1 /**
2 ******************************************************************************
3 * @file stm32h7xx_hal_hash.c
4 * @author MCD Application Team
5 * @brief HASH HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the HASH peripheral:
8 * + Initialization and de-initialization methods
9 * + HASH or HMAC processing in polling mode
10 * + HASH or HMAC processing in interrupt mode
11 * + HASH or HMAC processing in DMA mode
12 * + Peripheral State methods
13 * + HASH or HMAC processing suspension/resumption
14 *
15 ******************************************************************************
16 * @attention
17 *
18 * Copyright (c) 2017 STMicroelectronics.
19 * All rights reserved.
20 *
21 * This software is licensed under terms that can be found in the LICENSE file
22 * in the root directory of this software component.
23 * If no LICENSE file comes with this software, it is provided AS-IS.
24 *
25 ******************************************************************************
26 @verbatim
27 ===============================================================================
28 ##### How to use this driver #####
29 ===============================================================================
30 [..]
31 The HASH HAL driver can be used as follows:
32
33 (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
34 (##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
35 (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
36 (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
37 (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
38 (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
39 (##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())
40 (+++) Enable the DMAx interface clock using
41 __DMAx_CLK_ENABLE()
42 (+++) Configure and enable one DMA stream to manage data transfer from
43 memory to peripheral (input stream). Managing data transfer from
44 peripheral to memory can be performed only using CPU.
45 (+++) Associate the initialized DMA handle to the HASH DMA handle
46 using __HAL_LINKDMA()
47 (+++) Configure the priority and enable the NVIC for the transfer complete
48 interrupt on the DMA stream: use
49 HAL_NVIC_SetPriority() and
50 HAL_NVIC_EnableIRQ()
51
52 (#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
53 (##) resorts to HAL_HASH_MspInit() for low-level initialization,
54 (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
55
56 (#)Three processing schemes are available:
57 (##) Polling mode: processing APIs are blocking functions
58 i.e. they process the data and wait till the digest computation is finished,
59 e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
60 (##) Interrupt mode: processing APIs are not blocking functions
61 i.e. they process the data under interrupt,
62 e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
63 (##) DMA mode: processing APIs are not blocking functions and the CPU is
64 not used for data transfer i.e. the data transfer is ensured by DMA,
65 e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
66 for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
67 is then required to retrieve the digest.
68
69 (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
70 initialized and processes the buffer fed in input. When the input data have all been
71 fed to the Peripheral, the digest computation can start.
72
73 (#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
74 (##) In polling mode, only multi-buffer HASH processing is possible.
75 API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
76 User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
77 well the computed digest.
78
79 (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
80 except for the last one.
81 User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
82 well the computed digest.
83
84 (##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
85 (+++) HASH processing: once initialization is done, MDMAT bit must be set
86 through __HAL_HASH_SET_MDMAT() macro.
87 From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
88 Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
89 macro then wrap-up the HASH processing in feeding the last input buffer through the
90 same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
91 API HAL_HASH_xxx_Finish().
92 (+++) HMAC processing (requires to resort to extended functions):
93 after initialization, the key and the first input buffer are entered
94 in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
95 starts step 2.
96 The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this
97 point, the HMAC processing is still carrying out step 2.
98 Then, step 2 for the last input buffer and step 3 are carried out by a single call
99 to HAL_HMACEx_xxx_Step2_3_DMA().
100
101 The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
102
103
104 (#)Context swapping.
105 (##) Two APIs are available to suspend HASH or HMAC processing:
106 (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
107 (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
108
109 (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
110 to save in memory the Peripheral context. This context can be restored afterwards
111 to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
112
113 (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
114 time, processing can be restarted with the same API call (same API, same handle,
115 same parameters) as done before the suspension. Relevant parameters to restart at
116 the proper location are internally saved in the HASH handle.
117
118 (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
119
120 *** Remarks on message length ***
121 ===================================
122 [..]
123 (#) HAL in interruption mode (interruptions driven)
124
125 (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
126 This is why, for driver implementation simplicity’s sake, user is requested to enter a message the
127 length of which is a multiple of 4 bytes.
128
129 (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
130 to specify which bits to discard at the end of the complete message to process only the message bits
131 and not extra bits.
132
133 (##) If user needs to perform a hash computation of a large input buffer that is spread around various places
134 in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
135 necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
136 It is advised to the user to
137 (+++) achieve the first formatting operation by software then enter the data
138 (+++) while the Peripheral is processing the first input set, carry out the second formatting
139 operation by software, to be ready when DINIS occurs.
140 (+++) repeat step 2 until the whole message is processed.
141
142 [..]
143 (#) HAL in DMA mode
144
145 (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
146 The same field described above in HASH_STR is used to specify which bits to discard at the end of the
147 DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
148 this is possible only at the end of the complete message. When several DMA transfers are needed to
149 enter the message, this is not applicable at the end of the intermediary transfers.
150
151 (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
152 chunks of data by software while the DMA transfer and processing is on-going for the first parts of
153 the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
154 software formatting operation is more complex than in the IT mode.
155
156 *** Callback registration ***
157 ===================================
158 [..]
159 (#) The compilation define USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
160 allows the user to configure dynamically the driver callbacks.
161 Use function HAL_HASH_RegisterCallback() to register a user callback.
162
163 (#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
164 (+) InCpltCallback : callback for input completion.
165 (+) DgstCpltCallback : callback for digest computation completion.
166 (+) ErrorCallback : callback for error.
167 (+) MspInitCallback : HASH MspInit.
168 (+) MspDeInitCallback : HASH MspDeInit.
169 This function takes as parameters the HAL peripheral handle, the Callback ID
170 and a pointer to the user callback function.
171
172 (#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
173 weak (surcharged) function.
174 HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175 and the Callback ID.
176 This function allows to reset following callbacks:
177 (+) InCpltCallback : callback for input completion.
178 (+) DgstCpltCallback : callback for digest computation completion.
179 (+) ErrorCallback : callback for error.
180 (+) MspInitCallback : HASH MspInit.
181 (+) MspDeInitCallback : HASH MspDeInit.
182
183 (#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
184 all callbacks are reset to the corresponding legacy weak (surcharged) functions:
185 examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
186 Exception done for MspInit and MspDeInit callbacks that are respectively
187 reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
188 and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
189 If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
190 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
191
192 Callbacks can be registered/unregistered in READY state only.
193 Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
194 in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
195 during the Init/DeInit.
196 In that case first register the MspInit/MspDeInit user callbacks
197 using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
198 or HAL_HASH_Init function.
199
200 When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
201 not defined, the callback registering feature is not available
202 and weak (surcharged) callbacks are used.
203
204 @endverbatim
205 ******************************************************************************
206 */
207
208 /* Includes ------------------------------------------------------------------*/
209 #include "stm32h7xx_hal.h"
210
211
212 /** @addtogroup STM32H7xx_HAL_Driver
213 * @{
214 */
215 #if defined (HASH)
216
217 /** @defgroup HASH HASH
218 * @brief HASH HAL module driver.
219 * @{
220 */
221
222 #ifdef HAL_HASH_MODULE_ENABLED
223
224 /* Private typedef -----------------------------------------------------------*/
225 /* Private define ------------------------------------------------------------*/
226 /** @defgroup HASH_Private_Constants HASH Private Constants
227 * @{
228 */
229
230 /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
231 * @{
232 */
233 #define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
234 #define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register */
235 /**
236 * @}
237 */
238
239 /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
240 * @{
241 */
242 #define HASH_NUMBER_OF_CSR_REGISTERS 54U /*!< Number of Context Swap Registers */
243 /**
244 * @}
245 */
246
247 /** @defgroup HASH_TimeOut_Value HASH TimeOut Value
248 * @{
249 */
250 #define HASH_TIMEOUTVALUE 1000U /*!< Time-out value */
251 /**
252 * @}
253 */
254
255 /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
256 * @{
257 */
258 #define HASH_DMA_SUSPENSION_WORDS_LIMIT 20U /*!< Number of words below which DMA suspension is aborted */
259 /**
260 * @}
261 */
262
263 /**
264 * @}
265 */
266
267 /* Private macro -------------------------------------------------------------*/
268 /* Private variables ---------------------------------------------------------*/
269 /* Private function prototypes -----------------------------------------------*/
270 /** @defgroup HASH_Private_Functions HASH Private Functions
271 * @{
272 */
273 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
274 static void HASH_DMAError(DMA_HandleTypeDef *hdma);
275 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
276 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
277 uint32_t Timeout);
278 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
279 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
280 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
281 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
282 /**
283 * @}
284 */
285
286 /** @defgroup HASH_Exported_Functions HASH Exported Functions
287 * @{
288 */
289
290 /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
291 * @brief Initialization, configuration and call-back functions.
292 *
293 @verbatim
294 ===============================================================================
295 ##### Initialization and de-initialization functions #####
296 ===============================================================================
297 [..] This section provides functions allowing to:
298 (+) Initialize the HASH according to the specified parameters
299 in the HASH_InitTypeDef and create the associated handle
300 (+) DeInitialize the HASH peripheral
301 (+) Initialize the HASH MCU Specific Package (MSP)
302 (+) DeInitialize the HASH MSP
303
304 [..] This section provides as well call back functions definitions for user
305 code to manage:
306 (+) Input data transfer to Peripheral completion
307 (+) Calculated digest retrieval completion
308 (+) Error management
309
310
311
312 @endverbatim
313 * @{
314 */
315
316 /**
317 * @brief Initialize the HASH according to the specified parameters in the
318 HASH_HandleTypeDef and create the associated handle.
319 * @note Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
320 * other configuration bits are set by HASH or HMAC processing APIs.
321 * @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
322 * multi-buffer HASH processing, user needs to resort to
323 * __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
324 * relevant APIs manage themselves the MDMAT bit.
325 * @param hhash HASH handle
326 * @retval HAL status
327 */
HAL_HASH_Init(HASH_HandleTypeDef * hhash)328 HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
329 {
330 /* Check the hash handle allocation */
331 if (hhash == NULL)
332 {
333 return HAL_ERROR;
334 }
335
336 /* Check the parameters */
337 assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
338
339 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
340 if (hhash->State == HAL_HASH_STATE_RESET)
341 {
342 /* Allocate lock resource and initialize it */
343 hhash->Lock = HAL_UNLOCKED;
344
345 /* Reset Callback pointers in HAL_HASH_STATE_RESET only */
346 hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
347 hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
348 completion callback */
349 hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
350 if (hhash->MspInitCallback == NULL)
351 {
352 hhash->MspInitCallback = HAL_HASH_MspInit;
353 }
354
355 /* Init the low level hardware */
356 hhash->MspInitCallback(hhash);
357 }
358 #else
359 if (hhash->State == HAL_HASH_STATE_RESET)
360 {
361 /* Allocate lock resource and initialize it */
362 hhash->Lock = HAL_UNLOCKED;
363
364 /* Init the low level hardware */
365 HAL_HASH_MspInit(hhash);
366 }
367 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
368
369 /* Change the HASH state */
370 hhash->State = HAL_HASH_STATE_BUSY;
371
372 /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
373 hhash->HashInCount = 0;
374 hhash->HashBuffSize = 0;
375 hhash->HashITCounter = 0;
376 hhash->NbWordsAlreadyPushed = 0;
377 /* Reset digest calculation bridle (MDMAT bit control) */
378 hhash->DigestCalculationDisable = RESET;
379 /* Set phase to READY */
380 hhash->Phase = HAL_HASH_PHASE_READY;
381 /* Reset suspension request flag */
382 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
383
384 /* Set the data type bit */
385 MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
386 /* Reset MDMAT bit */
387 __HAL_HASH_RESET_MDMAT();
388 /* Reset HASH handle status */
389 hhash->Status = HAL_OK;
390
391 /* Set the HASH state to Ready */
392 hhash->State = HAL_HASH_STATE_READY;
393
394 /* Initialise the error code */
395 hhash->ErrorCode = HAL_HASH_ERROR_NONE;
396
397 /* Return function status */
398 return HAL_OK;
399 }
400
401 /**
402 * @brief DeInitialize the HASH peripheral.
403 * @param hhash HASH handle.
404 * @retval HAL status
405 */
HAL_HASH_DeInit(HASH_HandleTypeDef * hhash)406 HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
407 {
408 /* Check the HASH handle allocation */
409 if (hhash == NULL)
410 {
411 return HAL_ERROR;
412 }
413
414 /* Change the HASH state */
415 hhash->State = HAL_HASH_STATE_BUSY;
416
417 /* Set the default HASH phase */
418 hhash->Phase = HAL_HASH_PHASE_READY;
419
420 /* Reset HashInCount, HashITCounter and HashBuffSize */
421 hhash->HashInCount = 0;
422 hhash->HashBuffSize = 0;
423 hhash->HashITCounter = 0;
424 /* Reset digest calculation bridle (MDMAT bit control) */
425 hhash->DigestCalculationDisable = RESET;
426
427 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
428 if (hhash->MspDeInitCallback == NULL)
429 {
430 hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
431 }
432
433 /* DeInit the low level hardware */
434 hhash->MspDeInitCallback(hhash);
435 #else
436 /* DeInit the low level hardware: CLOCK, NVIC */
437 HAL_HASH_MspDeInit(hhash);
438 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
439
440
441 /* Reset HASH handle status */
442 hhash->Status = HAL_OK;
443
444 /* Set the HASH state to Ready */
445 hhash->State = HAL_HASH_STATE_RESET;
446
447 /* Initialise the error code */
448 hhash->ErrorCode = HAL_HASH_ERROR_NONE;
449
450 /* Reset multi buffers accumulation flag */
451 hhash->Accumulation = 0U;
452
453 /* Return function status */
454 return HAL_OK;
455 }
456
457 /**
458 * @brief Initialize the HASH MSP.
459 * @param hhash HASH handle.
460 * @retval None
461 */
HAL_HASH_MspInit(HASH_HandleTypeDef * hhash)462 __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
463 {
464 /* Prevent unused argument(s) compilation warning */
465 UNUSED(hhash);
466
467 /* NOTE : This function should not be modified; when the callback is needed,
468 HAL_HASH_MspInit() can be implemented in the user file.
469 */
470 }
471
472 /**
473 * @brief DeInitialize the HASH MSP.
474 * @param hhash HASH handle.
475 * @retval None
476 */
HAL_HASH_MspDeInit(HASH_HandleTypeDef * hhash)477 __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
478 {
479 /* Prevent unused argument(s) compilation warning */
480 UNUSED(hhash);
481
482 /* NOTE : This function should not be modified; when the callback is needed,
483 HAL_HASH_MspDeInit() can be implemented in the user file.
484 */
485 }
486
487 /**
488 * @brief Input data transfer complete call back.
489 * @note HAL_HASH_InCpltCallback() is called when the complete input message
490 * has been fed to the Peripheral. This API is invoked only when input data are
491 * entered under interruption or through DMA.
492 * @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
493 * HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
494 * to the Peripheral.
495 * @param hhash HASH handle.
496 * @retval None
497 */
HAL_HASH_InCpltCallback(HASH_HandleTypeDef * hhash)498 __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
499 {
500 /* Prevent unused argument(s) compilation warning */
501 UNUSED(hhash);
502
503 /* NOTE : This function should not be modified; when the callback is needed,
504 HAL_HASH_InCpltCallback() can be implemented in the user file.
505 */
506 }
507
508 /**
509 * @brief Digest computation complete call back.
510 * @note HAL_HASH_DgstCpltCallback() is used under interruption, is not
511 * relevant with DMA.
512 * @param hhash HASH handle.
513 * @retval None
514 */
HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef * hhash)515 __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
516 {
517 /* Prevent unused argument(s) compilation warning */
518 UNUSED(hhash);
519
520 /* NOTE : This function should not be modified; when the callback is needed,
521 HAL_HASH_DgstCpltCallback() can be implemented in the user file.
522 */
523 }
524
525 /**
526 * @brief Error callback.
527 * @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
528 * to retrieve the error type.
529 * @param hhash HASH handle.
530 * @retval None
531 */
HAL_HASH_ErrorCallback(HASH_HandleTypeDef * hhash)532 __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
533 {
534 /* Prevent unused argument(s) compilation warning */
535 UNUSED(hhash);
536
537 /* NOTE : This function should not be modified; when the callback is needed,
538 HAL_HASH_ErrorCallback() can be implemented in the user file.
539 */
540 }
541
542 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
543 /**
544 * @brief Register a User HASH Callback
545 * To be used instead of the weak (surcharged) predefined callback
546 * @param hhash HASH handle
547 * @param CallbackID ID of the callback to be registered
548 * This parameter can be one of the following values:
549 * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
550 * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
551 * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
552 * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
553 * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
554 * @param pCallback pointer to the Callback function
555 * @retval status
556 */
HAL_HASH_RegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID,pHASH_CallbackTypeDef pCallback)557 HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
558 pHASH_CallbackTypeDef pCallback)
559 {
560 HAL_StatusTypeDef status = HAL_OK;
561
562 if (pCallback == NULL)
563 {
564 /* Update the error code */
565 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
566 return HAL_ERROR;
567 }
568 /* Process locked */
569 __HAL_LOCK(hhash);
570
571 if (HAL_HASH_STATE_READY == hhash->State)
572 {
573 switch (CallbackID)
574 {
575 case HAL_HASH_INPUTCPLT_CB_ID :
576 hhash->InCpltCallback = pCallback;
577 break;
578
579 case HAL_HASH_DGSTCPLT_CB_ID :
580 hhash->DgstCpltCallback = pCallback;
581 break;
582
583 case HAL_HASH_ERROR_CB_ID :
584 hhash->ErrorCallback = pCallback;
585 break;
586
587 case HAL_HASH_MSPINIT_CB_ID :
588 hhash->MspInitCallback = pCallback;
589 break;
590
591 case HAL_HASH_MSPDEINIT_CB_ID :
592 hhash->MspDeInitCallback = pCallback;
593 break;
594
595 default :
596 /* Update the error code */
597 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
598 /* update return status */
599 status = HAL_ERROR;
600 break;
601 }
602 }
603 else if (HAL_HASH_STATE_RESET == hhash->State)
604 {
605 switch (CallbackID)
606 {
607 case HAL_HASH_MSPINIT_CB_ID :
608 hhash->MspInitCallback = pCallback;
609 break;
610
611 case HAL_HASH_MSPDEINIT_CB_ID :
612 hhash->MspDeInitCallback = pCallback;
613 break;
614
615 default :
616 /* Update the error code */
617 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
618 /* update return status */
619 status = HAL_ERROR;
620 break;
621 }
622 }
623 else
624 {
625 /* Update the error code */
626 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
627 /* update return status */
628 status = HAL_ERROR;
629 }
630
631 /* Release Lock */
632 __HAL_UNLOCK(hhash);
633 return status;
634 }
635
636 /**
637 * @brief Unregister a HASH Callback
638 * HASH Callback is redirected to the weak (surcharged) predefined callback
639 * @param hhash HASH handle
640 * @param CallbackID ID of the callback to be unregistered
641 * This parameter can be one of the following values:
642 * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
643 * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
644 * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
645 * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
646 * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
647 * @retval status
648 */
HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID)649 HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
650 {
651 HAL_StatusTypeDef status = HAL_OK;
652
653 /* Process locked */
654 __HAL_LOCK(hhash);
655
656 if (HAL_HASH_STATE_READY == hhash->State)
657 {
658 switch (CallbackID)
659 {
660 case HAL_HASH_INPUTCPLT_CB_ID :
661 hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
662 break;
663
664 case HAL_HASH_DGSTCPLT_CB_ID :
665 hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
666 completion callback */
667 break;
668
669 case HAL_HASH_ERROR_CB_ID :
670 hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
671 break;
672
673 case HAL_HASH_MSPINIT_CB_ID :
674 hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
675 break;
676
677 case HAL_HASH_MSPDEINIT_CB_ID :
678 hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
679 break;
680
681 default :
682 /* Update the error code */
683 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
684 /* update return status */
685 status = HAL_ERROR;
686 break;
687 }
688 }
689 else if (HAL_HASH_STATE_RESET == hhash->State)
690 {
691 switch (CallbackID)
692 {
693 case HAL_HASH_MSPINIT_CB_ID :
694 hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
695 break;
696
697 case HAL_HASH_MSPDEINIT_CB_ID :
698 hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
699 break;
700
701 default :
702 /* Update the error code */
703 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
704 /* update return status */
705 status = HAL_ERROR;
706 break;
707 }
708 }
709 else
710 {
711 /* Update the error code */
712 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
713 /* update return status */
714 status = HAL_ERROR;
715 }
716
717 /* Release Lock */
718 __HAL_UNLOCK(hhash);
719 return status;
720 }
721 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
722
723 /**
724 * @}
725 */
726
727 /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
728 * @brief HASH processing functions using polling mode.
729 *
730 @verbatim
731 ===============================================================================
732 ##### Polling mode HASH processing functions #####
733 ===============================================================================
734 [..] This section provides functions allowing to calculate in polling mode
735 the hash value using one of the following algorithms:
736 (+) MD5
737 (++) HAL_HASH_MD5_Start()
738 (++) HAL_HASH_MD5_Accmlt()
739 (++) HAL_HASH_MD5_Accmlt_End()
740 (+) SHA1
741 (++) HAL_HASH_SHA1_Start()
742 (++) HAL_HASH_SHA1_Accmlt()
743 (++) HAL_HASH_SHA1_Accmlt_End()
744
745 [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
746
747 [..] In case of multi-buffer HASH processing (a single digest is computed while
748 several buffers are fed to the Peripheral), the user can resort to successive calls
749 to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
750 to HAL_HASH_xxx_Accumulate_End().
751
752 @endverbatim
753 * @{
754 */
755
756 /**
757 * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
758 * read the computed digest.
759 * @note Digest is available in pOutBuffer.
760 * @param hhash HASH handle.
761 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
762 * @param Size length of the input buffer in bytes.
763 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
764 * @param Timeout Timeout value
765 * @retval HAL status
766 */
HAL_HASH_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)767 HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
768 uint32_t Timeout)
769 {
770 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
771 }
772
773 /**
774 * @brief If not already done, initialize the HASH peripheral in MD5 mode then
775 * processes pInBuffer.
776 * @note Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
777 * several input buffers back-to-back to the Peripheral that will yield a single
778 * HASH signature once all buffers have been entered. Wrap-up of input
779 * buffers feeding and retrieval of digest is done by a call to
780 * HAL_HASH_MD5_Accmlt_End().
781 * @note Field hhash->Phase of HASH handle is tested to check whether or not
782 * the Peripheral has already been initialized.
783 * @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
784 * to read it, feeding at the same time the last input buffer to the Peripheral.
785 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
786 * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
787 * to manage the ending buffer with a length in bytes not a multiple of 4.
788 * @param hhash HASH handle.
789 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
790 * @param Size length of the input buffer in bytes, must be a multiple of 4.
791 * @retval HAL status
792 */
HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)793 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
794 {
795 return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
796 }
797
798 /**
799 * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
800 * @note Digest is available in pOutBuffer.
801 * @param hhash HASH handle.
802 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
803 * @param Size length of the input buffer in bytes.
804 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
805 * @param Timeout Timeout value
806 * @retval HAL status
807 */
HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)808 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
809 uint8_t *pOutBuffer, uint32_t Timeout)
810 {
811 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
812 }
813
814 /**
815 * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
816 * read the computed digest.
817 * @note Digest is available in pOutBuffer.
818 * @param hhash HASH handle.
819 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
820 * @param Size length of the input buffer in bytes.
821 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
822 * @param Timeout Timeout value
823 * @retval HAL status
824 */
HAL_HASH_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)825 HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
826 uint32_t Timeout)
827 {
828 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
829 }
830
831 /**
832 * @brief If not already done, initialize the HASH peripheral in SHA1 mode then
833 * processes pInBuffer.
834 * @note Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
835 * several input buffers back-to-back to the Peripheral that will yield a single
836 * HASH signature once all buffers have been entered. Wrap-up of input
837 * buffers feeding and retrieval of digest is done by a call to
838 * HAL_HASH_SHA1_Accmlt_End().
839 * @note Field hhash->Phase of HASH handle is tested to check whether or not
840 * the Peripheral has already been initialized.
841 * @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
842 * to read it, feeding at the same time the last input buffer to the Peripheral.
843 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
844 * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
845 * to manage the ending buffer with a length in bytes not a multiple of 4.
846 * @param hhash HASH handle.
847 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
848 * @param Size length of the input buffer in bytes, must be a multiple of 4.
849 * @retval HAL status
850 */
HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)851 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
852 {
853 return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
854 }
855
856 /**
857 * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
858 * @note Digest is available in pOutBuffer.
859 * @param hhash HASH handle.
860 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
861 * @param Size length of the input buffer in bytes.
862 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
863 * @param Timeout Timeout value
864 * @retval HAL status
865 */
HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)866 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
867 uint8_t *pOutBuffer, uint32_t Timeout)
868 {
869 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
870 }
871
872 /**
873 * @}
874 */
875
876 /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
877 * @brief HASH processing functions using interrupt mode.
878 *
879 @verbatim
880 ===============================================================================
881 ##### Interruption mode HASH processing functions #####
882 ===============================================================================
883 [..] This section provides functions allowing to calculate in interrupt mode
884 the hash value using one of the following algorithms:
885 (+) MD5
886 (++) HAL_HASH_MD5_Start_IT()
887 (++) HAL_HASH_MD5_Accmlt_IT()
888 (++) HAL_HASH_MD5_Accmlt_End_IT()
889 (+) SHA1
890 (++) HAL_HASH_SHA1_Start_IT()
891 (++) HAL_HASH_SHA1_Accmlt_IT()
892 (++) HAL_HASH_SHA1_Accmlt_End_IT()
893
894 [..] API HAL_HASH_IRQHandler() manages each HASH interruption.
895
896 [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
897 HMAC processing mode.
898
899
900 @endverbatim
901 * @{
902 */
903
904 /**
905 * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
906 * read the computed digest in interruption mode.
907 * @note Digest is available in pOutBuffer.
908 * @param hhash HASH handle.
909 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
910 * @param Size length of the input buffer in bytes.
911 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
912 * @retval HAL status
913 */
HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)914 HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
915 uint8_t *pOutBuffer)
916 {
917 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
918 }
919
920 /**
921 * @brief If not already done, initialize the HASH peripheral in MD5 mode then
922 * processes pInBuffer in interruption mode.
923 * @note Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
924 * several input buffers back-to-back to the Peripheral that will yield a single
925 * HASH signature once all buffers have been entered. Wrap-up of input
926 * buffers feeding and retrieval of digest is done by a call to
927 * HAL_HASH_MD5_Accmlt_End_IT().
928 * @note Field hhash->Phase of HASH handle is tested to check whether or not
929 * the Peripheral has already been initialized.
930 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
931 * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
932 * to manage the ending buffer with a length in bytes not a multiple of 4.
933 * @param hhash HASH handle.
934 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
935 * @param Size length of the input buffer in bytes, must be a multiple of 4.
936 * @retval HAL status
937 */
HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)938 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
939 {
940 return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
941 }
942
943 /**
944 * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
945 * @note Digest is available in pOutBuffer.
946 * @param hhash HASH handle.
947 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
948 * @param Size length of the input buffer in bytes.
949 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
950 * @retval HAL status
951 */
HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)952 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
953 uint8_t *pOutBuffer)
954 {
955 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
956 }
957
958 /**
959 * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
960 * read the computed digest in interruption mode.
961 * @note Digest is available in pOutBuffer.
962 * @param hhash HASH handle.
963 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
964 * @param Size length of the input buffer in bytes.
965 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
966 * @retval HAL status
967 */
HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)968 HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
969 uint8_t *pOutBuffer)
970 {
971 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
972 }
973
974
975 /**
976 * @brief If not already done, initialize the HASH peripheral in SHA1 mode then
977 * processes pInBuffer in interruption mode.
978 * @note Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
979 * several input buffers back-to-back to the Peripheral that will yield a single
980 * HASH signature once all buffers have been entered. Wrap-up of input
981 * buffers feeding and retrieval of digest is done by a call to
982 * HAL_HASH_SHA1_Accmlt_End_IT().
983 * @note Field hhash->Phase of HASH handle is tested to check whether or not
984 * the Peripheral has already been initialized.
985 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
986 * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
987 * to manage the ending buffer with a length in bytes not a multiple of 4.
988 * @param hhash HASH handle.
989 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
990 * @param Size length of the input buffer in bytes, must be a multiple of 4.
991 * @retval HAL status
992 */
HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)993 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
994 {
995 return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
996 }
997
998 /**
999 * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
1000 * @note Digest is available in pOutBuffer.
1001 * @param hhash HASH handle.
1002 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1003 * @param Size length of the input buffer in bytes.
1004 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1005 * @retval HAL status
1006 */
HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1007 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1008 uint8_t *pOutBuffer)
1009 {
1010 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1011 }
1012
1013 /**
1014 * @brief Handle HASH interrupt request.
1015 * @param hhash HASH handle.
1016 * @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
1017 * @note In case of error reported during the HASH interruption processing,
1018 * HAL_HASH_ErrorCallback() API is called so that user code can
1019 * manage the error. The error type is available in hhash->Status field.
1020 * @retval None
1021 */
HAL_HASH_IRQHandler(HASH_HandleTypeDef * hhash)1022 void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
1023 {
1024 hhash->Status = HASH_IT(hhash);
1025 if (hhash->Status != HAL_OK)
1026 {
1027 hhash->ErrorCode |= HAL_HASH_ERROR_IT;
1028 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1029 hhash->ErrorCallback(hhash);
1030 #else
1031 HAL_HASH_ErrorCallback(hhash);
1032 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1033 /* After error handling by code user, reset HASH handle HAL status */
1034 hhash->Status = HAL_OK;
1035 }
1036 }
1037
1038 /**
1039 * @}
1040 */
1041
1042 /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
1043 * @brief HASH processing functions using DMA mode.
1044 *
1045 @verbatim
1046 ===============================================================================
1047 ##### DMA mode HASH processing functions #####
1048 ===============================================================================
1049 [..] This section provides functions allowing to calculate in DMA mode
1050 the hash value using one of the following algorithms:
1051 (+) MD5
1052 (++) HAL_HASH_MD5_Start_DMA()
1053 (++) HAL_HASH_MD5_Finish()
1054 (+) SHA1
1055 (++) HAL_HASH_SHA1_Start_DMA()
1056 (++) HAL_HASH_SHA1_Finish()
1057
1058 [..] When resorting to DMA mode to enter the data in the Peripheral, user must resort
1059 to HAL_HASH_xxx_Start_DMA() then read the resulting digest with
1060 HAL_HASH_xxx_Finish().
1061 [..] In case of multi-buffer HASH processing, MDMAT bit must first be set before
1062 the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
1063 reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
1064 retrieved thanks to HAL_HASH_xxx_Finish().
1065
1066 @endverbatim
1067 * @{
1068 */
1069
1070 /**
1071 * @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
1072 * to feed the input buffer to the Peripheral.
1073 * @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
1074 * be called to retrieve the computed digest.
1075 * @param hhash HASH handle.
1076 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1077 * @param Size length of the input buffer in bytes.
1078 * @retval HAL status
1079 */
HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1080 HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1081 {
1082 return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1083 }
1084
1085 /**
1086 * @brief Return the computed digest in MD5 mode.
1087 * @note The API waits for DCIS to be set then reads the computed digest.
1088 * @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
1089 * HMAC MD5 mode.
1090 * @param hhash HASH handle.
1091 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1092 * @param Timeout Timeout value.
1093 * @retval HAL status
1094 */
HAL_HASH_MD5_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1095 HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1096 {
1097 return HASH_Finish(hhash, pOutBuffer, Timeout);
1098 }
1099
1100 /**
1101 * @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
1102 * to feed the input buffer to the Peripheral.
1103 * @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
1104 * be called to retrieve the computed digest.
1105 * @param hhash HASH handle.
1106 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1107 * @param Size length of the input buffer in bytes.
1108 * @retval HAL status
1109 */
HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1110 HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1111 {
1112 return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1113 }
1114
1115
1116 /**
1117 * @brief Return the computed digest in SHA1 mode.
1118 * @note The API waits for DCIS to be set then reads the computed digest.
1119 * @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
1120 * HMAC SHA1 mode.
1121 * @param hhash HASH handle.
1122 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1123 * @param Timeout Timeout value.
1124 * @retval HAL status
1125 */
HAL_HASH_SHA1_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1126 HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1127 {
1128 return HASH_Finish(hhash, pOutBuffer, Timeout);
1129 }
1130
1131 /**
1132 * @}
1133 */
1134
1135 /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
1136 * @brief HMAC processing functions using polling mode.
1137 *
1138 @verbatim
1139 ===============================================================================
1140 ##### Polling mode HMAC processing functions #####
1141 ===============================================================================
1142 [..] This section provides functions allowing to calculate in polling mode
1143 the HMAC value using one of the following algorithms:
1144 (+) MD5
1145 (++) HAL_HMAC_MD5_Start()
1146 (+) SHA1
1147 (++) HAL_HMAC_SHA1_Start()
1148
1149
1150 @endverbatim
1151 * @{
1152 */
1153
1154 /**
1155 * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1156 * read the computed digest.
1157 * @note Digest is available in pOutBuffer.
1158 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1159 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1160 * @param hhash HASH handle.
1161 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1162 * @param Size length of the input buffer in bytes.
1163 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1164 * @param Timeout Timeout value.
1165 * @retval HAL status
1166 */
HAL_HMAC_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1167 HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1168 uint32_t Timeout)
1169 {
1170 return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
1171 }
1172
1173 /**
1174 * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1175 * read the computed digest.
1176 * @note Digest is available in pOutBuffer.
1177 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1178 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1179 * @param hhash HASH handle.
1180 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1181 * @param Size length of the input buffer in bytes.
1182 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1183 * @param Timeout Timeout value.
1184 * @retval HAL status
1185 */
HAL_HMAC_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1186 HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1187 uint32_t Timeout)
1188 {
1189 return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
1190 }
1191
1192 /**
1193 * @}
1194 */
1195
1196
1197 /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
1198 * @brief HMAC processing functions using interrupt mode.
1199 *
1200 @verbatim
1201 ===============================================================================
1202 ##### Interrupt mode HMAC processing functions #####
1203 ===============================================================================
1204 [..] This section provides functions allowing to calculate in interrupt mode
1205 the HMAC value using one of the following algorithms:
1206 (+) MD5
1207 (++) HAL_HMAC_MD5_Start_IT()
1208 (+) SHA1
1209 (++) HAL_HMAC_SHA1_Start_IT()
1210
1211 @endverbatim
1212 * @{
1213 */
1214
1215
1216 /**
1217 * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1218 * read the computed digest in interrupt mode.
1219 * @note Digest is available in pOutBuffer.
1220 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1221 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1222 * @param hhash HASH handle.
1223 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1224 * @param Size length of the input buffer in bytes.
1225 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1226 * @retval HAL status
1227 */
HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1228 HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1229 uint8_t *pOutBuffer)
1230 {
1231 return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
1232 }
1233
1234 /**
1235 * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1236 * read the computed digest in interrupt mode.
1237 * @note Digest is available in pOutBuffer.
1238 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1239 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1240 * @param hhash HASH handle.
1241 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1242 * @param Size length of the input buffer in bytes.
1243 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1244 * @retval HAL status
1245 */
HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1246 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1247 uint8_t *pOutBuffer)
1248 {
1249 return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1250 }
1251
1252 /**
1253 * @}
1254 */
1255
1256
1257
1258 /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
1259 * @brief HMAC processing functions using DMA modes.
1260 *
1261 @verbatim
1262 ===============================================================================
1263 ##### DMA mode HMAC processing functions #####
1264 ===============================================================================
1265 [..] This section provides functions allowing to calculate in DMA mode
1266 the HMAC value using one of the following algorithms:
1267 (+) MD5
1268 (++) HAL_HMAC_MD5_Start_DMA()
1269 (+) SHA1
1270 (++) HAL_HMAC_SHA1_Start_DMA()
1271
1272 [..] When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
1273 user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest
1274 with HAL_HASH_xxx_Finish().
1275
1276 @endverbatim
1277 * @{
1278 */
1279
1280
1281 /**
1282 * @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
1283 * DMA transfers to feed the key and the input buffer to the Peripheral.
1284 * @note Once the DMA transfers are finished (indicated by hhash->State set back
1285 * to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
1286 * the computed digest.
1287 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1288 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1289 * @note If MDMAT bit is set before calling this function (multi-buffer
1290 * HASH processing case), the input buffer size (in bytes) must be
1291 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
1292 * For the processing of the last buffer of the thread, MDMAT bit must
1293 * be reset and the buffer length (in bytes) doesn't have to be a
1294 * multiple of 4.
1295 * @param hhash HASH handle.
1296 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1297 * @param Size length of the input buffer in bytes.
1298 * @retval HAL status
1299 */
HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1300 HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1301 {
1302 return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1303 }
1304
1305
1306 /**
1307 * @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
1308 * DMA transfers to feed the key and the input buffer to the Peripheral.
1309 * @note Once the DMA transfers are finished (indicated by hhash->State set back
1310 * to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
1311 * the computed digest.
1312 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1313 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1314 * @note If MDMAT bit is set before calling this function (multi-buffer
1315 * HASH processing case), the input buffer size (in bytes) must be
1316 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
1317 * For the processing of the last buffer of the thread, MDMAT bit must
1318 * be reset and the buffer length (in bytes) doesn't have to be a
1319 * multiple of 4.
1320 * @param hhash HASH handle.
1321 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1322 * @param Size length of the input buffer in bytes.
1323 * @retval HAL status
1324 */
HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1325 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1326 {
1327 return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1328 }
1329
1330 /**
1331 * @}
1332 */
1333
1334 /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
1335 * @brief Peripheral State functions.
1336 *
1337 @verbatim
1338 ===============================================================================
1339 ##### Peripheral State methods #####
1340 ===============================================================================
1341 [..]
1342 This section permits to get in run-time the state and the peripheral handle
1343 status of the peripheral:
1344 (+) HAL_HASH_GetState()
1345 (+) HAL_HASH_GetStatus()
1346
1347 [..]
1348 Additionally, this subsection provides functions allowing to save and restore
1349 the HASH or HMAC processing context in case of calculation suspension:
1350 (+) HAL_HASH_ContextSaving()
1351 (+) HAL_HASH_ContextRestoring()
1352
1353 [..]
1354 This subsection provides functions allowing to suspend the HASH processing
1355 (+) when input are fed to the Peripheral by software
1356 (++) HAL_HASH_SwFeed_ProcessSuspend()
1357 (+) when input are fed to the Peripheral by DMA
1358 (++) HAL_HASH_DMAFeed_ProcessSuspend()
1359
1360
1361
1362 @endverbatim
1363 * @{
1364 */
1365
1366 /**
1367 * @brief Return the HASH handle state.
1368 * @note The API yields the current state of the handle (BUSY, READY,...).
1369 * @param hhash HASH handle.
1370 * @retval HAL HASH state
1371 */
HAL_HASH_GetState(HASH_HandleTypeDef * hhash)1372 HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
1373 {
1374 return hhash->State;
1375 }
1376
1377
1378 /**
1379 * @brief Return the HASH HAL status.
1380 * @note The API yields the HAL status of the handle: it is the result of the
1381 * latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
1382 * @param hhash HASH handle.
1383 * @retval HAL status
1384 */
HAL_HASH_GetStatus(HASH_HandleTypeDef * hhash)1385 HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
1386 {
1387 return hhash->Status;
1388 }
1389
1390 /**
1391 * @brief Save the HASH context in case of processing suspension.
1392 * @param hhash HASH handle.
1393 * @param pMemBuffer pointer to the memory buffer where the HASH context
1394 * is saved.
1395 * @note The IMR, STR, CR then all the CSR registers are saved
1396 * in that order. Only the r/w bits are read to be restored later on.
1397 * @note By default, all the context swap registers (there are
1398 * HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
1399 * @note pMemBuffer points to a buffer allocated by the user. The buffer size
1400 * must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
1401 * @retval None
1402 */
HAL_HASH_ContextSaving(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1403 void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1404 {
1405 uint32_t mem_ptr = (uint32_t)pMemBuffer;
1406 uint32_t csr_ptr = (uint32_t)HASH->CSR;
1407 uint32_t i;
1408
1409 /* Prevent unused argument(s) compilation warning */
1410 UNUSED(hhash);
1411
1412 /* Save IMR register content */
1413 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
1414 mem_ptr += 4U;
1415 /* Save STR register content */
1416 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
1417 mem_ptr += 4U;
1418 /* Save CR register content */
1419 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
1420 HASH_CR_LKEY | HASH_CR_MDMAT);
1421 mem_ptr += 4U;
1422 /* By default, save all CSRs registers */
1423 for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1424 {
1425 *(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
1426 mem_ptr += 4U;
1427 csr_ptr += 4U;
1428 }
1429 }
1430
1431
1432 /**
1433 * @brief Restore the HASH context in case of processing resumption.
1434 * @param hhash HASH handle.
1435 * @param pMemBuffer pointer to the memory buffer where the HASH context
1436 * is stored.
1437 * @note The IMR, STR, CR then all the CSR registers are restored
1438 * in that order. Only the r/w bits are restored.
1439 * @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
1440 * of those) are restored (all of them have been saved by default
1441 * beforehand).
1442 * @retval None
1443 */
HAL_HASH_ContextRestoring(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1444 void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1445 {
1446 uint32_t mem_ptr = (uint32_t)pMemBuffer;
1447 uint32_t csr_ptr = (uint32_t)HASH->CSR;
1448 uint32_t i;
1449
1450 /* Prevent unused argument(s) compilation warning */
1451 UNUSED(hhash);
1452
1453 /* Restore IMR register content */
1454 WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
1455 mem_ptr += 4U;
1456 /* Restore STR register content */
1457 WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
1458 mem_ptr += 4U;
1459 /* Restore CR register content */
1460 WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
1461 mem_ptr += 4U;
1462
1463 /* Reset the HASH processor before restoring the Context
1464 Swap Registers (CSR) */
1465 __HAL_HASH_INIT();
1466
1467 /* By default, restore all CSR registers */
1468 for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1469 {
1470 WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
1471 mem_ptr += 4U;
1472 csr_ptr += 4U;
1473 }
1474 }
1475
1476
1477 /**
1478 * @brief Initiate HASH processing suspension when in polling or interruption mode.
1479 * @param hhash HASH handle.
1480 * @note Set the handle field SuspendRequest to the appropriate value so that
1481 * the on-going HASH processing is suspended as soon as the required
1482 * conditions are met. Note that the actual suspension is carried out
1483 * by the functions HASH_WriteData() in polling mode and HASH_IT() in
1484 * interruption mode.
1485 * @retval None
1486 */
HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1487 void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1488 {
1489 /* Set Handle Suspend Request field */
1490 hhash->SuspendRequest = HAL_HASH_SUSPEND;
1491 }
1492
1493 /**
1494 * @brief Suspend the HASH processing when in DMA mode.
1495 * @param hhash HASH handle.
1496 * @note When suspension attempt occurs at the very end of a DMA transfer and
1497 * all the data have already been entered in the Peripheral, hhash->State is
1498 * set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
1499 * recommended to wrap-up the processing in reading the digest as usual.
1500 * @retval HAL status
1501 */
HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1502 HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1503 {
1504 uint32_t tmp_remaining_DMATransferSize_inWords;
1505 uint32_t tmp_initial_DMATransferSize_inWords;
1506 uint32_t tmp_words_already_pushed;
1507
1508 if (hhash->State == HAL_HASH_STATE_READY)
1509 {
1510 return HAL_ERROR;
1511 }
1512 else
1513 {
1514
1515 /* Make sure there is enough time to suspend the processing */
1516 tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
1517
1518 if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
1519 {
1520 /* No suspension attempted since almost to the end of the transferred data. */
1521 /* Best option for user code is to wrap up low priority message hashing */
1522 return HAL_ERROR;
1523 }
1524
1525 /* Wait for BUSY flag to be reset */
1526 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1527 {
1528 return HAL_TIMEOUT;
1529 }
1530
1531 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1532 {
1533 return HAL_ERROR;
1534 }
1535
1536 /* Wait for BUSY flag to be set */
1537 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
1538 {
1539 return HAL_TIMEOUT;
1540 }
1541 /* Disable DMA channel */
1542 /* Note that the Abort function will
1543 - Clear the transfer error flags
1544 - Unlock
1545 - Set the State
1546 */
1547 if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
1548 {
1549 return HAL_ERROR;
1550 }
1551
1552 /* Clear DMAE bit */
1553 CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1554
1555 /* Wait for BUSY flag to be reset */
1556 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1557 {
1558 return HAL_TIMEOUT;
1559 }
1560
1561 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1562 {
1563 return HAL_ERROR;
1564 }
1565
1566 /* At this point, DMA interface is disabled and no transfer is on-going */
1567 /* Retrieve from the DMA handle how many words remain to be written */
1568 tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
1569
1570 if (tmp_remaining_DMATransferSize_inWords == 0U)
1571 {
1572 /* All the DMA transfer is actually done. Suspension occurred at the very end
1573 of the transfer. Either the digest computation is about to start (HASH case)
1574 or processing is about to move from one step to another (HMAC case).
1575 In both cases, the processing can't be suspended at this point. It is
1576 safer to
1577 - retrieve the low priority block digest before starting the high
1578 priority block processing (HASH case)
1579 - re-attempt a new suspension (HMAC case)
1580 */
1581 return HAL_ERROR;
1582 }
1583 else
1584 {
1585
1586 /* Compute how many words were supposed to be transferred by DMA */
1587 tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
1588 ((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
1589
1590 /* If discrepancy between the number of words reported by DMA Peripheral and
1591 the numbers of words entered as reported by HASH Peripheral, correct it */
1592 /* tmp_words_already_pushed reflects the number of words that were already pushed before
1593 the start of DMA transfer (multi-buffer processing case) */
1594 tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
1595 if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
1596 tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
1597 {
1598 tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
1599 }
1600
1601 /* Accordingly, update the input pointer that points at the next word to be
1602 transferred to the Peripheral by DMA */
1603 hhash->pHashInBuffPtr += 4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
1604
1605 /* And store in HashInCount the remaining size to transfer (in bytes) */
1606 hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
1607
1608 }
1609
1610 /* Set State as suspended */
1611 hhash->State = HAL_HASH_STATE_SUSPENDED;
1612
1613 return HAL_OK;
1614
1615 }
1616 }
1617
1618 /**
1619 * @brief Return the HASH handle error code.
1620 * @param hhash pointer to a HASH_HandleTypeDef structure.
1621 * @retval HASH Error Code
1622 */
HAL_HASH_GetError(HASH_HandleTypeDef * hhash)1623 uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
1624 {
1625 /* Return HASH Error Code */
1626 return hhash->ErrorCode;
1627 }
1628 /**
1629 * @}
1630 */
1631
1632
1633 /**
1634 * @}
1635 */
1636
1637 /** @defgroup HASH_Private_Functions HASH Private Functions
1638 * @{
1639 */
1640
1641 /**
1642 * @brief DMA HASH Input Data transfer completion callback.
1643 * @param hdma DMA handle.
1644 * @note In case of HMAC processing, HASH_DMAXferCplt() initiates
1645 * the next DMA transfer for the following HMAC step.
1646 * @retval None
1647 */
HASH_DMAXferCplt(DMA_HandleTypeDef * hdma)1648 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
1649 {
1650 HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1651 uint32_t inputaddr;
1652 uint32_t buffersize;
1653 HAL_StatusTypeDef status;
1654
1655 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1656 {
1657
1658 /* Disable the DMA transfer */
1659 CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1660
1661 if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
1662 {
1663 /* If no HMAC processing, input data transfer is now over */
1664
1665 /* Change the HASH state to ready */
1666 hhash->State = HAL_HASH_STATE_READY;
1667
1668 /* Call Input data transfer complete call back */
1669 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1670 hhash->InCpltCallback(hhash);
1671 #else
1672 HAL_HASH_InCpltCallback(hhash);
1673 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1674
1675 }
1676 else
1677 {
1678 /* HMAC processing: depending on the current HMAC step and whether or
1679 not multi-buffer processing is on-going, the next step is initiated
1680 and MDMAT bit is set. */
1681
1682
1683 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
1684 {
1685 /* This is the end of HMAC processing */
1686
1687 /* Change the HASH state to ready */
1688 hhash->State = HAL_HASH_STATE_READY;
1689
1690 /* Call Input data transfer complete call back
1691 (note that the last DMA transfer was that of the key
1692 for the outer HASH operation). */
1693 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1694 hhash->InCpltCallback(hhash);
1695 #else
1696 HAL_HASH_InCpltCallback(hhash);
1697 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1698
1699 return;
1700 }
1701 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
1702 {
1703 inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */
1704 buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */
1705 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
1706
1707 /* In case of suspension request, save the new starting parameters */
1708 hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */
1709 hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */
1710
1711 hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
1712 /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
1713 if (hhash->DigestCalculationDisable != RESET)
1714 {
1715 /* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
1716 no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
1717 __HAL_HASH_SET_MDMAT();
1718 }
1719 }
1720 else /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
1721 {
1722 if (hhash->DigestCalculationDisable != RESET)
1723 {
1724 /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
1725 (case of multi-buffer HMAC processing):
1726 DCAL must not be set.
1727 Phase remains in Step 2, MDMAT remains set at this point.
1728 Change the HASH state to ready and call Input data transfer complete call back. */
1729 hhash->State = HAL_HASH_STATE_READY;
1730 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1731 hhash->InCpltCallback(hhash);
1732 #else
1733 HAL_HASH_InCpltCallback(hhash);
1734 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1735 return ;
1736 }
1737 else
1738 {
1739 /* Digest calculation is not disabled (case of single buffer input or last buffer
1740 of multi-buffer HMAC processing) */
1741 inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */
1742 buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */
1743 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
1744 /* In case of suspension request, save the new starting parameters */
1745 hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */
1746 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */
1747
1748 hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
1749 }
1750 }
1751
1752 /* Configure the Number of valid bits in last word of the message */
1753 __HAL_HASH_SET_NBVALIDBITS(buffersize);
1754
1755 /* Set the HASH DMA transfer completion call back */
1756 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
1757
1758 /* Enable the DMA In DMA stream */
1759 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
1760 (((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
1761 (buffersize / 4U)));
1762
1763 /* Enable DMA requests */
1764 SET_BIT(HASH->CR, HASH_CR_DMAE);
1765
1766 /* Return function status */
1767 if (status != HAL_OK)
1768 {
1769 /* Update HASH state machine to error */
1770 hhash->State = HAL_HASH_STATE_ERROR;
1771 }
1772 else
1773 {
1774 /* Change HASH state */
1775 hhash->State = HAL_HASH_STATE_BUSY;
1776 }
1777 }
1778 }
1779
1780 return;
1781 }
1782
1783 /**
1784 * @brief DMA HASH communication error callback.
1785 * @param hdma DMA handle.
1786 * @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
1787 * can contain user code to manage the error.
1788 * @retval None
1789 */
HASH_DMAError(DMA_HandleTypeDef * hdma)1790 static void HASH_DMAError(DMA_HandleTypeDef *hdma)
1791 {
1792 HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1793
1794 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1795 {
1796 hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
1797 /* Set HASH state to ready to prevent any blocking issue in user code
1798 present in HAL_HASH_ErrorCallback() */
1799 hhash->State = HAL_HASH_STATE_READY;
1800 /* Set HASH handle status to error */
1801 hhash->Status = HAL_ERROR;
1802 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1803 hhash->ErrorCallback(hhash);
1804 #else
1805 HAL_HASH_ErrorCallback(hhash);
1806 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1807 /* After error handling by code user, reset HASH handle HAL status */
1808 hhash->Status = HAL_OK;
1809
1810 }
1811 }
1812
1813 /**
1814 * @brief Feed the input buffer to the HASH Peripheral.
1815 * @param hhash HASH handle.
1816 * @param pInBuffer pointer to input buffer.
1817 * @param Size the size of input buffer in bytes.
1818 * @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
1819 * or not the HASH processing must be suspended. If this is the case, the
1820 * processing is suspended when possible and the Peripheral feeding point reached at
1821 * suspension time is stored in the handle for resumption later on.
1822 * @retval HAL status
1823 */
HASH_WriteData(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1824 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1825 {
1826 uint32_t buffercounter;
1827 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
1828
1829 for (buffercounter = 0U; buffercounter < Size; buffercounter += 4U)
1830 {
1831 /* Write input data 4 bytes at a time */
1832 HASH->DIN = *(uint32_t *)inputaddr;
1833 inputaddr += 4U;
1834
1835 /* If the suspension flag has been raised and if the processing is not about
1836 to end, suspend processing */
1837 if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter + 4U) < Size))
1838 {
1839 /* wait for flag BUSY not set before Wait for DINIS = 1*/
1840 if (buffercounter >= 64U)
1841 {
1842 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1843 {
1844 return HAL_TIMEOUT;
1845 }
1846 }
1847 /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
1848 in the input buffer */
1849 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
1850 {
1851 /* Reset SuspendRequest */
1852 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
1853
1854 /* Depending whether the key or the input data were fed to the Peripheral, the feeding point
1855 reached at suspension time is not saved in the same handle fields */
1856 if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
1857 {
1858 /* Save current reading and writing locations of Input and Output buffers */
1859 hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
1860 /* Save the number of bytes that remain to be processed at this point */
1861 hhash->HashInCount = Size - (buffercounter + 4U);
1862 }
1863 else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
1864 {
1865 /* Save current reading and writing locations of Input and Output buffers */
1866 hhash->pHashKeyBuffPtr = (uint8_t *)inputaddr;
1867 /* Save the number of bytes that remain to be processed at this point */
1868 hhash->HashKeyCount = Size - (buffercounter + 4U);
1869 }
1870 else
1871 {
1872 /* Unexpected phase: unlock process and report error */
1873 hhash->State = HAL_HASH_STATE_READY;
1874 __HAL_UNLOCK(hhash);
1875 return HAL_ERROR;
1876 }
1877
1878 /* Set the HASH state to Suspended and exit to stop entering data */
1879 hhash->State = HAL_HASH_STATE_SUSPENDED;
1880
1881 return HAL_OK;
1882 } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */
1883 } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
1884 } /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */
1885
1886 /* At this point, all the data have been entered to the Peripheral: exit */
1887 return HAL_OK;
1888 }
1889
1890 /**
1891 * @brief Retrieve the message digest.
1892 * @param pMsgDigest pointer to the computed digest.
1893 * @param Size message digest size in bytes.
1894 * @retval None
1895 */
HASH_GetDigest(uint8_t * pMsgDigest,uint8_t Size)1896 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
1897 {
1898 uint32_t msgdigest = (uint32_t)pMsgDigest;
1899
1900 switch (Size)
1901 {
1902 /* Read the message digest */
1903 case 16: /* MD5 */
1904 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1905 msgdigest += 4U;
1906 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1907 msgdigest += 4U;
1908 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1909 msgdigest += 4U;
1910 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1911 break;
1912 case 20: /* SHA1 */
1913 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1914 msgdigest += 4U;
1915 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1916 msgdigest += 4U;
1917 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1918 msgdigest += 4U;
1919 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1920 msgdigest += 4U;
1921 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1922 break;
1923 case 28: /* SHA224 */
1924 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1925 msgdigest += 4U;
1926 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1927 msgdigest += 4U;
1928 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1929 msgdigest += 4U;
1930 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1931 msgdigest += 4U;
1932 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1933 msgdigest += 4U;
1934 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1935 msgdigest += 4U;
1936 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1937 break;
1938 case 32: /* SHA256 */
1939 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1940 msgdigest += 4U;
1941 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1942 msgdigest += 4U;
1943 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1944 msgdigest += 4U;
1945 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1946 msgdigest += 4U;
1947 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1948 msgdigest += 4U;
1949 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1950 msgdigest += 4U;
1951 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1952 msgdigest += 4U;
1953 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
1954 break;
1955 default:
1956 break;
1957 }
1958 }
1959
1960
1961
1962 /**
1963 * @brief Handle HASH processing Timeout.
1964 * @param hhash HASH handle.
1965 * @param Flag specifies the HASH flag to check.
1966 * @param Status the Flag status (SET or RESET).
1967 * @param Timeout Timeout duration.
1968 * @retval HAL status
1969 */
HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef * hhash,uint32_t Flag,FlagStatus Status,uint32_t Timeout)1970 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
1971 uint32_t Timeout)
1972 {
1973 uint32_t tickstart = HAL_GetTick();
1974
1975 /* Wait until flag is set */
1976 if (Status == RESET)
1977 {
1978 while (__HAL_HASH_GET_FLAG(Flag) == RESET)
1979 {
1980 /* Check for the Timeout */
1981 if (Timeout != HAL_MAX_DELAY)
1982 {
1983 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1984 {
1985 /* Set State to Ready to be able to restart later on */
1986 hhash->State = HAL_HASH_STATE_READY;
1987 /* Store time out issue in handle status */
1988 hhash->Status = HAL_TIMEOUT;
1989
1990 /* Process Unlocked */
1991 __HAL_UNLOCK(hhash);
1992
1993 return HAL_TIMEOUT;
1994 }
1995 }
1996 }
1997 }
1998 else
1999 {
2000 while (__HAL_HASH_GET_FLAG(Flag) != RESET)
2001 {
2002 /* Check for the Timeout */
2003 if (Timeout != HAL_MAX_DELAY)
2004 {
2005 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2006 {
2007 /* Set State to Ready to be able to restart later on */
2008 hhash->State = HAL_HASH_STATE_READY;
2009 /* Store time out issue in handle status */
2010 hhash->Status = HAL_TIMEOUT;
2011
2012 /* Process Unlocked */
2013 __HAL_UNLOCK(hhash);
2014
2015 return HAL_TIMEOUT;
2016 }
2017 }
2018 }
2019 }
2020 return HAL_OK;
2021 }
2022
2023
2024 /**
2025 * @brief HASH processing in interruption mode.
2026 * @param hhash HASH handle.
2027 * @note HASH_IT() regularly reads hhash->SuspendRequest to check whether
2028 * or not the HASH processing must be suspended. If this is the case, the
2029 * processing is suspended when possible and the Peripheral feeding point reached at
2030 * suspension time is stored in the handle for resumption later on.
2031 * @retval HAL status
2032 */
HASH_IT(HASH_HandleTypeDef * hhash)2033 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
2034 {
2035 if (hhash->State == HAL_HASH_STATE_BUSY)
2036 {
2037 /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
2038 if (hhash->HashITCounter == 0U)
2039 {
2040 /* Disable Interrupts */
2041 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2042 /* HASH state set back to Ready to prevent any issue in user code
2043 present in HAL_HASH_ErrorCallback() */
2044 hhash->State = HAL_HASH_STATE_READY;
2045 return HAL_ERROR;
2046 }
2047 else if (hhash->HashITCounter == 1U)
2048 {
2049 /* This is the first call to HASH_IT, the first input data are about to be
2050 entered in the Peripheral. A specific processing is carried out at this point to
2051 start-up the processing. */
2052 hhash->HashITCounter = 2U;
2053 }
2054 else
2055 {
2056 /* Cruise speed reached, HashITCounter remains equal to 3 until the end of
2057 the HASH processing or the end of the current step for HMAC processing. */
2058 hhash->HashITCounter = 3U;
2059 }
2060
2061 /* If digest is ready */
2062 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
2063 {
2064 /* Read the digest */
2065 HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2066
2067 /* Disable Interrupts */
2068 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2069 /* Change the HASH state */
2070 hhash->State = HAL_HASH_STATE_READY;
2071 /* Reset HASH state machine */
2072 hhash->Phase = HAL_HASH_PHASE_READY;
2073 /* Call digest computation complete call back */
2074 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2075 hhash->DgstCpltCallback(hhash);
2076 #else
2077 HAL_HASH_DgstCpltCallback(hhash);
2078 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2079
2080 return HAL_OK;
2081 }
2082
2083 /* If Peripheral ready to accept new data */
2084 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2085 {
2086
2087 /* If the suspension flag has been raised and if the processing is not about
2088 to end, suspend processing */
2089 if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
2090 {
2091 /* Disable Interrupts */
2092 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2093
2094 /* Reset SuspendRequest */
2095 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
2096
2097 /* Change the HASH state */
2098 hhash->State = HAL_HASH_STATE_SUSPENDED;
2099
2100 return HAL_OK;
2101 }
2102
2103 /* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
2104 check whether the digest calculation has been triggered */
2105 if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
2106 {
2107 /* Call Input data transfer complete call back
2108 (called at the end of each step for HMAC) */
2109 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2110 hhash->InCpltCallback(hhash);
2111 #else
2112 HAL_HASH_InCpltCallback(hhash);
2113 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2114
2115 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2116 {
2117 /* Wait until Peripheral is not busy anymore */
2118 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2119 {
2120 /* Disable Interrupts */
2121 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2122 return HAL_TIMEOUT;
2123 }
2124 /* Initialization start for HMAC STEP 2 */
2125 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
2126 __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */
2127 hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */
2128 hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */
2129 hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
2130 of a new phase */
2131 __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
2132 }
2133 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2134 {
2135 /* Wait until Peripheral is not busy anymore */
2136 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2137 {
2138 /* Disable Interrupts */
2139 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2140 return HAL_TIMEOUT;
2141 }
2142 /* Initialization start for HMAC STEP 3 */
2143 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
2144 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */
2145 hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */
2146 hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */
2147 hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
2148 of a new phase */
2149 __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
2150 }
2151 else
2152 {
2153 /* Nothing to do */
2154 }
2155 } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
2156 } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
2157
2158 /* Return function status */
2159 return HAL_OK;
2160 }
2161 else
2162 {
2163 return HAL_BUSY;
2164 }
2165 }
2166
2167
2168 /**
2169 * @brief Write a block of data in HASH Peripheral in interruption mode.
2170 * @param hhash HASH handle.
2171 * @note HASH_Write_Block_Data() is called under interruption by HASH_IT().
2172 * @retval HAL status
2173 */
HASH_Write_Block_Data(HASH_HandleTypeDef * hhash)2174 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
2175 {
2176 uint32_t inputaddr;
2177 uint32_t buffercounter;
2178 uint32_t inputcounter;
2179 uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
2180
2181 /* If there are more than 64 bytes remaining to be entered */
2182 if (hhash->HashInCount > 64U)
2183 {
2184 inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2185 /* Write the Input block in the Data IN register
2186 (16 32-bit words, or 64 bytes are entered) */
2187 for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
2188 {
2189 HASH->DIN = *(uint32_t *)inputaddr;
2190 inputaddr += 4U;
2191 }
2192 /* If this is the start of input data entering, an additional word
2193 must be entered to start up the HASH processing */
2194 if (hhash->HashITCounter == 2U)
2195 {
2196 HASH->DIN = *(uint32_t *)inputaddr;
2197 if (hhash->HashInCount >= 68U)
2198 {
2199 /* There are still data waiting to be entered in the Peripheral.
2200 Decrement buffer counter and set pointer to the proper
2201 memory location for the next data entering round. */
2202 hhash->HashInCount -= 68U;
2203 hhash->pHashInBuffPtr += 68U;
2204 }
2205 else
2206 {
2207 /* All the input buffer has been fed to the HW. */
2208 hhash->HashInCount = 0U;
2209 }
2210 }
2211 else
2212 {
2213 /* 64 bytes have been entered and there are still some remaining:
2214 Decrement buffer counter and set pointer to the proper
2215 memory location for the next data entering round.*/
2216 hhash->HashInCount -= 64U;
2217 hhash->pHashInBuffPtr += 64U;
2218 }
2219 }
2220 else
2221 {
2222 /* 64 or less bytes remain to be entered. This is the last
2223 data entering round. */
2224
2225 /* Get the buffer address */
2226 inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2227 /* Get the buffer counter */
2228 inputcounter = hhash->HashInCount;
2229 /* Disable Interrupts */
2230 __HAL_HASH_DISABLE_IT(HASH_IT_DINI);
2231
2232 /* Write the Input block in the Data IN register */
2233 for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
2234 {
2235 HASH->DIN = *(uint32_t *)inputaddr;
2236 inputaddr += 4U;
2237 }
2238
2239 if (hhash->Accumulation == 1U)
2240 {
2241 /* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
2242 The digest computation will be started when the last buffer data are entered. */
2243
2244 /* Reset multi buffers accumulation flag */
2245 hhash->Accumulation = 0U;
2246 /* Change the HASH state */
2247 hhash->State = HAL_HASH_STATE_READY;
2248 /* Call Input data transfer complete call back */
2249 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2250 hhash->InCpltCallback(hhash);
2251 #else
2252 HAL_HASH_InCpltCallback(hhash);
2253 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2254 }
2255 else
2256 {
2257 /* Start the Digest calculation */
2258 __HAL_HASH_START_DIGEST();
2259 /* Return indication that digest calculation has started:
2260 this return value triggers the call to Input data transfer
2261 complete call back as well as the proper transition from
2262 one step to another in HMAC mode. */
2263 ret = HASH_DIGEST_CALCULATION_STARTED;
2264 }
2265 /* Reset buffer counter */
2266 hhash->HashInCount = 0;
2267 }
2268
2269 /* Return whether or digest calculation has started */
2270 return ret;
2271 }
2272
2273 /**
2274 * @brief HMAC processing in polling mode.
2275 * @param hhash HASH handle.
2276 * @param Timeout Timeout value.
2277 * @retval HAL status
2278 */
HMAC_Processing(HASH_HandleTypeDef * hhash,uint32_t Timeout)2279 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
2280 {
2281 /* Ensure first that Phase is correct */
2282 if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
2283 && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
2284 {
2285 /* Change the HASH state */
2286 hhash->State = HAL_HASH_STATE_READY;
2287
2288 /* Process Unlock */
2289 __HAL_UNLOCK(hhash);
2290
2291 /* Return function status */
2292 return HAL_ERROR;
2293 }
2294
2295 /* HMAC Step 1 processing */
2296 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2297 {
2298 /************************** STEP 1 ******************************************/
2299 /* Configure the Number of valid bits in last word of the message */
2300 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2301
2302 /* Write input buffer in Data register */
2303 hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2304 if (hhash->Status != HAL_OK)
2305 {
2306 return hhash->Status;
2307 }
2308
2309 /* Check whether or not key entering process has been suspended */
2310 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2311 {
2312 /* Process Unlocked */
2313 __HAL_UNLOCK(hhash);
2314
2315 /* Stop right there and return function status */
2316 return HAL_OK;
2317 }
2318
2319 /* No processing suspension at this point: set DCAL bit. */
2320 __HAL_HASH_START_DIGEST();
2321
2322 /* Wait for BUSY flag to be cleared */
2323 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2324 {
2325 return HAL_TIMEOUT;
2326 }
2327
2328 /* Move from Step 1 to Step 2 */
2329 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
2330
2331 }
2332
2333 /* HMAC Step 2 processing.
2334 After phase check, HMAC_Processing() may
2335 - directly start up from this point in resumption case
2336 if the same Step 2 processing was suspended previously
2337 - or fall through from the Step 1 processing carried out hereabove */
2338 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2339 {
2340 /************************** STEP 2 ******************************************/
2341 /* Configure the Number of valid bits in last word of the message */
2342 __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
2343
2344 /* Write input buffer in Data register */
2345 hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
2346 if (hhash->Status != HAL_OK)
2347 {
2348 return hhash->Status;
2349 }
2350
2351 /* Check whether or not data entering process has been suspended */
2352 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2353 {
2354 /* Process Unlocked */
2355 __HAL_UNLOCK(hhash);
2356
2357 /* Stop right there and return function status */
2358 return HAL_OK;
2359 }
2360
2361 /* No processing suspension at this point: set DCAL bit. */
2362 __HAL_HASH_START_DIGEST();
2363
2364 /* Wait for BUSY flag to be cleared */
2365 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2366 {
2367 return HAL_TIMEOUT;
2368 }
2369
2370 /* Move from Step 2 to Step 3 */
2371 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
2372 /* In case Step 1 phase was suspended then resumed,
2373 set again Key input buffers and size before moving to
2374 next step */
2375 hhash->pHashKeyBuffPtr = hhash->Init.pKey;
2376 hhash->HashKeyCount = hhash->Init.KeySize;
2377 }
2378
2379
2380 /* HMAC Step 3 processing.
2381 After phase check, HMAC_Processing() may
2382 - directly start up from this point in resumption case
2383 if the same Step 3 processing was suspended previously
2384 - or fall through from the Step 2 processing carried out hereabove */
2385 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
2386 {
2387 /************************** STEP 3 ******************************************/
2388 /* Configure the Number of valid bits in last word of the message */
2389 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2390
2391 /* Write input buffer in Data register */
2392 hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2393 if (hhash->Status != HAL_OK)
2394 {
2395 return hhash->Status;
2396 }
2397
2398 /* Check whether or not key entering process has been suspended */
2399 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2400 {
2401 /* Process Unlocked */
2402 __HAL_UNLOCK(hhash);
2403
2404 /* Stop right there and return function status */
2405 return HAL_OK;
2406 }
2407
2408 /* No processing suspension at this point: start the Digest calculation. */
2409 __HAL_HASH_START_DIGEST();
2410
2411 /* Wait for DCIS flag to be set */
2412 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2413 {
2414 return HAL_TIMEOUT;
2415 }
2416
2417 /* Read the message digest */
2418 HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2419
2420 /* Reset HASH state machine */
2421 hhash->Phase = HAL_HASH_PHASE_READY;
2422 }
2423
2424 /* Change the HASH state */
2425 hhash->State = HAL_HASH_STATE_READY;
2426
2427 /* Process Unlock */
2428 __HAL_UNLOCK(hhash);
2429
2430 /* Return function status */
2431 return HAL_OK;
2432 }
2433
2434
2435 /**
2436 * @brief Initialize the HASH peripheral, next process pInBuffer then
2437 * read the computed digest.
2438 * @note Digest is available in pOutBuffer.
2439 * @param hhash HASH handle.
2440 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2441 * @param Size length of the input buffer in bytes.
2442 * @param pOutBuffer pointer to the computed digest.
2443 * @param Timeout Timeout value.
2444 * @param Algorithm HASH algorithm.
2445 * @retval HAL status
2446 */
HASH_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)2447 HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2448 uint32_t Timeout, uint32_t Algorithm)
2449 {
2450 uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
2451 uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2452 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2453
2454
2455 /* Initiate HASH processing in case of start or resumption */
2456 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2457 {
2458 /* Check input parameters */
2459 if ((pInBuffer == NULL) || (pOutBuffer == NULL))
2460 {
2461 hhash->State = HAL_HASH_STATE_READY;
2462 return HAL_ERROR;
2463 }
2464
2465 /* Process Locked */
2466 __HAL_LOCK(hhash);
2467
2468 /* Check if initialization phase has not been already performed */
2469 if (hhash->Phase == HAL_HASH_PHASE_READY)
2470 {
2471 /* Change the HASH state */
2472 hhash->State = HAL_HASH_STATE_BUSY;
2473
2474 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2475 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2476
2477 /* Configure the number of valid bits in last word of the message */
2478 __HAL_HASH_SET_NBVALIDBITS(Size);
2479
2480 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2481 input parameters of HASH_WriteData() */
2482 pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
2483 Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
2484
2485 /* Set the phase */
2486 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2487 }
2488 else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
2489 {
2490 /* if the Peripheral has already been initialized, two cases are possible */
2491
2492 /* Process resumption time ... */
2493 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2494 {
2495 /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2496 to the API input parameters but to those saved beforehand by HASH_WriteData()
2497 when the processing was suspended */
2498 pInBuffer_tmp = hhash->pHashInBuffPtr;
2499 Size_tmp = hhash->HashInCount;
2500 }
2501 /* ... or multi-buffer HASH processing end */
2502 else
2503 {
2504 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2505 input parameters of HASH_WriteData() */
2506 pInBuffer_tmp = pInBuffer;
2507 Size_tmp = Size;
2508 /* Configure the number of valid bits in last word of the message */
2509 __HAL_HASH_SET_NBVALIDBITS(Size);
2510 }
2511 /* Change the HASH state */
2512 hhash->State = HAL_HASH_STATE_BUSY;
2513 }
2514 else
2515 {
2516 /* Phase error */
2517 hhash->State = HAL_HASH_STATE_READY;
2518
2519 /* Process Unlocked */
2520 __HAL_UNLOCK(hhash);
2521
2522 /* Return function status */
2523 return HAL_ERROR;
2524 }
2525
2526
2527 /* Write input buffer in Data register */
2528 hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2529 if (hhash->Status != HAL_OK)
2530 {
2531 return hhash->Status;
2532 }
2533
2534 /* If the process has not been suspended, carry on to digest calculation */
2535 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2536 {
2537 /* Start the Digest calculation */
2538 __HAL_HASH_START_DIGEST();
2539
2540 /* Wait for DCIS flag to be set */
2541 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2542 {
2543 return HAL_TIMEOUT;
2544 }
2545
2546 /* Read the message digest */
2547 HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
2548
2549 /* Change the HASH state */
2550 hhash->State = HAL_HASH_STATE_READY;
2551
2552 /* Reset HASH state machine */
2553 hhash->Phase = HAL_HASH_PHASE_READY;
2554
2555 }
2556
2557 /* Process Unlocked */
2558 __HAL_UNLOCK(hhash);
2559
2560 /* Return function status */
2561 return HAL_OK;
2562
2563 }
2564 else
2565 {
2566 return HAL_BUSY;
2567 }
2568 }
2569
2570
2571 /**
2572 * @brief If not already done, initialize the HASH peripheral then
2573 * processes pInBuffer.
2574 * @note Field hhash->Phase of HASH handle is tested to check whether or not
2575 * the Peripheral has already been initialized.
2576 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2577 * HASH digest computation is corrupted.
2578 * @param hhash HASH handle.
2579 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2580 * @param Size length of the input buffer in bytes, must be a multiple of 4.
2581 * @param Algorithm HASH algorithm.
2582 * @retval HAL status
2583 */
HASH_Accumulate(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2584 HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2585 {
2586 uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
2587 uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2588 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2589
2590 /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2591 if ((Size % 4U) != 0U)
2592 {
2593 return HAL_ERROR;
2594 }
2595
2596 /* Initiate HASH processing in case of start or resumption */
2597 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2598 {
2599 /* Check input parameters */
2600 if ((pInBuffer == NULL) || (Size == 0U))
2601 {
2602 hhash->State = HAL_HASH_STATE_READY;
2603 return HAL_ERROR;
2604 }
2605
2606 /* Process Locked */
2607 __HAL_LOCK(hhash);
2608
2609 /* If resuming the HASH processing */
2610 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2611 {
2612 /* Change the HASH state */
2613 hhash->State = HAL_HASH_STATE_BUSY;
2614
2615 /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2616 to the API input parameters but to those saved beforehand by HASH_WriteData()
2617 when the processing was suspended */
2618 pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */
2619 Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */
2620
2621 }
2622 else
2623 {
2624 /* Change the HASH state */
2625 hhash->State = HAL_HASH_STATE_BUSY;
2626
2627 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2628 input parameters of HASH_WriteData() */
2629 pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
2630 Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
2631
2632 /* Check if initialization phase has already be performed */
2633 if (hhash->Phase == HAL_HASH_PHASE_READY)
2634 {
2635 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2636 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2637 }
2638
2639 /* Set the phase */
2640 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2641
2642 }
2643
2644 /* Write input buffer in Data register */
2645 hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2646 if (hhash->Status != HAL_OK)
2647 {
2648 return hhash->Status;
2649 }
2650
2651 /* If the process has not been suspended, move the state to Ready */
2652 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2653 {
2654 /* Change the HASH state */
2655 hhash->State = HAL_HASH_STATE_READY;
2656 }
2657
2658 /* Process Unlocked */
2659 __HAL_UNLOCK(hhash);
2660
2661 /* Return function status */
2662 return HAL_OK;
2663
2664 }
2665 else
2666 {
2667 return HAL_BUSY;
2668 }
2669
2670
2671 }
2672
2673
2674 /**
2675 * @brief If not already done, initialize the HASH peripheral then
2676 * processes pInBuffer in interruption mode.
2677 * @note Field hhash->Phase of HASH handle is tested to check whether or not
2678 * the Peripheral has already been initialized.
2679 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2680 * HASH digest computation is corrupted.
2681 * @param hhash HASH handle.
2682 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2683 * @param Size length of the input buffer in bytes, must be a multiple of 4.
2684 * @param Algorithm HASH algorithm.
2685 * @retval HAL status
2686 */
HASH_Accumulate_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2687 HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2688 {
2689 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2690 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2691 uint32_t SizeVar = Size;
2692
2693 /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2694 if ((Size % 4U) != 0U)
2695 {
2696 return HAL_ERROR;
2697 }
2698
2699 /* Initiate HASH processing in case of start or resumption */
2700 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2701 {
2702 /* Check input parameters */
2703 if ((pInBuffer == NULL) || (Size == 0U))
2704 {
2705 hhash->State = HAL_HASH_STATE_READY;
2706 return HAL_ERROR;
2707 }
2708
2709 /* Process Locked */
2710 __HAL_LOCK(hhash);
2711
2712 /* If resuming the HASH processing */
2713 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2714 {
2715 /* Change the HASH state */
2716 hhash->State = HAL_HASH_STATE_BUSY;
2717 }
2718 else
2719 {
2720 /* Change the HASH state */
2721 hhash->State = HAL_HASH_STATE_BUSY;
2722
2723 /* Check if initialization phase has already be performed */
2724 if (hhash->Phase == HAL_HASH_PHASE_READY)
2725 {
2726 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2727 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2728 hhash->HashITCounter = 1;
2729 }
2730 else
2731 {
2732 hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2733 }
2734
2735 /* Set the phase */
2736 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2737
2738 /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2739 fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2740 Therefore, first words are manually entered until DINIS raises, or until there
2741 is not more data to enter. */
2742 while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
2743 {
2744
2745 /* Write input data 4 bytes at a time */
2746 HASH->DIN = *(uint32_t *)inputaddr;
2747 inputaddr += 4U;
2748 SizeVar -= 4U;
2749 }
2750
2751 /* If DINIS is still not set or if all the data have been fed, stop here */
2752 if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
2753 {
2754 /* Change the HASH state */
2755 hhash->State = HAL_HASH_STATE_READY;
2756
2757 /* Process Unlock */
2758 __HAL_UNLOCK(hhash);
2759
2760 /* Return function status */
2761 return HAL_OK;
2762 }
2763
2764 /* otherwise, carry on in interrupt-mode */
2765 hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
2766 to be fed to the Peripheral */
2767 hhash->pHashInBuffPtr = (uint8_t *)inputaddr; /* Points at data which will be fed to the Peripheral at
2768 the next interruption */
2769 /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2770 the information describing where the HASH process is stopped.
2771 These variables are used later on to resume the HASH processing at the
2772 correct location. */
2773
2774 }
2775
2776 /* Set multi buffers accumulation flag */
2777 hhash->Accumulation = 1U;
2778
2779 /* Process Unlock */
2780 __HAL_UNLOCK(hhash);
2781
2782 /* Enable Data Input interrupt */
2783 __HAL_HASH_ENABLE_IT(HASH_IT_DINI);
2784
2785 /* Return function status */
2786 return HAL_OK;
2787
2788 }
2789 else
2790 {
2791 return HAL_BUSY;
2792 }
2793
2794 }
2795
2796
2797
2798 /**
2799 * @brief Initialize the HASH peripheral, next process pInBuffer then
2800 * read the computed digest in interruption mode.
2801 * @note Digest is available in pOutBuffer.
2802 * @param hhash HASH handle.
2803 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2804 * @param Size length of the input buffer in bytes.
2805 * @param pOutBuffer pointer to the computed digest.
2806 * @param Algorithm HASH algorithm.
2807 * @retval HAL status
2808 */
HASH_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)2809 HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2810 uint32_t Algorithm)
2811 {
2812 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2813 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2814 uint32_t polling_step = 0U;
2815 uint32_t initialization_skipped = 0U;
2816 uint32_t SizeVar = Size;
2817
2818 /* If State is ready or suspended, start or resume IT-based HASH processing */
2819 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2820 {
2821 /* Check input parameters */
2822 if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
2823 {
2824 hhash->State = HAL_HASH_STATE_READY;
2825 return HAL_ERROR;
2826 }
2827
2828 /* Process Locked */
2829 __HAL_LOCK(hhash);
2830
2831 /* Change the HASH state */
2832 hhash->State = HAL_HASH_STATE_BUSY;
2833
2834 /* Initialize IT counter */
2835 hhash->HashITCounter = 1;
2836
2837 /* Check if initialization phase has already be performed */
2838 if (hhash->Phase == HAL_HASH_PHASE_READY)
2839 {
2840 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2841 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2842
2843 /* Configure the number of valid bits in last word of the message */
2844 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2845
2846
2847 hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
2848 to be fed to the Peripheral */
2849 hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the Peripheral at
2850 the next interruption */
2851 /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2852 the information describing where the HASH process is stopped.
2853 These variables are used later on to resume the HASH processing at the
2854 correct location. */
2855
2856 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2857 }
2858 else
2859 {
2860 initialization_skipped = 1; /* info user later on in case of multi-buffer */
2861 }
2862
2863 /* Set the phase */
2864 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2865
2866 /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2867 fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2868 Therefore, first words are manually entered until DINIS raises. */
2869 while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
2870 {
2871 polling_step = 1U; /* note that some words are entered before enabling the interrupt */
2872
2873 /* Write input data 4 bytes at a time */
2874 HASH->DIN = *(uint32_t *)inputaddr;
2875 inputaddr += 4U;
2876 SizeVar -= 4U;
2877 }
2878
2879 if (polling_step == 1U)
2880 {
2881 if (SizeVar == 0U)
2882 {
2883 /* If all the data have been entered at this point, it only remains to
2884 read the digest */
2885 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2886
2887 /* Start the Digest calculation */
2888 __HAL_HASH_START_DIGEST();
2889 /* Process Unlock */
2890 __HAL_UNLOCK(hhash);
2891
2892 /* Enable Interrupts */
2893 __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2894
2895 /* Return function status */
2896 return HAL_OK;
2897 }
2898 else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2899 {
2900 /* It remains data to enter and the Peripheral is ready to trigger DINIE,
2901 carry on as usual.
2902 Update HashInCount and pHashInBuffPtr accordingly. */
2903 hhash->HashInCount = SizeVar;
2904 hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
2905 /* Update the configuration of the number of valid bits in last word of the message */
2906 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2907 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2908 if (initialization_skipped == 1U)
2909 {
2910 hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2911 }
2912 }
2913 else
2914 {
2915 /* DINIS is not set but it remains a few data to enter (not enough for a full word).
2916 Manually enter the last bytes before enabling DCIE. */
2917 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2918 HASH->DIN = *(uint32_t *)inputaddr;
2919
2920 /* Start the Digest calculation */
2921 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2922 __HAL_HASH_START_DIGEST();
2923 /* Process Unlock */
2924 __HAL_UNLOCK(hhash);
2925
2926 /* Enable Interrupts */
2927 __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2928
2929 /* Return function status */
2930 return HAL_OK;
2931 }
2932 } /* if (polling_step == 1) */
2933
2934
2935 /* Process Unlock */
2936 __HAL_UNLOCK(hhash);
2937
2938 /* Enable Interrupts */
2939 __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2940
2941 /* Return function status */
2942 return HAL_OK;
2943 }
2944 else
2945 {
2946 return HAL_BUSY;
2947 }
2948
2949 }
2950
2951
2952 /**
2953 * @brief Initialize the HASH peripheral then initiate a DMA transfer
2954 * to feed the input buffer to the Peripheral.
2955 * @note If MDMAT bit is set before calling this function (multi-buffer
2956 * HASH processing case), the input buffer size (in bytes) must be
2957 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
2958 * For the processing of the last buffer of the thread, MDMAT bit must
2959 * be reset and the buffer length (in bytes) doesn't have to be a
2960 * multiple of 4.
2961 * @param hhash HASH handle.
2962 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2963 * @param Size length of the input buffer in bytes.
2964 * @param Algorithm HASH algorithm.
2965 * @retval HAL status
2966 */
HASH_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2967 HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2968 {
2969 uint32_t inputaddr;
2970 uint32_t inputSize;
2971 HAL_StatusTypeDef status ;
2972 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2973
2974
2975 /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
2976 (case of multi-buffer HASH processing) */
2977 assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
2978
2979 /* If State is ready or suspended, start or resume polling-based HASH processing */
2980 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2981 {
2982 /* Check input parameters */
2983 if ((pInBuffer == NULL) || (Size == 0U) ||
2984 /* Check phase coherency. Phase must be
2985 either READY (fresh start)
2986 or PROCESS (multi-buffer HASH management) */
2987 ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
2988 {
2989 hhash->State = HAL_HASH_STATE_READY;
2990 return HAL_ERROR;
2991 }
2992
2993
2994 /* Process Locked */
2995 __HAL_LOCK(hhash);
2996
2997 /* If not a resumption case */
2998 if (hhash->State == HAL_HASH_STATE_READY)
2999 {
3000 /* Change the HASH state */
3001 hhash->State = HAL_HASH_STATE_BUSY;
3002
3003 /* Check if initialization phase has already been performed.
3004 If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
3005 API is processing a new input data message in case of multi-buffer HASH
3006 computation. */
3007 if (hhash->Phase == HAL_HASH_PHASE_READY)
3008 {
3009 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
3010 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
3011
3012 /* Set the phase */
3013 hhash->Phase = HAL_HASH_PHASE_PROCESS;
3014 }
3015
3016 /* Configure the Number of valid bits in last word of the message */
3017 __HAL_HASH_SET_NBVALIDBITS(Size);
3018
3019 inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */
3020 inputSize = Size; /* DMA transfer size (in bytes) */
3021
3022 /* In case of suspension request, save the starting parameters */
3023 hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */
3024 hhash->HashInCount = Size; /* DMA transfer size (in bytes) */
3025
3026 }
3027 /* If resumption case */
3028 else
3029 {
3030 /* Change the HASH state */
3031 hhash->State = HAL_HASH_STATE_BUSY;
3032
3033 /* Resumption case, inputaddr and inputSize are not set to the API input parameters
3034 but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3035 processing was suspended */
3036 inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */
3037 inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */
3038
3039 }
3040
3041 /* Set the HASH DMA transfer complete callback */
3042 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3043 /* Set the DMA error callback */
3044 hhash->hdmain->XferErrorCallback = HASH_DMAError;
3045
3046 /* Store number of words already pushed to manage proper DMA processing suspension */
3047 hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3048
3049 /* Enable the DMA In DMA stream */
3050 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3051 (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
3052 (inputSize / 4U)));
3053
3054 /* Enable DMA requests */
3055 SET_BIT(HASH->CR, HASH_CR_DMAE);
3056
3057 /* Process Unlock */
3058 __HAL_UNLOCK(hhash);
3059
3060 /* Return function status */
3061 if (status != HAL_OK)
3062 {
3063 /* Update HASH state machine to error */
3064 hhash->State = HAL_HASH_STATE_ERROR;
3065 }
3066
3067 return status;
3068 }
3069 else
3070 {
3071 return HAL_BUSY;
3072 }
3073 }
3074
3075 /**
3076 * @brief Return the computed digest.
3077 * @note The API waits for DCIS to be set then reads the computed digest.
3078 * @param hhash HASH handle.
3079 * @param pOutBuffer pointer to the computed digest.
3080 * @param Timeout Timeout value.
3081 * @retval HAL status
3082 */
HASH_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)3083 HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
3084 {
3085
3086 if (hhash->State == HAL_HASH_STATE_READY)
3087 {
3088 /* Check parameter */
3089 if (pOutBuffer == NULL)
3090 {
3091 return HAL_ERROR;
3092 }
3093
3094 /* Process Locked */
3095 __HAL_LOCK(hhash);
3096
3097 /* Change the HASH state to busy */
3098 hhash->State = HAL_HASH_STATE_BUSY;
3099
3100 /* Wait for DCIS flag to be set */
3101 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
3102 {
3103 return HAL_TIMEOUT;
3104 }
3105
3106 /* Read the message digest */
3107 HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
3108
3109 /* Change the HASH state to ready */
3110 hhash->State = HAL_HASH_STATE_READY;
3111
3112 /* Reset HASH state machine */
3113 hhash->Phase = HAL_HASH_PHASE_READY;
3114
3115 /* Process UnLock */
3116 __HAL_UNLOCK(hhash);
3117
3118 /* Return function status */
3119 return HAL_OK;
3120
3121 }
3122 else
3123 {
3124 return HAL_BUSY;
3125 }
3126
3127 }
3128
3129
3130 /**
3131 * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3132 * read the computed digest.
3133 * @note Digest is available in pOutBuffer.
3134 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3135 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3136 * @param hhash HASH handle.
3137 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3138 * @param Size length of the input buffer in bytes.
3139 * @param pOutBuffer pointer to the computed digest.
3140 * @param Timeout Timeout value.
3141 * @param Algorithm HASH algorithm.
3142 * @retval HAL status
3143 */
HMAC_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)3144 HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3145 uint32_t Timeout, uint32_t Algorithm)
3146 {
3147 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3148
3149 /* If State is ready or suspended, start or resume polling-based HASH processing */
3150 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3151 {
3152 /* Check input parameters */
3153 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3154 || (pOutBuffer == NULL))
3155 {
3156 hhash->State = HAL_HASH_STATE_READY;
3157 return HAL_ERROR;
3158 }
3159
3160 /* Process Locked */
3161 __HAL_LOCK(hhash);
3162
3163 /* Change the HASH state */
3164 hhash->State = HAL_HASH_STATE_BUSY;
3165
3166 /* Check if initialization phase has already be performed */
3167 if (hhash->Phase == HAL_HASH_PHASE_READY)
3168 {
3169 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3170 if (hhash->Init.KeySize > 64U)
3171 {
3172 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3173 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3174 }
3175 else
3176 {
3177 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3178 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3179 }
3180 /* Set the phase to Step 1 */
3181 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3182 /* Resort to hhash internal fields to feed the Peripheral.
3183 Parameters will be updated in case of suspension to contain the proper
3184 information at resumption time. */
3185 hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
3186 hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input
3187 parameter for Step 2 */
3188 hhash->HashInCount = Size; /* Input data size, HMAC_Processing input
3189 parameter for Step 2 */
3190 hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process*/
3191 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step
3192 1 and Step 3 */
3193 hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1
3194 and Step 3 */
3195 }
3196
3197 /* Carry out HMAC processing */
3198 return HMAC_Processing(hhash, Timeout);
3199
3200 }
3201 else
3202 {
3203 return HAL_BUSY;
3204 }
3205 }
3206
3207
3208
3209 /**
3210 * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3211 * read the computed digest in interruption mode.
3212 * @note Digest is available in pOutBuffer.
3213 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3214 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3215 * @param hhash HASH handle.
3216 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3217 * @param Size length of the input buffer in bytes.
3218 * @param pOutBuffer pointer to the computed digest.
3219 * @param Algorithm HASH algorithm.
3220 * @retval HAL status
3221 */
HMAC_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)3222 HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3223 uint32_t Algorithm)
3224 {
3225 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3226
3227 /* If State is ready or suspended, start or resume IT-based HASH processing */
3228 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3229 {
3230 /* Check input parameters */
3231 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3232 || (pOutBuffer == NULL))
3233 {
3234 hhash->State = HAL_HASH_STATE_READY;
3235 return HAL_ERROR;
3236 }
3237
3238 /* Process Locked */
3239 __HAL_LOCK(hhash);
3240
3241 /* Change the HASH state */
3242 hhash->State = HAL_HASH_STATE_BUSY;
3243
3244 /* Initialize IT counter */
3245 hhash->HashITCounter = 1;
3246
3247 /* Check if initialization phase has already be performed */
3248 if (hhash->Phase == HAL_HASH_PHASE_READY)
3249 {
3250 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3251 if (hhash->Init.KeySize > 64U)
3252 {
3253 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3254 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3255 }
3256 else
3257 {
3258 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3259 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3260 }
3261
3262 /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
3263 to feed the Peripheral whatever the HMAC step.
3264 Lines below are set to start HMAC Step 1 processing where key is entered first. */
3265 hhash->HashInCount = hhash->Init.KeySize; /* Key size */
3266 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */
3267
3268 /* Store input and output parameters in handle fields to manage steps transition
3269 or possible HMAC suspension/resumption */
3270 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
3271 hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */
3272 hhash->HashBuffSize = Size; /* Input message size (in bytes) */
3273 hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
3274
3275 /* Configure the number of valid bits in last word of the key */
3276 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3277
3278 /* Set the phase to Step 1 */
3279 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3280 }
3281 else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
3282 {
3283 /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
3284
3285 }
3286 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3287 {
3288 /* Restart IT-based HASH processing after Step 2 suspension */
3289
3290 }
3291 else
3292 {
3293 /* Error report as phase incorrect */
3294 /* Process Unlock */
3295 __HAL_UNLOCK(hhash);
3296 hhash->State = HAL_HASH_STATE_READY;
3297 return HAL_ERROR;
3298 }
3299
3300 /* Process Unlock */
3301 __HAL_UNLOCK(hhash);
3302
3303 /* Enable Interrupts */
3304 __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
3305
3306 /* Return function status */
3307 return HAL_OK;
3308 }
3309 else
3310 {
3311 return HAL_BUSY;
3312 }
3313
3314 }
3315
3316
3317
3318 /**
3319 * @brief Initialize the HASH peripheral in HMAC mode then initiate the required
3320 * DMA transfers to feed the key and the input buffer to the Peripheral.
3321 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3322 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3323 * @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
3324 * be a multiple of 4 otherwise, the HASH digest computation is corrupted.
3325 * Only the length of the last buffer of the thread doesn't have to be a
3326 * multiple of 4.
3327 * @param hhash HASH handle.
3328 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3329 * @param Size length of the input buffer in bytes.
3330 * @param Algorithm HASH algorithm.
3331 * @retval HAL status
3332 */
HMAC_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3333 HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3334 {
3335 uint32_t inputaddr;
3336 uint32_t inputSize;
3337 HAL_StatusTypeDef status ;
3338 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3339 /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
3340 is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
3341 assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
3342 /* If State is ready or suspended, start or resume DMA-based HASH processing */
3343 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3344 {
3345 /* Check input parameters */
3346 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
3347 /* Check phase coherency. Phase must be
3348 either READY (fresh start)
3349 or one of HMAC PROCESS steps (multi-buffer HASH management) */
3350 ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
3351 {
3352 hhash->State = HAL_HASH_STATE_READY;
3353 return HAL_ERROR;
3354 }
3355
3356
3357 /* Process Locked */
3358 __HAL_LOCK(hhash);
3359
3360 /* If not a case of resumption after suspension */
3361 if (hhash->State == HAL_HASH_STATE_READY)
3362 {
3363 /* Check whether or not initialization phase has already be performed */
3364 if (hhash->Phase == HAL_HASH_PHASE_READY)
3365 {
3366 /* Change the HASH state */
3367 hhash->State = HAL_HASH_STATE_BUSY;
3368 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
3369 At the same time, ensure MDMAT bit is cleared. */
3370 if (hhash->Init.KeySize > 64U)
3371 {
3372 MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3373 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3374 }
3375 else
3376 {
3377 MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3378 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3379 }
3380 /* Store input aparameters in handle fields to manage steps transition
3381 or possible HMAC suspension/resumption */
3382 hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */
3383 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
3384 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
3385 hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */
3386 hhash->HashBuffSize = Size; /* input data size (in bytes) */
3387
3388 /* Set DMA input parameters */
3389 inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */
3390 inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */
3391
3392 /* Configure the number of valid bits in last word of the key */
3393 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3394
3395 /* Set the phase to Step 1 */
3396 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3397
3398 }
3399 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3400 {
3401 /* Process a new input data message in case of multi-buffer HMAC processing
3402 (this is not a resumption case) */
3403
3404 /* Change the HASH state */
3405 hhash->State = HAL_HASH_STATE_BUSY;
3406
3407 /* Save input parameters to be able to manage possible suspension/resumption */
3408 hhash->HashInCount = Size; /* Input message address */
3409 hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */
3410
3411 /* Set DMA input parameters */
3412 inputaddr = (uint32_t)pInBuffer; /* Input message address */
3413 inputSize = Size; /* Input message size in bytes */
3414
3415 if (hhash->DigestCalculationDisable == RESET)
3416 {
3417 /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
3418 __HAL_HASH_RESET_MDMAT();
3419 __HAL_HASH_SET_NBVALIDBITS(inputSize);
3420 }
3421 }
3422 else
3423 {
3424 /* Phase not aligned with handle READY state */
3425 __HAL_UNLOCK(hhash);
3426 /* Return function status */
3427 return HAL_ERROR;
3428 }
3429 }
3430 else
3431 {
3432 /* Resumption case (phase may be Step 1, 2 or 3) */
3433
3434 /* Change the HASH state */
3435 hhash->State = HAL_HASH_STATE_BUSY;
3436
3437 /* Set DMA input parameters at resumption location;
3438 inputaddr and inputSize are not set to the API input parameters
3439 but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3440 processing was suspended. */
3441 inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */
3442 inputSize = hhash->HashInCount; /* Input message size in bytes */
3443 }
3444
3445
3446 /* Set the HASH DMA transfer complete callback */
3447 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3448 /* Set the DMA error callback */
3449 hhash->hdmain->XferErrorCallback = HASH_DMAError;
3450
3451 /* Store number of words already pushed to manage proper DMA processing suspension */
3452 hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3453
3454 /* Enable the DMA In DMA stream */
3455 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3456 (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
3457 : (inputSize / 4U)));
3458
3459 /* Enable DMA requests */
3460 SET_BIT(HASH->CR, HASH_CR_DMAE);
3461
3462 /* Process Unlocked */
3463 __HAL_UNLOCK(hhash);
3464
3465 /* Return function status */
3466 if (status != HAL_OK)
3467 {
3468 /* Update HASH state machine to error */
3469 hhash->State = HAL_HASH_STATE_ERROR;
3470 }
3471
3472 /* Return function status */
3473 return status;
3474 }
3475 else
3476 {
3477 return HAL_BUSY;
3478 }
3479 }
3480 /**
3481 * @}
3482 */
3483
3484 #endif /* HAL_HASH_MODULE_ENABLED */
3485
3486 /**
3487 * @}
3488 */
3489 #endif /* HASH*/
3490 /**
3491 * @}
3492 */
3493
3494