1 /**
2   ******************************************************************************
3   * @file    stm32g4xx_hal_pwr.c
4   * @author  MCD Application Team
5   * @brief   PWR HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Power Controller (PWR) peripheral:
8   *           + Initialization/de-initialization functions
9   *           + Peripheral Control functions
10   *
11   ******************************************************************************
12   * @attention
13   *
14   * Copyright (c) 2019 STMicroelectronics.
15   * All rights reserved.
16   *
17   * This software is licensed under terms that can be found in the LICENSE file
18   * in the root directory of this software component.
19   * If no LICENSE file comes with this software, it is provided AS-IS.
20   *
21   ******************************************************************************
22   */
23 
24 /* Includes ------------------------------------------------------------------*/
25 #include "stm32g4xx_hal.h"
26 
27 /** @addtogroup STM32G4xx_HAL_Driver
28   * @{
29   */
30 
31 /** @defgroup PWR PWR
32   * @brief PWR HAL module driver
33   * @{
34   */
35 
36 #ifdef HAL_PWR_MODULE_ENABLED
37 
38 /* Private typedef -----------------------------------------------------------*/
39 /* Private define ------------------------------------------------------------*/
40 
41 /** @defgroup PWR_Private_Defines PWR Private Defines
42   * @{
43   */
44 
45 /** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
46   * @{
47   */
48 #define PVD_MODE_IT               ((uint32_t)0x00010000)  /*!< Mask for interruption yielded by PVD threshold crossing */
49 #define PVD_MODE_EVT              ((uint32_t)0x00020000)  /*!< Mask for event yielded by PVD threshold crossing        */
50 #define PVD_RISING_EDGE           ((uint32_t)0x00000001)  /*!< Mask for rising edge set as PVD trigger                 */
51 #define PVD_FALLING_EDGE          ((uint32_t)0x00000002)  /*!< Mask for falling edge set as PVD trigger                */
52 /**
53   * @}
54   */
55 
56 /**
57   * @}
58   */
59 
60 /* Private macro -------------------------------------------------------------*/
61 /* Private variables ---------------------------------------------------------*/
62 /* Private function prototypes -----------------------------------------------*/
63 /* Exported functions --------------------------------------------------------*/
64 
65 /** @defgroup PWR_Exported_Functions PWR Exported Functions
66   * @{
67   */
68 
69 /** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
70   *  @brief    Initialization and de-initialization functions
71   *
72 @verbatim
73  ===============================================================================
74               ##### Initialization and de-initialization functions #####
75  ===============================================================================
76     [..]
77 
78 @endverbatim
79   * @{
80   */
81 
82 /**
83   * @brief Deinitialize the HAL PWR peripheral registers to their default reset values.
84   * @retval None
85   */
HAL_PWR_DeInit(void)86 void HAL_PWR_DeInit(void)
87 {
88   __HAL_RCC_PWR_FORCE_RESET();
89   __HAL_RCC_PWR_RELEASE_RESET();
90 }
91 
92 /**
93   * @brief Enable access to the backup domain
94   *        (RTC registers, RTC backup data registers).
95   * @note  After reset, the backup domain is protected against
96   *        possible unwanted write accesses.
97   * @note  RTCSEL that sets the RTC clock source selection is in the RTC back-up domain.
98   *        In order to set or modify the RTC clock, the backup domain access must be
99   *        disabled.
100   * @note  LSEON bit that switches on and off the LSE crystal belongs as well to the
101   *        back-up domain.
102   * @retval None
103   */
HAL_PWR_EnableBkUpAccess(void)104 void HAL_PWR_EnableBkUpAccess(void)
105 {
106   SET_BIT(PWR->CR1, PWR_CR1_DBP);
107 }
108 
109 /**
110   * @brief Disable access to the backup domain
111   *        (RTC registers, RTC backup data registers).
112   * @retval None
113   */
HAL_PWR_DisableBkUpAccess(void)114 void HAL_PWR_DisableBkUpAccess(void)
115 {
116   CLEAR_BIT(PWR->CR1, PWR_CR1_DBP);
117 }
118 
119 
120 
121 
122 /**
123   * @}
124   */
125 
126 
127 
128 /** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
129   *  @brief Low Power modes configuration functions
130   *
131 @verbatim
132 
133  ===============================================================================
134                  ##### Peripheral Control functions #####
135  ===============================================================================
136 
137      [..]
138      *** PVD configuration ***
139     =========================
140     [..]
141       (+) The PVD is used to monitor the VDD power supply by comparing it to a
142           threshold selected by the PVD Level (PLS[2:0] bits in PWR_CR2 register).
143 
144       (+) PVDO flag is available to indicate if VDD/VDDA is higher or lower
145           than the PVD threshold. This event is internally connected to the EXTI
146           line16 and can generate an interrupt if enabled. This is done through
147           __HAL_PVD_EXTI_ENABLE_IT() macro.
148       (+) The PVD is stopped in Standby mode.
149 
150 
151     *** WakeUp pin configuration ***
152     ================================
153     [..]
154       (+) WakeUp pins are used to wakeup the system from Standby mode or Shutdown mode.
155           The polarity of these pins can be set to configure event detection on high
156           level (rising edge) or low level (falling edge).
157 
158 
159 
160     *** Low Power modes configuration ***
161     =====================================
162     [..]
163       The devices feature 8 low-power modes:
164       (+) Low-power Run mode: core and peripherals are running, main regulator off, low power regulator on.
165       (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running, main and low power regulators on.
166       (+) Low-power Sleep mode: Cortex-M4 core stopped, peripherals kept running, main regulator off, low power regulator on.
167       (+) Stop 0 mode: all clocks are stopped except LSI and LSE, main and low power regulators on.
168       (+) Stop 1 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on.
169       (+) Standby mode with SRAM2: all clocks are stopped except LSI and LSE, SRAM2 content preserved, main regulator off, low power regulator on.
170       (+) Standby mode without SRAM2: all clocks are stopped except LSI and LSE, main and low power regulators off.
171       (+) Shutdown mode: all clocks are stopped except LSE, main and low power regulators off.
172 
173 
174    *** Low-power run mode ***
175    ==========================
176     [..]
177       (+) Entry: (from main run mode)
178         (++) set LPR bit with HAL_PWREx_EnableLowPowerRunMode() API after having decreased the system clock below 2 MHz.
179 
180       (+) Exit:
181         (++) clear LPR bit then wait for REGLP bit to be reset with HAL_PWREx_DisableLowPowerRunMode() API. Only
182              then can the system clock frequency be increased above 2 MHz.
183 
184 
185    *** Sleep mode / Low-power sleep mode ***
186    =========================================
187     [..]
188       (+) Entry:
189           The Sleep mode / Low-power Sleep mode is entered through HAL_PWR_EnterSLEEPMode() API
190           in specifying whether or not the regulator is forced to low-power mode and if exit is interrupt or event-triggered.
191           (++) PWR_MAINREGULATOR_ON: Sleep mode (regulator in main mode).
192           (++) PWR_LOWPOWERREGULATOR_ON: Low-power sleep (regulator in low power mode).
193           In the latter case, the system clock frequency must have been decreased below 2 MHz beforehand.
194           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
195           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
196 
197       (+) WFI Exit:
198         (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
199              controller (NVIC) or any wake-up event.
200 
201       (+) WFE Exit:
202         (++) Any wake-up event such as an EXTI line configured in event mode.
203 
204          [..] When exiting the Low-power sleep mode by issuing an interrupt or a wakeup event,
205              the MCU is in Low-power Run mode.
206 
207    *** Stop 0, Stop 1 modes ***
208    ===============================
209     [..]
210       (+) Entry:
211           The Stop 0, Stop 1 modes are entered through the following API's:
212           (++) HAL_PWREx_EnterSTOP0Mode() for mode 0 or HAL_PWREx_EnterSTOP1Mode() for mode 1 or for porting reasons HAL_PWR_EnterSTOPMode().
213       (+) Regulator setting (applicable to HAL_PWR_EnterSTOPMode() only):
214           (++) PWR_MAINREGULATOR_ON
215           (++) PWR_LOWPOWERREGULATOR_ON
216       (+) Exit (interrupt or event-triggered, specified when entering STOP mode):
217           (++) PWR_STOPENTRY_WFI: enter Stop mode with WFI instruction
218           (++) PWR_STOPENTRY_WFE: enter Stop mode with WFE instruction
219 
220       (+) WFI Exit:
221           (++) Any EXTI Line (Internal or External) configured in Interrupt mode.
222           (++) Some specific communication peripherals (USART, LPUART, I2C) interrupts
223                when programmed in wakeup mode.
224       (+) WFE Exit:
225           (++) Any EXTI Line (Internal or External) configured in Event mode.
226 
227        [..]
228           When exiting Stop 0 and Stop 1 modes, the MCU is either in Run mode or in Low-power Run mode
229           depending on the LPR bit setting.
230 
231    *** Standby mode ***
232    ====================
233      [..]
234       The Standby mode offers two options:
235       (+) option a) all clocks off except LSI and LSE, RRS bit set (keeps voltage regulator in low power mode).
236         SRAM and registers contents are lost except for the SRAM2 content, the RTC registers, RTC backup registers
237         and Standby circuitry.
238       (+) option b) all clocks off except LSI and LSE, RRS bit cleared (voltage regulator then disabled).
239         SRAM and register contents are lost except for the RTC registers, RTC backup registers
240         and Standby circuitry.
241 
242       (++) Entry:
243           (+++) The Standby mode is entered through HAL_PWR_EnterSTANDBYMode() API.
244                 SRAM1 and register contents are lost except for registers in the Backup domain and
245                 Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register.
246                 To enable this feature, the user can resort to HAL_PWREx_EnableSRAM2ContentRetention() API
247                 to set RRS bit.
248 
249       (++) Exit:
250           (+++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event,
251                 external reset in NRST pin, IWDG reset.
252 
253       [..]    After waking up from Standby mode, program execution restarts in the same way as after a Reset.
254 
255 
256     *** Shutdown mode ***
257    ======================
258      [..]
259       In Shutdown mode,
260         voltage regulator is disabled, all clocks are off except LSE, RRS bit is cleared.
261         SRAM and registers contents are lost except for backup domain registers.
262 
263       (+) Entry:
264           The Shutdown mode is entered through HAL_PWREx_EnterSHUTDOWNMode() API.
265 
266       (+) Exit:
267           (++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event,
268                external reset in NRST pin.
269 
270          [..] After waking up from Shutdown mode, program execution restarts in the same way as after a Reset.
271 
272 
273    *** Auto-wakeup (AWU) from low-power mode ***
274    =============================================
275     [..]
276       The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
277       Wakeup event, a tamper event or a time-stamp event, without depending on
278       an external interrupt (Auto-wakeup mode).
279 
280       (+) RTC auto-wakeup (AWU) from the Stop, Standby and Shutdown modes
281 
282 
283         (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
284              configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
285 
286         (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
287              is necessary to configure the RTC to detect the tamper or time stamp event using the
288              HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions.
289 
290         (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to
291               configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function.
292 
293 @endverbatim
294   * @{
295   */
296 
297 
298 
299 /**
300   * @brief Configure the voltage threshold detected by the Power Voltage Detector (PVD).
301   * @param sConfigPVD: pointer to a PWR_PVDTypeDef structure that contains the PVD
302   *        configuration information.
303   * @note Refer to the electrical characteristics of your device datasheet for
304   *         more details about the voltage thresholds corresponding to each
305   *         detection level.
306   * @retval None
307   */
HAL_PWR_ConfigPVD(PWR_PVDTypeDef * sConfigPVD)308 HAL_StatusTypeDef HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
309 {
310   /* Check the parameters */
311   assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
312   assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
313 
314   /* Set PLS bits according to PVDLevel value */
315   MODIFY_REG(PWR->CR2, PWR_CR2_PLS, sConfigPVD->PVDLevel);
316 
317   /* Clear any previous config. Keep it clear if no event or IT mode is selected */
318   __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
319   __HAL_PWR_PVD_EXTI_DISABLE_IT();
320   __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
321   __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
322 
323   /* Configure interrupt mode */
324   if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
325   {
326     __HAL_PWR_PVD_EXTI_ENABLE_IT();
327   }
328 
329   /* Configure event mode */
330   if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
331   {
332     __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
333   }
334 
335   /* Configure the edge */
336   if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
337   {
338     __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
339   }
340 
341   if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
342   {
343     __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
344   }
345 
346   return HAL_OK;
347 }
348 
349 
350 /**
351   * @brief Enable the Power Voltage Detector (PVD).
352   * @retval None
353   */
HAL_PWR_EnablePVD(void)354 void HAL_PWR_EnablePVD(void)
355 {
356   SET_BIT(PWR->CR2, PWR_CR2_PVDE);
357 }
358 
359 /**
360   * @brief Disable the Power Voltage Detector (PVD).
361   * @retval None
362   */
HAL_PWR_DisablePVD(void)363 void HAL_PWR_DisablePVD(void)
364 {
365   CLEAR_BIT(PWR->CR2, PWR_CR2_PVDE);
366 }
367 
368 
369 
370 
371 /**
372   * @brief Enable the WakeUp PINx functionality.
373   * @param WakeUpPinPolarity: Specifies which Wake-Up pin to enable.
374   *         This parameter can be one of the following legacy values which set the default polarity
375   *         i.e. detection on high level (rising edge):
376   *           @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5
377   *
378   *         or one of the following value where the user can explicitly specify the enabled pin and
379   *         the chosen polarity:
380   *           @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW
381   *           @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW
382   *           @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW
383   *           @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW
384   *           @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW
385   * @note  PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent.
386   * @retval None
387   */
HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity)388 void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity)
389 {
390   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity));
391 
392   /* Specifies the Wake-Up pin polarity for the event detection
393     (rising or falling edge) */
394   MODIFY_REG(PWR->CR4, (PWR_CR3_EWUP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT));
395 
396   /* Enable wake-up pin */
397   SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity));
398 
399 
400 }
401 
402 /**
403   * @brief Disable the WakeUp PINx functionality.
404   * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
405   *         This parameter can be one of the following values:
406   *           @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5
407   * @retval None
408   */
HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)409 void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
410 {
411   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
412 
413   CLEAR_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinx));
414 }
415 
416 
417 /**
418   * @brief Enter Sleep or Low-power Sleep mode.
419   * @note  In Sleep/Low-power Sleep mode, all I/O pins keep the same state as in Run mode.
420   * @param Regulator: Specifies the regulator state in Sleep/Low-power Sleep mode.
421   *          This parameter can be one of the following values:
422   *            @arg @ref PWR_MAINREGULATOR_ON Sleep mode (regulator in main mode)
423   *            @arg @ref PWR_LOWPOWERREGULATOR_ON Low-power Sleep mode (regulator in low-power mode)
424   * @note  Low-power Sleep mode is entered from Low-power Run mode. Therefore, if not yet
425   *        in Low-power Run mode before calling HAL_PWR_EnterSLEEPMode() with Regulator set
426   *        to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
427   *        Flash in power-down monde in setting the SLEEP_PD bit in FLASH_ACR register.
428   *        Additionally, the clock frequency must be reduced below 2 MHz.
429   *        Setting SLEEP_PD in FLASH_ACR then appropriately reducing the clock frequency must
430   *        be done before calling HAL_PWR_EnterSLEEPMode() API.
431   * @note  When exiting Low-power Sleep mode, the MCU is in Low-power Run mode. To move in
432   *        Run mode, the user must resort to HAL_PWREx_DisableLowPowerRunMode() API.
433   * @param SLEEPEntry: Specifies if Sleep mode is entered with WFI or WFE instruction.
434   *           This parameter can be one of the following values:
435   *            @arg @ref PWR_SLEEPENTRY_WFI enter Sleep or Low-power Sleep mode with WFI instruction
436   *            @arg @ref PWR_SLEEPENTRY_WFE enter Sleep or Low-power Sleep mode with WFE instruction
437   * @note  When WFI entry is used, tick interrupt have to be disabled if not desired as
438   *        the interrupt wake up source.
439   * @retval None
440   */
HAL_PWR_EnterSLEEPMode(uint32_t Regulator,uint8_t SLEEPEntry)441 void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
442 {
443   /* Check the parameters */
444   assert_param(IS_PWR_REGULATOR(Regulator));
445   assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
446 
447   /* Set Regulator parameter */
448   if (Regulator == PWR_MAINREGULATOR_ON)
449   {
450     /* If in low-power run mode at this point, exit it */
451     if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
452     {
453       (void)HAL_PWREx_DisableLowPowerRunMode();
454     }
455     /* Regulator now in main mode. */
456   }
457   else
458   {
459     /* If in run mode, first move to low-power run mode.
460        The system clock frequency must be below 2 MHz at this point. */
461     if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF) == 0U)
462     {
463       HAL_PWREx_EnableLowPowerRunMode();
464     }
465   }
466 
467   /* Clear SLEEPDEEP bit of Cortex System Control Register */
468   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
469 
470   /* Select SLEEP mode entry -------------------------------------------------*/
471   if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
472   {
473     /* Request Wait For Interrupt */
474     __WFI();
475   }
476   else
477   {
478     /* Request Wait For Event */
479     __SEV();
480     __WFE();
481     __WFE();
482   }
483 
484 }
485 
486 
487 /**
488   * @brief Enter Stop mode
489   * @note  This API is named HAL_PWR_EnterSTOPMode to ensure compatibility with legacy code running
490   *        on devices where only "Stop mode" is mentioned with main or low power regulator ON.
491   * @note  In Stop mode, all I/O pins keep the same state as in Run mode.
492   * @note  All clocks in the VCORE domain are stopped; the PLL,
493   *        the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
494   *        (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
495   *        after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
496   *        only to the peripheral requesting it.
497   *        SRAM1, SRAM2 and register contents are preserved.
498   *        The BOR is available.
499   *        The voltage regulator can be configured either in normal (Stop 0) or low-power mode (Stop 1).
500   * @note  When exiting Stop 0 or Stop 1 mode by issuing an interrupt or a wakeup event,
501   *         the HSI RC oscillator is selected as system clock.
502   * @note  When the voltage regulator operates in low power mode (Stop 1), an additional
503   *         startup delay is incurred when waking up.
504   *         By keeping the internal regulator ON during Stop mode (Stop 0), the consumption
505   *         is higher although the startup time is reduced.
506   * @param Regulator: Specifies the regulator state in Stop mode.
507   *          This parameter can be one of the following values:
508   *            @arg @ref PWR_MAINREGULATOR_ON  Stop 0 mode (main regulator ON)
509   *            @arg @ref PWR_LOWPOWERREGULATOR_ON  Stop 1 mode (low power regulator ON)
510   * @param STOPEntry: Specifies Stop 0 or Stop 1 mode is entered with WFI or WFE instruction.
511   *          This parameter can be one of the following values:
512   *            @arg @ref PWR_STOPENTRY_WFI  Enter Stop 0 or Stop 1 mode with WFI instruction.
513   *            @arg @ref PWR_STOPENTRY_WFE  Enter Stop 0 or Stop 1 mode with WFE instruction.
514   * @retval None
515   */
HAL_PWR_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry)516 void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
517 {
518   /* Check the parameters */
519   assert_param(IS_PWR_REGULATOR(Regulator));
520 
521   if(Regulator == PWR_LOWPOWERREGULATOR_ON)
522   {
523     HAL_PWREx_EnterSTOP1Mode(STOPEntry);
524   }
525   else
526   {
527     HAL_PWREx_EnterSTOP0Mode(STOPEntry);
528   }
529 }
530 
531 /**
532   * @brief Enter Standby mode.
533   * @note  In Standby mode, the PLL, the HSI and the HSE oscillators are switched
534   *        off. The voltage regulator is disabled, except when SRAM2 content is preserved
535   *        in which case the regulator is in low-power mode.
536   *        SRAM1 and register contents are lost except for registers in the Backup domain and
537   *        Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register.
538   *        To enable this feature, the user can resort to HAL_PWREx_EnableSRAM2ContentRetention() API
539   *        to set RRS bit.
540   *        The BOR is available.
541   * @note  The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
542   *        HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() respectively enable Pull Up and
543   *        Pull Down state, HAL_PWREx_DisableGPIOPullUp() and HAL_PWREx_DisableGPIOPullDown() disable the
544   *        same.
545   *        These states are effective in Standby mode only if APC bit is set through
546   *        HAL_PWREx_EnablePullUpPullDownConfig() API.
547   * @retval None
548   */
HAL_PWR_EnterSTANDBYMode(void)549 void HAL_PWR_EnterSTANDBYMode(void)
550 {
551   /* Set Stand-by mode */
552   MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STANDBY);
553 
554   /* Set SLEEPDEEP bit of Cortex System Control Register */
555   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
556 
557 /* This option is used to ensure that store operations are completed */
558 #if defined ( __CC_ARM)
559   __force_stores();
560 #endif
561   /* Request Wait For Interrupt */
562   __WFI();
563 }
564 
565 
566 
567 /**
568   * @brief Indicate Sleep-On-Exit when returning from Handler mode to Thread mode.
569   * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
570   *       re-enters SLEEP mode when an interruption handling is over.
571   *       Setting this bit is useful when the processor is expected to run only on
572   *       interruptions handling.
573   * @retval None
574   */
HAL_PWR_EnableSleepOnExit(void)575 void HAL_PWR_EnableSleepOnExit(void)
576 {
577   /* Set SLEEPONEXIT bit of Cortex System Control Register */
578   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
579 }
580 
581 
582 /**
583   * @brief Disable Sleep-On-Exit feature when returning from Handler mode to Thread mode.
584   * @note Clear SLEEPONEXIT bit of SCR register. When this bit is set, the processor
585   *       re-enters SLEEP mode when an interruption handling is over.
586   * @retval None
587   */
HAL_PWR_DisableSleepOnExit(void)588 void HAL_PWR_DisableSleepOnExit(void)
589 {
590   /* Clear SLEEPONEXIT bit of Cortex System Control Register */
591   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
592 }
593 
594 
595 
596 /**
597   * @brief Enable CORTEX M4 SEVONPEND bit.
598   * @note Set SEVONPEND bit of SCR register. When this bit is set, this causes
599   *       WFE to wake up when an interrupt moves from inactive to pended.
600   * @retval None
601   */
HAL_PWR_EnableSEVOnPend(void)602 void HAL_PWR_EnableSEVOnPend(void)
603 {
604   /* Set SEVONPEND bit of Cortex System Control Register */
605   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
606 }
607 
608 
609 /**
610   * @brief Disable CORTEX M4 SEVONPEND bit.
611   * @note Clear SEVONPEND bit of SCR register. When this bit is set, this causes
612   *       WFE to wake up when an interrupt moves from inactive to pended.
613   * @retval None
614   */
HAL_PWR_DisableSEVOnPend(void)615 void HAL_PWR_DisableSEVOnPend(void)
616 {
617   /* Clear SEVONPEND bit of Cortex System Control Register */
618   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
619 }
620 
621 
622 
623 
624 
625 /**
626   * @brief PWR PVD interrupt callback
627   * @retval None
628   */
HAL_PWR_PVDCallback(void)629 __weak void HAL_PWR_PVDCallback(void)
630 {
631   /* NOTE : This function should not be modified; when the callback is needed,
632             the HAL_PWR_PVDCallback can be implemented in the user file
633    */
634 }
635 
636 /**
637   * @}
638   */
639 
640 /**
641   * @}
642   */
643 
644 #endif /* HAL_PWR_MODULE_ENABLED */
645 /**
646   * @}
647   */
648 
649 /**
650   * @}
651   */
652 
653