1 /**
2 ******************************************************************************
3 * @file stm32f3xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization and de-initialization functions
9 * + RTC Calendar (Time and Date) configuration functions
10 * + RTC Alarms (Alarm A and Alarm B) configuration functions
11 * + Peripheral Control functions
12 * + Peripheral State functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2016 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ==============================================================================
27 ##### RTC and Backup Domain Operating Condition #####
28 ==============================================================================
29 [..] The real-time clock (RTC) and the RTC backup registers can be powered
30 from the VBAT voltage when the main VDD supply is powered off.
31 To retain the content of the RTC backup registers and supply the RTC when
32 VDD is turned off, VBAT pin can be connected to an optional standby
33 voltage supplied by a battery or by another source.
34
35 [..] To allow the RTC operating even when the main digital supply (VDD) is turned
36 off, the VBAT pin powers the following blocks:
37 (#) The RTC
38 (#) The LSE oscillator
39 (#) PC13 to PC15 I/Os, plus PA0 and PE6 I/Os (when available)
40
41 [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
42 the following pins are available:
43 (#) PC14 and PC15 can be used as either GPIO or LSE pins
44 (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
45 (#) PA0 can be used as a GPIO or as the RTC_AF2 pin
46 (#) PE6 can be used as a GPIO or as the RTC_AF3 pin
47
48 [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
49 because VDD is not present), the following pins are available:
50 (#) PC14 and PC15 can be used as LSE pins only
51 (#) PC13 can be used as the RTC_AF1 pin
52 (#) PA0 can be used as the RTC_AF2 pin
53 (#) PE6 can be used as the RTC_AF3 pin
54
55 ##### Backup Domain Reset #####
56 ==================================================================
57 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
58 to their reset values.
59 [..] A backup domain reset is generated when one of the following events occurs:
60 (#) Software reset, triggered by setting the BDRST bit in the
61 RCC Backup domain control register (RCC_BDCR).
62 (#) VDD or VBAT power on, if both supplies have previously been powered off.
63
64 ##### Backup Domain Access #####
65 ==================================================================
66 [..] After reset, the backup domain (RTC registers, RTC backup data registers
67 is protected against possible unwanted write accesses.
68 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
69 (+) Enable the Power Controller (PWR) APB1 interface clock using the
70 __HAL_RCC_PWR_CLK_ENABLE() macro.
71 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
72 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() macro.
73 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
74
75 ==============================================================================
76 ##### How to use this driver #####
77 ==============================================================================
78 [..]
79 (+) Enable the RTC domain access (see description in the section above).
80 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
81 format using the HAL_RTC_Init() function.
82
83 *** Time and Date configuration ***
84 ===================================
85 [..]
86 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
87 and HAL_RTC_SetDate() functions.
88 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate()
89 functions.
90 (+) To manage the RTC summer or winter time change, use the following
91 functions:
92 (++) HAL_RTC_DST_Add1Hour() or HAL_RTC_DST_Sub1Hour to add or subtract
93 1 hour from the calendar time.
94 (++) HAL_RTC_DST_SetStoreOperation() or HAL_RTC_DST_ClearStoreOperation
95 to memorize whether the time change has been performed or not.
96
97 *** Alarm configuration ***
98 ===========================
99 [..]
100 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
101 You can also configure the RTC Alarm with interrupt mode using the
102 HAL_RTC_SetAlarm_IT() function.
103 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
104
105 ##### RTC and low power modes #####
106 ==================================================================
107 [..] The MCU can be woken up from a low power mode by an RTC alternate
108 function.
109 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
110 RTC wakeup, RTC tamper event detection and RTC timestamp event detection.
111 These RTC alternate functions can wake up the system from the Stop and
112 Standby low power modes.
113 [..] The system can also wake up from low power modes without depending
114 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
115 or the RTC wakeup events.
116 [..] The RTC provides a programmable time base for waking up from the
117 Stop or Standby mode at regular intervals.
118 Wakeup from STOP and STANDBY modes is possible only when the RTC clock
119 source is LSE or LSI.
120
121 *** Callback registration ***
122 =============================================
123 [..]
124 The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
125 allows the user to configure dynamically the driver callbacks.
126 Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
127 [..]
128 Function HAL_RTC_RegisterCallback() allows to register following callbacks:
129 (+) AlarmAEventCallback : RTC Alarm A Event callback.
130 (+) AlarmBEventCallback : RTC Alarm B Event callback.
131 (+) TimeStampEventCallback : RTC Timestamp Event callback.
132 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
133 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
134 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
135 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
136 (+) MspInitCallback : RTC MspInit callback.
137 (+) MspDeInitCallback : RTC MspDeInit callback.
138 [..]
139 This function takes as parameters the HAL peripheral handle, the Callback ID
140 and a pointer to the user callback function.
141 [..]
142 Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
143 weak function.
144 HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
145 and the Callback ID.
146 This function allows to reset following callbacks:
147 (+) AlarmAEventCallback : RTC Alarm A Event callback.
148 (+) AlarmBEventCallback : RTC Alarm B Event callback.
149 (+) TimeStampEventCallback : RTC Timestamp Event callback.
150 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
151 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
152 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
153 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
154 (+) MspInitCallback : RTC MspInit callback.
155 (+) MspDeInitCallback : RTC MspDeInit callback.
156 [..]
157 By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
158 all callbacks are set to the corresponding weak functions:
159 examples AlarmAEventCallback(), WakeUpTimerEventCallback().
160 Exception done for MspInit() and MspDeInit() callbacks that are reset to the
161 legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only
162 when these callbacks are null (not registered beforehand).
163 If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
164 keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand).
165 [..]
166 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
167 Exception done MspInit()/MspDeInit() that can be registered/unregistered
168 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state.
169 Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the
170 Init/DeInit.
171 In that case first register the MspInit()/MspDeInit() user callbacks
172 using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
173 or HAL_RTC_Init() functions.
174 [..]
175 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
176 not defined, the callback registration feature is not available and all
177 callbacks are set to the corresponding weak functions.
178
179 @endverbatim
180 ******************************************************************************
181 */
182
183 /* Includes ------------------------------------------------------------------*/
184 #include "stm32f3xx_hal.h"
185
186 /** @addtogroup STM32F3xx_HAL_Driver
187 * @{
188 */
189
190 /** @defgroup RTC RTC
191 * @brief RTC HAL module driver
192 * @{
193 */
194
195 #ifdef HAL_RTC_MODULE_ENABLED
196
197 /* Private typedef -----------------------------------------------------------*/
198 /* Private define ------------------------------------------------------------*/
199 /* Private macro -------------------------------------------------------------*/
200 /* Private variables ---------------------------------------------------------*/
201 /* Private function prototypes -----------------------------------------------*/
202 /* Exported functions --------------------------------------------------------*/
203
204 /** @defgroup RTC_Exported_Functions RTC Exported Functions
205 * @{
206 */
207
208 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
209 * @brief Initialization and Configuration functions
210 *
211 @verbatim
212 ===============================================================================
213 ##### Initialization and de-initialization functions #####
214 ===============================================================================
215 [..] This section provides functions allowing to initialize and configure the
216 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
217 RTC registers Write protection, enter and exit the RTC initialization mode,
218 RTC registers synchronization check and reference clock detection enable.
219 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
220 It is split into 2 programmable prescalers to minimize power consumption.
221 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
222 (++) When both prescalers are used, it is recommended to configure the
223 asynchronous prescaler to a high value to minimize power consumption.
224 (#) All RTC registers are Write protected. Writing to the RTC registers
225 is enabled by writing a key into the Write Protection register, RTC_WPR.
226 (#) To configure the RTC Calendar, user application should enter
227 initialization mode. In this mode, the calendar counter is stopped
228 and its value can be updated. When the initialization sequence is
229 complete, the calendar restarts counting after 4 RTCCLK cycles.
230 (#) To read the calendar through the shadow registers after Calendar
231 initialization, calendar update or after wakeup from low power modes
232 the software must first clear the RSF flag. The software must then
233 wait until it is set again before reading the calendar, which means
234 that the calendar registers have been correctly copied into the
235 RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
236 implements the above software sequence (RSF clear and RSF check).
237
238 @endverbatim
239 * @{
240 */
241
242 /**
243 * @brief Initializes the RTC peripheral
244 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
245 * the configuration information for RTC.
246 * @retval HAL status
247 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)248 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
249 {
250 HAL_StatusTypeDef status = HAL_ERROR;
251
252 /* Check RTC handler validity */
253 if (hrtc == NULL)
254 {
255 return HAL_ERROR;
256 }
257
258 /* Check the parameters */
259 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
260 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
261 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
262 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
263 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
264 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
265 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
266
267 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
268 if (hrtc->State == HAL_RTC_STATE_RESET)
269 {
270 /* Allocate lock resource and initialize it */
271 hrtc->Lock = HAL_UNLOCKED;
272
273 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
274 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
275 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
276 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
277 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
278 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
279 #if defined(RTC_TAMPER3_SUPPORT)
280 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
281 #endif /* RTC_TAMPER3_SUPPORT */
282
283 if (hrtc->MspInitCallback == NULL)
284 {
285 hrtc->MspInitCallback = HAL_RTC_MspInit;
286 }
287 /* Init the low level hardware */
288 hrtc->MspInitCallback(hrtc);
289
290 if (hrtc->MspDeInitCallback == NULL)
291 {
292 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
293 }
294 }
295 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
296 if (hrtc->State == HAL_RTC_STATE_RESET)
297 {
298 /* Allocate lock resource and initialize it */
299 hrtc->Lock = HAL_UNLOCKED;
300
301 /* Initialize RTC MSP */
302 HAL_RTC_MspInit(hrtc);
303 }
304 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
305
306 /* Set RTC state */
307 hrtc->State = HAL_RTC_STATE_BUSY;
308
309 /* Check whether the calendar needs to be initialized */
310 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
311 {
312 /* Disable the write protection for RTC registers */
313 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
314
315 /* Enter Initialization mode */
316 status = RTC_EnterInitMode(hrtc);
317
318 if (status == HAL_OK)
319 {
320 /* Clear RTC_CR FMT, OSEL and POL Bits */
321 hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
322 /* Set RTC_CR register */
323 hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
324
325 /* Configure the RTC PRER */
326 hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
327 hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
328
329 /* Exit Initialization mode */
330 status = RTC_ExitInitMode(hrtc);
331 }
332
333 if (status == HAL_OK)
334 {
335 hrtc->Instance->TAFCR &= (uint32_t)~RTC_OUTPUT_TYPE_PUSHPULL;
336 hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
337 }
338
339 /* Enable the write protection for RTC registers */
340 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
341 }
342 else
343 {
344 /* The calendar is already initialized */
345 status = HAL_OK;
346 }
347
348 if (status == HAL_OK)
349 {
350 hrtc->State = HAL_RTC_STATE_READY;
351 }
352
353 return status;
354 }
355
356 /**
357 * @brief DeInitializes the RTC peripheral
358 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
359 * the configuration information for RTC.
360 * @note This function does not reset the RTC Backup Data registers.
361 * @retval HAL status
362 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)363 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
364 {
365 HAL_StatusTypeDef status = HAL_ERROR;
366
367 /* Check the parameters */
368 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
369
370 /* Set RTC state */
371 hrtc->State = HAL_RTC_STATE_BUSY;
372
373 /* Disable the write protection for RTC registers */
374 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
375
376 /* Enter Initialization mode */
377 status = RTC_EnterInitMode(hrtc);
378
379 if (status == HAL_OK)
380 {
381 /* Reset RTC registers */
382 hrtc->Instance->TR = 0x00000000U;
383 hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
384 hrtc->Instance->CR &= 0x00000000U;
385 hrtc->Instance->WUTR = RTC_WUTR_WUT;
386 hrtc->Instance->PRER = (uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU);
387 hrtc->Instance->ALRMAR = 0x00000000U;
388 hrtc->Instance->ALRMBR = 0x00000000U;
389 hrtc->Instance->CALR = 0x00000000U;
390 hrtc->Instance->SHIFTR = 0x00000000U;
391 hrtc->Instance->ALRMASSR = 0x00000000U;
392 hrtc->Instance->ALRMBSSR = 0x00000000U;
393
394 /* Exit Initialization mode */
395 status = RTC_ExitInitMode(hrtc);
396 }
397
398 /* Enable the write protection for RTC registers */
399 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
400
401 if (status == HAL_OK)
402 {
403 /* Reset Tamper and alternate functions configuration register */
404 hrtc->Instance->TAFCR = 0x00000000U;
405
406 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
407 if (hrtc->MspDeInitCallback == NULL)
408 {
409 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
410 }
411
412 /* DeInit the low level hardware: CLOCK, NVIC.*/
413 hrtc->MspDeInitCallback(hrtc);
414 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
415 /* De-Initialize RTC MSP */
416 HAL_RTC_MspDeInit(hrtc);
417 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
418
419 hrtc->State = HAL_RTC_STATE_RESET;
420 }
421
422 /* Release Lock */
423 __HAL_UNLOCK(hrtc);
424
425 return status;
426 }
427
428 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
429 /**
430 * @brief Registers a User RTC Callback
431 * To be used instead of the weak predefined callback
432 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
433 * the configuration information for RTC.
434 * @param CallbackID ID of the callback to be registered
435 * This parameter can be one of the following values:
436 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
437 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
438 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
439 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
440 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
441 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
442 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
443 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
444 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
445 * @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
446 * @param pCallback pointer to the Callback function
447 * @retval HAL status
448 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)449 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
450 {
451 HAL_StatusTypeDef status = HAL_OK;
452
453 if (pCallback == NULL)
454 {
455 return HAL_ERROR;
456 }
457
458 /* Process locked */
459 __HAL_LOCK(hrtc);
460
461 if (HAL_RTC_STATE_READY == hrtc->State)
462 {
463 switch (CallbackID)
464 {
465 case HAL_RTC_ALARM_A_EVENT_CB_ID :
466 hrtc->AlarmAEventCallback = pCallback;
467 break;
468
469 case HAL_RTC_ALARM_B_EVENT_CB_ID :
470 hrtc->AlarmBEventCallback = pCallback;
471 break;
472
473 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
474 hrtc->TimeStampEventCallback = pCallback;
475 break;
476
477 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
478 hrtc->WakeUpTimerEventCallback = pCallback;
479 break;
480
481 case HAL_RTC_TAMPER1_EVENT_CB_ID :
482 hrtc->Tamper1EventCallback = pCallback;
483 break;
484
485 case HAL_RTC_TAMPER2_EVENT_CB_ID :
486 hrtc->Tamper2EventCallback = pCallback;
487 break;
488
489 #if defined(RTC_TAMPER3_SUPPORT)
490 case HAL_RTC_TAMPER3_EVENT_CB_ID :
491 hrtc->Tamper3EventCallback = pCallback;
492 break;
493 #endif /* RTC_TAMPER3_SUPPORT */
494
495 case HAL_RTC_MSPINIT_CB_ID :
496 hrtc->MspInitCallback = pCallback;
497 break;
498
499 case HAL_RTC_MSPDEINIT_CB_ID :
500 hrtc->MspDeInitCallback = pCallback;
501 break;
502
503 default :
504 /* Return error status */
505 status = HAL_ERROR;
506 break;
507 }
508 }
509 else if (HAL_RTC_STATE_RESET == hrtc->State)
510 {
511 switch (CallbackID)
512 {
513 case HAL_RTC_MSPINIT_CB_ID :
514 hrtc->MspInitCallback = pCallback;
515 break;
516
517 case HAL_RTC_MSPDEINIT_CB_ID :
518 hrtc->MspDeInitCallback = pCallback;
519 break;
520
521 default :
522 /* Return error status */
523 status = HAL_ERROR;
524 break;
525 }
526 }
527 else
528 {
529 /* Return error status */
530 status = HAL_ERROR;
531 }
532
533 /* Release Lock */
534 __HAL_UNLOCK(hrtc);
535
536 return status;
537 }
538
539 /**
540 * @brief Unregisters an RTC Callback
541 * RTC callback is redirected to the weak predefined callback
542 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
543 * the configuration information for RTC.
544 * @param CallbackID ID of the callback to be unregistered
545 * This parameter can be one of the following values:
546 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
547 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
548 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
549 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
550 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
551 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
552 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
553 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
554 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
555 * @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
556 * @retval HAL status
557 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)558 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
559 {
560 HAL_StatusTypeDef status = HAL_OK;
561
562 /* Process locked */
563 __HAL_LOCK(hrtc);
564
565 if (HAL_RTC_STATE_READY == hrtc->State)
566 {
567 switch (CallbackID)
568 {
569 case HAL_RTC_ALARM_A_EVENT_CB_ID :
570 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
571 break;
572
573 case HAL_RTC_ALARM_B_EVENT_CB_ID :
574 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
575 break;
576
577 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
578 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
579 break;
580
581 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
582 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
583 break;
584
585 case HAL_RTC_TAMPER1_EVENT_CB_ID :
586 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
587 break;
588
589 case HAL_RTC_TAMPER2_EVENT_CB_ID :
590 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
591 break;
592
593 #if defined(RTC_TAMPER3_SUPPORT)
594 case HAL_RTC_TAMPER3_EVENT_CB_ID :
595 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
596 break;
597 #endif /* RTC_TAMPER3_SUPPORT */
598
599 case HAL_RTC_MSPINIT_CB_ID :
600 hrtc->MspInitCallback = HAL_RTC_MspInit;
601 break;
602
603 case HAL_RTC_MSPDEINIT_CB_ID :
604 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
605 break;
606
607 default :
608 /* Return error status */
609 status = HAL_ERROR;
610 break;
611 }
612 }
613 else if (HAL_RTC_STATE_RESET == hrtc->State)
614 {
615 switch (CallbackID)
616 {
617 case HAL_RTC_MSPINIT_CB_ID :
618 hrtc->MspInitCallback = HAL_RTC_MspInit;
619 break;
620
621 case HAL_RTC_MSPDEINIT_CB_ID :
622 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
623 break;
624
625 default :
626 /* Return error status */
627 status = HAL_ERROR;
628 break;
629 }
630 }
631 else
632 {
633 /* Return error status */
634 status = HAL_ERROR;
635 }
636
637 /* Release Lock */
638 __HAL_UNLOCK(hrtc);
639
640 return status;
641 }
642 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
643
644 /**
645 * @brief Initializes the RTC MSP.
646 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
647 * the configuration information for RTC.
648 * @retval None
649 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)650 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
651 {
652 /* Prevent unused argument(s) compilation warning */
653 UNUSED(hrtc);
654
655 /* NOTE: This function should not be modified, when the callback is needed,
656 the HAL_RTC_MspInit could be implemented in the user file
657 */
658 }
659
660 /**
661 * @brief DeInitializes the RTC MSP.
662 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
663 * the configuration information for RTC.
664 * @retval None
665 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)666 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
667 {
668 /* Prevent unused argument(s) compilation warning */
669 UNUSED(hrtc);
670
671 /* NOTE: This function should not be modified, when the callback is needed,
672 the HAL_RTC_MspDeInit could be implemented in the user file
673 */
674 }
675
676 /**
677 * @}
678 */
679
680 /** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
681 * @brief RTC Time and Date functions
682 *
683 @verbatim
684 ===============================================================================
685 ##### RTC Time and Date functions #####
686 ===============================================================================
687
688 [..] This section provides functions allowing to configure Time and Date features
689
690 @endverbatim
691 * @{
692 */
693
694 /**
695 * @brief Sets RTC current time.
696 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
697 * the configuration information for RTC.
698 * @param sTime Pointer to Time structure
699 * @note DayLightSaving and StoreOperation interfaces are deprecated.
700 * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions.
701 * @param Format Specifies the format of the entered parameters.
702 * This parameter can be one of the following values:
703 * @arg RTC_FORMAT_BIN: Binary data format
704 * @arg RTC_FORMAT_BCD: BCD data format
705 * @retval HAL status
706 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)707 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
708 {
709 uint32_t tmpreg = 0U;
710 HAL_StatusTypeDef status;
711
712 /* Check the parameters */
713 assert_param(IS_RTC_FORMAT(Format));
714 assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
715 assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
716
717 /* Process Locked */
718 __HAL_LOCK(hrtc);
719
720 hrtc->State = HAL_RTC_STATE_BUSY;
721
722 if (Format == RTC_FORMAT_BIN)
723 {
724 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
725 {
726 assert_param(IS_RTC_HOUR12(sTime->Hours));
727 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
728 }
729 else
730 {
731 sTime->TimeFormat = 0x00U;
732 assert_param(IS_RTC_HOUR24(sTime->Hours));
733 }
734 assert_param(IS_RTC_MINUTES(sTime->Minutes));
735 assert_param(IS_RTC_SECONDS(sTime->Seconds));
736
737 tmpreg = (uint32_t)(( (uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
738 ( (uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
739 ( (uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
740 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
741 }
742 else
743 {
744 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
745 {
746 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
747 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
748 }
749 else
750 {
751 sTime->TimeFormat = 0x00U;
752 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
753 }
754 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
755 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
756 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
757 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
758 ((uint32_t) sTime->Seconds) | \
759 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
760 }
761
762 /* Disable the write protection for RTC registers */
763 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
764
765 /* Enter Initialization mode */
766 status = RTC_EnterInitMode(hrtc);
767
768 if (status == HAL_OK)
769 {
770 /* Set the RTC_TR register */
771 hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
772
773 /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
774 hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP;
775
776 /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
777 hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
778
779 /* Exit Initialization mode */
780 status = RTC_ExitInitMode(hrtc);
781 }
782
783 if (status == HAL_OK)
784 {
785 hrtc->State = HAL_RTC_STATE_READY;
786 }
787
788 /* Enable the write protection for RTC registers */
789 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
790
791 /* Process Unlocked */
792 __HAL_UNLOCK(hrtc);
793
794 return status;
795 }
796
797 /**
798 * @brief Gets RTC current time.
799 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
800 * the configuration information for RTC.
801 * @param sTime Pointer to Time structure
802 * @param Format Specifies the format of the entered parameters.
803 * This parameter can be one of the following values:
804 * @arg RTC_FORMAT_BIN: Binary data format
805 * @arg RTC_FORMAT_BCD: BCD data format
806 * @note You can use SubSeconds and SecondFraction (sTime structure fields
807 * returned) to convert SubSeconds value in second fraction ratio with
808 * time unit following generic formula:
809 * Second fraction ratio * time_unit =
810 * [(SecondFraction - SubSeconds) / (SecondFraction + 1)] * time_unit
811 * This conversion can be performed only if no shift operation is pending
812 * (ie. SHFP=0) when PREDIV_S >= SS
813 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
814 * values in the higher-order calendar shadow registers to ensure
815 * consistency between the time and date values.
816 * Reading RTC current time locks the values in calendar shadow registers
817 * until current date is read to ensure consistency between the time and
818 * date values.
819 * @retval HAL status
820 */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)821 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
822 {
823 uint32_t tmpreg = 0U;
824
825 /* Check the parameters */
826 assert_param(IS_RTC_FORMAT(Format));
827
828 /* Get subseconds value from the corresponding register */
829 sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
830
831 /* Get SecondFraction structure field from the corresponding register field*/
832 sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
833
834 /* Get the TR register */
835 tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
836
837 /* Fill the structure fields with the read parameters */
838 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
839 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
840 sTime->Seconds = (uint8_t)( tmpreg & (RTC_TR_ST | RTC_TR_SU));
841 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
842
843 /* Check the input parameters format */
844 if (Format == RTC_FORMAT_BIN)
845 {
846 /* Convert the time structure parameters to Binary format */
847 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
848 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
849 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
850 }
851
852 return HAL_OK;
853 }
854
855 /**
856 * @brief Sets RTC current date.
857 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
858 * the configuration information for RTC.
859 * @param sDate Pointer to date structure
860 * @param Format specifies the format of the entered parameters.
861 * This parameter can be one of the following values:
862 * @arg RTC_FORMAT_BIN: Binary data format
863 * @arg RTC_FORMAT_BCD: BCD data format
864 * @retval HAL status
865 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)866 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
867 {
868 uint32_t datetmpreg = 0U;
869 HAL_StatusTypeDef status;
870
871 /* Check the parameters */
872 assert_param(IS_RTC_FORMAT(Format));
873
874 /* Process Locked */
875 __HAL_LOCK(hrtc);
876
877 hrtc->State = HAL_RTC_STATE_BUSY;
878
879 if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
880 {
881 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
882 }
883
884 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
885
886 if (Format == RTC_FORMAT_BIN)
887 {
888 assert_param(IS_RTC_YEAR(sDate->Year));
889 assert_param(IS_RTC_MONTH(sDate->Month));
890 assert_param(IS_RTC_DATE(sDate->Date));
891
892 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
893 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
894 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
895 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
896 }
897 else
898 {
899 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
900 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
901 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
902
903 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
904 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
905 ((uint32_t) sDate->Date) | \
906 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
907 }
908
909 /* Disable the write protection for RTC registers */
910 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
911
912 /* Enter Initialization mode */
913 status = RTC_EnterInitMode(hrtc);
914
915 if (status == HAL_OK)
916 {
917 /* Set the RTC_DR register */
918 hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
919
920 /* Exit Initialization mode */
921 status = RTC_ExitInitMode(hrtc);
922 }
923
924 if (status == HAL_OK)
925 {
926 hrtc->State = HAL_RTC_STATE_READY;
927 }
928
929 /* Enable the write protection for RTC registers */
930 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
931
932 /* Process Unlocked */
933 __HAL_UNLOCK(hrtc);
934
935 return status;
936 }
937
938 /**
939 * @brief Gets RTC current date.
940 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
941 * the configuration information for RTC.
942 * @param sDate Pointer to Date structure
943 * @param Format Specifies the format of the entered parameters.
944 * This parameter can be one of the following values:
945 * @arg RTC_FORMAT_BIN: Binary data format
946 * @arg RTC_FORMAT_BCD: BCD data format
947 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
948 * values in the higher-order calendar shadow registers to ensure
949 * consistency between the time and date values.
950 * Reading RTC current time locks the values in calendar shadow registers
951 * until current date is read to ensure consistency between the time and
952 * date values.
953 * @retval HAL status
954 */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)955 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
956 {
957 uint32_t datetmpreg = 0U;
958
959 /* Check the parameters */
960 assert_param(IS_RTC_FORMAT(Format));
961
962 /* Get the DR register */
963 datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
964
965 /* Fill the structure fields with the read parameters */
966 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
967 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
968 sDate->Date = (uint8_t) (datetmpreg & (RTC_DR_DT | RTC_DR_DU));
969 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
970
971 /* Check the input parameters format */
972 if (Format == RTC_FORMAT_BIN)
973 {
974 /* Convert the date structure parameters to Binary format */
975 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
976 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
977 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
978 }
979 return HAL_OK;
980 }
981
982 /**
983 * @}
984 */
985
986 /** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
987 * @brief RTC Alarm functions
988 *
989 @verbatim
990 ===============================================================================
991 ##### RTC Alarm functions #####
992 ===============================================================================
993
994 [..] This section provides functions allowing to configure Alarm feature
995
996 @endverbatim
997 * @{
998 */
999 /**
1000 * @brief Sets the specified RTC Alarm.
1001 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1002 * the configuration information for RTC.
1003 * @param sAlarm Pointer to Alarm structure
1004 * @param Format Specifies the format of the entered parameters.
1005 * This parameter can be one of the following values:
1006 * @arg RTC_FORMAT_BIN: Binary data format
1007 * @arg RTC_FORMAT_BCD: BCD data format
1008 * @note The Alarm register can only be written when the corresponding Alarm
1009 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1010 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1011 * @retval HAL status
1012 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1013 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1014 {
1015 uint32_t tickstart = 0U;
1016 uint32_t tmpreg = 0U;
1017 uint32_t subsecondtmpreg = 0U;
1018
1019 /* Check the parameters */
1020 assert_param(IS_RTC_FORMAT(Format));
1021 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1022 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1023 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1024 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1025 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1026
1027 /* Process Locked */
1028 __HAL_LOCK(hrtc);
1029
1030 /* Change RTC state to BUSY */
1031 hrtc->State = HAL_RTC_STATE_BUSY;
1032
1033 /* Check the data format (binary or BCD) and store the Alarm time and date
1034 configuration accordingly */
1035 if (Format == RTC_FORMAT_BIN)
1036 {
1037 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1038 {
1039 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1040 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1041 }
1042 else
1043 {
1044 sAlarm->AlarmTime.TimeFormat = 0x00U;
1045 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1046 }
1047 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1048 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1049
1050 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1051 {
1052 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1053 }
1054 else
1055 {
1056 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1057 }
1058
1059 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1060 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1061 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1062 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1063 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1064 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1065 ((uint32_t)sAlarm->AlarmMask));
1066 }
1067 else
1068 {
1069 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1070 {
1071 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1072 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1073 }
1074 else
1075 {
1076 sAlarm->AlarmTime.TimeFormat = 0x00U;
1077 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1078 }
1079
1080 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1081 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1082
1083 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1084 {
1085 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1086 }
1087 else
1088 {
1089 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1090 }
1091
1092 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1093 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1094 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1095 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1096 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1097 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1098 ((uint32_t) sAlarm->AlarmMask));
1099 }
1100
1101 /* Store the Alarm subseconds configuration */
1102 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1103 (uint32_t)(sAlarm->AlarmSubSecondMask));
1104
1105 /* Disable the write protection for RTC registers */
1106 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1107
1108 /* Configure the Alarm register */
1109 if (sAlarm->Alarm == RTC_ALARM_A)
1110 {
1111 /* Disable the Alarm A */
1112 __HAL_RTC_ALARMA_DISABLE(hrtc);
1113
1114 /* In case interrupt mode is used, the interrupt source must be disabled */
1115 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1116
1117 /* Clear the Alarm flag */
1118 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1119
1120 /* Get tick */
1121 tickstart = HAL_GetTick();
1122
1123 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1124 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1125 {
1126 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1127 {
1128 /* Enable the write protection for RTC registers */
1129 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1130
1131 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1132
1133 /* Process Unlocked */
1134 __HAL_UNLOCK(hrtc);
1135
1136 return HAL_TIMEOUT;
1137 }
1138 }
1139
1140 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1141 /* Configure the Alarm A Subseconds register */
1142 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1143 /* Configure the Alarm state: Enable Alarm */
1144 __HAL_RTC_ALARMA_ENABLE(hrtc);
1145 }
1146 else
1147 {
1148 /* Disable the Alarm B */
1149 __HAL_RTC_ALARMB_DISABLE(hrtc);
1150
1151 /* In case interrupt mode is used, the interrupt source must be disabled */
1152 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1153
1154 /* Clear the Alarm flag */
1155 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1156
1157 /* Get tick */
1158 tickstart = HAL_GetTick();
1159
1160 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1161 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1162 {
1163 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1164 {
1165 /* Enable the write protection for RTC registers */
1166 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1167
1168 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1169
1170 /* Process Unlocked */
1171 __HAL_UNLOCK(hrtc);
1172
1173 return HAL_TIMEOUT;
1174 }
1175 }
1176
1177 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1178 /* Configure the Alarm B Subseconds register */
1179 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1180 /* Configure the Alarm state: Enable Alarm */
1181 __HAL_RTC_ALARMB_ENABLE(hrtc);
1182 }
1183
1184 /* Enable the write protection for RTC registers */
1185 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1186
1187 /* Change RTC state back to READY */
1188 hrtc->State = HAL_RTC_STATE_READY;
1189
1190 /* Process Unlocked */
1191 __HAL_UNLOCK(hrtc);
1192
1193 return HAL_OK;
1194 }
1195
1196 /**
1197 * @brief Sets the specified RTC Alarm with Interrupt.
1198 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1199 * the configuration information for RTC.
1200 * @param sAlarm Pointer to Alarm structure
1201 * @param Format Specifies the format of the entered parameters.
1202 * This parameter can be one of the following values:
1203 * @arg RTC_FORMAT_BIN: Binary data format
1204 * @arg RTC_FORMAT_BCD: BCD data format
1205 * @note The Alarm register can only be written when the corresponding Alarm
1206 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1207 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1208 * @retval HAL status
1209 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1210 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1211 {
1212 __IO uint32_t count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1213 uint32_t tmpreg = 0U;
1214 uint32_t subsecondtmpreg = 0U;
1215
1216 /* Check the parameters */
1217 assert_param(IS_RTC_FORMAT(Format));
1218 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1219 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1220 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1221 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1222 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1223
1224 /* Process Locked */
1225 __HAL_LOCK(hrtc);
1226
1227 /* Change RTC state to BUSY */
1228 hrtc->State = HAL_RTC_STATE_BUSY;
1229
1230 /* Check the data format (binary or BCD) and store the Alarm time and date
1231 configuration accordingly */
1232 if (Format == RTC_FORMAT_BIN)
1233 {
1234 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1235 {
1236 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1237 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1238 }
1239 else
1240 {
1241 sAlarm->AlarmTime.TimeFormat = 0x00U;
1242 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1243 }
1244 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1245 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1246
1247 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1248 {
1249 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1250 }
1251 else
1252 {
1253 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1254 }
1255
1256 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1257 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1258 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1259 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1260 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1261 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1262 ((uint32_t)sAlarm->AlarmMask));
1263 }
1264 else
1265 {
1266 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1267 {
1268 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1269 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1270 }
1271 else
1272 {
1273 sAlarm->AlarmTime.TimeFormat = 0x00U;
1274 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1275 }
1276
1277 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1278 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1279
1280 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1281 {
1282 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1283 }
1284 else
1285 {
1286 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1287 }
1288
1289 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1290 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1291 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1292 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1293 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1294 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1295 ((uint32_t) sAlarm->AlarmMask));
1296 }
1297
1298 /* Store the Alarm subseconds configuration */
1299 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1300 (uint32_t)(sAlarm->AlarmSubSecondMask));
1301
1302 /* Disable the write protection for RTC registers */
1303 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1304
1305 /* Configure the Alarm register */
1306 if (sAlarm->Alarm == RTC_ALARM_A)
1307 {
1308 /* Disable the Alarm A */
1309 __HAL_RTC_ALARMA_DISABLE(hrtc);
1310
1311 /* Clear the Alarm flag */
1312 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1313
1314 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1315 do
1316 {
1317 count = count - 1U;
1318 if (count == 0U)
1319 {
1320 /* Enable the write protection for RTC registers */
1321 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1322
1323 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1324
1325 /* Process Unlocked */
1326 __HAL_UNLOCK(hrtc);
1327
1328 return HAL_TIMEOUT;
1329 }
1330 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U);
1331
1332 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1333 /* Configure the Alarm A Subseconds register */
1334 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1335 /* Configure the Alarm state: Enable Alarm */
1336 __HAL_RTC_ALARMA_ENABLE(hrtc);
1337 /* Configure the Alarm interrupt */
1338 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
1339 }
1340 else
1341 {
1342 /* Disable the Alarm B */
1343 __HAL_RTC_ALARMB_DISABLE(hrtc);
1344
1345 /* Clear the Alarm flag */
1346 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1347
1348 /* Reload the counter */
1349 count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1350
1351 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1352 do
1353 {
1354 count = count - 1U;
1355 if (count == 0U)
1356 {
1357 /* Enable the write protection for RTC registers */
1358 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1359
1360 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1361
1362 /* Process Unlocked */
1363 __HAL_UNLOCK(hrtc);
1364
1365 return HAL_TIMEOUT;
1366 }
1367 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U);
1368
1369 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1370 /* Configure the Alarm B Subseconds register */
1371 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1372 /* Configure the Alarm state: Enable Alarm */
1373 __HAL_RTC_ALARMB_ENABLE(hrtc);
1374 /* Configure the Alarm interrupt */
1375 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
1376 }
1377
1378 /* RTC Alarm Interrupt Configuration: EXTI configuration */
1379 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1380 __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1381
1382 /* Enable the write protection for RTC registers */
1383 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1384
1385 /* Change RTC state back to READY */
1386 hrtc->State = HAL_RTC_STATE_READY;
1387
1388 /* Process Unlocked */
1389 __HAL_UNLOCK(hrtc);
1390
1391 return HAL_OK;
1392 }
1393
1394 /**
1395 * @brief Deactivates the specified RTC Alarm.
1396 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1397 * the configuration information for RTC.
1398 * @param Alarm Specifies the Alarm.
1399 * This parameter can be one of the following values:
1400 * @arg RTC_ALARM_A: Alarm A
1401 * @arg RTC_ALARM_B: Alarm B
1402 * @retval HAL status
1403 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1404 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1405 {
1406 uint32_t tickstart = 0U;
1407
1408 /* Check the parameters */
1409 assert_param(IS_RTC_ALARM(Alarm));
1410
1411 /* Process Locked */
1412 __HAL_LOCK(hrtc);
1413
1414 hrtc->State = HAL_RTC_STATE_BUSY;
1415
1416 /* Disable the write protection for RTC registers */
1417 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1418
1419 if (Alarm == RTC_ALARM_A)
1420 {
1421 /* Disable Alarm A */
1422 __HAL_RTC_ALARMA_DISABLE(hrtc);
1423
1424 /* In case interrupt mode is used, the interrupt source must be disabled */
1425 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1426
1427 /* Get tick */
1428 tickstart = HAL_GetTick();
1429
1430 /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1431 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1432 {
1433 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1434 {
1435 /* Enable the write protection for RTC registers */
1436 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1437
1438 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1439
1440 /* Process Unlocked */
1441 __HAL_UNLOCK(hrtc);
1442
1443 return HAL_TIMEOUT;
1444 }
1445 }
1446 }
1447 else
1448 {
1449 /* Disable Alarm B */
1450 __HAL_RTC_ALARMB_DISABLE(hrtc);
1451
1452 /* In case interrupt mode is used, the interrupt source must be disabled */
1453 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1454
1455 /* Get tick */
1456 tickstart = HAL_GetTick();
1457
1458 /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1459 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1460 {
1461 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1462 {
1463 /* Enable the write protection for RTC registers */
1464 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1465
1466 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1467
1468 /* Process Unlocked */
1469 __HAL_UNLOCK(hrtc);
1470
1471 return HAL_TIMEOUT;
1472 }
1473 }
1474 }
1475
1476 /* Enable the write protection for RTC registers */
1477 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1478
1479 hrtc->State = HAL_RTC_STATE_READY;
1480
1481 /* Process Unlocked */
1482 __HAL_UNLOCK(hrtc);
1483
1484 return HAL_OK;
1485 }
1486
1487 /**
1488 * @brief Gets the RTC Alarm value and masks.
1489 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1490 * the configuration information for RTC.
1491 * @param sAlarm Pointer to Date structure
1492 * @param Alarm Specifies the Alarm.
1493 * This parameter can be one of the following values:
1494 * @arg RTC_ALARM_A: Alarm A
1495 * @arg RTC_ALARM_B: Alarm B
1496 * @param Format Specifies the format of the entered parameters.
1497 * This parameter can be one of the following values:
1498 * @arg RTC_FORMAT_BIN: Binary data format
1499 * @arg RTC_FORMAT_BCD: BCD data format
1500 * @retval HAL status
1501 */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1502 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1503 {
1504 uint32_t tmpreg = 0U;
1505 uint32_t subsecondtmpreg = 0U;
1506
1507 /* Check the parameters */
1508 assert_param(IS_RTC_FORMAT(Format));
1509 assert_param(IS_RTC_ALARM(Alarm));
1510
1511 if (Alarm == RTC_ALARM_A)
1512 {
1513 sAlarm->Alarm = RTC_ALARM_A;
1514
1515 tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
1516 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
1517 }
1518 else
1519 {
1520 sAlarm->Alarm = RTC_ALARM_B;
1521
1522 tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
1523 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
1524 }
1525
1526 /* Fill the structure with the read parameters */
1527 sAlarm->AlarmTime.Hours = (uint8_t) ((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1528 sAlarm->AlarmTime.Minutes = (uint8_t) ((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1529 sAlarm->AlarmTime.Seconds = (uint8_t) ( tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
1530 sAlarm->AlarmTime.TimeFormat = (uint8_t) ((tmpreg & RTC_ALRMAR_PM) >> RTC_TR_PM_Pos);
1531 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1532 sAlarm->AlarmDateWeekDay = (uint8_t) ((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1533 sAlarm->AlarmDateWeekDaySel = (uint32_t) (tmpreg & RTC_ALRMAR_WDSEL);
1534 sAlarm->AlarmMask = (uint32_t) (tmpreg & RTC_ALARMMASK_ALL);
1535
1536 if (Format == RTC_FORMAT_BIN)
1537 {
1538 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1539 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1540 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1541 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1542 }
1543
1544 return HAL_OK;
1545 }
1546
1547 /**
1548 * @brief Handles Alarm interrupt request.
1549 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1550 * the configuration information for RTC.
1551 * @retval None
1552 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1553 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1554 {
1555 /* Clear the EXTI's line Flag for RTC Alarm */
1556 __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1557
1558 /* Get the Alarm A interrupt source enable status */
1559 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
1560 {
1561 /* Get the pending status of the Alarm A Interrupt */
1562 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
1563 {
1564 /* Clear the Alarm A interrupt pending bit */
1565 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1566
1567 /* Alarm A callback */
1568 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1569 hrtc->AlarmAEventCallback(hrtc);
1570 #else
1571 HAL_RTC_AlarmAEventCallback(hrtc);
1572 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1573 }
1574 }
1575
1576 /* Get the Alarm B interrupt source enable status */
1577 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
1578 {
1579 /* Get the pending status of the Alarm B Interrupt */
1580 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
1581 {
1582 /* Clear the Alarm B interrupt pending bit */
1583 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1584
1585 /* Alarm B callback */
1586 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1587 hrtc->AlarmBEventCallback(hrtc);
1588 #else
1589 HAL_RTCEx_AlarmBEventCallback(hrtc);
1590 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1591 }
1592 }
1593
1594 /* Change RTC state */
1595 hrtc->State = HAL_RTC_STATE_READY;
1596 }
1597
1598 /**
1599 * @brief Alarm A callback.
1600 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1601 * the configuration information for RTC.
1602 * @retval None
1603 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1604 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1605 {
1606 /* Prevent unused argument(s) compilation warning */
1607 UNUSED(hrtc);
1608
1609 /* NOTE: This function should not be modified, when the callback is needed,
1610 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1611 */
1612 }
1613
1614 /**
1615 * @brief Handles Alarm A Polling request.
1616 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1617 * the configuration information for RTC.
1618 * @param Timeout Timeout duration
1619 * @retval HAL status
1620 */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1621 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1622 {
1623 uint32_t tickstart = 0U;
1624
1625 /* Get tick */
1626 tickstart = HAL_GetTick();
1627
1628 /* Wait till RTC ALRAF flag is set and if timeout is reached exit */
1629 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
1630 {
1631 if (Timeout != HAL_MAX_DELAY)
1632 {
1633 if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
1634 {
1635 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1636 return HAL_TIMEOUT;
1637 }
1638 }
1639 }
1640
1641 /* Clear the Alarm flag */
1642 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1643
1644 /* Change RTC state */
1645 hrtc->State = HAL_RTC_STATE_READY;
1646
1647 return HAL_OK;
1648 }
1649
1650 /**
1651 * @}
1652 */
1653
1654 /** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions
1655 * @brief Peripheral Control functions
1656 *
1657 @verbatim
1658 ===============================================================================
1659 ##### Peripheral Control functions #####
1660 ===============================================================================
1661 [..]
1662 This subsection provides functions allowing to
1663 (+) Wait for RTC Time and Date Synchronization
1664 (+) Manage RTC Summer or Winter time change
1665
1666 @endverbatim
1667 * @{
1668 */
1669
1670 /**
1671 * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1672 * synchronized with RTC APB clock.
1673 * @note The RTC Resynchronization mode is write protected, use the
1674 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1675 * @note To read the calendar through the shadow registers after Calendar
1676 * initialization, calendar update or after wakeup from low power modes
1677 * the software must first clear the RSF flag.
1678 * The software must then wait until it is set again before reading
1679 * the calendar, which means that the calendar registers have been
1680 * correctly copied into the RTC_TR and RTC_DR shadow registers.
1681 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1682 * the configuration information for RTC.
1683 * @retval HAL status
1684 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1685 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
1686 {
1687 uint32_t tickstart = 0U;
1688
1689 /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
1690 hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
1691
1692 /* Get tick */
1693 tickstart = HAL_GetTick();
1694
1695 /* Wait the registers to be synchronised */
1696 while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
1697 {
1698 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1699 {
1700 return HAL_TIMEOUT;
1701 }
1702 }
1703
1704 return HAL_OK;
1705 }
1706
1707 /**
1708 * @brief Daylight Saving Time, adds one hour to the calendar in one
1709 * single operation without going through the initialization procedure.
1710 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1711 * the configuration information for RTC.
1712 * @retval None
1713 */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1714 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1715 {
1716 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1717 SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
1718 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1719 }
1720
1721 /**
1722 * @brief Daylight Saving Time, subtracts one hour from the calendar in one
1723 * single operation without going through the initialization procedure.
1724 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1725 * the configuration information for RTC.
1726 * @retval None
1727 */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1728 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1729 {
1730 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1731 SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
1732 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1733 }
1734
1735 /**
1736 * @brief Daylight Saving Time, sets the store operation bit.
1737 * @note It can be used by the software in order to memorize the DST status.
1738 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1739 * the configuration information for RTC.
1740 * @retval None
1741 */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1742 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1743 {
1744 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1745 SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1746 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1747 }
1748
1749 /**
1750 * @brief Daylight Saving Time, clears the store operation bit.
1751 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1752 * the configuration information for RTC.
1753 * @retval None
1754 */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1755 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1756 {
1757 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1758 CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1759 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1760 }
1761
1762 /**
1763 * @brief Daylight Saving Time, reads the store operation bit.
1764 * @param hrtc RTC handle
1765 * @retval operation see RTC_StoreOperation_Definitions
1766 */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1767 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1768 {
1769 return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1770 }
1771
1772 /**
1773 * @}
1774 */
1775
1776 /** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
1777 * @brief Peripheral State functions
1778 *
1779 @verbatim
1780 ===============================================================================
1781 ##### Peripheral State functions #####
1782 ===============================================================================
1783 [..]
1784 This subsection provides functions allowing to
1785 (+) Get RTC state
1786
1787 @endverbatim
1788 * @{
1789 */
1790 /**
1791 * @brief Returns the RTC state.
1792 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1793 * the configuration information for RTC.
1794 * @retval HAL state
1795 */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1796 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
1797 {
1798 return hrtc->State;
1799 }
1800
1801 /**
1802 * @}
1803 */
1804
1805
1806 /**
1807 * @}
1808 */
1809
1810 /** @addtogroup RTC_Private_Functions
1811 * @{
1812 */
1813
1814 /**
1815 * @brief Enters the RTC Initialization mode.
1816 * @note The RTC Initialization mode is write protected, use the
1817 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1818 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1819 * the configuration information for RTC.
1820 * @retval HAL status
1821 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1822 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
1823 {
1824 uint32_t tickstart = 0U;
1825 HAL_StatusTypeDef status = HAL_OK;
1826
1827 /* Check that Initialization mode is not already set */
1828 if (READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U)
1829 {
1830 /* Set INIT bit to enter Initialization mode */
1831 SET_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1832
1833 /* Get tick */
1834 tickstart = HAL_GetTick();
1835
1836 /* Wait till RTC is in INIT state and if timeout is reached exit */
1837 while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_ERROR))
1838 {
1839 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1840 {
1841 /* Set RTC state */
1842 hrtc->State = HAL_RTC_STATE_ERROR;
1843 status = HAL_ERROR;
1844 }
1845 }
1846 }
1847
1848 return status;
1849 }
1850
1851 /**
1852 * @brief Exits the RTC Initialization mode.
1853 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1854 * the configuration information for RTC.
1855 * @retval HAL status
1856 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1857 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1858 {
1859 HAL_StatusTypeDef status = HAL_OK;
1860
1861 /* Clear INIT bit to exit Initialization mode */
1862 CLEAR_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1863
1864 /* If CR_BYPSHAD bit = 0, wait for synchro */
1865 if (READ_BIT(hrtc->Instance->CR, RTC_CR_BYPSHAD) == 0U)
1866 {
1867 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1868 {
1869 /* Set RTC state */
1870 hrtc->State = HAL_RTC_STATE_ERROR;
1871 status = HAL_ERROR;
1872 }
1873 }
1874
1875 return status;
1876 }
1877
1878 /**
1879 * @brief Converts a 2-digit number from decimal to BCD format.
1880 * @param number decimal-formatted number (from 0 to 99) to be converted
1881 * @retval Converted byte
1882 */
RTC_ByteToBcd2(uint8_t number)1883 uint8_t RTC_ByteToBcd2(uint8_t number)
1884 {
1885 uint32_t bcdhigh = 0U;
1886
1887 while (number >= 10U)
1888 {
1889 bcdhigh++;
1890 number -= 10U;
1891 }
1892
1893 return ((uint8_t)(bcdhigh << 4U) | number);
1894 }
1895
1896 /**
1897 * @brief Converts a 2-digit number from BCD to decimal format.
1898 * @param number BCD-formatted number (from 00 to 99) to be converted
1899 * @retval Converted word
1900 */
RTC_Bcd2ToByte(uint8_t number)1901 uint8_t RTC_Bcd2ToByte(uint8_t number)
1902 {
1903 uint32_t tens = 0U;
1904 tens = (((uint32_t)number & 0xF0U) >> 4U) * 10U;
1905 return (uint8_t)(tens + ((uint32_t)number & 0x0FU));
1906 }
1907
1908 /**
1909 * @}
1910 */
1911
1912 #endif /* HAL_RTC_MODULE_ENABLED */
1913 /**
1914 * @}
1915 */
1916
1917 /**
1918 * @}
1919 */
1920