1 /**
2   ******************************************************************************
3   * @file    stm32f7xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2017 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32f7xx_ll_tim.h"
22 #include "stm32f7xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32F7xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM8) || defined (TIM2) || defined (TIM3) ||  defined (TIM4) || defined (TIM5) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM6) || defined (TIM7)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
71 
72 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
73                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
74 
75 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
76                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
77 
78 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
79                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
80 
81 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
82                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
83                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
84 
85 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
86                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
87                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
89 
90 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
106 
107 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
108                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
109                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
110 
111 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
112                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
113                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
114 
115 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
116                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
117 
118 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
119                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
120 
121 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
122                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
123 
124 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
125                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
126                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
127                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
128 
129 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
130                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
131 
132 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
133                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
134 
135 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
136                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
137                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
138                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
139                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
140                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
141                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
142                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
143                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
151 
152 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
153                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
154 
155 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
156                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
157 
158 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
159                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
160                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
161                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
162                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
163                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
164                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
165                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
166                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
167                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
168                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
169                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
174 
175 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
176                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
177 /**
178   * @}
179   */
180 
181 
182 /* Private function prototypes -----------------------------------------------*/
183 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
184   * @{
185   */
186 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
187 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
188 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
189 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
190 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
191 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
192 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
193 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
194 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
195 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
196 /**
197   * @}
198   */
199 
200 /* Exported functions --------------------------------------------------------*/
201 /** @addtogroup TIM_LL_Exported_Functions
202   * @{
203   */
204 
205 /** @addtogroup TIM_LL_EF_Init
206   * @{
207   */
208 
209 /**
210   * @brief  Set TIMx registers to their reset values.
211   * @param  TIMx Timer instance
212   * @retval An ErrorStatus enumeration value:
213   *          - SUCCESS: TIMx registers are de-initialized
214   *          - ERROR: invalid TIMx instance
215   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)216 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
217 {
218   ErrorStatus result = SUCCESS;
219 
220   /* Check the parameters */
221   assert_param(IS_TIM_INSTANCE(TIMx));
222 
223   if (TIMx == TIM1)
224   {
225     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
226     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
227   }
228   else if (TIMx == TIM2)
229   {
230     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
231     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
232   }
233 #if defined(TIM3)
234   else if (TIMx == TIM3)
235   {
236     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
237     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
238   }
239 #endif /* TIM3 */
240 #if defined(TIM4)
241   else if (TIMx == TIM4)
242   {
243     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
244     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
245   }
246 #endif /* TIM4 */
247 #if defined(TIM5)
248   else if (TIMx == TIM5)
249   {
250     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
251     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
252   }
253 #endif /* TIM5 */
254 #if defined(TIM6)
255   else if (TIMx == TIM6)
256   {
257     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
258     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
259   }
260 #endif /* TIM6 */
261 #if defined (TIM7)
262   else if (TIMx == TIM7)
263   {
264     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
265     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
266   }
267 #endif /* TIM7 */
268 #if defined(TIM8)
269   else if (TIMx == TIM8)
270   {
271     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
272     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
273   }
274 #endif /* TIM8 */
275 #if defined(TIM9)
276   else if (TIMx == TIM9)
277   {
278     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
279     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
280   }
281 #endif /* TIM9 */
282 #if defined(TIM10)
283   else if (TIMx == TIM10)
284   {
285     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
286     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
287   }
288 #endif /* TIM10 */
289 #if defined(TIM11)
290   else if (TIMx == TIM11)
291   {
292     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
293     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
294   }
295 #endif /* TIM11 */
296 #if defined(TIM12)
297   else if (TIMx == TIM12)
298   {
299     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
300     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
301   }
302 #endif /* TIM12 */
303 #if defined(TIM13)
304   else if (TIMx == TIM13)
305   {
306     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
307     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
308   }
309 #endif /* TIM13 */
310 #if defined(TIM14)
311   else if (TIMx == TIM14)
312   {
313     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
314     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
315   }
316 #endif /* TIM14 */
317   else
318   {
319     result = ERROR;
320   }
321 
322   return result;
323 }
324 
325 /**
326   * @brief  Set the fields of the time base unit configuration data structure
327   *         to their default values.
328   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
329   * @retval None
330   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)331 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
332 {
333   /* Set the default configuration */
334   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
335   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
336   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
337   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
338   TIM_InitStruct->RepetitionCounter = 0x00000000U;
339 }
340 
341 /**
342   * @brief  Configure the TIMx time base unit.
343   * @param  TIMx Timer Instance
344   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
345   *         (TIMx time base unit configuration data structure)
346   * @retval An ErrorStatus enumeration value:
347   *          - SUCCESS: TIMx registers are de-initialized
348   *          - ERROR: not applicable
349   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)350 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
351 {
352   uint32_t tmpcr1;
353 
354   /* Check the parameters */
355   assert_param(IS_TIM_INSTANCE(TIMx));
356   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
357   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
358 
359   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
360 
361   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
362   {
363     /* Select the Counter Mode */
364     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
365   }
366 
367   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
368   {
369     /* Set the clock division */
370     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
371   }
372 
373   /* Write to TIMx CR1 */
374   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
375 
376   /* Set the Autoreload value */
377   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
378 
379   /* Set the Prescaler value */
380   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
381 
382   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
383   {
384     /* Set the Repetition Counter value */
385     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
386   }
387 
388   /* Generate an update event to reload the Prescaler
389      and the repetition counter value (if applicable) immediately */
390   LL_TIM_GenerateEvent_UPDATE(TIMx);
391 
392   return SUCCESS;
393 }
394 
395 /**
396   * @brief  Set the fields of the TIMx output channel configuration data
397   *         structure to their default values.
398   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
399   *         (the output channel configuration data structure)
400   * @retval None
401   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)402 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
403 {
404   /* Set the default configuration */
405   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
406   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
407   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
408   TIM_OC_InitStruct->CompareValue = 0x00000000U;
409   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
410   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
411   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
412   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
413 }
414 
415 /**
416   * @brief  Configure the TIMx output channel.
417   * @param  TIMx Timer Instance
418   * @param  Channel This parameter can be one of the following values:
419   *         @arg @ref LL_TIM_CHANNEL_CH1
420   *         @arg @ref LL_TIM_CHANNEL_CH2
421   *         @arg @ref LL_TIM_CHANNEL_CH3
422   *         @arg @ref LL_TIM_CHANNEL_CH4
423   *         @arg @ref LL_TIM_CHANNEL_CH5
424   *         @arg @ref LL_TIM_CHANNEL_CH6
425   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
426   *         data structure)
427   * @retval An ErrorStatus enumeration value:
428   *          - SUCCESS: TIMx output channel is initialized
429   *          - ERROR: TIMx output channel is not initialized
430   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)431 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
432 {
433   ErrorStatus result = ERROR;
434 
435   switch (Channel)
436   {
437     case LL_TIM_CHANNEL_CH1:
438       result = OC1Config(TIMx, TIM_OC_InitStruct);
439       break;
440     case LL_TIM_CHANNEL_CH2:
441       result = OC2Config(TIMx, TIM_OC_InitStruct);
442       break;
443     case LL_TIM_CHANNEL_CH3:
444       result = OC3Config(TIMx, TIM_OC_InitStruct);
445       break;
446     case LL_TIM_CHANNEL_CH4:
447       result = OC4Config(TIMx, TIM_OC_InitStruct);
448       break;
449     case LL_TIM_CHANNEL_CH5:
450       result = OC5Config(TIMx, TIM_OC_InitStruct);
451       break;
452     case LL_TIM_CHANNEL_CH6:
453       result = OC6Config(TIMx, TIM_OC_InitStruct);
454       break;
455     default:
456       break;
457   }
458 
459   return result;
460 }
461 
462 /**
463   * @brief  Set the fields of the TIMx input channel configuration data
464   *         structure to their default values.
465   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
466   *         data structure)
467   * @retval None
468   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)469 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
470 {
471   /* Set the default configuration */
472   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
473   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
474   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
475   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
476 }
477 
478 /**
479   * @brief  Configure the TIMx input channel.
480   * @param  TIMx Timer Instance
481   * @param  Channel This parameter can be one of the following values:
482   *         @arg @ref LL_TIM_CHANNEL_CH1
483   *         @arg @ref LL_TIM_CHANNEL_CH2
484   *         @arg @ref LL_TIM_CHANNEL_CH3
485   *         @arg @ref LL_TIM_CHANNEL_CH4
486   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
487   *         structure)
488   * @retval An ErrorStatus enumeration value:
489   *          - SUCCESS: TIMx output channel is initialized
490   *          - ERROR: TIMx output channel is not initialized
491   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)492 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
493 {
494   ErrorStatus result = ERROR;
495 
496   switch (Channel)
497   {
498     case LL_TIM_CHANNEL_CH1:
499       result = IC1Config(TIMx, TIM_IC_InitStruct);
500       break;
501     case LL_TIM_CHANNEL_CH2:
502       result = IC2Config(TIMx, TIM_IC_InitStruct);
503       break;
504     case LL_TIM_CHANNEL_CH3:
505       result = IC3Config(TIMx, TIM_IC_InitStruct);
506       break;
507     case LL_TIM_CHANNEL_CH4:
508       result = IC4Config(TIMx, TIM_IC_InitStruct);
509       break;
510     default:
511       break;
512   }
513 
514   return result;
515 }
516 
517 /**
518   * @brief  Fills each TIM_EncoderInitStruct field with its default value
519   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
520   *         configuration data structure)
521   * @retval None
522   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)523 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
524 {
525   /* Set the default configuration */
526   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
527   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
528   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
529   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
530   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
531   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
532   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
533   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
534   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
535 }
536 
537 /**
538   * @brief  Configure the encoder interface of the timer instance.
539   * @param  TIMx Timer Instance
540   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
541   *         configuration data structure)
542   * @retval An ErrorStatus enumeration value:
543   *          - SUCCESS: TIMx registers are de-initialized
544   *          - ERROR: not applicable
545   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)546 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
547 {
548   uint32_t tmpccmr1;
549   uint32_t tmpccer;
550 
551   /* Check the parameters */
552   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
553   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
554   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
555   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
556   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
557   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
558   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
559   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
560   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
561   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
562 
563   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
564   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
565 
566   /* Get the TIMx CCMR1 register value */
567   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
568 
569   /* Get the TIMx CCER register value */
570   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
571 
572   /* Configure TI1 */
573   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
574   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
575   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
576   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
577 
578   /* Configure TI2 */
579   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
580   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
581   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
582   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
583 
584   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
585   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
586   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
587   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
588   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
589 
590   /* Set encoder mode */
591   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
592 
593   /* Write to TIMx CCMR1 */
594   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
595 
596   /* Write to TIMx CCER */
597   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
598 
599   return SUCCESS;
600 }
601 
602 /**
603   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
604   *         structure to their default values.
605   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
606   *         configuration data structure)
607   * @retval None
608   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)609 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
610 {
611   /* Set the default configuration */
612   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
613   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
614   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
615   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
616 }
617 
618 /**
619   * @brief  Configure the Hall sensor interface of the timer instance.
620   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
621   *       to the TI1 input channel
622   * @note TIMx slave mode controller is configured in reset mode.
623           Selected internal trigger is TI1F_ED.
624   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
625   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
626   *       between 2 changes on the inputs. It gives information about motor speed.
627   * @note Channel 2 is configured in output PWM 2 mode.
628   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
629   * @note OC2REF is selected as trigger output on TRGO.
630   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
631   *       when TIMx operates in Hall sensor interface mode.
632   * @param  TIMx Timer Instance
633   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
634   *         interface configuration data structure)
635   * @retval An ErrorStatus enumeration value:
636   *          - SUCCESS: TIMx registers are de-initialized
637   *          - ERROR: not applicable
638   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)639 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
640 {
641   uint32_t tmpcr2;
642   uint32_t tmpccmr1;
643   uint32_t tmpccer;
644   uint32_t tmpsmcr;
645 
646   /* Check the parameters */
647   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
648   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
649   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
650   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
651 
652   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
653   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
654 
655   /* Get the TIMx CR2 register value */
656   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
657 
658   /* Get the TIMx CCMR1 register value */
659   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
660 
661   /* Get the TIMx CCER register value */
662   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
663 
664   /* Get the TIMx SMCR register value */
665   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
666 
667   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
668   tmpcr2 |= TIM_CR2_TI1S;
669 
670   /* OC2REF signal is used as trigger output (TRGO) */
671   tmpcr2 |= LL_TIM_TRGO_OC2REF;
672 
673   /* Configure the slave mode controller */
674   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
675   tmpsmcr |= LL_TIM_TS_TI1F_ED;
676   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
677 
678   /* Configure input channel 1 */
679   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
680   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
681   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
682   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
683 
684   /* Configure input channel 2 */
685   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
686   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
687 
688   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
689   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
690   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
691   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
692 
693   /* Write to TIMx CR2 */
694   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
695 
696   /* Write to TIMx SMCR */
697   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
698 
699   /* Write to TIMx CCMR1 */
700   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
701 
702   /* Write to TIMx CCER */
703   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
704 
705   /* Write to TIMx CCR2 */
706   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
707 
708   return SUCCESS;
709 }
710 
711 /**
712   * @brief  Set the fields of the Break and Dead Time configuration data structure
713   *         to their default values.
714   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
715   *         data structure)
716   * @retval None
717   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)718 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
719 {
720   /* Set the default configuration */
721   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
722   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
723   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
724   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
725   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
726   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
727   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
728   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
729   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
730   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
731   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
732 }
733 
734 /**
735   * @brief  Configure the Break and Dead Time feature of the timer instance.
736   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
737   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
738   *  can be necessary to configure all of them during the first write access to
739   *  the TIMx_BDTR register.
740   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
741   *       a timer instance provides a break input.
742   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
743   *       a timer instance provides a second break input.
744   * @param  TIMx Timer Instance
745   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
746   *         data structure)
747   * @retval An ErrorStatus enumeration value:
748   *          - SUCCESS: Break and Dead Time is initialized
749   *          - ERROR: not applicable
750   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)751 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
752 {
753   uint32_t tmpbdtr = 0;
754 
755   /* Check the parameters */
756   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
757   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
758   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
759   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
760   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
761   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
762   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
763 
764   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
765   the OSSI State, the dead time value and the Automatic Output Enable Bit */
766 
767   /* Set the BDTR bits */
768   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
769   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
770   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
771   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
772   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
773   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
774   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
775   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
776   if (IS_TIM_ADVANCED_INSTANCE(TIMx))
777   {
778     assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
779     MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
780   }
781 
782   if (IS_TIM_BKIN2_INSTANCE(TIMx))
783   {
784     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
785     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
786     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
787 
788     /* Set the BREAK2 input related BDTR bit-fields */
789     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
790     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
791     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
792   }
793 
794   /* Set TIMx_BDTR */
795   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
796 
797   return SUCCESS;
798 }
799 /**
800   * @}
801   */
802 
803 /**
804   * @}
805   */
806 
807 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
808   *  @brief   Private functions
809   * @{
810   */
811 /**
812   * @brief  Configure the TIMx output channel 1.
813   * @param  TIMx Timer Instance
814   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
815   * @retval An ErrorStatus enumeration value:
816   *          - SUCCESS: TIMx registers are de-initialized
817   *          - ERROR: not applicable
818   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)819 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
820 {
821   uint32_t tmpccmr1;
822   uint32_t tmpccer;
823   uint32_t tmpcr2;
824 
825   /* Check the parameters */
826   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
827   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
828   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
829   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
830   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
831   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
832 
833   /* Disable the Channel 1: Reset the CC1E Bit */
834   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
835 
836   /* Get the TIMx CCER register value */
837   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
838 
839   /* Get the TIMx CR2 register value */
840   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
841 
842   /* Get the TIMx CCMR1 register value */
843   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
844 
845   /* Reset Capture/Compare selection Bits */
846   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
847 
848   /* Set the Output Compare Mode */
849   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
850 
851   /* Set the Output Compare Polarity */
852   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
853 
854   /* Set the Output State */
855   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
856 
857   if (IS_TIM_BREAK_INSTANCE(TIMx))
858   {
859     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
860     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
861 
862     /* Set the complementary output Polarity */
863     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
864 
865     /* Set the complementary output State */
866     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
867 
868     /* Set the Output Idle state */
869     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
870 
871     /* Set the complementary output Idle state */
872     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
873   }
874 
875   /* Write to TIMx CR2 */
876   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
877 
878   /* Write to TIMx CCMR1 */
879   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
880 
881   /* Set the Capture Compare Register value */
882   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
883 
884   /* Write to TIMx CCER */
885   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
886 
887   return SUCCESS;
888 }
889 
890 /**
891   * @brief  Configure the TIMx output channel 2.
892   * @param  TIMx Timer Instance
893   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
894   * @retval An ErrorStatus enumeration value:
895   *          - SUCCESS: TIMx registers are de-initialized
896   *          - ERROR: not applicable
897   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)898 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
899 {
900   uint32_t tmpccmr1;
901   uint32_t tmpccer;
902   uint32_t tmpcr2;
903 
904   /* Check the parameters */
905   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
906   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
907   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
908   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
909   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
910   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
911 
912   /* Disable the Channel 2: Reset the CC2E Bit */
913   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
914 
915   /* Get the TIMx CCER register value */
916   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
917 
918   /* Get the TIMx CR2 register value */
919   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
920 
921   /* Get the TIMx CCMR1 register value */
922   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
923 
924   /* Reset Capture/Compare selection Bits */
925   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
926 
927   /* Select the Output Compare Mode */
928   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
929 
930   /* Set the Output Compare Polarity */
931   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
932 
933   /* Set the Output State */
934   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
935 
936   if (IS_TIM_BREAK_INSTANCE(TIMx))
937   {
938     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
939     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
940 
941     /* Set the complementary output Polarity */
942     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
943 
944     /* Set the complementary output State */
945     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
946 
947     /* Set the Output Idle state */
948     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
949 
950     /* Set the complementary output Idle state */
951     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
952   }
953 
954   /* Write to TIMx CR2 */
955   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
956 
957   /* Write to TIMx CCMR1 */
958   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
959 
960   /* Set the Capture Compare Register value */
961   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
962 
963   /* Write to TIMx CCER */
964   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
965 
966   return SUCCESS;
967 }
968 
969 /**
970   * @brief  Configure the TIMx output channel 3.
971   * @param  TIMx Timer Instance
972   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
973   * @retval An ErrorStatus enumeration value:
974   *          - SUCCESS: TIMx registers are de-initialized
975   *          - ERROR: not applicable
976   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)977 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
978 {
979   uint32_t tmpccmr2;
980   uint32_t tmpccer;
981   uint32_t tmpcr2;
982 
983   /* Check the parameters */
984   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
985   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
986   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
987   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
988   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
989   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
990 
991   /* Disable the Channel 3: Reset the CC3E Bit */
992   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
993 
994   /* Get the TIMx CCER register value */
995   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
996 
997   /* Get the TIMx CR2 register value */
998   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
999 
1000   /* Get the TIMx CCMR2 register value */
1001   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1002 
1003   /* Reset Capture/Compare selection Bits */
1004   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
1005 
1006   /* Select the Output Compare Mode */
1007   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
1008 
1009   /* Set the Output Compare Polarity */
1010   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
1011 
1012   /* Set the Output State */
1013   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
1014 
1015   if (IS_TIM_BREAK_INSTANCE(TIMx))
1016   {
1017     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1018     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1019 
1020     /* Set the complementary output Polarity */
1021     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1022 
1023     /* Set the complementary output State */
1024     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1025 
1026     /* Set the Output Idle state */
1027     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1028 
1029     /* Set the complementary output Idle state */
1030     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1031   }
1032 
1033   /* Write to TIMx CR2 */
1034   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1035 
1036   /* Write to TIMx CCMR2 */
1037   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1038 
1039   /* Set the Capture Compare Register value */
1040   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1041 
1042   /* Write to TIMx CCER */
1043   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1044 
1045   return SUCCESS;
1046 }
1047 
1048 /**
1049   * @brief  Configure the TIMx output channel 4.
1050   * @param  TIMx Timer Instance
1051   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1052   * @retval An ErrorStatus enumeration value:
1053   *          - SUCCESS: TIMx registers are de-initialized
1054   *          - ERROR: not applicable
1055   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1056 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1057 {
1058   uint32_t tmpccmr2;
1059   uint32_t tmpccer;
1060   uint32_t tmpcr2;
1061 
1062   /* Check the parameters */
1063   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1064   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1065   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1066   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1067   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1068   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1069 
1070   /* Disable the Channel 4: Reset the CC4E Bit */
1071   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1072 
1073   /* Get the TIMx CCER register value */
1074   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1075 
1076   /* Get the TIMx CR2 register value */
1077   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1078 
1079   /* Get the TIMx CCMR2 register value */
1080   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1081 
1082   /* Reset Capture/Compare selection Bits */
1083   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1084 
1085   /* Select the Output Compare Mode */
1086   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1087 
1088   /* Set the Output Compare Polarity */
1089   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1090 
1091   /* Set the Output State */
1092   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1093 
1094   if (IS_TIM_BREAK_INSTANCE(TIMx))
1095   {
1096     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1097     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1098 
1099     /* Set the Output Idle state */
1100     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1101   }
1102 
1103   /* Write to TIMx CR2 */
1104   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1105 
1106   /* Write to TIMx CCMR2 */
1107   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1108 
1109   /* Set the Capture Compare Register value */
1110   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1111 
1112   /* Write to TIMx CCER */
1113   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1114 
1115   return SUCCESS;
1116 }
1117 
1118 /**
1119   * @brief  Configure the TIMx output channel 5.
1120   * @param  TIMx Timer Instance
1121   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1122   * @retval An ErrorStatus enumeration value:
1123   *          - SUCCESS: TIMx registers are de-initialized
1124   *          - ERROR: not applicable
1125   */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1126 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1127 {
1128   uint32_t tmpccmr3;
1129   uint32_t tmpccer;
1130 
1131   /* Check the parameters */
1132   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1133   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1134   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1135   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1136   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1137   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1138 
1139   /* Disable the Channel 5: Reset the CC5E Bit */
1140   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1141 
1142   /* Get the TIMx CCER register value */
1143   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1144 
1145   /* Get the TIMx CCMR3 register value */
1146   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1147 
1148   /* Select the Output Compare Mode */
1149   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1150 
1151   /* Set the Output Compare Polarity */
1152   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1153 
1154   /* Set the Output State */
1155   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1156 
1157   if (IS_TIM_BREAK_INSTANCE(TIMx))
1158   {
1159     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1160     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1161 
1162     /* Set the Output Idle state */
1163     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1164 
1165   }
1166 
1167   /* Write to TIMx CCMR3 */
1168   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1169 
1170   /* Set the Capture Compare Register value */
1171   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1172 
1173   /* Write to TIMx CCER */
1174   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1175 
1176   return SUCCESS;
1177 }
1178 
1179 /**
1180   * @brief  Configure the TIMx output channel 6.
1181   * @param  TIMx Timer Instance
1182   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1183   * @retval An ErrorStatus enumeration value:
1184   *          - SUCCESS: TIMx registers are de-initialized
1185   *          - ERROR: not applicable
1186   */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1187 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1188 {
1189   uint32_t tmpccmr3;
1190   uint32_t tmpccer;
1191 
1192   /* Check the parameters */
1193   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1194   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1195   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1196   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1197   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1198   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1199 
1200   /* Disable the Channel 5: Reset the CC6E Bit */
1201   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1202 
1203   /* Get the TIMx CCER register value */
1204   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1205 
1206   /* Get the TIMx CCMR3 register value */
1207   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1208 
1209   /* Select the Output Compare Mode */
1210   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1211 
1212   /* Set the Output Compare Polarity */
1213   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1214 
1215   /* Set the Output State */
1216   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1217 
1218   if (IS_TIM_BREAK_INSTANCE(TIMx))
1219   {
1220     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1221     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1222 
1223     /* Set the Output Idle state */
1224     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1225   }
1226 
1227   /* Write to TIMx CCMR3 */
1228   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1229 
1230   /* Set the Capture Compare Register value */
1231   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1232 
1233   /* Write to TIMx CCER */
1234   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1235 
1236   return SUCCESS;
1237 }
1238 
1239 /**
1240   * @brief  Configure the TIMx input channel 1.
1241   * @param  TIMx Timer Instance
1242   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1243   * @retval An ErrorStatus enumeration value:
1244   *          - SUCCESS: TIMx registers are de-initialized
1245   *          - ERROR: not applicable
1246   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1247 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1248 {
1249   /* Check the parameters */
1250   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1251   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1252   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1253   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1254   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1255 
1256   /* Disable the Channel 1: Reset the CC1E Bit */
1257   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1258 
1259   /* Select the Input and set the filter and the prescaler value */
1260   MODIFY_REG(TIMx->CCMR1,
1261              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1262              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1263 
1264   /* Select the Polarity and set the CC1E Bit */
1265   MODIFY_REG(TIMx->CCER,
1266              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1267              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1268 
1269   return SUCCESS;
1270 }
1271 
1272 /**
1273   * @brief  Configure the TIMx input channel 2.
1274   * @param  TIMx Timer Instance
1275   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1276   * @retval An ErrorStatus enumeration value:
1277   *          - SUCCESS: TIMx registers are de-initialized
1278   *          - ERROR: not applicable
1279   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1280 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1281 {
1282   /* Check the parameters */
1283   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1284   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1285   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1286   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1287   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1288 
1289   /* Disable the Channel 2: Reset the CC2E Bit */
1290   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1291 
1292   /* Select the Input and set the filter and the prescaler value */
1293   MODIFY_REG(TIMx->CCMR1,
1294              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1295              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1296 
1297   /* Select the Polarity and set the CC2E Bit */
1298   MODIFY_REG(TIMx->CCER,
1299              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1300              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1301 
1302   return SUCCESS;
1303 }
1304 
1305 /**
1306   * @brief  Configure the TIMx input channel 3.
1307   * @param  TIMx Timer Instance
1308   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1309   * @retval An ErrorStatus enumeration value:
1310   *          - SUCCESS: TIMx registers are de-initialized
1311   *          - ERROR: not applicable
1312   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1313 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1314 {
1315   /* Check the parameters */
1316   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1317   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1318   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1319   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1320   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1321 
1322   /* Disable the Channel 3: Reset the CC3E Bit */
1323   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1324 
1325   /* Select the Input and set the filter and the prescaler value */
1326   MODIFY_REG(TIMx->CCMR2,
1327              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1328              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1329 
1330   /* Select the Polarity and set the CC3E Bit */
1331   MODIFY_REG(TIMx->CCER,
1332              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1333              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1334 
1335   return SUCCESS;
1336 }
1337 
1338 /**
1339   * @brief  Configure the TIMx input channel 4.
1340   * @param  TIMx Timer Instance
1341   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1342   * @retval An ErrorStatus enumeration value:
1343   *          - SUCCESS: TIMx registers are de-initialized
1344   *          - ERROR: not applicable
1345   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1346 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1347 {
1348   /* Check the parameters */
1349   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1350   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1351   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1352   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1353   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1354 
1355   /* Disable the Channel 4: Reset the CC4E Bit */
1356   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1357 
1358   /* Select the Input and set the filter and the prescaler value */
1359   MODIFY_REG(TIMx->CCMR2,
1360              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1361              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1362 
1363   /* Select the Polarity and set the CC2E Bit */
1364   MODIFY_REG(TIMx->CCER,
1365              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1366              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1367 
1368   return SUCCESS;
1369 }
1370 
1371 
1372 /**
1373   * @}
1374   */
1375 
1376 /**
1377   * @}
1378   */
1379 
1380 #endif /* TIM1 || TIM8 || TIM2 || TIM3 ||  TIM4 || TIM5 ||TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM6 || TIM7 */
1381 
1382 /**
1383   * @}
1384   */
1385 
1386 #endif /* USE_FULL_LL_DRIVER */
1387 
1388