B
1423 * @retval None
1424 */
LL_I2S_SetDataFormat(SPI_TypeDef * SPIx,uint32_t DataFormat)1425 __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
1426 {
1427 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
1428 }
1429
1430 /**
1431 * @brief Get I2S data frame length
1432 * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n
1433 * I2SCFGR CHLEN LL_I2S_GetDataFormat
1434 * @param SPIx SPI Instance
1435 * @retval Returned value can be one of the following values:
1436 * @arg @ref LL_I2S_DATAFORMAT_16B
1437 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1438 * @arg @ref LL_I2S_DATAFORMAT_24B
1439 * @arg @ref LL_I2S_DATAFORMAT_32B
1440 */
LL_I2S_GetDataFormat(SPI_TypeDef * SPIx)1441 __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
1442 {
1443 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
1444 }
1445
1446 /**
1447 * @brief Set I2S clock polarity
1448 * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity
1449 * @param SPIx SPI Instance
1450 * @param ClockPolarity This parameter can be one of the following values:
1451 * @arg @ref LL_I2S_POLARITY_LOW
1452 * @arg @ref LL_I2S_POLARITY_HIGH
1453 * @retval None
1454 */
LL_I2S_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)1455 __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
1456 {
1457 SET_BIT(SPIx->I2SCFGR, ClockPolarity);
1458 }
1459
1460 /**
1461 * @brief Get I2S clock polarity
1462 * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity
1463 * @param SPIx SPI Instance
1464 * @retval Returned value can be one of the following values:
1465 * @arg @ref LL_I2S_POLARITY_LOW
1466 * @arg @ref LL_I2S_POLARITY_HIGH
1467 */
LL_I2S_GetClockPolarity(SPI_TypeDef * SPIx)1468 __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
1469 {
1470 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
1471 }
1472
1473 /**
1474 * @brief Set I2S standard protocol
1475 * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n
1476 * I2SCFGR PCMSYNC LL_I2S_SetStandard
1477 * @param SPIx SPI Instance
1478 * @param Standard This parameter can be one of the following values:
1479 * @arg @ref LL_I2S_STANDARD_PHILIPS
1480 * @arg @ref LL_I2S_STANDARD_MSB
1481 * @arg @ref LL_I2S_STANDARD_LSB
1482 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1483 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1484 * @retval None
1485 */
LL_I2S_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)1486 __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
1487 {
1488 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
1489 }
1490
1491 /**
1492 * @brief Get I2S standard protocol
1493 * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n
1494 * I2SCFGR PCMSYNC LL_I2S_GetStandard
1495 * @param SPIx SPI Instance
1496 * @retval Returned value can be one of the following values:
1497 * @arg @ref LL_I2S_STANDARD_PHILIPS
1498 * @arg @ref LL_I2S_STANDARD_MSB
1499 * @arg @ref LL_I2S_STANDARD_LSB
1500 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1501 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1502 */
LL_I2S_GetStandard(SPI_TypeDef * SPIx)1503 __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
1504 {
1505 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
1506 }
1507
1508 /**
1509 * @brief Set I2S transfer mode
1510 * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode
1511 * @param SPIx SPI Instance
1512 * @param Mode This parameter can be one of the following values:
1513 * @arg @ref LL_I2S_MODE_SLAVE_TX
1514 * @arg @ref LL_I2S_MODE_SLAVE_RX
1515 * @arg @ref LL_I2S_MODE_MASTER_TX
1516 * @arg @ref LL_I2S_MODE_MASTER_RX
1517 * @retval None
1518 */
LL_I2S_SetTransferMode(SPI_TypeDef * SPIx,uint32_t Mode)1519 __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
1520 {
1521 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
1522 }
1523
1524 /**
1525 * @brief Get I2S transfer mode
1526 * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode
1527 * @param SPIx SPI Instance
1528 * @retval Returned value can be one of the following values:
1529 * @arg @ref LL_I2S_MODE_SLAVE_TX
1530 * @arg @ref LL_I2S_MODE_SLAVE_RX
1531 * @arg @ref LL_I2S_MODE_MASTER_TX
1532 * @arg @ref LL_I2S_MODE_MASTER_RX
1533 */
LL_I2S_GetTransferMode(SPI_TypeDef * SPIx)1534 __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
1535 {
1536 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
1537 }
1538
1539 /**
1540 * @brief Set I2S linear prescaler
1541 * @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear
1542 * @param SPIx SPI Instance
1543 * @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1544 * @retval None
1545 */
LL_I2S_SetPrescalerLinear(SPI_TypeDef * SPIx,uint8_t PrescalerLinear)1546 __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
1547 {
1548 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
1549 }
1550
1551 /**
1552 * @brief Get I2S linear prescaler
1553 * @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear
1554 * @param SPIx SPI Instance
1555 * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1556 */
LL_I2S_GetPrescalerLinear(SPI_TypeDef * SPIx)1557 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
1558 {
1559 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
1560 }
1561
1562 /**
1563 * @brief Set I2S parity prescaler
1564 * @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity
1565 * @param SPIx SPI Instance
1566 * @param PrescalerParity This parameter can be one of the following values:
1567 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1568 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1569 * @retval None
1570 */
LL_I2S_SetPrescalerParity(SPI_TypeDef * SPIx,uint32_t PrescalerParity)1571 __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
1572 {
1573 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
1574 }
1575
1576 /**
1577 * @brief Get I2S parity prescaler
1578 * @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity
1579 * @param SPIx SPI Instance
1580 * @retval Returned value can be one of the following values:
1581 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1582 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1583 */
LL_I2S_GetPrescalerParity(SPI_TypeDef * SPIx)1584 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
1585 {
1586 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
1587 }
1588
1589 /**
1590 * @brief Enable the master clock output (Pin MCK)
1591 * @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock
1592 * @param SPIx SPI Instance
1593 * @retval None
1594 */
LL_I2S_EnableMasterClock(SPI_TypeDef * SPIx)1595 __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
1596 {
1597 SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1598 }
1599
1600 /**
1601 * @brief Disable the master clock output (Pin MCK)
1602 * @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock
1603 * @param SPIx SPI Instance
1604 * @retval None
1605 */
LL_I2S_DisableMasterClock(SPI_TypeDef * SPIx)1606 __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
1607 {
1608 CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1609 }
1610
1611 /**
1612 * @brief Check if the master clock output (Pin MCK) is enabled
1613 * @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock
1614 * @param SPIx SPI Instance
1615 * @retval State of bit (1 or 0).
1616 */
LL_I2S_IsEnabledMasterClock(SPI_TypeDef * SPIx)1617 __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
1618 {
1619 return ((READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE)) ? 1UL : 0UL);
1620 }
1621
1622 /**
1623 * @}
1624 */
1625
1626 /** @defgroup I2S_LL_EF_FLAG FLAG Management
1627 * @{
1628 */
1629
1630 /**
1631 * @brief Check if Rx buffer is not empty
1632 * @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE
1633 * @param SPIx SPI Instance
1634 * @retval State of bit (1 or 0).
1635 */
LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)1636 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
1637 {
1638 return LL_SPI_IsActiveFlag_RXNE(SPIx);
1639 }
1640
1641 /**
1642 * @brief Check if Tx buffer is empty
1643 * @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE
1644 * @param SPIx SPI Instance
1645 * @retval State of bit (1 or 0).
1646 */
LL_I2S_IsActiveFlag_TXE(SPI_TypeDef * SPIx)1647 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
1648 {
1649 return LL_SPI_IsActiveFlag_TXE(SPIx);
1650 }
1651
1652 /**
1653 * @brief Get busy flag
1654 * @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY
1655 * @param SPIx SPI Instance
1656 * @retval State of bit (1 or 0).
1657 */
LL_I2S_IsActiveFlag_BSY(SPI_TypeDef * SPIx)1658 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
1659 {
1660 return LL_SPI_IsActiveFlag_BSY(SPIx);
1661 }
1662
1663 /**
1664 * @brief Get overrun error flag
1665 * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR
1666 * @param SPIx SPI Instance
1667 * @retval State of bit (1 or 0).
1668 */
LL_I2S_IsActiveFlag_OVR(SPI_TypeDef * SPIx)1669 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
1670 {
1671 return LL_SPI_IsActiveFlag_OVR(SPIx);
1672 }
1673
1674 /**
1675 * @brief Get underrun error flag
1676 * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR
1677 * @param SPIx SPI Instance
1678 * @retval State of bit (1 or 0).
1679 */
LL_I2S_IsActiveFlag_UDR(SPI_TypeDef * SPIx)1680 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
1681 {
1682 return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL);
1683 }
1684
1685 #if defined(SPI_CR2_FRF)
1686 /**
1687 * @brief Get frame format error flag
1688 * @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE
1689 * @param SPIx SPI Instance
1690 * @retval State of bit (1 or 0).
1691 */
LL_I2S_IsActiveFlag_FRE(SPI_TypeDef * SPIx)1692 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
1693 {
1694 return LL_SPI_IsActiveFlag_FRE(SPIx);
1695 }
1696 #endif /* SPI_CR2_FRF */
1697
1698 /**
1699 * @brief Get channel side flag.
1700 * @note 0: Channel Left has to be transmitted or has been received\n
1701 * 1: Channel Right has to be transmitted or has been received\n
1702 * It has no significance in PCM mode.
1703 * @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE
1704 * @param SPIx SPI Instance
1705 * @retval State of bit (1 or 0).
1706 */
LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef * SPIx)1707 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
1708 {
1709 return ((READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE)) ? 1UL : 0UL);
1710 }
1711
1712 /**
1713 * @brief Clear overrun error flag
1714 * @rmtoll SR OVR LL_I2S_ClearFlag_OVR
1715 * @param SPIx SPI Instance
1716 * @retval None
1717 */
LL_I2S_ClearFlag_OVR(SPI_TypeDef * SPIx)1718 __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
1719 {
1720 LL_SPI_ClearFlag_OVR(SPIx);
1721 }
1722
1723 /**
1724 * @brief Clear underrun error flag
1725 * @rmtoll SR UDR LL_I2S_ClearFlag_UDR
1726 * @param SPIx SPI Instance
1727 * @retval None
1728 */
LL_I2S_ClearFlag_UDR(SPI_TypeDef * SPIx)1729 __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
1730 {
1731 __IO uint32_t tmpreg;
1732 tmpreg = SPIx->SR;
1733 (void)tmpreg;
1734 }
1735
1736 /**
1737 * @brief Clear frame format error flag
1738 * @rmtoll SR FRE LL_I2S_ClearFlag_FRE
1739 * @param SPIx SPI Instance
1740 * @retval None
1741 */
LL_I2S_ClearFlag_FRE(SPI_TypeDef * SPIx)1742 __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
1743 {
1744 LL_SPI_ClearFlag_FRE(SPIx);
1745 }
1746
1747 /**
1748 * @}
1749 */
1750
1751 /** @defgroup I2S_LL_EF_IT Interrupt Management
1752 * @{
1753 */
1754
1755 /**
1756 * @brief Enable error IT
1757 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
1758 * @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR
1759 * @param SPIx SPI Instance
1760 * @retval None
1761 */
LL_I2S_EnableIT_ERR(SPI_TypeDef * SPIx)1762 __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
1763 {
1764 LL_SPI_EnableIT_ERR(SPIx);
1765 }
1766
1767 /**
1768 * @brief Enable Rx buffer not empty IT
1769 * @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE
1770 * @param SPIx SPI Instance
1771 * @retval None
1772 */
LL_I2S_EnableIT_RXNE(SPI_TypeDef * SPIx)1773 __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
1774 {
1775 LL_SPI_EnableIT_RXNE(SPIx);
1776 }
1777
1778 /**
1779 * @brief Enable Tx buffer empty IT
1780 * @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE
1781 * @param SPIx SPI Instance
1782 * @retval None
1783 */
LL_I2S_EnableIT_TXE(SPI_TypeDef * SPIx)1784 __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
1785 {
1786 LL_SPI_EnableIT_TXE(SPIx);
1787 }
1788
1789 /**
1790 * @brief Disable error IT
1791 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
1792 * @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR
1793 * @param SPIx SPI Instance
1794 * @retval None
1795 */
LL_I2S_DisableIT_ERR(SPI_TypeDef * SPIx)1796 __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
1797 {
1798 LL_SPI_DisableIT_ERR(SPIx);
1799 }
1800
1801 /**
1802 * @brief Disable Rx buffer not empty IT
1803 * @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE
1804 * @param SPIx SPI Instance
1805 * @retval None
1806 */
LL_I2S_DisableIT_RXNE(SPI_TypeDef * SPIx)1807 __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
1808 {
1809 LL_SPI_DisableIT_RXNE(SPIx);
1810 }
1811
1812 /**
1813 * @brief Disable Tx buffer empty IT
1814 * @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE
1815 * @param SPIx SPI Instance
1816 * @retval None
1817 */
LL_I2S_DisableIT_TXE(SPI_TypeDef * SPIx)1818 __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
1819 {
1820 LL_SPI_DisableIT_TXE(SPIx);
1821 }
1822
1823 /**
1824 * @brief Check if ERR IT is enabled
1825 * @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR
1826 * @param SPIx SPI Instance
1827 * @retval State of bit (1 or 0).
1828 */
LL_I2S_IsEnabledIT_ERR(SPI_TypeDef * SPIx)1829 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
1830 {
1831 return LL_SPI_IsEnabledIT_ERR(SPIx);
1832 }
1833
1834 /**
1835 * @brief Check if RXNE IT is enabled
1836 * @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE
1837 * @param SPIx SPI Instance
1838 * @retval State of bit (1 or 0).
1839 */
LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)1840 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
1841 {
1842 return LL_SPI_IsEnabledIT_RXNE(SPIx);
1843 }
1844
1845 /**
1846 * @brief Check if TXE IT is enabled
1847 * @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE
1848 * @param SPIx SPI Instance
1849 * @retval State of bit (1 or 0).
1850 */
LL_I2S_IsEnabledIT_TXE(SPI_TypeDef * SPIx)1851 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
1852 {
1853 return LL_SPI_IsEnabledIT_TXE(SPIx);
1854 }
1855
1856 /**
1857 * @}
1858 */
1859
1860 /** @defgroup I2S_LL_EF_DMA DMA Management
1861 * @{
1862 */
1863
1864 /**
1865 * @brief Enable DMA Rx
1866 * @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX
1867 * @param SPIx SPI Instance
1868 * @retval None
1869 */
LL_I2S_EnableDMAReq_RX(SPI_TypeDef * SPIx)1870 __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
1871 {
1872 LL_SPI_EnableDMAReq_RX(SPIx);
1873 }
1874
1875 /**
1876 * @brief Disable DMA Rx
1877 * @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX
1878 * @param SPIx SPI Instance
1879 * @retval None
1880 */
LL_I2S_DisableDMAReq_RX(SPI_TypeDef * SPIx)1881 __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
1882 {
1883 LL_SPI_DisableDMAReq_RX(SPIx);
1884 }
1885
1886 /**
1887 * @brief Check if DMA Rx is enabled
1888 * @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX
1889 * @param SPIx SPI Instance
1890 * @retval State of bit (1 or 0).
1891 */
LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)1892 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
1893 {
1894 return LL_SPI_IsEnabledDMAReq_RX(SPIx);
1895 }
1896
1897 /**
1898 * @brief Enable DMA Tx
1899 * @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX
1900 * @param SPIx SPI Instance
1901 * @retval None
1902 */
LL_I2S_EnableDMAReq_TX(SPI_TypeDef * SPIx)1903 __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
1904 {
1905 LL_SPI_EnableDMAReq_TX(SPIx);
1906 }
1907
1908 /**
1909 * @brief Disable DMA Tx
1910 * @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX
1911 * @param SPIx SPI Instance
1912 * @retval None
1913 */
LL_I2S_DisableDMAReq_TX(SPI_TypeDef * SPIx)1914 __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
1915 {
1916 LL_SPI_DisableDMAReq_TX(SPIx);
1917 }
1918
1919 /**
1920 * @brief Check if DMA Tx is enabled
1921 * @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX
1922 * @param SPIx SPI Instance
1923 * @retval State of bit (1 or 0).
1924 */
LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)1925 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
1926 {
1927 return LL_SPI_IsEnabledDMAReq_TX(SPIx);
1928 }
1929
1930 /**
1931 * @}
1932 */
1933
1934 /** @defgroup I2S_LL_EF_DATA DATA Management
1935 * @{
1936 */
1937
1938 /**
1939 * @brief Read 16-Bits in data register
1940 * @rmtoll DR DR LL_I2S_ReceiveData16
1941 * @param SPIx SPI Instance
1942 * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
1943 */
LL_I2S_ReceiveData16(SPI_TypeDef * SPIx)1944 __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
1945 {
1946 return LL_SPI_ReceiveData16(SPIx);
1947 }
1948
1949 /**
1950 * @brief Write 16-Bits in data register
1951 * @rmtoll DR DR LL_I2S_TransmitData16
1952 * @param SPIx SPI Instance
1953 * @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
1954 * @retval None
1955 */
LL_I2S_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)1956 __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
1957 {
1958 LL_SPI_TransmitData16(SPIx, TxData);
1959 }
1960
1961 /**
1962 * @}
1963 */
1964
1965 #if defined(USE_FULL_LL_DRIVER)
1966 /** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
1967 * @{
1968 */
1969
1970 ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
1971 ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
1972 void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
1973 void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
1974
1975 /**
1976 * @}
1977 */
1978 #endif /* USE_FULL_LL_DRIVER */
1979
1980 /**
1981 * @}
1982 */
1983
1984 /**
1985 * @}
1986 */
1987 #endif /* SPI_I2S_SUPPORT */
1988
1989 #endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) */
1990
1991 /**
1992 * @}
1993 */
1994
1995 #ifdef __cplusplus
1996 }
1997 #endif
1998
1999 #endif /* STM32L1xx_LL_SPI_H */
2000
2001