1 /**
2   ******************************************************************************
3   * @file    stm32f2xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32f2xx_ll_tim.h"
22 #include "stm32f2xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32F2xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
65 
66 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
67                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
68 
69 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
70                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
71 
72 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
73                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
74 
75 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
76                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
77                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
78 
79 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
80                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
81                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
82                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
83 
84 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
85                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
86                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
87                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
88                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
89                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
90                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
100 
101 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
102                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
103                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
104 
105 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
106                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
107                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
108 
109 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
110                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
111 
112 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
113                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
114 
115 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
116                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
117 
118 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
119                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
120                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
121                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
122 
123 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
124                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
125 
126 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
127                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
128 
129 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
130                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
131 /**
132   * @}
133   */
134 
135 
136 /* Private function prototypes -----------------------------------------------*/
137 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
138   * @{
139   */
140 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
141 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
142 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
143 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
144 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
145 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
146 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
147 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
148 /**
149   * @}
150   */
151 
152 /* Exported functions --------------------------------------------------------*/
153 /** @addtogroup TIM_LL_Exported_Functions
154   * @{
155   */
156 
157 /** @addtogroup TIM_LL_EF_Init
158   * @{
159   */
160 
161 /**
162   * @brief  Set TIMx registers to their reset values.
163   * @param  TIMx Timer instance
164   * @retval An ErrorStatus enumeration value:
165   *          - SUCCESS: TIMx registers are de-initialized
166   *          - ERROR: invalid TIMx instance
167   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)168 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
169 {
170   ErrorStatus result = SUCCESS;
171 
172   /* Check the parameters */
173   assert_param(IS_TIM_INSTANCE(TIMx));
174 
175   if (TIMx == TIM1)
176   {
177     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
178     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
179   }
180 #if defined(TIM2)
181   else if (TIMx == TIM2)
182   {
183     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
184     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
185   }
186 #endif /* TIM2 */
187 #if defined(TIM3)
188   else if (TIMx == TIM3)
189   {
190     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
191     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
192   }
193 #endif /* TIM3 */
194 #if defined(TIM4)
195   else if (TIMx == TIM4)
196   {
197     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
198     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
199   }
200 #endif /* TIM4 */
201 #if defined(TIM5)
202   else if (TIMx == TIM5)
203   {
204     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
205     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
206   }
207 #endif /* TIM5 */
208 #if defined(TIM6)
209   else if (TIMx == TIM6)
210   {
211     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
212     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
213   }
214 #endif /* TIM6 */
215 #if defined (TIM7)
216   else if (TIMx == TIM7)
217   {
218     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
219     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
220   }
221 #endif /* TIM7 */
222 #if defined(TIM8)
223   else if (TIMx == TIM8)
224   {
225     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
226     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
227   }
228 #endif /* TIM8 */
229 #if defined(TIM9)
230   else if (TIMx == TIM9)
231   {
232     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
233     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
234   }
235 #endif /* TIM9 */
236 #if defined(TIM10)
237   else if (TIMx == TIM10)
238   {
239     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
240     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
241   }
242 #endif /* TIM10 */
243 #if defined(TIM11)
244   else if (TIMx == TIM11)
245   {
246     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
247     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
248   }
249 #endif /* TIM11 */
250 #if defined(TIM12)
251   else if (TIMx == TIM12)
252   {
253     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
254     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
255   }
256 #endif /* TIM12 */
257 #if defined(TIM13)
258   else if (TIMx == TIM13)
259   {
260     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
261     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
262   }
263 #endif /* TIM13 */
264 #if defined(TIM14)
265   else if (TIMx == TIM14)
266   {
267     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
268     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
269   }
270 #endif /* TIM14 */
271   else
272   {
273     result = ERROR;
274   }
275 
276   return result;
277 }
278 
279 /**
280   * @brief  Set the fields of the time base unit configuration data structure
281   *         to their default values.
282   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
283   * @retval None
284   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)285 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
286 {
287   /* Set the default configuration */
288   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
289   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
290   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
291   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
292   TIM_InitStruct->RepetitionCounter = 0x00000000U;
293 }
294 
295 /**
296   * @brief  Configure the TIMx time base unit.
297   * @param  TIMx Timer Instance
298   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
299   *         (TIMx time base unit configuration data structure)
300   * @retval An ErrorStatus enumeration value:
301   *          - SUCCESS: TIMx registers are de-initialized
302   *          - ERROR: not applicable
303   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)304 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
305 {
306   uint32_t tmpcr1;
307 
308   /* Check the parameters */
309   assert_param(IS_TIM_INSTANCE(TIMx));
310   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
311   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
312 
313   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
314 
315   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
316   {
317     /* Select the Counter Mode */
318     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
319   }
320 
321   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
322   {
323     /* Set the clock division */
324     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
325   }
326 
327   /* Write to TIMx CR1 */
328   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
329 
330   /* Set the Autoreload value */
331   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
332 
333   /* Set the Prescaler value */
334   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
335 
336   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
337   {
338     /* Set the Repetition Counter value */
339     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
340   }
341 
342   /* Generate an update event to reload the Prescaler
343      and the repetition counter value (if applicable) immediately */
344   LL_TIM_GenerateEvent_UPDATE(TIMx);
345 
346   return SUCCESS;
347 }
348 
349 /**
350   * @brief  Set the fields of the TIMx output channel configuration data
351   *         structure to their default values.
352   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
353   *         (the output channel configuration data structure)
354   * @retval None
355   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)356 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
357 {
358   /* Set the default configuration */
359   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
360   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
361   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
362   TIM_OC_InitStruct->CompareValue = 0x00000000U;
363   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
364   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
365   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
366   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
367 }
368 
369 /**
370   * @brief  Configure the TIMx output channel.
371   * @param  TIMx Timer Instance
372   * @param  Channel This parameter can be one of the following values:
373   *         @arg @ref LL_TIM_CHANNEL_CH1
374   *         @arg @ref LL_TIM_CHANNEL_CH2
375   *         @arg @ref LL_TIM_CHANNEL_CH3
376   *         @arg @ref LL_TIM_CHANNEL_CH4
377   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
378   *         data structure)
379   * @retval An ErrorStatus enumeration value:
380   *          - SUCCESS: TIMx output channel is initialized
381   *          - ERROR: TIMx output channel is not initialized
382   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)383 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
384 {
385   ErrorStatus result = ERROR;
386 
387   switch (Channel)
388   {
389     case LL_TIM_CHANNEL_CH1:
390       result = OC1Config(TIMx, TIM_OC_InitStruct);
391       break;
392     case LL_TIM_CHANNEL_CH2:
393       result = OC2Config(TIMx, TIM_OC_InitStruct);
394       break;
395     case LL_TIM_CHANNEL_CH3:
396       result = OC3Config(TIMx, TIM_OC_InitStruct);
397       break;
398     case LL_TIM_CHANNEL_CH4:
399       result = OC4Config(TIMx, TIM_OC_InitStruct);
400       break;
401     default:
402       break;
403   }
404 
405   return result;
406 }
407 
408 /**
409   * @brief  Set the fields of the TIMx input channel configuration data
410   *         structure to their default values.
411   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
412   *         data structure)
413   * @retval None
414   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)415 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
416 {
417   /* Set the default configuration */
418   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
419   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
420   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
421   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
422 }
423 
424 /**
425   * @brief  Configure the TIMx input channel.
426   * @param  TIMx Timer Instance
427   * @param  Channel This parameter can be one of the following values:
428   *         @arg @ref LL_TIM_CHANNEL_CH1
429   *         @arg @ref LL_TIM_CHANNEL_CH2
430   *         @arg @ref LL_TIM_CHANNEL_CH3
431   *         @arg @ref LL_TIM_CHANNEL_CH4
432   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
433   *         structure)
434   * @retval An ErrorStatus enumeration value:
435   *          - SUCCESS: TIMx output channel is initialized
436   *          - ERROR: TIMx output channel is not initialized
437   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)438 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
439 {
440   ErrorStatus result = ERROR;
441 
442   switch (Channel)
443   {
444     case LL_TIM_CHANNEL_CH1:
445       result = IC1Config(TIMx, TIM_IC_InitStruct);
446       break;
447     case LL_TIM_CHANNEL_CH2:
448       result = IC2Config(TIMx, TIM_IC_InitStruct);
449       break;
450     case LL_TIM_CHANNEL_CH3:
451       result = IC3Config(TIMx, TIM_IC_InitStruct);
452       break;
453     case LL_TIM_CHANNEL_CH4:
454       result = IC4Config(TIMx, TIM_IC_InitStruct);
455       break;
456     default:
457       break;
458   }
459 
460   return result;
461 }
462 
463 /**
464   * @brief  Fills each TIM_EncoderInitStruct field with its default value
465   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
466   *         configuration data structure)
467   * @retval None
468   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)469 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
470 {
471   /* Set the default configuration */
472   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
473   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
474   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
475   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
476   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
477   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
478   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
479   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
480   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
481 }
482 
483 /**
484   * @brief  Configure the encoder interface of the timer instance.
485   * @param  TIMx Timer Instance
486   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
487   *         configuration data structure)
488   * @retval An ErrorStatus enumeration value:
489   *          - SUCCESS: TIMx registers are de-initialized
490   *          - ERROR: not applicable
491   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)492 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
493 {
494   uint32_t tmpccmr1;
495   uint32_t tmpccer;
496 
497   /* Check the parameters */
498   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
499   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
500   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
501   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
502   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
503   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
504   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
505   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
506   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
507   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
508 
509   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
510   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
511 
512   /* Get the TIMx CCMR1 register value */
513   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
514 
515   /* Get the TIMx CCER register value */
516   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
517 
518   /* Configure TI1 */
519   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
520   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
521   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
522   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
523 
524   /* Configure TI2 */
525   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
526   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
527   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
528   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
529 
530   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
531   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
532   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
533   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
534   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
535 
536   /* Set encoder mode */
537   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
538 
539   /* Write to TIMx CCMR1 */
540   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
541 
542   /* Write to TIMx CCER */
543   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
544 
545   return SUCCESS;
546 }
547 
548 /**
549   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
550   *         structure to their default values.
551   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
552   *         configuration data structure)
553   * @retval None
554   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)555 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
556 {
557   /* Set the default configuration */
558   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
559   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
560   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
561   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
562 }
563 
564 /**
565   * @brief  Configure the Hall sensor interface of the timer instance.
566   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
567   *       to the TI1 input channel
568   * @note TIMx slave mode controller is configured in reset mode.
569           Selected internal trigger is TI1F_ED.
570   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
571   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
572   *       between 2 changes on the inputs. It gives information about motor speed.
573   * @note Channel 2 is configured in output PWM 2 mode.
574   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
575   * @note OC2REF is selected as trigger output on TRGO.
576   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
577   *       when TIMx operates in Hall sensor interface mode.
578   * @param  TIMx Timer Instance
579   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
580   *         interface configuration data structure)
581   * @retval An ErrorStatus enumeration value:
582   *          - SUCCESS: TIMx registers are de-initialized
583   *          - ERROR: not applicable
584   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)585 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
586 {
587   uint32_t tmpcr2;
588   uint32_t tmpccmr1;
589   uint32_t tmpccer;
590   uint32_t tmpsmcr;
591 
592   /* Check the parameters */
593   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
594   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
595   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
596   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
597 
598   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
599   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
600 
601   /* Get the TIMx CR2 register value */
602   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
603 
604   /* Get the TIMx CCMR1 register value */
605   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
606 
607   /* Get the TIMx CCER register value */
608   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
609 
610   /* Get the TIMx SMCR register value */
611   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
612 
613   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
614   tmpcr2 |= TIM_CR2_TI1S;
615 
616   /* OC2REF signal is used as trigger output (TRGO) */
617   tmpcr2 |= LL_TIM_TRGO_OC2REF;
618 
619   /* Configure the slave mode controller */
620   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
621   tmpsmcr |= LL_TIM_TS_TI1F_ED;
622   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
623 
624   /* Configure input channel 1 */
625   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
626   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
627   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
628   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
629 
630   /* Configure input channel 2 */
631   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
632   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
633 
634   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
635   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
636   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
637   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
638 
639   /* Write to TIMx CR2 */
640   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
641 
642   /* Write to TIMx SMCR */
643   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
644 
645   /* Write to TIMx CCMR1 */
646   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
647 
648   /* Write to TIMx CCER */
649   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
650 
651   /* Write to TIMx CCR2 */
652   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
653 
654   return SUCCESS;
655 }
656 
657 /**
658   * @brief  Set the fields of the Break and Dead Time configuration data structure
659   *         to their default values.
660   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
661   *         data structure)
662   * @retval None
663   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)664 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
665 {
666   /* Set the default configuration */
667   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
668   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
669   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
670   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
671   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
672   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
673   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
674 }
675 
676 /**
677   * @brief  Configure the Break and Dead Time feature of the timer instance.
678   * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
679   *  depending on the LOCK configuration, it can be necessary to configure all of
680   *  them during the first write access to the TIMx_BDTR register.
681   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
682   *       a timer instance provides a break input.
683   * @param  TIMx Timer Instance
684   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
685   *         data structure)
686   * @retval An ErrorStatus enumeration value:
687   *          - SUCCESS: Break and Dead Time is initialized
688   *          - ERROR: not applicable
689   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)690 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
691 {
692   uint32_t tmpbdtr = 0;
693 
694   /* Check the parameters */
695   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
696   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
697   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
698   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
699   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
700   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
701   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
702 
703   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
704   the OSSI State, the dead time value and the Automatic Output Enable Bit */
705 
706   /* Set the BDTR bits */
707   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
708   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
709   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
710   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
711   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
712   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
713   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
714 
715   /* Set TIMx_BDTR */
716   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
717 
718   return SUCCESS;
719 }
720 /**
721   * @}
722   */
723 
724 /**
725   * @}
726   */
727 
728 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
729   *  @brief   Private functions
730   * @{
731   */
732 /**
733   * @brief  Configure the TIMx output channel 1.
734   * @param  TIMx Timer Instance
735   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
736   * @retval An ErrorStatus enumeration value:
737   *          - SUCCESS: TIMx registers are de-initialized
738   *          - ERROR: not applicable
739   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)740 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
741 {
742   uint32_t tmpccmr1;
743   uint32_t tmpccer;
744   uint32_t tmpcr2;
745 
746   /* Check the parameters */
747   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
748   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
749   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
750   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
751   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
752   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
753 
754   /* Disable the Channel 1: Reset the CC1E Bit */
755   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
756 
757   /* Get the TIMx CCER register value */
758   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
759 
760   /* Get the TIMx CR2 register value */
761   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
762 
763   /* Get the TIMx CCMR1 register value */
764   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
765 
766   /* Reset Capture/Compare selection Bits */
767   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
768 
769   /* Set the Output Compare Mode */
770   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
771 
772   /* Set the Output Compare Polarity */
773   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
774 
775   /* Set the Output State */
776   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
777 
778   if (IS_TIM_BREAK_INSTANCE(TIMx))
779   {
780     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
781     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
782 
783     /* Set the complementary output Polarity */
784     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
785 
786     /* Set the complementary output State */
787     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
788 
789     /* Set the Output Idle state */
790     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
791 
792     /* Set the complementary output Idle state */
793     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
794   }
795 
796   /* Write to TIMx CR2 */
797   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
798 
799   /* Write to TIMx CCMR1 */
800   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
801 
802   /* Set the Capture Compare Register value */
803   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
804 
805   /* Write to TIMx CCER */
806   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
807 
808   return SUCCESS;
809 }
810 
811 /**
812   * @brief  Configure the TIMx output channel 2.
813   * @param  TIMx Timer Instance
814   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
815   * @retval An ErrorStatus enumeration value:
816   *          - SUCCESS: TIMx registers are de-initialized
817   *          - ERROR: not applicable
818   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)819 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
820 {
821   uint32_t tmpccmr1;
822   uint32_t tmpccer;
823   uint32_t tmpcr2;
824 
825   /* Check the parameters */
826   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
827   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
828   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
829   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
830   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
831   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
832 
833   /* Disable the Channel 2: Reset the CC2E Bit */
834   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
835 
836   /* Get the TIMx CCER register value */
837   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
838 
839   /* Get the TIMx CR2 register value */
840   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
841 
842   /* Get the TIMx CCMR1 register value */
843   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
844 
845   /* Reset Capture/Compare selection Bits */
846   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
847 
848   /* Select the Output Compare Mode */
849   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
850 
851   /* Set the Output Compare Polarity */
852   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
853 
854   /* Set the Output State */
855   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
856 
857   if (IS_TIM_BREAK_INSTANCE(TIMx))
858   {
859     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
860     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
861 
862     /* Set the complementary output Polarity */
863     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
864 
865     /* Set the complementary output State */
866     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
867 
868     /* Set the Output Idle state */
869     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
870 
871     /* Set the complementary output Idle state */
872     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
873   }
874 
875   /* Write to TIMx CR2 */
876   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
877 
878   /* Write to TIMx CCMR1 */
879   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
880 
881   /* Set the Capture Compare Register value */
882   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
883 
884   /* Write to TIMx CCER */
885   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
886 
887   return SUCCESS;
888 }
889 
890 /**
891   * @brief  Configure the TIMx output channel 3.
892   * @param  TIMx Timer Instance
893   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
894   * @retval An ErrorStatus enumeration value:
895   *          - SUCCESS: TIMx registers are de-initialized
896   *          - ERROR: not applicable
897   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)898 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
899 {
900   uint32_t tmpccmr2;
901   uint32_t tmpccer;
902   uint32_t tmpcr2;
903 
904   /* Check the parameters */
905   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
906   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
907   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
908   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
909   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
910   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
911 
912   /* Disable the Channel 3: Reset the CC3E Bit */
913   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
914 
915   /* Get the TIMx CCER register value */
916   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
917 
918   /* Get the TIMx CR2 register value */
919   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
920 
921   /* Get the TIMx CCMR2 register value */
922   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
923 
924   /* Reset Capture/Compare selection Bits */
925   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
926 
927   /* Select the Output Compare Mode */
928   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
929 
930   /* Set the Output Compare Polarity */
931   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
932 
933   /* Set the Output State */
934   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
935 
936   if (IS_TIM_BREAK_INSTANCE(TIMx))
937   {
938     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
939     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
940 
941     /* Set the complementary output Polarity */
942     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
943 
944     /* Set the complementary output State */
945     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
946 
947     /* Set the Output Idle state */
948     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
949 
950     /* Set the complementary output Idle state */
951     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
952   }
953 
954   /* Write to TIMx CR2 */
955   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
956 
957   /* Write to TIMx CCMR2 */
958   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
959 
960   /* Set the Capture Compare Register value */
961   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
962 
963   /* Write to TIMx CCER */
964   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
965 
966   return SUCCESS;
967 }
968 
969 /**
970   * @brief  Configure the TIMx output channel 4.
971   * @param  TIMx Timer Instance
972   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
973   * @retval An ErrorStatus enumeration value:
974   *          - SUCCESS: TIMx registers are de-initialized
975   *          - ERROR: not applicable
976   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)977 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
978 {
979   uint32_t tmpccmr2;
980   uint32_t tmpccer;
981   uint32_t tmpcr2;
982 
983   /* Check the parameters */
984   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
985   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
986   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
987   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
988   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
989   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
990 
991   /* Disable the Channel 4: Reset the CC4E Bit */
992   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
993 
994   /* Get the TIMx CCER register value */
995   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
996 
997   /* Get the TIMx CR2 register value */
998   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
999 
1000   /* Get the TIMx CCMR2 register value */
1001   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1002 
1003   /* Reset Capture/Compare selection Bits */
1004   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1005 
1006   /* Select the Output Compare Mode */
1007   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1008 
1009   /* Set the Output Compare Polarity */
1010   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1011 
1012   /* Set the Output State */
1013   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1014 
1015   if (IS_TIM_BREAK_INSTANCE(TIMx))
1016   {
1017     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1018     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1019 
1020     /* Set the Output Idle state */
1021     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1022   }
1023 
1024   /* Write to TIMx CR2 */
1025   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1026 
1027   /* Write to TIMx CCMR2 */
1028   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1029 
1030   /* Set the Capture Compare Register value */
1031   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1032 
1033   /* Write to TIMx CCER */
1034   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1035 
1036   return SUCCESS;
1037 }
1038 
1039 
1040 /**
1041   * @brief  Configure the TIMx input channel 1.
1042   * @param  TIMx Timer Instance
1043   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1044   * @retval An ErrorStatus enumeration value:
1045   *          - SUCCESS: TIMx registers are de-initialized
1046   *          - ERROR: not applicable
1047   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1048 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1049 {
1050   /* Check the parameters */
1051   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1052   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1053   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1054   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1055   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1056 
1057   /* Disable the Channel 1: Reset the CC1E Bit */
1058   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1059 
1060   /* Select the Input and set the filter and the prescaler value */
1061   MODIFY_REG(TIMx->CCMR1,
1062              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1063              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1064 
1065   /* Select the Polarity and set the CC1E Bit */
1066   MODIFY_REG(TIMx->CCER,
1067              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1068              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1069 
1070   return SUCCESS;
1071 }
1072 
1073 /**
1074   * @brief  Configure the TIMx input channel 2.
1075   * @param  TIMx Timer Instance
1076   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1077   * @retval An ErrorStatus enumeration value:
1078   *          - SUCCESS: TIMx registers are de-initialized
1079   *          - ERROR: not applicable
1080   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1081 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1082 {
1083   /* Check the parameters */
1084   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1085   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1086   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1087   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1088   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1089 
1090   /* Disable the Channel 2: Reset the CC2E Bit */
1091   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1092 
1093   /* Select the Input and set the filter and the prescaler value */
1094   MODIFY_REG(TIMx->CCMR1,
1095              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1096              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1097 
1098   /* Select the Polarity and set the CC2E Bit */
1099   MODIFY_REG(TIMx->CCER,
1100              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1101              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1102 
1103   return SUCCESS;
1104 }
1105 
1106 /**
1107   * @brief  Configure the TIMx input channel 3.
1108   * @param  TIMx Timer Instance
1109   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1110   * @retval An ErrorStatus enumeration value:
1111   *          - SUCCESS: TIMx registers are de-initialized
1112   *          - ERROR: not applicable
1113   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1114 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1115 {
1116   /* Check the parameters */
1117   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1118   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1119   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1120   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1121   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1122 
1123   /* Disable the Channel 3: Reset the CC3E Bit */
1124   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1125 
1126   /* Select the Input and set the filter and the prescaler value */
1127   MODIFY_REG(TIMx->CCMR2,
1128              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1129              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1130 
1131   /* Select the Polarity and set the CC3E Bit */
1132   MODIFY_REG(TIMx->CCER,
1133              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1134              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1135 
1136   return SUCCESS;
1137 }
1138 
1139 /**
1140   * @brief  Configure the TIMx input channel 4.
1141   * @param  TIMx Timer Instance
1142   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1143   * @retval An ErrorStatus enumeration value:
1144   *          - SUCCESS: TIMx registers are de-initialized
1145   *          - ERROR: not applicable
1146   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1147 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1148 {
1149   /* Check the parameters */
1150   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1151   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1152   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1153   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1154   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1155 
1156   /* Disable the Channel 4: Reset the CC4E Bit */
1157   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1158 
1159   /* Select the Input and set the filter and the prescaler value */
1160   MODIFY_REG(TIMx->CCMR2,
1161              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1162              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1163 
1164   /* Select the Polarity and set the CC2E Bit */
1165   MODIFY_REG(TIMx->CCER,
1166              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1167              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1168 
1169   return SUCCESS;
1170 }
1171 
1172 
1173 /**
1174   * @}
1175   */
1176 
1177 /**
1178   * @}
1179   */
1180 
1181 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 */
1182 
1183 /**
1184   * @}
1185   */
1186 
1187 #endif /* USE_FULL_LL_DRIVER */
1188 
1189