1 /**
2 ******************************************************************************
3 * @file stm32h5xx_hal_tim_ex.c
4 * @author MCD Application Team
5 * @brief TIM HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Timer Extended peripheral:
8 * + Time Hall Sensor Interface Initialization
9 * + Time Hall Sensor Interface Start
10 * + Time Complementary signal break and dead time configuration
11 * + Time Master and Slave synchronization configuration
12 * + Time Output Compare/PWM Channel Configuration (for channels 5 and 6)
13 * + Time OCRef clear configuration
14 * + Timer remapping capabilities configuration
15 * + Timer encoder index configuration
16 ******************************************************************************
17 * @attention
18 *
19 * Copyright (c) 2022 STMicroelectronics.
20 * All rights reserved.
21 *
22 * This software is licensed under terms that can be found in the LICENSE file
23 * in the root directory of this software component.
24 * If no LICENSE file comes with this software, it is provided AS-IS.
25 *
26 ******************************************************************************
27 @verbatim
28 ==============================================================================
29 ##### TIMER Extended features #####
30 ==============================================================================
31 [..]
32 The Timer Extended features include:
33 (#) Complementary outputs with programmable dead-time for :
34 (++) Output Compare
35 (++) PWM generation (Edge and Center-aligned Mode)
36 (++) One-pulse mode output
37 (#) Synchronization circuit to control the timer with external signals and to
38 interconnect several timers together.
39 (#) Break input to put the timer output signals in reset state or in a known state.
40 (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
41 positioning purposes
42 (#) In case of Pulse on compare, configure pulse length and delay
43 (#) Encoder index configuration
44
45 ##### How to use this driver #####
46 ==============================================================================
47 [..]
48 (#) Initialize the TIM low level resources by implementing the following functions
49 depending on the selected feature:
50 (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
51
52 (#) Initialize the TIM low level resources :
53 (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
54 (##) TIM pins configuration
55 (+++) Enable the clock for the TIM GPIOs using the following function:
56 __HAL_RCC_GPIOx_CLK_ENABLE();
57 (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
58
59 (#) The external Clock can be configured, if needed (the default clock is the
60 internal clock from the APBx), using the following function:
61 HAL_TIM_ConfigClockSource, the clock configuration should be done before
62 any start function.
63
64 (#) Configure the TIM in the desired functioning mode using one of the
65 initialization function of this driver:
66 (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
67 Timer Hall Sensor Interface and the commutation event with the corresponding
68 Interrupt and DMA request if needed (Note that One Timer is used to interface
69 with the Hall sensor Interface and another Timer should be used to use
70 the commutation event).
71 (#) In case of Pulse On Compare:
72 (++) HAL_TIMEx_OC_ConfigPulseOnCompare(): to configure pulse width and prescaler
73
74
75 (#) Activate the TIM peripheral using one of the start functions:
76 (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(),
77 HAL_TIMEx_OCN_Start_IT()
78 (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(),
79 HAL_TIMEx_PWMN_Start_IT()
80 (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
81 (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(),
82 HAL_TIMEx_HallSensor_Start_IT().
83
84 @endverbatim
85 ******************************************************************************
86 */
87
88 /* Includes ------------------------------------------------------------------*/
89 #include "stm32h5xx_hal.h"
90
91 /** @addtogroup STM32H5xx_HAL_Driver
92 * @{
93 */
94
95 /** @defgroup TIMEx TIMEx
96 * @brief TIM Extended HAL module driver
97 * @{
98 */
99
100 #ifdef HAL_TIM_MODULE_ENABLED
101
102 /* Private typedef -----------------------------------------------------------*/
103 /* Private define ------------------------------------------------------------*/
104 /* Private constants ---------------------------------------------------------*/
105 /** @defgroup TIMEx_Private_Constants TIM Extended Private Constants
106 * @{
107 */
108 /* Timeout for break input rearm */
109 #define TIM_BREAKINPUT_REARM_TIMEOUT 5UL /* 5 milliseconds */
110 /**
111 * @}
112 */
113 /* End of private constants --------------------------------------------------*/
114
115 /* Private macros ------------------------------------------------------------*/
116 /* Private variables ---------------------------------------------------------*/
117 /* Private function prototypes -----------------------------------------------*/
118 static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
119 static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
120 static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);
121
122 /* Exported functions --------------------------------------------------------*/
123 /** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
124 * @{
125 */
126
127 /** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
128 * @brief Timer Hall Sensor functions
129 *
130 @verbatim
131 ==============================================================================
132 ##### Timer Hall Sensor functions #####
133 ==============================================================================
134 [..]
135 This section provides functions allowing to:
136 (+) Initialize and configure TIM HAL Sensor.
137 (+) De-initialize TIM HAL Sensor.
138 (+) Start the Hall Sensor Interface.
139 (+) Stop the Hall Sensor Interface.
140 (+) Start the Hall Sensor Interface and enable interrupts.
141 (+) Stop the Hall Sensor Interface and disable interrupts.
142 (+) Start the Hall Sensor Interface and enable DMA transfers.
143 (+) Stop the Hall Sensor Interface and disable DMA transfers.
144
145 @endverbatim
146 * @{
147 */
148 /**
149 * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle.
150 * @note When the timer instance is initialized in Hall Sensor Interface mode,
151 * timer channels 1 and channel 2 are reserved and cannot be used for
152 * other purpose.
153 * @param htim TIM Hall Sensor Interface handle
154 * @param sConfig TIM Hall Sensor configuration structure
155 * @retval HAL status
156 */
HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef * htim,const TIM_HallSensor_InitTypeDef * sConfig)157 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig)
158 {
159 TIM_OC_InitTypeDef OC_Config;
160
161 /* Check the TIM handle allocation */
162 if (htim == NULL)
163 {
164 return HAL_ERROR;
165 }
166
167 /* Check the parameters */
168 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
169 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
170 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
171 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
172 assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
173 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
174 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
175 assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
176
177 if (htim->State == HAL_TIM_STATE_RESET)
178 {
179 /* Allocate lock resource and initialize it */
180 htim->Lock = HAL_UNLOCKED;
181
182 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
183 /* Reset interrupt callbacks to legacy week callbacks */
184 TIM_ResetCallback(htim);
185
186 if (htim->HallSensor_MspInitCallback == NULL)
187 {
188 htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
189 }
190 /* Init the low level hardware : GPIO, CLOCK, NVIC */
191 htim->HallSensor_MspInitCallback(htim);
192 #else
193 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
194 HAL_TIMEx_HallSensor_MspInit(htim);
195 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
196 }
197
198 /* Set the TIM state */
199 htim->State = HAL_TIM_STATE_BUSY;
200
201 /* Configure the Time base in the Encoder Mode */
202 TIM_Base_SetConfig(htim->Instance, &htim->Init);
203
204 /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */
205 TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
206
207 /* Reset the IC1PSC Bits */
208 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
209 /* Set the IC1PSC value */
210 htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
211
212 /* Enable the Hall sensor interface (XOR function of the three inputs) */
213 htim->Instance->CR2 |= TIM_CR2_TI1S;
214
215 /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
216 htim->Instance->SMCR &= ~TIM_SMCR_TS;
217 htim->Instance->SMCR |= TIM_TS_TI1F_ED;
218
219 /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
220 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
221 htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
222
223 /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
224 OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
225 OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
226 OC_Config.OCMode = TIM_OCMODE_PWM2;
227 OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
228 OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
229 OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
230 OC_Config.Pulse = sConfig->Commutation_Delay;
231
232 TIM_OC2_SetConfig(htim->Instance, &OC_Config);
233
234 /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
235 register to 101 */
236 htim->Instance->CR2 &= ~TIM_CR2_MMS;
237 htim->Instance->CR2 |= TIM_TRGO_OC2REF;
238
239 /* Initialize the DMA burst operation state */
240 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
241
242 /* Initialize the TIM channels state */
243 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
244 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
245 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
246 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
247
248 /* Initialize the TIM state*/
249 htim->State = HAL_TIM_STATE_READY;
250
251 return HAL_OK;
252 }
253
254 /**
255 * @brief DeInitializes the TIM Hall Sensor interface
256 * @param htim TIM Hall Sensor Interface handle
257 * @retval HAL status
258 */
HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef * htim)259 HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
260 {
261 /* Check the parameters */
262 assert_param(IS_TIM_INSTANCE(htim->Instance));
263
264 htim->State = HAL_TIM_STATE_BUSY;
265
266 /* Disable the TIM Peripheral Clock */
267 __HAL_TIM_DISABLE(htim);
268
269 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
270 if (htim->HallSensor_MspDeInitCallback == NULL)
271 {
272 htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
273 }
274 /* DeInit the low level hardware */
275 htim->HallSensor_MspDeInitCallback(htim);
276 #else
277 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
278 HAL_TIMEx_HallSensor_MspDeInit(htim);
279 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
280
281 /* Change the DMA burst operation state */
282 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
283
284 /* Change the TIM channels state */
285 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
286 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
287 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
288 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
289
290 /* Change TIM state */
291 htim->State = HAL_TIM_STATE_RESET;
292
293 /* Release Lock */
294 __HAL_UNLOCK(htim);
295
296 return HAL_OK;
297 }
298
299 /**
300 * @brief Initializes the TIM Hall Sensor MSP.
301 * @param htim TIM Hall Sensor Interface handle
302 * @retval None
303 */
HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef * htim)304 __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
305 {
306 /* Prevent unused argument(s) compilation warning */
307 UNUSED(htim);
308
309 /* NOTE : This function should not be modified, when the callback is needed,
310 the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
311 */
312 }
313
314 /**
315 * @brief DeInitializes TIM Hall Sensor MSP.
316 * @param htim TIM Hall Sensor Interface handle
317 * @retval None
318 */
HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef * htim)319 __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
320 {
321 /* Prevent unused argument(s) compilation warning */
322 UNUSED(htim);
323
324 /* NOTE : This function should not be modified, when the callback is needed,
325 the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
326 */
327 }
328
329 /**
330 * @brief Starts the TIM Hall Sensor Interface.
331 * @param htim TIM Hall Sensor Interface handle
332 * @retval HAL status
333 */
HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef * htim)334 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
335 {
336 uint32_t tmpsmcr;
337 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
338 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
339 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
340 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
341
342 /* Check the parameters */
343 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
344
345 /* Check the TIM channels state */
346 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
347 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
348 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
349 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
350 {
351 return HAL_ERROR;
352 }
353
354 /* Set the TIM channels state */
355 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
356 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
357 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
358 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
359
360 /* Enable the Input Capture channel 1
361 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
362 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
363 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
364
365 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
366 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
367 {
368 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
369 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
370 {
371 __HAL_TIM_ENABLE(htim);
372 }
373 }
374 else
375 {
376 __HAL_TIM_ENABLE(htim);
377 }
378
379 /* Return function status */
380 return HAL_OK;
381 }
382
383 /**
384 * @brief Stops the TIM Hall sensor Interface.
385 * @param htim TIM Hall Sensor Interface handle
386 * @retval HAL status
387 */
HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef * htim)388 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
389 {
390 /* Check the parameters */
391 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
392
393 /* Disable the Input Capture channels 1, 2 and 3
394 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
395 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
396 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
397
398 /* Disable the Peripheral */
399 __HAL_TIM_DISABLE(htim);
400
401 /* Set the TIM channels state */
402 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
403 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
404 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
405 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
406
407 /* Return function status */
408 return HAL_OK;
409 }
410
411 /**
412 * @brief Starts the TIM Hall Sensor Interface in interrupt mode.
413 * @param htim TIM Hall Sensor Interface handle
414 * @retval HAL status
415 */
HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef * htim)416 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
417 {
418 uint32_t tmpsmcr;
419 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
420 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
421 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
422 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
423
424 /* Check the parameters */
425 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
426
427 /* Check the TIM channels state */
428 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
429 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
430 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
431 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
432 {
433 return HAL_ERROR;
434 }
435
436 /* Set the TIM channels state */
437 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
438 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
439 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
440 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
441
442 /* Enable the capture compare Interrupts 1 event */
443 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
444
445 /* Enable the Input Capture channel 1
446 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
447 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
448 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
449
450 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
451 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
452 {
453 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
454 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
455 {
456 __HAL_TIM_ENABLE(htim);
457 }
458 }
459 else
460 {
461 __HAL_TIM_ENABLE(htim);
462 }
463
464 /* Return function status */
465 return HAL_OK;
466 }
467
468 /**
469 * @brief Stops the TIM Hall Sensor Interface in interrupt mode.
470 * @param htim TIM Hall Sensor Interface handle
471 * @retval HAL status
472 */
HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef * htim)473 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
474 {
475 /* Check the parameters */
476 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
477
478 /* Disable the Input Capture channel 1
479 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
480 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
481 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
482
483 /* Disable the capture compare Interrupts event */
484 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
485
486 /* Disable the Peripheral */
487 __HAL_TIM_DISABLE(htim);
488
489 /* Set the TIM channels state */
490 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
491 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
492 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
493 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
494
495 /* Return function status */
496 return HAL_OK;
497 }
498
499 /**
500 * @brief Starts the TIM Hall Sensor Interface in DMA mode.
501 * @param htim TIM Hall Sensor Interface handle
502 * @param pData The destination Buffer address.
503 * @param Length The length of data to be transferred from TIM peripheral to memory.
504 * @retval HAL status
505 */
HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef * htim,uint32_t * pData,uint16_t Length)506 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
507 {
508 uint32_t tmpsmcr;
509 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
510 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
511
512 /* Check the parameters */
513 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
514
515 /* Set the TIM channel state */
516 if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
517 || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
518 {
519 return HAL_BUSY;
520 }
521 else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
522 && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
523 {
524 if ((pData == NULL) || (Length == 0U))
525 {
526 return HAL_ERROR;
527 }
528 else
529 {
530 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
531 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
532 }
533 }
534 else
535 {
536 return HAL_ERROR;
537 }
538
539 /* Enable the Input Capture channel 1
540 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
541 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
542 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
543
544 /* Set the DMA Input Capture 1 Callbacks */
545 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
546 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
547 /* Set the DMA error callback */
548 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
549
550 /* Enable the DMA channel for Capture 1*/
551 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
552 {
553 /* Return error status */
554 return HAL_ERROR;
555 }
556 /* Enable the capture compare 1 Interrupt */
557 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
558
559 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
560 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
561 {
562 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
563 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
564 {
565 __HAL_TIM_ENABLE(htim);
566 }
567 }
568 else
569 {
570 __HAL_TIM_ENABLE(htim);
571 }
572
573 /* Return function status */
574 return HAL_OK;
575 }
576
577 /**
578 * @brief Stops the TIM Hall Sensor Interface in DMA mode.
579 * @param htim TIM Hall Sensor Interface handle
580 * @retval HAL status
581 */
HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef * htim)582 HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
583 {
584 /* Check the parameters */
585 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
586
587 /* Disable the Input Capture channel 1
588 (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1,
589 TIM_CHANNEL_2 and TIM_CHANNEL_3) */
590 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
591
592
593 /* Disable the capture compare Interrupts 1 event */
594 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
595
596 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
597
598 /* Disable the Peripheral */
599 __HAL_TIM_DISABLE(htim);
600
601 /* Set the TIM channel state */
602 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
603 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
604
605 /* Return function status */
606 return HAL_OK;
607 }
608
609 /**
610 * @}
611 */
612
613 /** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
614 * @brief Timer Complementary Output Compare functions
615 *
616 @verbatim
617 ==============================================================================
618 ##### Timer Complementary Output Compare functions #####
619 ==============================================================================
620 [..]
621 This section provides functions allowing to:
622 (+) Start the Complementary Output Compare/PWM.
623 (+) Stop the Complementary Output Compare/PWM.
624 (+) Start the Complementary Output Compare/PWM and enable interrupts.
625 (+) Stop the Complementary Output Compare/PWM and disable interrupts.
626 (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
627 (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
628
629 @endverbatim
630 * @{
631 */
632
633 /**
634 * @brief Starts the TIM Output Compare signal generation on the complementary
635 * output.
636 * @param htim TIM Output Compare handle
637 * @param Channel TIM Channel to be enabled
638 * This parameter can be one of the following values:
639 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
640 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
641 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
642 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
643 * @retval HAL status
644 */
HAL_TIMEx_OCN_Start(TIM_HandleTypeDef * htim,uint32_t Channel)645 HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
646 {
647 uint32_t tmpsmcr;
648
649 /* Check the parameters */
650 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
651
652 /* Check the TIM complementary channel state */
653 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
654 {
655 return HAL_ERROR;
656 }
657
658 /* Set the TIM complementary channel state */
659 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
660
661 /* Enable the Capture compare channel N */
662 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
663
664 /* Enable the Main Output */
665 __HAL_TIM_MOE_ENABLE(htim);
666
667 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
668 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
669 {
670 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
671 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
672 {
673 __HAL_TIM_ENABLE(htim);
674 }
675 }
676 else
677 {
678 __HAL_TIM_ENABLE(htim);
679 }
680
681 /* Return function status */
682 return HAL_OK;
683 }
684
685 /**
686 * @brief Stops the TIM Output Compare signal generation on the complementary
687 * output.
688 * @param htim TIM handle
689 * @param Channel TIM Channel to be disabled
690 * This parameter can be one of the following values:
691 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
692 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
693 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
694 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
695 * @retval HAL status
696 */
HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)697 HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
698 {
699 /* Check the parameters */
700 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
701
702 /* Disable the Capture compare channel N */
703 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
704
705 /* Disable the Main Output */
706 __HAL_TIM_MOE_DISABLE(htim);
707
708 /* Disable the Peripheral */
709 __HAL_TIM_DISABLE(htim);
710
711 /* Set the TIM complementary channel state */
712 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
713
714 /* Return function status */
715 return HAL_OK;
716 }
717
718 /**
719 * @brief Starts the TIM Output Compare signal generation in interrupt mode
720 * on the complementary output.
721 * @param htim TIM OC handle
722 * @param Channel TIM Channel to be enabled
723 * This parameter can be one of the following values:
724 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
725 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
726 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
727 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
728 * @retval HAL status
729 */
HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)730 HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
731 {
732 HAL_StatusTypeDef status = HAL_OK;
733 uint32_t tmpsmcr;
734
735 /* Check the parameters */
736 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
737
738 /* Check the TIM complementary channel state */
739 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
740 {
741 return HAL_ERROR;
742 }
743
744 /* Set the TIM complementary channel state */
745 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
746
747 switch (Channel)
748 {
749 case TIM_CHANNEL_1:
750 {
751 /* Enable the TIM Output Compare interrupt */
752 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
753 break;
754 }
755
756 case TIM_CHANNEL_2:
757 {
758 /* Enable the TIM Output Compare interrupt */
759 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
760 break;
761 }
762
763 case TIM_CHANNEL_3:
764 {
765 /* Enable the TIM Output Compare interrupt */
766 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
767 break;
768 }
769
770
771 case TIM_CHANNEL_4:
772 {
773 /* Enable the TIM Output Compare interrupt */
774 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
775 break;
776 }
777
778 default:
779 status = HAL_ERROR;
780 break;
781 }
782
783 if (status == HAL_OK)
784 {
785 /* Enable the TIM Break interrupt */
786 __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
787
788 /* Enable the Capture compare channel N */
789 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
790
791 /* Enable the Main Output */
792 __HAL_TIM_MOE_ENABLE(htim);
793
794 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
795 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
796 {
797 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
798 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
799 {
800 __HAL_TIM_ENABLE(htim);
801 }
802 }
803 else
804 {
805 __HAL_TIM_ENABLE(htim);
806 }
807 }
808
809 /* Return function status */
810 return status;
811 }
812
813 /**
814 * @brief Stops the TIM Output Compare signal generation in interrupt mode
815 * on the complementary output.
816 * @param htim TIM Output Compare handle
817 * @param Channel TIM Channel to be disabled
818 * This parameter can be one of the following values:
819 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
820 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
821 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
822 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
823 * @retval HAL status
824 */
HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)825 HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
826 {
827 HAL_StatusTypeDef status = HAL_OK;
828 uint32_t tmpccer;
829
830 /* Check the parameters */
831 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
832
833 switch (Channel)
834 {
835 case TIM_CHANNEL_1:
836 {
837 /* Disable the TIM Output Compare interrupt */
838 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
839 break;
840 }
841
842 case TIM_CHANNEL_2:
843 {
844 /* Disable the TIM Output Compare interrupt */
845 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
846 break;
847 }
848
849 case TIM_CHANNEL_3:
850 {
851 /* Disable the TIM Output Compare interrupt */
852 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
853 break;
854 }
855
856 case TIM_CHANNEL_4:
857 {
858 /* Disable the TIM Output Compare interrupt */
859 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
860 break;
861 }
862
863 default:
864 status = HAL_ERROR;
865 break;
866 }
867
868 if (status == HAL_OK)
869 {
870 /* Disable the Capture compare channel N */
871 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
872
873 /* Disable the TIM Break interrupt (only if no more channel is active) */
874 tmpccer = htim->Instance->CCER;
875 if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE | TIM_CCER_CC4NE)) == (uint32_t)RESET)
876 {
877 __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
878 }
879
880 /* Disable the Main Output */
881 __HAL_TIM_MOE_DISABLE(htim);
882
883 /* Disable the Peripheral */
884 __HAL_TIM_DISABLE(htim);
885
886 /* Set the TIM complementary channel state */
887 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
888 }
889
890 /* Return function status */
891 return status;
892 }
893
894 /**
895 * @brief Starts the TIM Output Compare signal generation in DMA mode
896 * on the complementary output.
897 * @param htim TIM Output Compare handle
898 * @param Channel TIM Channel to be enabled
899 * This parameter can be one of the following values:
900 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
901 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
902 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
903 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
904 * @param pData The source Buffer address.
905 * @param Length The length of data to be transferred from memory to TIM peripheral
906 * @retval HAL status
907 */
HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)908 HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
909 uint16_t Length)
910 {
911 HAL_StatusTypeDef status = HAL_OK;
912 uint32_t tmpsmcr;
913
914 /* Check the parameters */
915 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
916
917 /* Set the TIM complementary channel state */
918 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
919 {
920 return HAL_BUSY;
921 }
922 else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
923 {
924 if ((pData == NULL) || (Length == 0U))
925 {
926 return HAL_ERROR;
927 }
928 else
929 {
930 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
931 }
932 }
933 else
934 {
935 return HAL_ERROR;
936 }
937
938 switch (Channel)
939 {
940 case TIM_CHANNEL_1:
941 {
942 /* Set the DMA compare callbacks */
943 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
944 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
945
946 /* Set the DMA error callback */
947 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;
948
949 /* Enable the DMA channel */
950 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
951 Length) != HAL_OK)
952 {
953 /* Return error status */
954 return HAL_ERROR;
955 }
956 /* Enable the TIM Output Compare DMA request */
957 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
958 break;
959 }
960
961 case TIM_CHANNEL_2:
962 {
963 /* Set the DMA compare callbacks */
964 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
965 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
966
967 /* Set the DMA error callback */
968 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;
969
970 /* Enable the DMA channel */
971 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
972 Length) != HAL_OK)
973 {
974 /* Return error status */
975 return HAL_ERROR;
976 }
977 /* Enable the TIM Output Compare DMA request */
978 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
979 break;
980 }
981
982 case TIM_CHANNEL_3:
983 {
984 /* Set the DMA compare callbacks */
985 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
986 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
987
988 /* Set the DMA error callback */
989 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;
990
991 /* Enable the DMA channel */
992 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
993 Length) != HAL_OK)
994 {
995 /* Return error status */
996 return HAL_ERROR;
997 }
998 /* Enable the TIM Output Compare DMA request */
999 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1000 break;
1001 }
1002
1003 case TIM_CHANNEL_4:
1004 {
1005 /* Set the DMA compare callbacks */
1006 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
1007 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1008
1009 /* Set the DMA error callback */
1010 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;
1011
1012 /* Enable the DMA channel */
1013 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1014 Length) != HAL_OK)
1015 {
1016 /* Return error status */
1017 return HAL_ERROR;
1018 }
1019 /* Enable the TIM Output Compare DMA request */
1020 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1021 break;
1022 }
1023
1024 default:
1025 status = HAL_ERROR;
1026 break;
1027 }
1028
1029 if (status == HAL_OK)
1030 {
1031 /* Enable the Capture compare channel N */
1032 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
1033
1034 /* Enable the Main Output */
1035 __HAL_TIM_MOE_ENABLE(htim);
1036
1037 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1038 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1039 {
1040 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1041 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1042 {
1043 __HAL_TIM_ENABLE(htim);
1044 }
1045 }
1046 else
1047 {
1048 __HAL_TIM_ENABLE(htim);
1049 }
1050 }
1051
1052 /* Return function status */
1053 return status;
1054 }
1055
1056 /**
1057 * @brief Stops the TIM Output Compare signal generation in DMA mode
1058 * on the complementary output.
1059 * @param htim TIM Output Compare handle
1060 * @param Channel TIM Channel to be disabled
1061 * This parameter can be one of the following values:
1062 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1063 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1064 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1065 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1066 * @retval HAL status
1067 */
HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1068 HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1069 {
1070 HAL_StatusTypeDef status = HAL_OK;
1071
1072 /* Check the parameters */
1073 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1074
1075 switch (Channel)
1076 {
1077 case TIM_CHANNEL_1:
1078 {
1079 /* Disable the TIM Output Compare DMA request */
1080 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1081 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1082 break;
1083 }
1084
1085 case TIM_CHANNEL_2:
1086 {
1087 /* Disable the TIM Output Compare DMA request */
1088 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1089 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1090 break;
1091 }
1092
1093 case TIM_CHANNEL_3:
1094 {
1095 /* Disable the TIM Output Compare DMA request */
1096 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1097 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1098 break;
1099 }
1100
1101 case TIM_CHANNEL_4:
1102 {
1103 /* Disable the TIM Output Compare interrupt */
1104 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1105 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1106 break;
1107 }
1108
1109 default:
1110 status = HAL_ERROR;
1111 break;
1112 }
1113
1114 if (status == HAL_OK)
1115 {
1116 /* Disable the Capture compare channel N */
1117 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
1118
1119 /* Disable the Main Output */
1120 __HAL_TIM_MOE_DISABLE(htim);
1121
1122 /* Disable the Peripheral */
1123 __HAL_TIM_DISABLE(htim);
1124
1125 /* Set the TIM complementary channel state */
1126 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1127 }
1128
1129 /* Return function status */
1130 return status;
1131 }
1132
1133 /**
1134 * @}
1135 */
1136
1137 /** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
1138 * @brief Timer Complementary PWM functions
1139 *
1140 @verbatim
1141 ==============================================================================
1142 ##### Timer Complementary PWM functions #####
1143 ==============================================================================
1144 [..]
1145 This section provides functions allowing to:
1146 (+) Start the Complementary PWM.
1147 (+) Stop the Complementary PWM.
1148 (+) Start the Complementary PWM and enable interrupts.
1149 (+) Stop the Complementary PWM and disable interrupts.
1150 (+) Start the Complementary PWM and enable DMA transfers.
1151 (+) Stop the Complementary PWM and disable DMA transfers.
1152 (+) Start the Complementary Input Capture measurement.
1153 (+) Stop the Complementary Input Capture.
1154 (+) Start the Complementary Input Capture and enable interrupts.
1155 (+) Stop the Complementary Input Capture and disable interrupts.
1156 (+) Start the Complementary Input Capture and enable DMA transfers.
1157 (+) Stop the Complementary Input Capture and disable DMA transfers.
1158 (+) Start the Complementary One Pulse generation.
1159 (+) Stop the Complementary One Pulse.
1160 (+) Start the Complementary One Pulse and enable interrupts.
1161 (+) Stop the Complementary One Pulse and disable interrupts.
1162
1163 @endverbatim
1164 * @{
1165 */
1166
1167 /**
1168 * @brief Starts the PWM signal generation on the complementary output.
1169 * @param htim TIM handle
1170 * @param Channel TIM Channel to be enabled
1171 * This parameter can be one of the following values:
1172 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1173 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1174 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1175 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1176 * @retval HAL status
1177 */
HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1178 HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1179 {
1180 uint32_t tmpsmcr;
1181
1182 /* Check the parameters */
1183 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1184
1185 /* Check the TIM complementary channel state */
1186 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1187 {
1188 return HAL_ERROR;
1189 }
1190
1191 /* Set the TIM complementary channel state */
1192 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1193
1194 /* Enable the complementary PWM output */
1195 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
1196
1197 /* Enable the Main Output */
1198 __HAL_TIM_MOE_ENABLE(htim);
1199
1200 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1201 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1202 {
1203 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1204 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1205 {
1206 __HAL_TIM_ENABLE(htim);
1207 }
1208 }
1209 else
1210 {
1211 __HAL_TIM_ENABLE(htim);
1212 }
1213
1214 /* Return function status */
1215 return HAL_OK;
1216 }
1217
1218 /**
1219 * @brief Stops the PWM signal generation on the complementary output.
1220 * @param htim TIM handle
1221 * @param Channel TIM Channel to be disabled
1222 * This parameter can be one of the following values:
1223 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1224 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1225 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1226 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1227 * @retval HAL status
1228 */
HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1229 HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1230 {
1231 /* Check the parameters */
1232 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1233
1234 /* Disable the complementary PWM output */
1235 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
1236
1237 /* Disable the Main Output */
1238 __HAL_TIM_MOE_DISABLE(htim);
1239
1240 /* Disable the Peripheral */
1241 __HAL_TIM_DISABLE(htim);
1242
1243 /* Set the TIM complementary channel state */
1244 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1245
1246 /* Return function status */
1247 return HAL_OK;
1248 }
1249
1250 /**
1251 * @brief Starts the PWM signal generation in interrupt mode on the
1252 * complementary output.
1253 * @param htim TIM handle
1254 * @param Channel TIM Channel to be disabled
1255 * This parameter can be one of the following values:
1256 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1257 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1258 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1259 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1260 * @retval HAL status
1261 */
HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1262 HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1263 {
1264 HAL_StatusTypeDef status = HAL_OK;
1265 uint32_t tmpsmcr;
1266
1267 /* Check the parameters */
1268 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1269
1270 /* Check the TIM complementary channel state */
1271 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1272 {
1273 return HAL_ERROR;
1274 }
1275
1276 /* Set the TIM complementary channel state */
1277 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1278
1279 switch (Channel)
1280 {
1281 case TIM_CHANNEL_1:
1282 {
1283 /* Enable the TIM Capture/Compare 1 interrupt */
1284 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1285 break;
1286 }
1287
1288 case TIM_CHANNEL_2:
1289 {
1290 /* Enable the TIM Capture/Compare 2 interrupt */
1291 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1292 break;
1293 }
1294
1295 case TIM_CHANNEL_3:
1296 {
1297 /* Enable the TIM Capture/Compare 3 interrupt */
1298 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1299 break;
1300 }
1301
1302 case TIM_CHANNEL_4:
1303 {
1304 /* Enable the TIM Capture/Compare 4 interrupt */
1305 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1306 break;
1307 }
1308
1309 default:
1310 status = HAL_ERROR;
1311 break;
1312 }
1313
1314 if (status == HAL_OK)
1315 {
1316 /* Enable the TIM Break interrupt */
1317 __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
1318
1319 /* Enable the complementary PWM output */
1320 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
1321
1322 /* Enable the Main Output */
1323 __HAL_TIM_MOE_ENABLE(htim);
1324
1325 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1326 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1327 {
1328 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1329 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1330 {
1331 __HAL_TIM_ENABLE(htim);
1332 }
1333 }
1334 else
1335 {
1336 __HAL_TIM_ENABLE(htim);
1337 }
1338 }
1339
1340 /* Return function status */
1341 return status;
1342 }
1343
1344 /**
1345 * @brief Stops the PWM signal generation in interrupt mode on the
1346 * complementary output.
1347 * @param htim TIM handle
1348 * @param Channel TIM Channel to be disabled
1349 * This parameter can be one of the following values:
1350 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1351 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1352 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1353 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1354 * @retval HAL status
1355 */
HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1356 HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1357 {
1358 HAL_StatusTypeDef status = HAL_OK;
1359 uint32_t tmpccer;
1360
1361 /* Check the parameters */
1362 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1363
1364 switch (Channel)
1365 {
1366 case TIM_CHANNEL_1:
1367 {
1368 /* Disable the TIM Capture/Compare 1 interrupt */
1369 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1370 break;
1371 }
1372
1373 case TIM_CHANNEL_2:
1374 {
1375 /* Disable the TIM Capture/Compare 2 interrupt */
1376 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1377 break;
1378 }
1379
1380 case TIM_CHANNEL_3:
1381 {
1382 /* Disable the TIM Capture/Compare 3 interrupt */
1383 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1384 break;
1385 }
1386
1387 case TIM_CHANNEL_4:
1388 {
1389 /* Disable the TIM Capture/Compare 4 interrupt */
1390 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1391 break;
1392 }
1393
1394 default:
1395 status = HAL_ERROR;
1396 break;
1397 }
1398
1399 if (status == HAL_OK)
1400 {
1401 /* Disable the complementary PWM output */
1402 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
1403
1404 /* Disable the TIM Break interrupt (only if no more channel is active) */
1405 tmpccer = htim->Instance->CCER;
1406 if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE | TIM_CCER_CC4NE)) == (uint32_t)RESET)
1407 {
1408 __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
1409 }
1410
1411 /* Disable the Main Output */
1412 __HAL_TIM_MOE_DISABLE(htim);
1413
1414 /* Disable the Peripheral */
1415 __HAL_TIM_DISABLE(htim);
1416
1417 /* Set the TIM complementary channel state */
1418 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1419 }
1420
1421 /* Return function status */
1422 return status;
1423 }
1424
1425 /**
1426 * @brief Starts the TIM PWM signal generation in DMA mode on the
1427 * complementary output
1428 * @param htim TIM handle
1429 * @param Channel TIM Channel to be enabled
1430 * This parameter can be one of the following values:
1431 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1432 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1433 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1434 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1435 * @param pData The source Buffer address.
1436 * @param Length The length of data to be transferred from memory to TIM peripheral
1437 * @retval HAL status
1438 */
HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1439 HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1440 uint16_t Length)
1441 {
1442 HAL_StatusTypeDef status = HAL_OK;
1443 uint32_t tmpsmcr;
1444
1445 /* Check the parameters */
1446 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1447
1448 /* Set the TIM complementary channel state */
1449 if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1450 {
1451 return HAL_BUSY;
1452 }
1453 else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1454 {
1455 if ((pData == NULL) || (Length == 0U))
1456 {
1457 return HAL_ERROR;
1458 }
1459 else
1460 {
1461 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1462 }
1463 }
1464 else
1465 {
1466 return HAL_ERROR;
1467 }
1468
1469 switch (Channel)
1470 {
1471 case TIM_CHANNEL_1:
1472 {
1473 /* Set the DMA compare callbacks */
1474 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
1475 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1476
1477 /* Set the DMA error callback */
1478 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ;
1479
1480 /* Enable the DMA channel */
1481 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1482 Length) != HAL_OK)
1483 {
1484 /* Return error status */
1485 return HAL_ERROR;
1486 }
1487 /* Enable the TIM Capture/Compare 1 DMA request */
1488 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1489 break;
1490 }
1491
1492 case TIM_CHANNEL_2:
1493 {
1494 /* Set the DMA compare callbacks */
1495 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
1496 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1497
1498 /* Set the DMA error callback */
1499 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ;
1500
1501 /* Enable the DMA channel */
1502 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1503 Length) != HAL_OK)
1504 {
1505 /* Return error status */
1506 return HAL_ERROR;
1507 }
1508 /* Enable the TIM Capture/Compare 2 DMA request */
1509 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1510 break;
1511 }
1512
1513 case TIM_CHANNEL_3:
1514 {
1515 /* Set the DMA compare callbacks */
1516 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
1517 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1518
1519 /* Set the DMA error callback */
1520 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ;
1521
1522 /* Enable the DMA channel */
1523 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1524 Length) != HAL_OK)
1525 {
1526 /* Return error status */
1527 return HAL_ERROR;
1528 }
1529 /* Enable the TIM Capture/Compare 3 DMA request */
1530 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1531 break;
1532 }
1533
1534 case TIM_CHANNEL_4:
1535 {
1536 /* Set the DMA compare callbacks */
1537 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseNCplt;
1538 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1539
1540 /* Set the DMA error callback */
1541 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAErrorCCxN ;
1542
1543 /* Enable the DMA channel */
1544 if (TIM_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1545 Length) != HAL_OK)
1546 {
1547 /* Return error status */
1548 return HAL_ERROR;
1549 }
1550 /* Enable the TIM Capture/Compare 4 DMA request */
1551 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1552 break;
1553 }
1554
1555 default:
1556 status = HAL_ERROR;
1557 break;
1558 }
1559
1560 if (status == HAL_OK)
1561 {
1562 /* Enable the complementary PWM output */
1563 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
1564
1565 /* Enable the Main Output */
1566 __HAL_TIM_MOE_ENABLE(htim);
1567
1568 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1569 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1570 {
1571 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1572 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1573 {
1574 __HAL_TIM_ENABLE(htim);
1575 }
1576 }
1577 else
1578 {
1579 __HAL_TIM_ENABLE(htim);
1580 }
1581 }
1582
1583 /* Return function status */
1584 return status;
1585 }
1586
1587 /**
1588 * @brief Stops the TIM PWM signal generation in DMA mode on the complementary
1589 * output
1590 * @param htim TIM handle
1591 * @param Channel TIM Channel to be disabled
1592 * This parameter can be one of the following values:
1593 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1594 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1595 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1596 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1597 * @retval HAL status
1598 */
HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1599 HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1600 {
1601 HAL_StatusTypeDef status = HAL_OK;
1602
1603 /* Check the parameters */
1604 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
1605
1606 switch (Channel)
1607 {
1608 case TIM_CHANNEL_1:
1609 {
1610 /* Disable the TIM Capture/Compare 1 DMA request */
1611 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1612 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1613 break;
1614 }
1615
1616 case TIM_CHANNEL_2:
1617 {
1618 /* Disable the TIM Capture/Compare 2 DMA request */
1619 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1620 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1621 break;
1622 }
1623
1624 case TIM_CHANNEL_3:
1625 {
1626 /* Disable the TIM Capture/Compare 3 DMA request */
1627 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1628 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1629 break;
1630 }
1631
1632 case TIM_CHANNEL_4:
1633 {
1634 /* Disable the TIM Capture/Compare 4 DMA request */
1635 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1636 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1637 break;
1638 }
1639
1640 default:
1641 status = HAL_ERROR;
1642 break;
1643 }
1644
1645 if (status == HAL_OK)
1646 {
1647 /* Disable the complementary PWM output */
1648 TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
1649
1650 /* Disable the Main Output */
1651 __HAL_TIM_MOE_DISABLE(htim);
1652
1653 /* Disable the Peripheral */
1654 __HAL_TIM_DISABLE(htim);
1655
1656 /* Set the TIM complementary channel state */
1657 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1658 }
1659
1660 /* Return function status */
1661 return status;
1662 }
1663
1664 /**
1665 * @}
1666 */
1667
1668 /** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
1669 * @brief Timer Complementary One Pulse functions
1670 *
1671 @verbatim
1672 ==============================================================================
1673 ##### Timer Complementary One Pulse functions #####
1674 ==============================================================================
1675 [..]
1676 This section provides functions allowing to:
1677 (+) Start the Complementary One Pulse generation.
1678 (+) Stop the Complementary One Pulse.
1679 (+) Start the Complementary One Pulse and enable interrupts.
1680 (+) Stop the Complementary One Pulse and disable interrupts.
1681
1682 @endverbatim
1683 * @{
1684 */
1685
1686 /**
1687 * @brief Starts the TIM One Pulse signal generation on the complementary
1688 * output.
1689 * @note OutputChannel must match the pulse output channel chosen when calling
1690 * @ref HAL_TIM_OnePulse_ConfigChannel().
1691 * @param htim TIM One Pulse handle
1692 * @param OutputChannel pulse output channel to enable
1693 * This parameter can be one of the following values:
1694 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1695 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1696 * @retval HAL status
1697 */
HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)1698 HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
1699 {
1700 uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
1701 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
1702 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
1703 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
1704 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
1705
1706 /* Check the parameters */
1707 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
1708
1709 /* Check the TIM channels state */
1710 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
1711 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
1712 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
1713 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
1714 {
1715 return HAL_ERROR;
1716 }
1717
1718 /* Set the TIM channels state */
1719 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
1720 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
1721 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
1722 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
1723
1724 /* Enable the complementary One Pulse output channel and the Input Capture channel */
1725 TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
1726 TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
1727
1728 /* Enable the Main Output */
1729 __HAL_TIM_MOE_ENABLE(htim);
1730
1731 /* Return function status */
1732 return HAL_OK;
1733 }
1734
1735 /**
1736 * @brief Stops the TIM One Pulse signal generation on the complementary
1737 * output.
1738 * @note OutputChannel must match the pulse output channel chosen when calling
1739 * @ref HAL_TIM_OnePulse_ConfigChannel().
1740 * @param htim TIM One Pulse handle
1741 * @param OutputChannel pulse output channel to disable
1742 * This parameter can be one of the following values:
1743 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1744 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1745 * @retval HAL status
1746 */
HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)1747 HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
1748 {
1749 uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
1750
1751 /* Check the parameters */
1752 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
1753
1754 /* Disable the complementary One Pulse output channel and the Input Capture channel */
1755 TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
1756 TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
1757
1758 /* Disable the Main Output */
1759 __HAL_TIM_MOE_DISABLE(htim);
1760
1761 /* Disable the Peripheral */
1762 __HAL_TIM_DISABLE(htim);
1763
1764 /* Set the TIM channels state */
1765 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
1766 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
1767 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
1768 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
1769
1770 /* Return function status */
1771 return HAL_OK;
1772 }
1773
1774 /**
1775 * @brief Starts the TIM One Pulse signal generation in interrupt mode on the
1776 * complementary channel.
1777 * @note OutputChannel must match the pulse output channel chosen when calling
1778 * @ref HAL_TIM_OnePulse_ConfigChannel().
1779 * @param htim TIM One Pulse handle
1780 * @param OutputChannel pulse output channel to enable
1781 * This parameter can be one of the following values:
1782 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1783 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1784 * @retval HAL status
1785 */
HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)1786 HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
1787 {
1788 uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
1789 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
1790 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
1791 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
1792 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
1793
1794 /* Check the parameters */
1795 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
1796
1797 /* Check the TIM channels state */
1798 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
1799 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
1800 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
1801 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
1802 {
1803 return HAL_ERROR;
1804 }
1805
1806 /* Set the TIM channels state */
1807 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
1808 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
1809 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
1810 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
1811
1812 /* Enable the TIM Capture/Compare 1 interrupt */
1813 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1814
1815 /* Enable the TIM Capture/Compare 2 interrupt */
1816 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1817
1818 /* Enable the complementary One Pulse output channel and the Input Capture channel */
1819 TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
1820 TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
1821
1822 /* Enable the Main Output */
1823 __HAL_TIM_MOE_ENABLE(htim);
1824
1825 /* Return function status */
1826 return HAL_OK;
1827 }
1828
1829 /**
1830 * @brief Stops the TIM One Pulse signal generation in interrupt mode on the
1831 * complementary channel.
1832 * @note OutputChannel must match the pulse output channel chosen when calling
1833 * @ref HAL_TIM_OnePulse_ConfigChannel().
1834 * @param htim TIM One Pulse handle
1835 * @param OutputChannel pulse output channel to disable
1836 * This parameter can be one of the following values:
1837 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1838 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1839 * @retval HAL status
1840 */
HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)1841 HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
1842 {
1843 uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
1844
1845 /* Check the parameters */
1846 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
1847
1848 /* Disable the TIM Capture/Compare 1 interrupt */
1849 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1850
1851 /* Disable the TIM Capture/Compare 2 interrupt */
1852 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1853
1854 /* Disable the complementary One Pulse output channel and the Input Capture channel */
1855 TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
1856 TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
1857
1858 /* Disable the Main Output */
1859 __HAL_TIM_MOE_DISABLE(htim);
1860
1861 /* Disable the Peripheral */
1862 __HAL_TIM_DISABLE(htim);
1863
1864 /* Set the TIM channels state */
1865 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
1866 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
1867 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
1868 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
1869
1870 /* Return function status */
1871 return HAL_OK;
1872 }
1873
1874 /**
1875 * @}
1876 */
1877
1878 /** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
1879 * @brief Peripheral Control functions
1880 *
1881 @verbatim
1882 ==============================================================================
1883 ##### Peripheral Control functions #####
1884 ==============================================================================
1885 [..]
1886 This section provides functions allowing to:
1887 (+) Configure the commutation event in case of use of the Hall sensor interface.
1888 (+) Configure Output channels for OC and PWM mode.
1889
1890 (+) Configure Complementary channels, break features and dead time.
1891 (+) Configure Master synchronization.
1892 (+) Configure timer remapping capabilities.
1893 (+) Select timer input source.
1894 (+) Enable or disable channel grouping.
1895 (+) Configure Pulse on compare.
1896 (+) Configure Encoder index.
1897
1898 @endverbatim
1899 * @{
1900 */
1901
1902 /**
1903 * @brief Configure the TIM commutation event sequence.
1904 * @note This function is mandatory to use the commutation event in order to
1905 * update the configuration at each commutation detection on the TRGI input of the Timer,
1906 * the typical use of this feature is with the use of another Timer(interface Timer)
1907 * configured in Hall sensor interface, this interface Timer will generate the
1908 * commutation at its TRGO output (connected to Timer used in this function) each time
1909 * the TI1 of the Interface Timer detect a commutation at its input TI1.
1910 * @param htim TIM handle
1911 * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
1912 * This parameter can be one of the following values:
1913 * @arg TIM_TS_ITR0: Internal trigger 0 selected
1914 * @arg TIM_TS_ITR1: Internal trigger 1 selected
1915 * @arg TIM_TS_ITR2: Internal trigger 2 selected
1916 * @arg TIM_TS_ITR3: Internal trigger 3 selected
1917 * @arg TIM_TS_ITR4: Internal trigger 4 selected
1918 * @arg TIM_TS_ITR5: Internal trigger 5 selected
1919 * @arg TIM_TS_ITR6: Internal trigger 6 selected
1920 * @arg TIM_TS_ITR7: Internal trigger 7 selected
1921 * @arg TIM_TS_ITR8: Internal trigger 8 selected
1922 * @arg TIM_TS_ITR9: Internal trigger 9 selected
1923 * @arg TIM_TS_ITR10: Internal trigger 10 selected
1924 * @arg TIM_TS_ITR11: Internal trigger 11 selected
1925 * @arg TIM_TS_ITR12: Internal trigger 12 selected
1926 * @arg TIM_TS_NONE: No trigger is needed
1927 * @param CommutationSource the Commutation Event source
1928 * This parameter can be one of the following values:
1929 * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
1930 * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
1931 * @retval HAL status
1932 */
HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef * htim,uint32_t InputTrigger,uint32_t CommutationSource)1933 HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
1934 uint32_t CommutationSource)
1935 {
1936 /* Check the parameters */
1937 assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
1938 assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
1939
1940 __HAL_LOCK(htim);
1941
1942 if (CommutationSource == TIM_COMMUTATION_TRGI)
1943 {
1944 /* Select the Input trigger */
1945 htim->Instance->SMCR &= ~TIM_SMCR_TS;
1946 htim->Instance->SMCR |= InputTrigger;
1947 }
1948
1949 /* Select the Capture Compare preload feature */
1950 htim->Instance->CR2 |= TIM_CR2_CCPC;
1951 /* Select the Commutation event source */
1952 htim->Instance->CR2 &= ~TIM_CR2_CCUS;
1953 htim->Instance->CR2 |= CommutationSource;
1954
1955 /* Disable Commutation Interrupt */
1956 __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
1957
1958 /* Disable Commutation DMA request */
1959 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
1960
1961 __HAL_UNLOCK(htim);
1962
1963 return HAL_OK;
1964 }
1965
1966 /**
1967 * @brief Configure the TIM commutation event sequence with interrupt.
1968 * @note This function is mandatory to use the commutation event in order to
1969 * update the configuration at each commutation detection on the TRGI input of the Timer,
1970 * the typical use of this feature is with the use of another Timer(interface Timer)
1971 * configured in Hall sensor interface, this interface Timer will generate the
1972 * commutation at its TRGO output (connected to Timer used in this function) each time
1973 * the TI1 of the Interface Timer detect a commutation at its input TI1.
1974 * @param htim TIM handle
1975 * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
1976 * This parameter can be one of the following values:
1977 * @arg TIM_TS_ITR0: Internal trigger 0 selected
1978 * @arg TIM_TS_ITR1: Internal trigger 1 selected
1979 * @arg TIM_TS_ITR2: Internal trigger 2 selected
1980 * @arg TIM_TS_ITR3: Internal trigger 3 selected
1981 * @arg TIM_TS_ITR4: Internal trigger 4 selected
1982 * @arg TIM_TS_ITR5: Internal trigger 5 selected
1983 * @arg TIM_TS_ITR6: Internal trigger 6 selected
1984 * @arg TIM_TS_ITR7: Internal trigger 7 selected
1985 * @arg TIM_TS_ITR8: Internal trigger 8 selected
1986 * @arg TIM_TS_ITR9: Internal trigger 9 selected
1987 * @arg TIM_TS_ITR10: Internal trigger 10 selected
1988 * @arg TIM_TS_ITR11: Internal trigger 11 selected
1989 * @arg TIM_TS_ITR12: Internal trigger 12 selected
1990 * @arg TIM_TS_NONE: No trigger is needed
1991 * @param CommutationSource the Commutation Event source
1992 * This parameter can be one of the following values:
1993 * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
1994 * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
1995 * @retval HAL status
1996 */
HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef * htim,uint32_t InputTrigger,uint32_t CommutationSource)1997 HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
1998 uint32_t CommutationSource)
1999 {
2000 /* Check the parameters */
2001 assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
2002 assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
2003
2004 __HAL_LOCK(htim);
2005
2006 if (CommutationSource == TIM_COMMUTATION_TRGI)
2007 {
2008 /* Select the Input trigger */
2009 htim->Instance->SMCR &= ~TIM_SMCR_TS;
2010 htim->Instance->SMCR |= InputTrigger;
2011 }
2012
2013 /* Select the Capture Compare preload feature */
2014 htim->Instance->CR2 |= TIM_CR2_CCPC;
2015 /* Select the Commutation event source */
2016 htim->Instance->CR2 &= ~TIM_CR2_CCUS;
2017 htim->Instance->CR2 |= CommutationSource;
2018
2019 /* Disable Commutation DMA request */
2020 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
2021
2022 /* Enable the Commutation Interrupt */
2023 __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
2024
2025 __HAL_UNLOCK(htim);
2026
2027 return HAL_OK;
2028 }
2029
2030 /**
2031 * @brief Configure the TIM commutation event sequence with DMA.
2032 * @note This function is mandatory to use the commutation event in order to
2033 * update the configuration at each commutation detection on the TRGI input of the Timer,
2034 * the typical use of this feature is with the use of another Timer(interface Timer)
2035 * configured in Hall sensor interface, this interface Timer will generate the
2036 * commutation at its TRGO output (connected to Timer used in this function) each time
2037 * the TI1 of the Interface Timer detect a commutation at its input TI1.
2038 * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set
2039 * @param htim TIM handle
2040 * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
2041 * This parameter can be one of the following values:
2042 * @arg TIM_TS_ITR0: Internal trigger 0 selected
2043 * @arg TIM_TS_ITR1: Internal trigger 1 selected
2044 * @arg TIM_TS_ITR2: Internal trigger 2 selected
2045 * @arg TIM_TS_ITR3: Internal trigger 3 selected
2046 * @arg TIM_TS_ITR4: Internal trigger 4 selected
2047 * @arg TIM_TS_ITR5: Internal trigger 5 selected
2048 * @arg TIM_TS_ITR6: Internal trigger 6 selected
2049 * @arg TIM_TS_ITR7: Internal trigger 7 selected
2050 * @arg TIM_TS_ITR8: Internal trigger 8 selected
2051 * @arg TIM_TS_ITR9: Internal trigger 9 selected
2052 * @arg TIM_TS_ITR10: Internal trigger 10 selected
2053 * @arg TIM_TS_ITR11: Internal trigger 11 selected
2054 * @arg TIM_TS_ITR12: Internal trigger 12 selected
2055 * @arg TIM_TS_NONE: No trigger is needed
2056 * @param CommutationSource the Commutation Event source
2057 * This parameter can be one of the following values:
2058 * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
2059 * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
2060 * @retval HAL status
2061 */
HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef * htim,uint32_t InputTrigger,uint32_t CommutationSource)2062 HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
2063 uint32_t CommutationSource)
2064 {
2065 /* Check the parameters */
2066 assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
2067 assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_INSTANCE(htim->Instance, InputTrigger));
2068
2069 __HAL_LOCK(htim);
2070
2071 if (CommutationSource == TIM_COMMUTATION_TRGI)
2072 {
2073 /* Select the Input trigger */
2074 htim->Instance->SMCR &= ~TIM_SMCR_TS;
2075 htim->Instance->SMCR |= InputTrigger;
2076 }
2077
2078 /* Select the Capture Compare preload feature */
2079 htim->Instance->CR2 |= TIM_CR2_CCPC;
2080 /* Select the Commutation event source */
2081 htim->Instance->CR2 &= ~TIM_CR2_CCUS;
2082 htim->Instance->CR2 |= CommutationSource;
2083
2084 /* Enable the Commutation DMA Request */
2085 /* Set the DMA Commutation Callback */
2086 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
2087 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
2088 /* Set the DMA error callback */
2089 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
2090
2091 /* Disable Commutation Interrupt */
2092 __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
2093
2094 /* Enable the Commutation DMA Request */
2095 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
2096
2097 __HAL_UNLOCK(htim);
2098
2099 return HAL_OK;
2100 }
2101
2102 /**
2103 * @brief Configures the TIM in master mode.
2104 * @param htim TIM handle.
2105 * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
2106 * contains the selected trigger output (TRGO) and the Master/Slave
2107 * mode.
2108 * @retval HAL status
2109 */
HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef * htim,const TIM_MasterConfigTypeDef * sMasterConfig)2110 HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
2111 const TIM_MasterConfigTypeDef *sMasterConfig)
2112 {
2113 uint32_t tmpcr2;
2114 uint32_t tmpsmcr;
2115
2116 /* Check the parameters */
2117 assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
2118 assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
2119 assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
2120
2121 /* Check input state */
2122 __HAL_LOCK(htim);
2123
2124 /* Change the handler state */
2125 htim->State = HAL_TIM_STATE_BUSY;
2126
2127 /* Get the TIMx CR2 register value */
2128 tmpcr2 = htim->Instance->CR2;
2129
2130 /* Get the TIMx SMCR register value */
2131 tmpsmcr = htim->Instance->SMCR;
2132
2133 /* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */
2134 if (IS_TIM_TRGO2_INSTANCE(htim->Instance))
2135 {
2136 /* Check the parameters */
2137 assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2));
2138
2139 /* Clear the MMS2 bits */
2140 tmpcr2 &= ~TIM_CR2_MMS2;
2141 /* Select the TRGO2 source*/
2142 tmpcr2 |= sMasterConfig->MasterOutputTrigger2;
2143 }
2144
2145 /* Reset the MMS Bits */
2146 tmpcr2 &= ~TIM_CR2_MMS;
2147 /* Select the TRGO source */
2148 tmpcr2 |= sMasterConfig->MasterOutputTrigger;
2149
2150 /* Update TIMx CR2 */
2151 htim->Instance->CR2 = tmpcr2;
2152
2153 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2154 {
2155 /* Reset the MSM Bit */
2156 tmpsmcr &= ~TIM_SMCR_MSM;
2157 /* Set master mode */
2158 tmpsmcr |= sMasterConfig->MasterSlaveMode;
2159
2160 /* Update TIMx SMCR */
2161 htim->Instance->SMCR = tmpsmcr;
2162 }
2163
2164 /* Change the htim state */
2165 htim->State = HAL_TIM_STATE_READY;
2166
2167 __HAL_UNLOCK(htim);
2168
2169 return HAL_OK;
2170 }
2171
2172 /**
2173 * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
2174 * and the AOE(automatic output enable).
2175 * @param htim TIM handle
2176 * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
2177 * contains the BDTR Register configuration information for the TIM peripheral.
2178 * @note Interrupts can be generated when an active level is detected on the
2179 * break input, the break 2 input or the system break input. Break
2180 * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
2181 * @retval HAL status
2182 */
HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef * htim,const TIM_BreakDeadTimeConfigTypeDef * sBreakDeadTimeConfig)2183 HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
2184 const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
2185 {
2186 /* Keep this variable initialized to 0 as it is used to configure BDTR register */
2187 uint32_t tmpbdtr = 0U;
2188
2189 /* Check the parameters */
2190 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2191 assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
2192 assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
2193 assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
2194 assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
2195 assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
2196 assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
2197 assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter));
2198 assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
2199
2200 /* Check input state */
2201 __HAL_LOCK(htim);
2202
2203 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
2204 the OSSI State, the dead time value and the Automatic Output Enable Bit */
2205
2206 /* Set the BDTR bits */
2207 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
2208 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
2209 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
2210 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
2211 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
2212 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
2213 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
2214 MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, (sBreakDeadTimeConfig->BreakFilter << TIM_BDTR_BKF_Pos));
2215
2216 if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
2217 {
2218 /* Check the parameters */
2219 assert_param(IS_TIM_BREAK_AFMODE(sBreakDeadTimeConfig->BreakAFMode));
2220
2221 /* Set BREAK AF mode */
2222 MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, sBreakDeadTimeConfig->BreakAFMode);
2223 }
2224
2225 if (IS_TIM_BKIN2_INSTANCE(htim->Instance))
2226 {
2227 /* Check the parameters */
2228 assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State));
2229 assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity));
2230 assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter));
2231
2232 /* Set the BREAK2 input related BDTR bits */
2233 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (sBreakDeadTimeConfig->Break2Filter << TIM_BDTR_BK2F_Pos));
2234 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, sBreakDeadTimeConfig->Break2State);
2235 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, sBreakDeadTimeConfig->Break2Polarity);
2236
2237 if (IS_TIM_ADVANCED_INSTANCE(htim->Instance))
2238 {
2239 /* Check the parameters */
2240 assert_param(IS_TIM_BREAK2_AFMODE(sBreakDeadTimeConfig->Break2AFMode));
2241
2242 /* Set BREAK2 AF mode */
2243 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, sBreakDeadTimeConfig->Break2AFMode);
2244 }
2245 }
2246
2247 /* Set TIMx_BDTR */
2248 htim->Instance->BDTR = tmpbdtr;
2249
2250 __HAL_UNLOCK(htim);
2251
2252 return HAL_OK;
2253 }
2254
2255 /**
2256 * @brief Configures the break input source.
2257 * @param htim TIM handle.
2258 * @param BreakInput Break input to configure
2259 * This parameter can be one of the following values:
2260 * @arg TIM_BREAKINPUT_BRK: Timer break input
2261 * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
2262 * @param sBreakInputConfig Break input source configuration
2263 * @retval HAL status
2264 */
HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef * htim,uint32_t BreakInput,const TIMEx_BreakInputConfigTypeDef * sBreakInputConfig)2265 HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim,
2266 uint32_t BreakInput,
2267 const TIMEx_BreakInputConfigTypeDef *sBreakInputConfig)
2268
2269 {
2270 HAL_StatusTypeDef status = HAL_OK;
2271 uint32_t tmporx;
2272 uint32_t bkin_enable_mask;
2273 uint32_t bkin_polarity_mask;
2274 uint32_t bkin_enable_bitpos;
2275 uint32_t bkin_polarity_bitpos;
2276
2277 /* Check the parameters */
2278 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2279 assert_param(IS_TIM_BREAKINPUT(BreakInput));
2280 assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source));
2281 assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable));
2282 assert_param(IS_TIM_BREAKINPUTSOURCE_POLARITY(sBreakInputConfig->Polarity));
2283
2284 /* Check input state */
2285 __HAL_LOCK(htim);
2286
2287 switch (sBreakInputConfig->Source)
2288 {
2289 case TIM_BREAKINPUTSOURCE_BKIN:
2290 {
2291 bkin_enable_mask = TIM1_AF1_BKINE;
2292 bkin_enable_bitpos = TIM1_AF1_BKINE_Pos;
2293 bkin_polarity_mask = TIM1_AF1_BKINP;
2294 bkin_polarity_bitpos = TIM1_AF1_BKINP_Pos;
2295 break;
2296 }
2297 #if defined(COMP1)
2298 case TIM_BREAKINPUTSOURCE_COMP1:
2299 {
2300 bkin_enable_mask = TIM1_AF1_BKCMP1E;
2301 bkin_enable_bitpos = TIM1_AF1_BKCMP1E_Pos;
2302 bkin_polarity_mask = TIM1_AF1_BKCMP1P;
2303 bkin_polarity_bitpos = TIM1_AF1_BKCMP1P_Pos;
2304 break;
2305 }
2306 #endif /* COMP1 */
2307
2308 default:
2309 {
2310 bkin_enable_mask = 0U;
2311 bkin_polarity_mask = 0U;
2312 bkin_enable_bitpos = 0U;
2313 bkin_polarity_bitpos = 0U;
2314 break;
2315 }
2316 }
2317
2318 switch (BreakInput)
2319 {
2320 case TIM_BREAKINPUT_BRK:
2321 {
2322 /* Get the TIMx_AF1 register value */
2323 tmporx = htim->Instance->AF1;
2324
2325 /* Enable the break input */
2326 tmporx &= ~bkin_enable_mask;
2327 tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;
2328
2329 /* Set the break input polarity */
2330 tmporx &= ~bkin_polarity_mask;
2331 tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;
2332
2333 /* Set TIMx_AF1 */
2334 htim->Instance->AF1 = tmporx;
2335 break;
2336 }
2337 case TIM_BREAKINPUT_BRK2:
2338 {
2339 /* Get the TIMx_AF2 register value */
2340 tmporx = htim->Instance->AF2;
2341
2342 /* Enable the break input */
2343 tmporx &= ~bkin_enable_mask;
2344 tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask;
2345
2346 /* Set the break input polarity */
2347 tmporx &= ~bkin_polarity_mask;
2348 tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask;
2349
2350 /* Set TIMx_AF2 */
2351 htim->Instance->AF2 = tmporx;
2352 break;
2353 }
2354 default:
2355 status = HAL_ERROR;
2356 break;
2357 }
2358
2359 __HAL_UNLOCK(htim);
2360
2361 return status;
2362 }
2363
2364 /**
2365 * @brief Configures the TIMx Remapping input capabilities.
2366 * @param htim TIM handle.
2367 * @param Remap specifies the TIM remapping source.
2368 * For TIM1, the parameter can take one of the following values:
2369 * @arg TIM_TIM1_ETR_GPIO TIM1 ETR is connected to GPIO
2370 * @arg TIM_TIM1_ETR_COMP1 TIM1 ETR is connected to COMP1 output (*)
2371 * @arg TIM_TIM1_ETR_ADC1_AWD1 TIM1 ETR is connected to ADC1 AWD1
2372 * @arg TIM_TIM1_ETR_ADC1_AWD2 TIM1 ETR is connected to ADC1 AWD2
2373 * @arg TIM_TIM1_ETR_ADC1_AWD3 TIM1 ETR is connected to ADC1 AWD3
2374 *
2375 * For TIM2, the parameter can take one of the following values:
2376 * @arg TIM_TIM2_ETR_GPIO TIM2 ETR is connected to GPIO
2377 * @arg TIM_TIM2_ETR_COMP1 TIM2 ETR is connected to COMP1 output (*)
2378 * @arg TIM_TIM2_ETR_LSE TIM2 ETR is connected to LSE
2379 * @arg TIM_TIM2_ETR_SAI1_FSA TIM2 ETR is connected to SAI1 FSA (*)
2380 * @arg TIM_TIM2_ETR_SAI1_FSB TIM2 ETR is connected to SAI1 FSB (*)
2381 * @arg TIM_TIM2_ETR_TIM3_ETR TIM2 ETR is connected to TIM3 ETR pin
2382 * @arg TIM_TIM2_ETR_TIM4_ETR TIM2 ETR is connected to TIM4 ETR pin (*)
2383 * @arg TIM_TIM2_ETR_TIM5_ETR TIM2 ETR is connected to TIM5 ETR pin (*)
2384 * @arg TIM_TIM2_ETR_ETH_PPS TIM2 ETR is connected to ETH PPS (*)
2385 *
2386 * For TIM3, the parameter can take one of the following values:
2387 * @arg TIM_TIM3_ETR_GPIO TIM3 ETR is connected to GPIO
2388 * @arg TIM_TIM3_ETR_COMP1 TIM3 ETR is connected to COMP1 output (*)
2389 * @arg TIM_TIM3_ETR_TIM2_ETR TIM3 ETR is connected to TIM2 ETR pin
2390 * @arg TIM_TIM3_ETR_TIM4_ETR TIM3 ETR is connected to TIM4 ETR pin (*)
2391 * @arg TIM_TIM3_ETR_TIM5_ETR TIM3 ETR is connected to TIM5 ETR pin (*)
2392 * @arg TIM_TIM3_ETR_ETH_PPS TIM3 ETR is connected to ETH PPS (*)
2393 *
2394 * For TIM4, the parameter can take one of the following values: (**)
2395 * @arg TIM_TIM4_ETR_GPIO TIM4 ETR is connected to GPIO
2396 * @arg TIM_TIM4_ETR_TIM2_ETR TIM4 ETR is connected to TIM2 ETR pin
2397 * @arg TIM_TIM4_ETR_TIM3_ETR TIM4 ETR is connected to TIM3 ETR pin
2398 * @arg TIM_TIM4_ETR_TIM5_ETR TIM4 ETR is connected to TIM5 ETR pin
2399 *
2400 * For TIM5, the parameter can take one of the following values: (**)
2401 * @arg TIM_TIM5_ETR_GPIO TIM5 ETR is connected to GPIO
2402 * @arg TIM_TIM2_ETR_SAI2_FSA TIM2 ETR is connected to SAI2 FSA
2403 * @arg TIM_TIM2_ETR_SAI2_FSB TIM2 ETR is connected to SAI2 FSB
2404 * @arg TIM_TIM5_ETR_TIM2_ETR TIM5 ETR is connected to TIM2 ETR pin
2405 * @arg TIM_TIM5_ETR_TIM3_ETR TIM5 ETR is connected to TIM3 ETR pin
2406 * @arg TIM_TIM5_ETR_TIM4_ETR TIM5 ETR is connected to TIM4 ETR pin
2407 *
2408 * For TIM8, the parameter can take one of the following values: (**)
2409 * @arg TIM_TIM8_ETR_GPIO TIM8 ETR is connected to GPIO
2410 * @arg TIM_TIM8_ETR_ADC2_AWD1 TIM8 ETR is connected to ADC2 AWD1
2411 * @arg TIM_TIM8_ETR_ADC2_AWD2 TIM8 ETR is connected to ADC2 AWD2
2412 * @arg TIM_TIM8_ETR_ADC2_AWD3 TIM8 ETR is connected to ADC2 AWD3
2413 *
2414 * (*) Value not defined in all devices.
2415 * (**) Timer instance not available on all devices. \n
2416 *
2417 * @retval HAL status
2418 */
HAL_TIMEx_RemapConfig(TIM_HandleTypeDef * htim,uint32_t Remap)2419 HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
2420 {
2421 /* Check parameters */
2422 assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance));
2423 assert_param(IS_TIM_REMAP(Remap));
2424
2425 __HAL_LOCK(htim);
2426
2427 MODIFY_REG(htim->Instance->AF1, TIM1_AF1_ETRSEL_Msk, Remap);
2428
2429 __HAL_UNLOCK(htim);
2430
2431 return HAL_OK;
2432 }
2433
2434 /**
2435 * @brief Select the timer input source
2436 * @param htim TIM handle.
2437 * @param Channel specifies the TIM Channel
2438 * This parameter can be one of the following values:
2439 * @arg TIM_CHANNEL_1: TI1 input channel
2440 * @arg TIM_CHANNEL_2: TI2 input channel
2441 * @arg TIM_CHANNEL_4: TI4 input channel
2442 * @param TISelection parameter of the TIM_TISelectionStruct structure is detailed as follows:
2443 * For TIM1, the parameter is one of the following values:
2444 * @arg TIM_TIM1_TI1_GPIO: TIM1 TI1 is connected to GPIO
2445 * @arg TIM_TIM1_TI1_COMP1: TIM1 TI1 is connected to COMP1 output (*)
2446 * @arg TIM_TIM1_TI2_GPIO: TIM1 TI2 is connected to GPIO
2447 * @arg TIM_TIM1_TI3_GPIO: TIM1 TI3 is connected to GPIO
2448 * @arg TIM_TIM1_TI4_GPIO: TIM1 TI4 is connected to GPIO
2449 *
2450 * For TIM2, the parameter is one of the following values:
2451 * @arg TIM_TIM2_TI1_GPIO: TIM2 TI1 is connected to GPIO
2452 * @arg TIM_TIM2_TI1_LSI: TIM2 TI1 is connected to LSI (*)
2453 * @arg TIM_TIM2_TI1_LSE: TIM2 TI1 is connected to LSE (*)
2454 * @arg TIM_TIM2_TI1_ETH_PPS TIM2 TI1 is connected to ETH PPS (*)
2455 * @arg TIM_TIM2_TI1_RTC_WKUP: TIM2 TI2 is connected to RTC_WKUP (*)
2456 * @arg TIM_TIM2_TI1_TIM3_TI1: TIM2 TI2 is connected to TIM3_TI1 (*)
2457 * @arg TIM_TIM2_TI2_GPIO: TIM2 TI2 is connected to GPIO
2458 * @arg TIM_TIM2_TI2_HSI_1024: TIM2 TI2 is connected to HSI/1024 (*)
2459 * @arg TIM_TIM2_TI2_CSI_128: TIM2 TI2 is connected to CSI/128 (*)
2460 * @arg TIM_TIM2_TI2_MCO2: TIM2 TI2 is connected to MCO1 (*)
2461 * @arg TIM_TIM2_TI2_MCO1: TIM2 TI2 is connected to MCO1 (*)
2462 * @arg TIM_TIM2_TI3_GPIO: TIM2 TI3 is connected to GPIO
2463 * @arg TIM_TIM2_TI4_GPIO: TIM2 TI4 is connected to GPIO
2464 * @arg TIM_TIM2_TI4_COMP1: TIM2 TI4 is connected to COMP1 output (*)
2465 *
2466 * For TIM3, the parameter is one of the following values:
2467 * @arg TIM_TIM3_TI1_GPIO: TIM3 TI1 is connected to GPIO
2468 * @arg TIM_TIM3_TI1_COMP1: TIM3 TI1 is connected to COMP1 output (*)
2469 * @arg TIM_TIM3_TI1_MCO1: TIM3 TI2 is connected to MCO1 (*)
2470 * @arg TIM_TIM3_TI1_TIM2_TI1: TIM3 TI2 is connected to TIM2 TI1 (*)
2471 * @arg TIM_TIM3_TI1_HSE_1MHZ: TIM3 TI2 is connected to HSE_1MHZ (*)
2472 * @arg TIM_TIM3_TI1_ETH_PPS TIM3 TI1 is connected to ETH PPS (*)
2473 * @arg TIM_TIM3_TI2_GPIO: TIM3 TI2 is connected to GPIO
2474 * @arg TIM_TIM3_TI2_CSI_128: TIM3 TI2 is connected to CSI_128 (*)
2475 * @arg TIM_TIM3_TI2_MCO2: TIM3 TI2 is connected to MCO2 (*)
2476 * @arg TIM_TIM3_TI2_HSI_1024: TIM3 TI2 is connected to HSI_1024 (*)
2477 * @arg TIM_TIM3_TI3_GPIO: TIM3 TI2 is connected to GPIO
2478 * @arg TIM_TIM3_TI4_GPIO: TIM3 TI2 is connected to GPIO
2479 *
2480 * For TIM4, the parameter is one of the following values: (**)
2481 * @arg TIM_TIM4_TI1_GPIO: TIM4 TI1 is connected to GPIO
2482 * @arg TIM_TIM4_TI2_GPIO: TIM4 TI2 is connected to GPIO
2483 * @arg TIM_TIM4_TI3_GPIO: TIM4 TI3 is connected to GPIO
2484 * @arg TIM_TIM4_TI4_GPIO: TIM4 TI4 is connected to GPIO
2485 *
2486 * For TIM5, the parameter is one of the following values: (**)
2487 * @arg TIM_TIM5_TI1_GPIO: TIM5 TI1 is connected to GPIO
2488 * @arg TIM_TIM5_TI2_GPIO: TIM5 TI2 is connected to GPIO
2489 * @arg TIM_TIM5_TI3_GPIO: TIM5 TI3 is connected to GPIO
2490 * @arg TIM_TIM5_TI4_GPIO: TIM5 TI4 is connected to GPIO
2491 *
2492 * For TIM8, the parameter is one of the following values: (**)
2493 * @arg TIM_TIM8_TI1_GPIO: TIM8 TI1 is connected to GPIO
2494 * @arg TIM_TIM8_TI2_GPIO: TIM8 TI2 is connected to GPIO
2495 * @arg TIM_TIM8_TI3_GPIO: TIM8 TI3 is connected to GPIO
2496 * @arg TIM_TIM8_TI4_GPIO: TIM8 TI4 is connected to GPIO
2497 *
2498 * For TIM12, the parameter is one of the following values: (**)
2499 * @arg TIM_TIM12_TI1_GPIO: TIM12 TI1 is connected to GPIO
2500 * @arg TIM_TIM12_TI1_HSI_1024: TIM12 TI1 is connected to HSI/1024
2501 * @arg TIM_TIM12_TI1_CSI_128: TIM12 TI1 is connected to CSI/128
2502 *
2503 * For TIM13, the parameter is one of the following values: (**)
2504 * @arg TIM_TIM12_TI1_GPIO: TIM13 TI1 is connected to GPIO
2505 *
2506 * For TIM14, the parameter is one of the following values: (**)
2507 * @arg TIM_TIM14_TI1_GPIO: TIM14 TI1 is connected to GPIO
2508 *
2509 * For TIM15, the parameter can have the following values: (**)
2510 * @arg TIM_TIM15_TI1_GPIO: TIM15 TI1 is connected to GPIO
2511 * @arg TIM_TIM15_TI1_TIM2: TIM15 TI1 is connected to TIM2
2512 * @arg TIM_TIM15_TI1_TIM3: TIM15 TI1 is connected to TIM3
2513 * @arg TIM_TIM15_TI1_TIM4: TIM15 TI1 is connected to TIM4
2514 * @arg TIM_TIM15_TI1_LSE: TIM15 TI1 is connected to LSE
2515 * @arg TIM_TIM15_TI1_CSI_128: TIM15 TI1 is connected to CSI/128
2516 * @arg TIM_TIM15_TI1_MCO: TIM15 TI1 is connected to MCO
2517 * @arg TIM_TIM15_TI2_GPIO: TIM15 TI1 is connected to GPIO
2518 * @arg TIM_TIM15_TI2_TIM2: TIM15 TI1 is connected to TIM2
2519 * @arg TIM_TIM15_TI2_TIM3: TIM15 TI1 is connected to TIM3
2520 * @arg TIM_TIM15_TI2_TIM4: TIM15 TI1 is connected to TIM4
2521 *
2522 * For TIM16, the parameter is one of the following values: (**)
2523 * @arg TIM_TIM16_TI1_GPIO: TIM16 TI1 is connected to GPIO
2524 * @arg TIM_TIM16_TI1_LSI: TIM16 TI1 is connected to LSI
2525 * @arg TIM_TIM16_TI1_LSE: TIM16 TI1 is connected to LSE
2526 * @arg TIM_TIM16_TI1_RTC_WKUP: TIM16 TI1 is connected to RTCWKUP
2527 *
2528 * For TIM17, the parameter can have the following values: (**)
2529 * @arg TIM_TIM17_TI1_GPIO: TIM17 TI1 is connected to GPIO
2530 * @arg TIM_TIM17_TI1_HSE_1MHZ: TIM17 TI1 is connected to HSE_1MHZ
2531 * @arg TIM_TIM17_TI1_MCO: TIM17 TI1 is connected to MCO
2532 *
2533 * (*) Value not defined in all devices. \n
2534 * (**) Timer instance not available on all devices. \n
2535 * @retval HAL status
2536 */
HAL_TIMEx_TISelection(TIM_HandleTypeDef * htim,uint32_t TISelection,uint32_t Channel)2537 HAL_StatusTypeDef HAL_TIMEx_TISelection(TIM_HandleTypeDef *htim, uint32_t TISelection, uint32_t Channel)
2538 {
2539 HAL_StatusTypeDef status = HAL_OK;
2540
2541 /* Check parameters */
2542 assert_param(IS_TIM_TISEL_INSTANCE(htim->Instance));
2543 assert_param(IS_TIM_TISEL(TISelection));
2544
2545 __HAL_LOCK(htim);
2546
2547 switch (Channel)
2548 {
2549 case TIM_CHANNEL_1:
2550 MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI1SEL, TISelection);
2551 break;
2552 case TIM_CHANNEL_2:
2553 MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI2SEL, TISelection);
2554 break;
2555 case TIM_CHANNEL_4:
2556 MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI4SEL, TISelection);
2557 break;
2558 default:
2559 status = HAL_ERROR;
2560 break;
2561 }
2562
2563 __HAL_UNLOCK(htim);
2564
2565 return status;
2566 }
2567
2568 /**
2569 * @brief Group channel 5 and channel 1, 2 or 3
2570 * @param htim TIM handle.
2571 * @param Channels specifies the reference signal(s) the OC5REF is combined with.
2572 * This parameter can be any combination of the following values:
2573 * TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC
2574 * TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF
2575 * TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF
2576 * TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF
2577 * @retval HAL status
2578 */
HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef * htim,uint32_t Channels)2579 HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels)
2580 {
2581 /* Check parameters */
2582 assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance));
2583 assert_param(IS_TIM_GROUPCH5(Channels));
2584
2585 /* Process Locked */
2586 __HAL_LOCK(htim);
2587
2588 htim->State = HAL_TIM_STATE_BUSY;
2589
2590 /* Clear GC5Cx bit fields */
2591 htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1);
2592
2593 /* Set GC5Cx bit fields */
2594 htim->Instance->CCR5 |= Channels;
2595
2596 /* Change the htim state */
2597 htim->State = HAL_TIM_STATE_READY;
2598
2599 __HAL_UNLOCK(htim);
2600
2601 return HAL_OK;
2602 }
2603
2604 /**
2605 * @brief Disarm the designated break input (when it operates in bidirectional mode).
2606 * @param htim TIM handle.
2607 * @param BreakInput Break input to disarm
2608 * This parameter can be one of the following values:
2609 * @arg TIM_BREAKINPUT_BRK: Timer break input
2610 * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
2611 * @note The break input can be disarmed only when it is configured in
2612 * bidirectional mode and when when MOE is reset.
2613 * @note Purpose is to be able to have the input voltage back to high-state,
2614 * whatever the time constant on the output .
2615 * @retval HAL status
2616 */
HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef * htim,uint32_t BreakInput)2617 HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
2618 {
2619 HAL_StatusTypeDef status = HAL_OK;
2620 uint32_t tmpbdtr;
2621
2622 /* Check the parameters */
2623 assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
2624 assert_param(IS_TIM_BREAKINPUT(BreakInput));
2625
2626 switch (BreakInput)
2627 {
2628 case TIM_BREAKINPUT_BRK:
2629 {
2630 /* Check initial conditions */
2631 tmpbdtr = READ_REG(htim->Instance->BDTR);
2632 if ((READ_BIT(tmpbdtr, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) &&
2633 (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
2634 {
2635 /* Break input BRK is disarmed */
2636 SET_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM);
2637 }
2638 break;
2639 }
2640
2641 case TIM_BREAKINPUT_BRK2:
2642 {
2643 /* Check initial conditions */
2644 tmpbdtr = READ_REG(htim->Instance->BDTR);
2645 if ((READ_BIT(tmpbdtr, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) &&
2646 (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U))
2647 {
2648 /* Break input BRK is disarmed */
2649 SET_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM);
2650 }
2651 break;
2652 }
2653 default:
2654 status = HAL_ERROR;
2655 break;
2656 }
2657
2658 return status;
2659 }
2660
2661 /**
2662 * @brief Arm the designated break input (when it operates in bidirectional mode).
2663 * @param htim TIM handle.
2664 * @param BreakInput Break input to arm
2665 * This parameter can be one of the following values:
2666 * @arg TIM_BREAKINPUT_BRK: Timer break input
2667 * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input
2668 * @note Arming is possible at anytime, even if fault is present.
2669 * @note Break input is automatically armed as soon as MOE bit is set.
2670 * @retval HAL status
2671 */
HAL_TIMEx_ReArmBreakInput(TIM_HandleTypeDef * htim,uint32_t BreakInput)2672 HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput)
2673 {
2674 HAL_StatusTypeDef status = HAL_OK;
2675 uint32_t tickstart;
2676
2677 /* Check the parameters */
2678 assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance));
2679 assert_param(IS_TIM_BREAKINPUT(BreakInput));
2680
2681 switch (BreakInput)
2682 {
2683 case TIM_BREAKINPUT_BRK:
2684 {
2685 /* Check initial conditions */
2686 if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKBID) == TIM_BDTR_BKBID)
2687 {
2688 /* Break input BRK is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
2689 /* Init tickstart for timeout management */
2690 tickstart = HAL_GetTick();
2691 while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
2692 {
2693 if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
2694 {
2695 /* New check to avoid false timeout detection in case of preemption */
2696 if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL)
2697 {
2698 return HAL_TIMEOUT;
2699 }
2700 }
2701 }
2702 }
2703 break;
2704 }
2705
2706 case TIM_BREAKINPUT_BRK2:
2707 {
2708 /* Check initial conditions */
2709 if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID)
2710 {
2711 /* Break input BRK2 is re-armed automatically by hardware. Poll to check whether fault condition disappeared */
2712 /* Init tickstart for timeout management */
2713 tickstart = HAL_GetTick();
2714 while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
2715 {
2716 if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT)
2717 {
2718 /* New check to avoid false timeout detection in case of preemption */
2719 if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL)
2720 {
2721 return HAL_TIMEOUT;
2722 }
2723 }
2724 }
2725 }
2726 break;
2727 }
2728 default:
2729 status = HAL_ERROR;
2730 break;
2731 }
2732
2733 return status;
2734 }
2735
2736 /**
2737 * @brief Enable dithering
2738 * @param htim TIM handle
2739 * @note Main usage is PWM mode
2740 * @note This function must be called when timer is stopped or disabled (CEN =0)
2741 * @note If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
2742 * - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
2743 * - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
2744 * - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
2745 * - ARR and CCRx values are limited to 0xFFEF in dithering mode for 16b timers
2746 * (corresponds to 4094 for the integer part and 15 for the dithered part).
2747 * @note Macros @ref __HAL_TIM_CALC_PERIOD_DITHER() __HAL_TIM_CALC_DELAY_DITHER() __HAL_TIM_CALC_PULSE_DITHER()
2748 * can be used to calculate period (ARR) and delay (CCRx) value.
2749 * @note Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
2750 * @note Enabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
2751 * So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
2752 * __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
2753 * @retval HAL status
2754 */
HAL_TIMEx_DitheringEnable(TIM_HandleTypeDef * htim)2755 HAL_StatusTypeDef HAL_TIMEx_DitheringEnable(TIM_HandleTypeDef *htim)
2756 {
2757 /* Check the parameters */
2758 assert_param(IS_TIM_INSTANCE(htim->Instance));
2759
2760 SET_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
2761 return HAL_OK;
2762 }
2763
2764 /**
2765 * @brief Disable dithering
2766 * @param htim TIM handle
2767 * @note This function must be called when timer is stopped or disabled (CEN =0)
2768 * @note If dithering is activated, pay attention to ARR, CCRx, CNT interpretation:
2769 * - CNT: only CNT[11:0] holds the non-dithered part for 16b timers (or CNT[26:0] for 32b timers)
2770 * - ARR: ARR[15:4] holds the non-dithered part, and ARR[3:0] the dither part for 16b timers
2771 * - CCRx: CCRx[15:4] holds the non-dithered part, and CCRx[3:0] the dither part for 16b timers
2772 * - ARR and CCRx values are limited to 0xFFEF in dithering mode
2773 * (corresponds to 4094 for the integer part and 15 for the dithered part).
2774 * @note Disabling dithering, modifies automatically values of registers ARR/CCRx to keep the same integer part.
2775 * So it may be necessary to read ARR value or CCRx value with macros @ref __HAL_TIM_GET_AUTORELOAD()
2776 * __HAL_TIM_GET_COMPARE() and if necessary update Init structure field htim->Init.Period .
2777 * @retval HAL status
2778 */
HAL_TIMEx_DitheringDisable(TIM_HandleTypeDef * htim)2779 HAL_StatusTypeDef HAL_TIMEx_DitheringDisable(TIM_HandleTypeDef *htim)
2780 {
2781 /* Check the parameters */
2782 assert_param(IS_TIM_INSTANCE(htim->Instance));
2783
2784 CLEAR_BIT(htim->Instance->CR1, TIM_CR1_DITHEN);
2785 return HAL_OK;
2786 }
2787
2788 /**
2789 * @brief Initializes the pulse on compare pulse width and pulse prescaler
2790 * @param htim TIM Output Compare handle
2791 * @param PulseWidthPrescaler Pulse width prescaler
2792 * This parameter can be a number between Min_Data = 0x0 and Max_Data = 0x7
2793 * @param PulseWidth Pulse width
2794 * This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
2795 * @retval HAL status
2796 */
HAL_TIMEx_OC_ConfigPulseOnCompare(TIM_HandleTypeDef * htim,uint32_t PulseWidthPrescaler,uint32_t PulseWidth)2797 HAL_StatusTypeDef HAL_TIMEx_OC_ConfigPulseOnCompare(TIM_HandleTypeDef *htim,
2798 uint32_t PulseWidthPrescaler,
2799 uint32_t PulseWidth)
2800 {
2801 uint32_t tmpecr;
2802
2803 /* Check the parameters */
2804 assert_param(IS_TIM_PULSEONCOMPARE_INSTANCE(htim->Instance));
2805 assert_param(IS_TIM_PULSEONCOMPARE_WIDTH(PulseWidth));
2806 assert_param(IS_TIM_PULSEONCOMPARE_WIDTHPRESCALER(PulseWidthPrescaler));
2807
2808 /* Process Locked */
2809 __HAL_LOCK(htim);
2810
2811 /* Set the TIM state */
2812 htim->State = HAL_TIM_STATE_BUSY;
2813
2814 /* Get the TIMx ECR register value */
2815 tmpecr = htim->Instance->ECR;
2816 /* Reset the Pulse width prescaler and the Pulse width */
2817 tmpecr &= ~(TIM_ECR_PWPRSC | TIM_ECR_PW);
2818 /* Set the Pulse width prescaler and Pulse width*/
2819 tmpecr |= PulseWidthPrescaler << TIM_ECR_PWPRSC_Pos;
2820 tmpecr |= PulseWidth << TIM_ECR_PW_Pos;
2821 /* Write to TIMx ECR */
2822 htim->Instance->ECR = tmpecr;
2823
2824 /* Change the TIM state */
2825 htim->State = HAL_TIM_STATE_READY;
2826
2827 /* Release Lock */
2828 __HAL_UNLOCK(htim);
2829
2830 return HAL_OK;
2831 }
2832
2833 /**
2834 * @brief Configure preload source of Slave Mode Selection bitfield (SMS in SMCR register)
2835 * @param htim TIM handle
2836 * @param Source Source of slave mode selection preload
2837 * This parameter can be one of the following values:
2838 * @arg TIM_SMS_PRELOAD_SOURCE_UPDATE: Timer update event is used as source of Slave Mode Selection preload
2839 * @arg TIM_SMS_PRELOAD_SOURCE_INDEX: Timer index event is used as source of Slave Mode Selection preload
2840 * @retval HAL status
2841 */
HAL_TIMEx_ConfigSlaveModePreload(TIM_HandleTypeDef * htim,uint32_t Source)2842 HAL_StatusTypeDef HAL_TIMEx_ConfigSlaveModePreload(TIM_HandleTypeDef *htim, uint32_t Source)
2843 {
2844 /* Check the parameters */
2845 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
2846 assert_param(IS_TIM_SLAVE_PRELOAD_SOURCE(Source));
2847
2848 MODIFY_REG(htim->Instance->SMCR, TIM_SMCR_SMSPS, Source);
2849 return HAL_OK;
2850 }
2851
2852 /**
2853 * @brief Enable preload of Slave Mode Selection bitfield (SMS in SMCR register)
2854 * @param htim TIM handle
2855 * @retval HAL status
2856 */
HAL_TIMEx_EnableSlaveModePreload(TIM_HandleTypeDef * htim)2857 HAL_StatusTypeDef HAL_TIMEx_EnableSlaveModePreload(TIM_HandleTypeDef *htim)
2858 {
2859 /* Check the parameters */
2860 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
2861
2862 SET_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
2863 return HAL_OK;
2864 }
2865
2866 /**
2867 * @brief Disable preload of Slave Mode Selection bitfield (SMS in SMCR register)
2868 * @param htim TIM handle
2869 * @retval HAL status
2870 */
HAL_TIMEx_DisableSlaveModePreload(TIM_HandleTypeDef * htim)2871 HAL_StatusTypeDef HAL_TIMEx_DisableSlaveModePreload(TIM_HandleTypeDef *htim)
2872 {
2873 /* Check the parameters */
2874 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
2875
2876 CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_SMSPE);
2877 return HAL_OK;
2878 }
2879
2880 /**
2881 * @brief Enable deadtime preload
2882 * @param htim TIM handle
2883 * @retval HAL status
2884 */
HAL_TIMEx_EnableDeadTimePreload(TIM_HandleTypeDef * htim)2885 HAL_StatusTypeDef HAL_TIMEx_EnableDeadTimePreload(TIM_HandleTypeDef *htim)
2886 {
2887 /* Check the parameters */
2888 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2889
2890 SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
2891 return HAL_OK;
2892 }
2893
2894 /**
2895 * @brief Disable deadtime preload
2896 * @param htim TIM handle
2897 * @retval HAL status
2898 */
HAL_TIMEx_DisableDeadTimePreload(TIM_HandleTypeDef * htim)2899 HAL_StatusTypeDef HAL_TIMEx_DisableDeadTimePreload(TIM_HandleTypeDef *htim)
2900 {
2901 /* Check the parameters */
2902 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2903
2904 CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTPE);
2905 return HAL_OK;
2906 }
2907
2908 /**
2909 * @brief Configure deadtime
2910 * @param htim TIM handle
2911 * @param Deadtime Deadtime value
2912 * @note This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
2913 * @retval HAL status
2914 */
HAL_TIMEx_ConfigDeadTime(TIM_HandleTypeDef * htim,uint32_t Deadtime)2915 HAL_StatusTypeDef HAL_TIMEx_ConfigDeadTime(TIM_HandleTypeDef *htim, uint32_t Deadtime)
2916 {
2917 /* Check the parameters */
2918 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2919 assert_param(IS_TIM_DEADTIME(Deadtime));
2920
2921 MODIFY_REG(htim->Instance->BDTR, TIM_BDTR_DTG, Deadtime);
2922 return HAL_OK;
2923 }
2924
2925 /**
2926 * @brief Configure asymmetrical deadtime
2927 * @param htim TIM handle
2928 * @param FallingDeadtime Falling edge deadtime value
2929 * @note This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF
2930 * @retval HAL status
2931 */
HAL_TIMEx_ConfigAsymmetricalDeadTime(TIM_HandleTypeDef * htim,uint32_t FallingDeadtime)2932 HAL_StatusTypeDef HAL_TIMEx_ConfigAsymmetricalDeadTime(TIM_HandleTypeDef *htim, uint32_t FallingDeadtime)
2933 {
2934 /* Check the parameters */
2935 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2936 assert_param(IS_TIM_DEADTIME(FallingDeadtime));
2937
2938 MODIFY_REG(htim->Instance->DTR2, TIM_DTR2_DTGF, FallingDeadtime);
2939 return HAL_OK;
2940 }
2941
2942 /**
2943 * @brief Enable asymmetrical deadtime
2944 * @param htim TIM handle
2945 * @retval HAL status
2946 */
HAL_TIMEx_EnableAsymmetricalDeadTime(TIM_HandleTypeDef * htim)2947 HAL_StatusTypeDef HAL_TIMEx_EnableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
2948 {
2949 /* Check the parameters */
2950 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2951
2952 SET_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
2953 return HAL_OK;
2954 }
2955
2956 /**
2957 * @brief Disable asymmetrical deadtime
2958 * @param htim TIM handle
2959 * @retval HAL status
2960 */
HAL_TIMEx_DisableAsymmetricalDeadTime(TIM_HandleTypeDef * htim)2961 HAL_StatusTypeDef HAL_TIMEx_DisableAsymmetricalDeadTime(TIM_HandleTypeDef *htim)
2962 {
2963 /* Check the parameters */
2964 assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
2965
2966 CLEAR_BIT(htim->Instance->DTR2, TIM_DTR2_DTAE);
2967 return HAL_OK;
2968 }
2969
2970 /**
2971 * @brief Configures the encoder index.
2972 * @note warning in case of encoder mode clock plus direction
2973 * @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1 or @ref TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2
2974 * Direction must be set to @ref TIM_ENCODERINDEX_DIRECTION_UP_DOWN
2975 * @param htim TIM handle.
2976 * @param sEncoderIndexConfig Encoder index configuration
2977 * @retval HAL status
2978 */
HAL_TIMEx_ConfigEncoderIndex(TIM_HandleTypeDef * htim,TIMEx_EncoderIndexConfigTypeDef * sEncoderIndexConfig)2979 HAL_StatusTypeDef HAL_TIMEx_ConfigEncoderIndex(TIM_HandleTypeDef *htim,
2980 TIMEx_EncoderIndexConfigTypeDef *sEncoderIndexConfig)
2981 {
2982 /* Check the parameters */
2983 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
2984 assert_param(IS_TIM_ENCODERINDEX_POLARITY(sEncoderIndexConfig->Polarity));
2985 assert_param(IS_TIM_ENCODERINDEX_PRESCALER(sEncoderIndexConfig->Prescaler));
2986 assert_param(IS_TIM_ENCODERINDEX_FILTER(sEncoderIndexConfig->Filter));
2987 assert_param(IS_TIM_ENCODERINDEX_BLANKING(sEncoderIndexConfig->Blanking));
2988 assert_param(IS_FUNCTIONAL_STATE(sEncoderIndexConfig->FirstIndexEnable));
2989 assert_param(IS_TIM_ENCODERINDEX_POSITION(sEncoderIndexConfig->Position));
2990 assert_param(IS_TIM_ENCODERINDEX_DIRECTION(sEncoderIndexConfig->Direction));
2991
2992 /* Process Locked */
2993 __HAL_LOCK(htim);
2994
2995 /* Configures the TIMx External Trigger (ETR) which is used as Index input */
2996 TIM_ETR_SetConfig(htim->Instance,
2997 sEncoderIndexConfig->Prescaler,
2998 sEncoderIndexConfig->Polarity,
2999 sEncoderIndexConfig->Filter);
3000
3001 /* Configures the encoder index */
3002 MODIFY_REG(htim->Instance->ECR,
3003 TIM_ECR_IDIR_Msk | TIM_ECR_IBLK_Msk | TIM_ECR_FIDX_Msk | TIM_ECR_IPOS_Msk,
3004 (sEncoderIndexConfig->Direction |
3005 (sEncoderIndexConfig->Blanking) |
3006 ((sEncoderIndexConfig->FirstIndexEnable == ENABLE) ? (0x1U << TIM_ECR_FIDX_Pos) : 0U) |
3007 sEncoderIndexConfig->Position |
3008 TIM_ECR_IE));
3009
3010 __HAL_UNLOCK(htim);
3011
3012 return HAL_OK;
3013 }
3014
3015 /**
3016 * @brief Enable encoder index
3017 * @param htim TIM handle
3018 * @retval HAL status
3019 */
HAL_TIMEx_EnableEncoderIndex(TIM_HandleTypeDef * htim)3020 HAL_StatusTypeDef HAL_TIMEx_EnableEncoderIndex(TIM_HandleTypeDef *htim)
3021 {
3022 /* Check the parameters */
3023 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3024
3025 SET_BIT(htim->Instance->ECR, TIM_ECR_IE);
3026 return HAL_OK;
3027 }
3028
3029 /**
3030 * @brief Disable encoder index
3031 * @param htim TIM handle
3032 * @retval HAL status
3033 */
HAL_TIMEx_DisableEncoderIndex(TIM_HandleTypeDef * htim)3034 HAL_StatusTypeDef HAL_TIMEx_DisableEncoderIndex(TIM_HandleTypeDef *htim)
3035 {
3036 /* Check the parameters */
3037 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3038
3039 CLEAR_BIT(htim->Instance->ECR, TIM_ECR_IE);
3040 return HAL_OK;
3041 }
3042
3043 /**
3044 * @brief Enable encoder first index
3045 * @param htim TIM handle
3046 * @retval HAL status
3047 */
HAL_TIMEx_EnableEncoderFirstIndex(TIM_HandleTypeDef * htim)3048 HAL_StatusTypeDef HAL_TIMEx_EnableEncoderFirstIndex(TIM_HandleTypeDef *htim)
3049 {
3050 /* Check the parameters */
3051 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052
3053 SET_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
3054 return HAL_OK;
3055 }
3056
3057 /**
3058 * @brief Disable encoder first index
3059 * @param htim TIM handle
3060 * @retval HAL status
3061 */
HAL_TIMEx_DisableEncoderFirstIndex(TIM_HandleTypeDef * htim)3062 HAL_StatusTypeDef HAL_TIMEx_DisableEncoderFirstIndex(TIM_HandleTypeDef *htim)
3063 {
3064 /* Check the parameters */
3065 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3066
3067 CLEAR_BIT(htim->Instance->ECR, TIM_ECR_FIDX);
3068 return HAL_OK;
3069 }
3070
3071 /**
3072 * @}
3073 */
3074
3075 /** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
3076 * @brief Extended Callbacks functions
3077 *
3078 @verbatim
3079 ==============================================================================
3080 ##### Extended Callbacks functions #####
3081 ==============================================================================
3082 [..]
3083 This section provides Extended TIM callback functions:
3084 (+) Timer Commutation callback
3085 (+) Timer Break callback
3086
3087 @endverbatim
3088 * @{
3089 */
3090
3091 /**
3092 * @brief Hall commutation changed callback in non-blocking mode
3093 * @param htim TIM handle
3094 * @retval None
3095 */
HAL_TIMEx_CommutCallback(TIM_HandleTypeDef * htim)3096 __weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
3097 {
3098 /* Prevent unused argument(s) compilation warning */
3099 UNUSED(htim);
3100
3101 /* NOTE : This function should not be modified, when the callback is needed,
3102 the HAL_TIMEx_CommutCallback could be implemented in the user file
3103 */
3104 }
3105 /**
3106 * @brief Hall commutation changed half complete callback in non-blocking mode
3107 * @param htim TIM handle
3108 * @retval None
3109 */
HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef * htim)3110 __weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
3111 {
3112 /* Prevent unused argument(s) compilation warning */
3113 UNUSED(htim);
3114
3115 /* NOTE : This function should not be modified, when the callback is needed,
3116 the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
3117 */
3118 }
3119
3120 /**
3121 * @brief Hall Break detection callback in non-blocking mode
3122 * @param htim TIM handle
3123 * @retval None
3124 */
HAL_TIMEx_BreakCallback(TIM_HandleTypeDef * htim)3125 __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
3126 {
3127 /* Prevent unused argument(s) compilation warning */
3128 UNUSED(htim);
3129
3130 /* NOTE : This function should not be modified, when the callback is needed,
3131 the HAL_TIMEx_BreakCallback could be implemented in the user file
3132 */
3133 }
3134
3135 /**
3136 * @brief Hall Break2 detection callback in non blocking mode
3137 * @param htim: TIM handle
3138 * @retval None
3139 */
HAL_TIMEx_Break2Callback(TIM_HandleTypeDef * htim)3140 __weak void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim)
3141 {
3142 /* Prevent unused argument(s) compilation warning */
3143 UNUSED(htim);
3144
3145 /* NOTE : This function Should not be modified, when the callback is needed,
3146 the HAL_TIMEx_Break2Callback could be implemented in the user file
3147 */
3148 }
3149
3150 /**
3151 * @brief Encoder index callback in non-blocking mode
3152 * @param htim TIM handle
3153 * @retval None
3154 */
HAL_TIMEx_EncoderIndexCallback(TIM_HandleTypeDef * htim)3155 __weak void HAL_TIMEx_EncoderIndexCallback(TIM_HandleTypeDef *htim)
3156 {
3157 /* Prevent unused argument(s) compilation warning */
3158 UNUSED(htim);
3159
3160 /* NOTE : This function should not be modified, when the callback is needed,
3161 the HAL_TIMEx_EncoderIndexCallback could be implemented in the user file
3162 */
3163 }
3164
3165 /**
3166 * @brief Direction change callback in non-blocking mode
3167 * @param htim TIM handle
3168 * @retval None
3169 */
HAL_TIMEx_DirectionChangeCallback(TIM_HandleTypeDef * htim)3170 __weak void HAL_TIMEx_DirectionChangeCallback(TIM_HandleTypeDef *htim)
3171 {
3172 /* Prevent unused argument(s) compilation warning */
3173 UNUSED(htim);
3174
3175 /* NOTE : This function should not be modified, when the callback is needed,
3176 the HAL_TIMEx_DirectionChangeCallback could be implemented in the user file
3177 */
3178 }
3179
3180 /**
3181 * @brief Index error callback in non-blocking mode
3182 * @param htim TIM handle
3183 * @retval None
3184 */
HAL_TIMEx_IndexErrorCallback(TIM_HandleTypeDef * htim)3185 __weak void HAL_TIMEx_IndexErrorCallback(TIM_HandleTypeDef *htim)
3186 {
3187 /* Prevent unused argument(s) compilation warning */
3188 UNUSED(htim);
3189
3190 /* NOTE : This function should not be modified, when the callback is needed,
3191 the HAL_TIMEx_IndexErrorCallback could be implemented in the user file
3192 */
3193 }
3194
3195 /**
3196 * @brief Transition error callback in non-blocking mode
3197 * @param htim TIM handle
3198 * @retval None
3199 */
HAL_TIMEx_TransitionErrorCallback(TIM_HandleTypeDef * htim)3200 __weak void HAL_TIMEx_TransitionErrorCallback(TIM_HandleTypeDef *htim)
3201 {
3202 /* Prevent unused argument(s) compilation warning */
3203 UNUSED(htim);
3204
3205 /* NOTE : This function should not be modified, when the callback is needed,
3206 the HAL_TIMEx_TransitionErrorCallback could be implemented in the user file
3207 */
3208 }
3209
3210 /**
3211 * @}
3212 */
3213
3214 /** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
3215 * @brief Extended Peripheral State functions
3216 *
3217 @verbatim
3218 ==============================================================================
3219 ##### Extended Peripheral State functions #####
3220 ==============================================================================
3221 [..]
3222 This subsection permits to get in run-time the status of the peripheral
3223 and the data flow.
3224
3225 @endverbatim
3226 * @{
3227 */
3228
3229 /**
3230 * @brief Return the TIM Hall Sensor interface handle state.
3231 * @param htim TIM Hall Sensor handle
3232 * @retval HAL state
3233 */
HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef * htim)3234 HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim)
3235 {
3236 return htim->State;
3237 }
3238
3239 /**
3240 * @brief Return actual state of the TIM complementary channel.
3241 * @param htim TIM handle
3242 * @param ChannelN TIM Complementary channel
3243 * This parameter can be one of the following values:
3244 * @arg TIM_CHANNEL_1: TIM Channel 1
3245 * @arg TIM_CHANNEL_2: TIM Channel 2
3246 * @arg TIM_CHANNEL_3: TIM Channel 3
3247 * @arg TIM_CHANNEL_4: TIM Channel 4
3248 * @retval TIM Complementary channel state
3249 */
HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef * htim,uint32_t ChannelN)3250 HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN)
3251 {
3252 HAL_TIM_ChannelStateTypeDef channel_state;
3253
3254 /* Check the parameters */
3255 assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));
3256
3257 channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);
3258
3259 return channel_state;
3260 }
3261 /**
3262 * @}
3263 */
3264
3265 /**
3266 * @}
3267 */
3268
3269 /* Private functions ---------------------------------------------------------*/
3270 /** @defgroup TIMEx_Private_Functions TIM Extended Private Functions
3271 * @{
3272 */
3273
3274 /**
3275 * @brief TIM DMA Commutation callback.
3276 * @param hdma pointer to DMA handle.
3277 * @retval None
3278 */
TIMEx_DMACommutationCplt(DMA_HandleTypeDef * hdma)3279 void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
3280 {
3281 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3282
3283 /* Change the htim state */
3284 htim->State = HAL_TIM_STATE_READY;
3285
3286 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3287 htim->CommutationCallback(htim);
3288 #else
3289 HAL_TIMEx_CommutCallback(htim);
3290 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3291 }
3292
3293 /**
3294 * @brief TIM DMA Commutation half complete callback.
3295 * @param hdma pointer to DMA handle.
3296 * @retval None
3297 */
TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef * hdma)3298 void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma)
3299 {
3300 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3301
3302 /* Change the htim state */
3303 htim->State = HAL_TIM_STATE_READY;
3304
3305 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3306 htim->CommutationHalfCpltCallback(htim);
3307 #else
3308 HAL_TIMEx_CommutHalfCpltCallback(htim);
3309 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3310 }
3311
3312
3313 /**
3314 * @brief TIM DMA Delay Pulse complete callback (complementary channel).
3315 * @param hdma pointer to DMA handle.
3316 * @retval None
3317 */
TIM_DMADelayPulseNCplt(DMA_HandleTypeDef * hdma)3318 static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma)
3319 {
3320 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3321
3322 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
3323 {
3324 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3325
3326 if (hdma->Init.Mode == DMA_NORMAL)
3327 {
3328 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3329 }
3330 }
3331 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
3332 {
3333 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3334
3335 if (hdma->Init.Mode == DMA_NORMAL)
3336 {
3337 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3338 }
3339 }
3340 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
3341 {
3342 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3343
3344 if (hdma->Init.Mode == DMA_NORMAL)
3345 {
3346 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
3347 }
3348 }
3349 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
3350 {
3351 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3352
3353 if (hdma->Init.Mode == DMA_NORMAL)
3354 {
3355 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
3356 }
3357 }
3358 else
3359 {
3360 /* nothing to do */
3361 }
3362
3363 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3364 htim->PWM_PulseFinishedCallback(htim);
3365 #else
3366 HAL_TIM_PWM_PulseFinishedCallback(htim);
3367 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3368
3369 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3370 }
3371
3372 /**
3373 * @brief TIM DMA error callback (complementary channel)
3374 * @param hdma pointer to DMA handle.
3375 * @retval None
3376 */
TIM_DMAErrorCCxN(DMA_HandleTypeDef * hdma)3377 static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma)
3378 {
3379 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3380
3381 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
3382 {
3383 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3384 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3385 }
3386 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
3387 {
3388 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3389 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3390 }
3391 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
3392 {
3393 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3394 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
3395 }
3396 else
3397 {
3398 /* nothing to do */
3399 }
3400
3401 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3402 htim->ErrorCallback(htim);
3403 #else
3404 HAL_TIM_ErrorCallback(htim);
3405 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3406
3407 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3408 }
3409
3410 /**
3411 * @brief Enables or disables the TIM Capture Compare Channel xN.
3412 * @param TIMx to select the TIM peripheral
3413 * @param Channel specifies the TIM Channel
3414 * This parameter can be one of the following values:
3415 * @arg TIM_CHANNEL_1: TIM Channel 1
3416 * @arg TIM_CHANNEL_2: TIM Channel 2
3417 * @arg TIM_CHANNEL_3: TIM Channel 3
3418 * @arg TIM_CHANNEL_4: TIM Channel 4
3419 * @param ChannelNState specifies the TIM Channel CCxNE bit new state.
3420 * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
3421 * @retval None
3422 */
TIM_CCxNChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelNState)3423 static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState)
3424 {
3425 uint32_t tmp;
3426
3427 tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
3428
3429 /* Reset the CCxNE Bit */
3430 TIMx->CCER &= ~tmp;
3431
3432 /* Set or reset the CCxNE Bit */
3433 TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
3434 }
3435 /**
3436 * @}
3437 */
3438
3439 #endif /* HAL_TIM_MODULE_ENABLED */
3440 /**
3441 * @}
3442 */
3443
3444 /**
3445 * @}
3446 */
3447