1 /**
2   ******************************************************************************
3   * @file    stm32g4xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2019 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32g4xx_ll_tim.h"
22 #include "stm32g4xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32G4xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM20)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2) \
71                                      || ((__VALUE__) == LL_TIM_OCMODE_PULSE_ON_COMPARE) \
72                                      || ((__VALUE__) == LL_TIM_OCMODE_DIRECTION_OUTPUT))
73 
74 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
75                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
76 
77 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
78                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
79 
80 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
81                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
82 
83 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
84                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
85                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
86 
87 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
89                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
90                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
91 
92 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
106                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
107                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
108 
109 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
110                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
111                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
112 
113 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
114                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
115                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12) \
116                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2) \
117                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1) \
118                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X2) \
119                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X1_TI12) \
120                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI1) \
121                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI2))
122 
123 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
124                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
125 
126 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
127                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
128 
129 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
130                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
131 
132 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
133                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
134                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
135                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
136 
137 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
138                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
139 
140 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
141                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
142 
143 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
151                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
152                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
153                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
154                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
155                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
156                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
157                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
158                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
159 
160 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT)          \
161                                            || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
162 
163 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
164                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
165 
166 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
167                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
168 
169 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
177                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
178                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
180                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
181                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
182                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
183                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
184                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
185 
186 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT)       \
187                                             || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
188 
189 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
190                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
191 /**
192   * @}
193   */
194 
195 
196 /* Private function prototypes -----------------------------------------------*/
197 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
198   * @{
199   */
200 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
201 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
202 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
203 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
204 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
205 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
206 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
207 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
208 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
209 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
210 /**
211   * @}
212   */
213 
214 /* Exported functions --------------------------------------------------------*/
215 /** @addtogroup TIM_LL_Exported_Functions
216   * @{
217   */
218 
219 /** @addtogroup TIM_LL_EF_Init
220   * @{
221   */
222 
223 /**
224   * @brief  Set TIMx registers to their reset values.
225   * @param  TIMx Timer instance
226   * @retval An ErrorStatus enumeration value:
227   *          - SUCCESS: TIMx registers are de-initialized
228   *          - ERROR: invalid TIMx instance
229   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)230 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
231 {
232   ErrorStatus result = SUCCESS;
233 
234   /* Check the parameters */
235   assert_param(IS_TIM_INSTANCE(TIMx));
236 
237   if (TIMx == TIM1)
238   {
239     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
240     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
241   }
242   else if (TIMx == TIM2)
243   {
244     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
245     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
246   }
247   else if (TIMx == TIM3)
248   {
249     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
250     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
251   }
252   else if (TIMx == TIM4)
253   {
254     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
255     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
256   }
257 #if defined(TIM5)
258   else if (TIMx == TIM5)
259   {
260     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
261     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
262   }
263 #endif /* TIM5 */
264   else if (TIMx == TIM6)
265   {
266     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
267     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
268   }
269   else if (TIMx == TIM7)
270   {
271     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
272     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
273   }
274   else if (TIMx == TIM8)
275   {
276     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
277     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
278   }
279   else if (TIMx == TIM15)
280   {
281     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
282     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
283   }
284   else if (TIMx == TIM16)
285   {
286     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
287     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
288   }
289   else if (TIMx == TIM17)
290   {
291     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
292     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
293   }
294 #if defined(TIM20)
295   else if (TIMx == TIM20)
296   {
297     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM20);
298     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM20);
299   }
300 #endif /* TIM20 */
301   else
302   {
303     result = ERROR;
304   }
305 
306   return result;
307 }
308 
309 /**
310   * @brief  Set the fields of the time base unit configuration data structure
311   *         to their default values.
312   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
313   * @retval None
314   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)315 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
316 {
317   /* Set the default configuration */
318   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
319   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
320   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
321   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
322   TIM_InitStruct->RepetitionCounter = 0x00000000U;
323 }
324 
325 /**
326   * @brief  Configure the TIMx time base unit.
327   * @param  TIMx Timer Instance
328   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
329   *         (TIMx time base unit configuration data structure)
330   * @retval An ErrorStatus enumeration value:
331   *          - SUCCESS: TIMx registers are de-initialized
332   *          - ERROR: not applicable
333   */
LL_TIM_Init(TIM_TypeDef * TIMx,LL_TIM_InitTypeDef * TIM_InitStruct)334 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
335 {
336   uint32_t tmpcr1;
337 
338   /* Check the parameters */
339   assert_param(IS_TIM_INSTANCE(TIMx));
340   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
341   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
342 
343   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
344 
345   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
346   {
347     /* Select the Counter Mode */
348     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
349   }
350 
351   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
352   {
353     /* Set the clock division */
354     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
355   }
356 
357   /* Write to TIMx CR1 */
358   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
359 
360   /* Set the Autoreload value */
361   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
362 
363   /* Set the Prescaler value */
364   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
365 
366   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
367   {
368     /* Set the Repetition Counter value */
369     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
370   }
371 
372   /* Generate an update event to reload the Prescaler
373      and the repetition counter value (if applicable) immediately */
374   LL_TIM_GenerateEvent_UPDATE(TIMx);
375 
376   return SUCCESS;
377 }
378 
379 /**
380   * @brief  Set the fields of the TIMx output channel configuration data
381   *         structure to their default values.
382   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
383   *         (the output channel configuration data structure)
384   * @retval None
385   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)386 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
387 {
388   /* Set the default configuration */
389   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
390   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
391   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
392   TIM_OC_InitStruct->CompareValue = 0x00000000U;
393   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
394   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
395   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
396   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
397 }
398 
399 /**
400   * @brief  Configure the TIMx output channel.
401   * @param  TIMx Timer Instance
402   * @param  Channel This parameter can be one of the following values:
403   *         @arg @ref LL_TIM_CHANNEL_CH1
404   *         @arg @ref LL_TIM_CHANNEL_CH2
405   *         @arg @ref LL_TIM_CHANNEL_CH3
406   *         @arg @ref LL_TIM_CHANNEL_CH4
407   *         @arg @ref LL_TIM_CHANNEL_CH5
408   *         @arg @ref LL_TIM_CHANNEL_CH6
409   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
410   *         data structure)
411   * @retval An ErrorStatus enumeration value:
412   *          - SUCCESS: TIMx output channel is initialized
413   *          - ERROR: TIMx output channel is not initialized
414   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)415 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
416 {
417   ErrorStatus result = ERROR;
418 
419   switch (Channel)
420   {
421     case LL_TIM_CHANNEL_CH1:
422       result = OC1Config(TIMx, TIM_OC_InitStruct);
423       break;
424     case LL_TIM_CHANNEL_CH2:
425       result = OC2Config(TIMx, TIM_OC_InitStruct);
426       break;
427     case LL_TIM_CHANNEL_CH3:
428       result = OC3Config(TIMx, TIM_OC_InitStruct);
429       break;
430     case LL_TIM_CHANNEL_CH4:
431       result = OC4Config(TIMx, TIM_OC_InitStruct);
432       break;
433     case LL_TIM_CHANNEL_CH5:
434       result = OC5Config(TIMx, TIM_OC_InitStruct);
435       break;
436     case LL_TIM_CHANNEL_CH6:
437       result = OC6Config(TIMx, TIM_OC_InitStruct);
438       break;
439     default:
440       break;
441   }
442 
443   return result;
444 }
445 
446 /**
447   * @brief  Set the fields of the TIMx input channel configuration data
448   *         structure to their default values.
449   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
450   *         data structure)
451   * @retval None
452   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)453 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
454 {
455   /* Set the default configuration */
456   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
457   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
458   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
459   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
460 }
461 
462 /**
463   * @brief  Configure the TIMx input channel.
464   * @param  TIMx Timer Instance
465   * @param  Channel This parameter can be one of the following values:
466   *         @arg @ref LL_TIM_CHANNEL_CH1
467   *         @arg @ref LL_TIM_CHANNEL_CH2
468   *         @arg @ref LL_TIM_CHANNEL_CH3
469   *         @arg @ref LL_TIM_CHANNEL_CH4
470   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
471   *         structure)
472   * @retval An ErrorStatus enumeration value:
473   *          - SUCCESS: TIMx output channel is initialized
474   *          - ERROR: TIMx output channel is not initialized
475   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)476 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
477 {
478   ErrorStatus result = ERROR;
479 
480   switch (Channel)
481   {
482     case LL_TIM_CHANNEL_CH1:
483       result = IC1Config(TIMx, TIM_IC_InitStruct);
484       break;
485     case LL_TIM_CHANNEL_CH2:
486       result = IC2Config(TIMx, TIM_IC_InitStruct);
487       break;
488     case LL_TIM_CHANNEL_CH3:
489       result = IC3Config(TIMx, TIM_IC_InitStruct);
490       break;
491     case LL_TIM_CHANNEL_CH4:
492       result = IC4Config(TIMx, TIM_IC_InitStruct);
493       break;
494     default:
495       break;
496   }
497 
498   return result;
499 }
500 
501 /**
502   * @brief  Fills each TIM_EncoderInitStruct field with its default value
503   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
504   *         configuration data structure)
505   * @retval None
506   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)507 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
508 {
509   /* Set the default configuration */
510   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
511   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
512   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
513   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
514   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
515   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
516   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
517   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
518   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
519 }
520 
521 /**
522   * @brief  Configure the encoder interface of the timer instance.
523   * @param  TIMx Timer Instance
524   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
525   *         configuration data structure)
526   * @retval An ErrorStatus enumeration value:
527   *          - SUCCESS: TIMx registers are de-initialized
528   *          - ERROR: not applicable
529   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)530 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
531 {
532   uint32_t tmpccmr1;
533   uint32_t tmpccer;
534 
535   /* Check the parameters */
536   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
537   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
538   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
539   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
540   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
541   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
542   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
543   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
544   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
545   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
546 
547   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
548   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
549 
550   /* Get the TIMx CCMR1 register value */
551   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
552 
553   /* Get the TIMx CCER register value */
554   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
555 
556   /* Configure TI1 */
557   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
558   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
559   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
560   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
561 
562   /* Configure TI2 */
563   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
564   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
565   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
566   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
567 
568   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
569   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
570   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
571   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
572   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
573 
574   /* Set encoder mode */
575   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
576 
577   /* Write to TIMx CCMR1 */
578   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
579 
580   /* Write to TIMx CCER */
581   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
582 
583   return SUCCESS;
584 }
585 
586 /**
587   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
588   *         structure to their default values.
589   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
590   *         configuration data structure)
591   * @retval None
592   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)593 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
594 {
595   /* Set the default configuration */
596   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
597   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
598   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
599   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
600 }
601 
602 /**
603   * @brief  Configure the Hall sensor interface of the timer instance.
604   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
605   *       to the TI1 input channel
606   * @note TIMx slave mode controller is configured in reset mode.
607           Selected internal trigger is TI1F_ED.
608   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
609   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
610   *       between 2 changes on the inputs. It gives information about motor speed.
611   * @note Channel 2 is configured in output PWM 2 mode.
612   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
613   * @note OC2REF is selected as trigger output on TRGO.
614   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
615   *       when TIMx operates in Hall sensor interface mode.
616   * @param  TIMx Timer Instance
617   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
618   *         interface configuration data structure)
619   * @retval An ErrorStatus enumeration value:
620   *          - SUCCESS: TIMx registers are de-initialized
621   *          - ERROR: not applicable
622   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)623 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
624 {
625   uint32_t tmpcr2;
626   uint32_t tmpccmr1;
627   uint32_t tmpccer;
628   uint32_t tmpsmcr;
629 
630   /* Check the parameters */
631   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
632   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
633   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
634   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
635 
636   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
637   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
638 
639   /* Get the TIMx CR2 register value */
640   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
641 
642   /* Get the TIMx CCMR1 register value */
643   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
644 
645   /* Get the TIMx CCER register value */
646   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
647 
648   /* Get the TIMx SMCR register value */
649   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
650 
651   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
652   tmpcr2 |= TIM_CR2_TI1S;
653 
654   /* OC2REF signal is used as trigger output (TRGO) */
655   tmpcr2 |= LL_TIM_TRGO_OC2REF;
656 
657   /* Configure the slave mode controller */
658   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
659   tmpsmcr |= LL_TIM_TS_TI1F_ED;
660   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
661 
662   /* Configure input channel 1 */
663   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
664   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
665   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
666   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
667 
668   /* Configure input channel 2 */
669   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
670   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
671 
672   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
673   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
674   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
675   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
676 
677   /* Write to TIMx CR2 */
678   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
679 
680   /* Write to TIMx SMCR */
681   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
682 
683   /* Write to TIMx CCMR1 */
684   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
685 
686   /* Write to TIMx CCER */
687   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
688 
689   /* Write to TIMx CCR2 */
690   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
691 
692   return SUCCESS;
693 }
694 
695 /**
696   * @brief  Set the fields of the Break and Dead Time configuration data structure
697   *         to their default values.
698   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
699   *         data structure)
700   * @retval None
701   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)702 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
703 {
704   /* Set the default configuration */
705   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
706   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
707   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
708   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
709   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
710   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
711   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
712   TIM_BDTRInitStruct->BreakAFMode     = LL_TIM_BREAK_AFMODE_INPUT;
713   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
714   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
715   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
716   TIM_BDTRInitStruct->Break2AFMode    = LL_TIM_BREAK2_AFMODE_INPUT;
717   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
718 }
719 
720 /**
721   * @brief  Configure the Break and Dead Time feature of the timer instance.
722   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
723   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
724   *  can be necessary to configure all of them during the first write access to
725   *  the TIMx_BDTR register.
726   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
727   *       a timer instance provides a break input.
728   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
729   *       a timer instance provides a second break input.
730   * @param  TIMx Timer Instance
731   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
732   *         data structure)
733   * @retval An ErrorStatus enumeration value:
734   *          - SUCCESS: Break and Dead Time is initialized
735   *          - ERROR: not applicable
736   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)737 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
738 {
739   uint32_t tmpbdtr = 0;
740 
741   /* Check the parameters */
742   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
743   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
744   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
745   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
746   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
747   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
748   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
749 
750   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
751   the OSSI State, the dead time value and the Automatic Output Enable Bit */
752 
753   /* Set the BDTR bits */
754   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
755   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
756   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
757   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
758   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
759   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
760   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
761   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
762   if (IS_TIM_ADVANCED_INSTANCE(TIMx))
763   {
764     assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
765     assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
766     MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
767     MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
768   }
769 
770   if (IS_TIM_BKIN2_INSTANCE(TIMx))
771   {
772     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
773     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
774     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
775     assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
776 
777     /* Set the BREAK2 input related BDTR bit-fields */
778     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
779     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
780     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
781     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
782   }
783 
784   /* Set TIMx_BDTR */
785   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
786 
787   return SUCCESS;
788 }
789 /**
790   * @}
791   */
792 
793 /**
794   * @}
795   */
796 
797 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
798   *  @brief   Private functions
799   * @{
800   */
801 /**
802   * @brief  Configure the TIMx output channel 1.
803   * @param  TIMx Timer Instance
804   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
805   * @retval An ErrorStatus enumeration value:
806   *          - SUCCESS: TIMx registers are de-initialized
807   *          - ERROR: not applicable
808   */
OC1Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)809 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
810 {
811   uint32_t tmpccmr1;
812   uint32_t tmpccer;
813   uint32_t tmpcr2;
814 
815   /* Check the parameters */
816   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
817   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
818   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
819   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
820   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
821   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
822 
823   /* Disable the Channel 1: Reset the CC1E Bit */
824   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
825 
826   /* Get the TIMx CCER register value */
827   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
828 
829   /* Get the TIMx CR2 register value */
830   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
831 
832   /* Get the TIMx CCMR1 register value */
833   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
834 
835   /* Reset Capture/Compare selection Bits */
836   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
837 
838   /* Set the Output Compare Mode */
839   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
840 
841   /* Set the Output Compare Polarity */
842   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
843 
844   /* Set the Output State */
845   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
846 
847   if (IS_TIM_BREAK_INSTANCE(TIMx))
848   {
849     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
850     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
851 
852     /* Set the complementary output Polarity */
853     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
854 
855     /* Set the complementary output State */
856     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
857 
858     /* Set the Output Idle state */
859     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
860 
861     /* Set the complementary output Idle state */
862     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
863   }
864 
865   /* Write to TIMx CR2 */
866   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
867 
868   /* Write to TIMx CCMR1 */
869   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
870 
871   /* Set the Capture Compare Register value */
872   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
873 
874   /* Write to TIMx CCER */
875   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
876 
877   return SUCCESS;
878 }
879 
880 /**
881   * @brief  Configure the TIMx output channel 2.
882   * @param  TIMx Timer Instance
883   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
884   * @retval An ErrorStatus enumeration value:
885   *          - SUCCESS: TIMx registers are de-initialized
886   *          - ERROR: not applicable
887   */
OC2Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)888 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
889 {
890   uint32_t tmpccmr1;
891   uint32_t tmpccer;
892   uint32_t tmpcr2;
893 
894   /* Check the parameters */
895   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
896   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
897   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
898   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
899   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
900   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
901 
902   /* Disable the Channel 2: Reset the CC2E Bit */
903   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
904 
905   /* Get the TIMx CCER register value */
906   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
907 
908   /* Get the TIMx CR2 register value */
909   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
910 
911   /* Get the TIMx CCMR1 register value */
912   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
913 
914   /* Reset Capture/Compare selection Bits */
915   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
916 
917   /* Select the Output Compare Mode */
918   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
919 
920   /* Set the Output Compare Polarity */
921   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
922 
923   /* Set the Output State */
924   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
925 
926   if (IS_TIM_BREAK_INSTANCE(TIMx))
927   {
928     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
929     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
930 
931     /* Set the complementary output Polarity */
932     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
933 
934     /* Set the complementary output State */
935     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
936 
937     /* Set the Output Idle state */
938     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
939 
940     /* Set the complementary output Idle state */
941     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
942   }
943 
944   /* Write to TIMx CR2 */
945   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
946 
947   /* Write to TIMx CCMR1 */
948   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
949 
950   /* Set the Capture Compare Register value */
951   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
952 
953   /* Write to TIMx CCER */
954   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
955 
956   return SUCCESS;
957 }
958 
959 /**
960   * @brief  Configure the TIMx output channel 3.
961   * @param  TIMx Timer Instance
962   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
963   * @retval An ErrorStatus enumeration value:
964   *          - SUCCESS: TIMx registers are de-initialized
965   *          - ERROR: not applicable
966   */
OC3Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)967 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
968 {
969   uint32_t tmpccmr2;
970   uint32_t tmpccer;
971   uint32_t tmpcr2;
972 
973   /* Check the parameters */
974   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
975   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
976   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
977   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
978   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
979   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
980 
981   /* Disable the Channel 3: Reset the CC3E Bit */
982   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
983 
984   /* Get the TIMx CCER register value */
985   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
986 
987   /* Get the TIMx CR2 register value */
988   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
989 
990   /* Get the TIMx CCMR2 register value */
991   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
992 
993   /* Reset Capture/Compare selection Bits */
994   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
995 
996   /* Select the Output Compare Mode */
997   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
998 
999   /* Set the Output Compare Polarity */
1000   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
1001 
1002   /* Set the Output State */
1003   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
1004 
1005   if (IS_TIM_BREAK_INSTANCE(TIMx))
1006   {
1007     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1008     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1009 
1010     /* Set the complementary output Polarity */
1011     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1012 
1013     /* Set the complementary output State */
1014     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1015 
1016     /* Set the Output Idle state */
1017     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1018 
1019     /* Set the complementary output Idle state */
1020     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1021   }
1022 
1023   /* Write to TIMx CR2 */
1024   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1025 
1026   /* Write to TIMx CCMR2 */
1027   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1028 
1029   /* Set the Capture Compare Register value */
1030   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1031 
1032   /* Write to TIMx CCER */
1033   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1034 
1035   return SUCCESS;
1036 }
1037 
1038 /**
1039   * @brief  Configure the TIMx output channel 4.
1040   * @param  TIMx Timer Instance
1041   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1042   * @retval An ErrorStatus enumeration value:
1043   *          - SUCCESS: TIMx registers are de-initialized
1044   *          - ERROR: not applicable
1045   */
OC4Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1046 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1047 {
1048   uint32_t tmpccmr2;
1049   uint32_t tmpccer;
1050   uint32_t tmpcr2;
1051 
1052   /* Check the parameters */
1053   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1054   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1055   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1056   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1057   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1058   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1059 
1060   /* Disable the Channel 4: Reset the CC4E Bit */
1061   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1062 
1063   /* Get the TIMx CCER register value */
1064   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1065 
1066   /* Get the TIMx CR2 register value */
1067   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1068 
1069   /* Get the TIMx CCMR2 register value */
1070   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1071 
1072   /* Reset Capture/Compare selection Bits */
1073   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1074 
1075   /* Select the Output Compare Mode */
1076   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1077 
1078   /* Set the Output Compare Polarity */
1079   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1080 
1081   /* Set the Output State */
1082   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1083 
1084   if (IS_TIM_BREAK_INSTANCE(TIMx))
1085   {
1086     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1087     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1088 
1089     /* Set the complementary output Polarity */
1090     MODIFY_REG(tmpccer, TIM_CCER_CC4NP, TIM_OCInitStruct->OCNPolarity << 14U);
1091 
1092     /* Set the complementary output State */
1093     MODIFY_REG(tmpccer, TIM_CCER_CC4NE, TIM_OCInitStruct->OCNState << 14U);
1094 
1095     /* Set the Output Idle state */
1096     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1097 
1098     /* Set the complementary output Idle state */
1099     MODIFY_REG(tmpcr2, TIM_CR2_OIS4N, TIM_OCInitStruct->OCNIdleState << 7U);
1100   }
1101 
1102   /* Write to TIMx CR2 */
1103   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1104 
1105   /* Write to TIMx CCMR2 */
1106   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1107 
1108   /* Set the Capture Compare Register value */
1109   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1110 
1111   /* Write to TIMx CCER */
1112   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1113 
1114   return SUCCESS;
1115 }
1116 
1117 /**
1118   * @brief  Configure the TIMx output channel 5.
1119   * @param  TIMx Timer Instance
1120   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1121   * @retval An ErrorStatus enumeration value:
1122   *          - SUCCESS: TIMx registers are de-initialized
1123   *          - ERROR: not applicable
1124   */
OC5Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1125 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1126 {
1127   uint32_t tmpccmr3;
1128   uint32_t tmpccer;
1129 
1130   /* Check the parameters */
1131   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1132   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1133   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1134   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1135   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1136   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1137 
1138   /* Disable the Channel 5: Reset the CC5E Bit */
1139   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1140 
1141   /* Get the TIMx CCER register value */
1142   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1143 
1144   /* Get the TIMx CCMR3 register value */
1145   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1146 
1147   /* Select the Output Compare Mode */
1148   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1149 
1150   /* Set the Output Compare Polarity */
1151   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1152 
1153   /* Set the Output State */
1154   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1155 
1156   if (IS_TIM_BREAK_INSTANCE(TIMx))
1157   {
1158     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1159     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1160 
1161     /* Set the Output Idle state */
1162     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1163 
1164   }
1165 
1166   /* Write to TIMx CCMR3 */
1167   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1168 
1169   /* Set the Capture Compare Register value */
1170   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1171 
1172   /* Write to TIMx CCER */
1173   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1174 
1175   return SUCCESS;
1176 }
1177 
1178 /**
1179   * @brief  Configure the TIMx output channel 6.
1180   * @param  TIMx Timer Instance
1181   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1182   * @retval An ErrorStatus enumeration value:
1183   *          - SUCCESS: TIMx registers are de-initialized
1184   *          - ERROR: not applicable
1185   */
OC6Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1186 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1187 {
1188   uint32_t tmpccmr3;
1189   uint32_t tmpccer;
1190 
1191   /* Check the parameters */
1192   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1193   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1194   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1195   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1196   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1197   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1198 
1199   /* Disable the Channel 5: Reset the CC6E Bit */
1200   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1201 
1202   /* Get the TIMx CCER register value */
1203   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1204 
1205   /* Get the TIMx CCMR3 register value */
1206   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1207 
1208   /* Select the Output Compare Mode */
1209   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1210 
1211   /* Set the Output Compare Polarity */
1212   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1213 
1214   /* Set the Output State */
1215   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1216 
1217   if (IS_TIM_BREAK_INSTANCE(TIMx))
1218   {
1219     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1220     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1221 
1222     /* Set the Output Idle state */
1223     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1224   }
1225 
1226   /* Write to TIMx CCMR3 */
1227   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1228 
1229   /* Set the Capture Compare Register value */
1230   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1231 
1232   /* Write to TIMx CCER */
1233   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1234 
1235   return SUCCESS;
1236 }
1237 
1238 /**
1239   * @brief  Configure the TIMx input channel 1.
1240   * @param  TIMx Timer Instance
1241   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1242   * @retval An ErrorStatus enumeration value:
1243   *          - SUCCESS: TIMx registers are de-initialized
1244   *          - ERROR: not applicable
1245   */
IC1Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1246 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1247 {
1248   /* Check the parameters */
1249   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1250   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1251   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1252   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1253   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1254 
1255   /* Disable the Channel 1: Reset the CC1E Bit */
1256   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1257 
1258   /* Select the Input and set the filter and the prescaler value */
1259   MODIFY_REG(TIMx->CCMR1,
1260              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1261              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1262 
1263   /* Select the Polarity and set the CC1E Bit */
1264   MODIFY_REG(TIMx->CCER,
1265              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1266              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1267 
1268   return SUCCESS;
1269 }
1270 
1271 /**
1272   * @brief  Configure the TIMx input channel 2.
1273   * @param  TIMx Timer Instance
1274   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1275   * @retval An ErrorStatus enumeration value:
1276   *          - SUCCESS: TIMx registers are de-initialized
1277   *          - ERROR: not applicable
1278   */
IC2Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1279 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1280 {
1281   /* Check the parameters */
1282   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1283   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1284   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1285   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1286   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1287 
1288   /* Disable the Channel 2: Reset the CC2E Bit */
1289   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1290 
1291   /* Select the Input and set the filter and the prescaler value */
1292   MODIFY_REG(TIMx->CCMR1,
1293              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1294              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1295 
1296   /* Select the Polarity and set the CC2E Bit */
1297   MODIFY_REG(TIMx->CCER,
1298              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1299              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1300 
1301   return SUCCESS;
1302 }
1303 
1304 /**
1305   * @brief  Configure the TIMx input channel 3.
1306   * @param  TIMx Timer Instance
1307   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1308   * @retval An ErrorStatus enumeration value:
1309   *          - SUCCESS: TIMx registers are de-initialized
1310   *          - ERROR: not applicable
1311   */
IC3Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1312 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1313 {
1314   /* Check the parameters */
1315   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1316   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1317   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1318   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1319   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1320 
1321   /* Disable the Channel 3: Reset the CC3E Bit */
1322   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1323 
1324   /* Select the Input and set the filter and the prescaler value */
1325   MODIFY_REG(TIMx->CCMR2,
1326              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1327              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1328 
1329   /* Select the Polarity and set the CC3E Bit */
1330   MODIFY_REG(TIMx->CCER,
1331              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1332              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1333 
1334   return SUCCESS;
1335 }
1336 
1337 /**
1338   * @brief  Configure the TIMx input channel 4.
1339   * @param  TIMx Timer Instance
1340   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1341   * @retval An ErrorStatus enumeration value:
1342   *          - SUCCESS: TIMx registers are de-initialized
1343   *          - ERROR: not applicable
1344   */
IC4Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1345 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1346 {
1347   /* Check the parameters */
1348   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1349   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1350   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1351   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1352   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1353 
1354   /* Disable the Channel 4: Reset the CC4E Bit */
1355   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1356 
1357   /* Select the Input and set the filter and the prescaler value */
1358   MODIFY_REG(TIMx->CCMR2,
1359              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1360              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1361 
1362   /* Select the Polarity and set the CC2E Bit */
1363   MODIFY_REG(TIMx->CCER,
1364              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1365              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1366 
1367   return SUCCESS;
1368 }
1369 
1370 
1371 /**
1372   * @}
1373   */
1374 
1375 /**
1376   * @}
1377   */
1378 
1379 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 || TIM20 */
1380 
1381 /**
1382   * @}
1383   */
1384 
1385 #endif /* USE_FULL_LL_DRIVER */
1386 
1387