1 /**
2   ******************************************************************************
3   * @file    stm32f2xx_hal_uart.c
4   * @author  MCD Application Team
5   * @brief   UART HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8   *           + Initialization and de-initialization functions
9   *           + IO operation functions
10   *           + Peripheral Control functions
11   *           + Peripheral State and Errors functions
12   *
13   ******************************************************************************
14   * @attention
15   *
16   * Copyright (c) 2016 STMicroelectronics.
17   * All rights reserved.
18   *
19   * This software is licensed under terms that can be found in the LICENSE file
20   * in the root directory of this software component.
21   * If no LICENSE file comes with this software, it is provided AS-IS.
22   *
23   ******************************************************************************
24   @verbatim
25   ==============================================================================
26                         ##### How to use this driver #####
27   ==============================================================================
28   [..]
29     The UART HAL driver can be used as follows:
30 
31     (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
32     (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
33         (##) Enable the USARTx interface clock.
34         (##) UART pins configuration:
35             (+++) Enable the clock for the UART GPIOs.
36             (+++) Configure the UART TX/RX pins as alternate function pull-up.
37         (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
38              and HAL_UART_Receive_IT() APIs):
39             (+++) Configure the USARTx interrupt priority.
40             (+++) Enable the NVIC USART IRQ handle.
41         (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
42              and HAL_UART_Receive_DMA() APIs):
43             (+++) Declare a DMA handle structure for the Tx/Rx stream.
44             (+++) Enable the DMAx interface clock.
45             (+++) Configure the declared DMA handle structure with the required
46                   Tx/Rx parameters.
47             (+++) Configure the DMA Tx/Rx stream.
48             (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
49             (+++) Configure the priority and enable the NVIC for the transfer complete
50                   interrupt on the DMA Tx/Rx stream.
51             (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
52                   (used for last byte sending completion detection in DMA non circular mode)
53 
54     (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
55         flow control and Mode(Receiver/Transmitter) in the huart Init structure.
56 
57     (#) For the UART asynchronous mode, initialize the UART registers by calling
58         the HAL_UART_Init() API.
59 
60     (#) For the UART Half duplex mode, initialize the UART registers by calling
61         the HAL_HalfDuplex_Init() API.
62 
63     (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
64 
65     (#) For the Multi-Processor mode, initialize the UART registers by calling
66         the HAL_MultiProcessor_Init() API.
67 
68      [..]
69        (@) The specific UART interrupts (Transmission complete interrupt,
70             RXNE interrupt and Error Interrupts) will be managed using the macros
71             __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
72             and receive process.
73 
74      [..]
75        (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
76             low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
77             HAL_UART_MspInit() API.
78 
79     ##### Callback registration #####
80     ==================================
81 
82     [..]
83     The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
84     allows the user to configure dynamically the driver callbacks.
85 
86     [..]
87     Use Function HAL_UART_RegisterCallback() to register a user callback.
88     Function HAL_UART_RegisterCallback() allows to register following callbacks:
89     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
90     (+) TxCpltCallback            : Tx Complete Callback.
91     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
92     (+) RxCpltCallback            : Rx Complete Callback.
93     (+) ErrorCallback             : Error Callback.
94     (+) AbortCpltCallback         : Abort Complete Callback.
95     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
96     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
97     (+) MspInitCallback           : UART MspInit.
98     (+) MspDeInitCallback         : UART MspDeInit.
99     This function takes as parameters the HAL peripheral handle, the Callback ID
100     and a pointer to the user callback function.
101 
102     [..]
103     Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
104     weak (surcharged) function.
105     HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
106     and the Callback ID.
107     This function allows to reset following callbacks:
108     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
109     (+) TxCpltCallback            : Tx Complete Callback.
110     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
111     (+) RxCpltCallback            : Rx Complete Callback.
112     (+) ErrorCallback             : Error Callback.
113     (+) AbortCpltCallback         : Abort Complete Callback.
114     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
115     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
116     (+) MspInitCallback           : UART MspInit.
117     (+) MspDeInitCallback         : UART MspDeInit.
118 
119     [..]
120     For specific callback RxEventCallback, use dedicated registration/reset functions:
121     respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
122 
123     [..]
124     By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
125     all callbacks are set to the corresponding weak (surcharged) functions:
126     examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
127     Exception done for MspInit and MspDeInit functions that are respectively
128     reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
129     and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
130     If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
131     keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
132 
133     [..]
134     Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
135     Exception done MspInit/MspDeInit that can be registered/unregistered
136     in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
137     MspInit/DeInit callbacks can be used during the Init/DeInit.
138     In that case first register the MspInit/MspDeInit user callbacks
139     using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
140     or HAL_UART_Init() function.
141 
142     [..]
143     When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
144     not defined, the callback registration feature is not available
145     and weak (surcharged) callbacks are used.
146 
147      [..]
148         Three operation modes are available within this driver :
149 
150      *** Polling mode IO operation ***
151      =================================
152      [..]
153        (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
154        (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
155 
156      *** Interrupt mode IO operation ***
157      ===================================
158      [..]
159        (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
160        (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
161             add his own code by customization of function pointer HAL_UART_TxCpltCallback
162        (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
163        (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
164             add his own code by customization of function pointer HAL_UART_RxCpltCallback
165        (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
166             add his own code by customization of function pointer HAL_UART_ErrorCallback
167 
168      *** DMA mode IO operation ***
169      ==============================
170      [..]
171        (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
172        (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
173             add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
174        (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
175             add his own code by customization of function pointer HAL_UART_TxCpltCallback
176        (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
177        (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
178             add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
179        (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
180             add his own code by customization of function pointer HAL_UART_RxCpltCallback
181        (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
182             add his own code by customization of function pointer HAL_UART_ErrorCallback
183        (+) Pause the DMA Transfer using HAL_UART_DMAPause()
184        (+) Resume the DMA Transfer using HAL_UART_DMAResume()
185        (+) Stop the DMA Transfer using HAL_UART_DMAStop()
186 
187 
188     [..] This subsection also provides a set of additional functions providing enhanced reception
189     services to user. (For example, these functions allow application to handle use cases
190     where number of data to be received is unknown).
191 
192     (#) Compared to standard reception services which only consider number of received
193         data elements as reception completion criteria, these functions also consider additional events
194         as triggers for updating reception status to caller :
195        (+) Detection of inactivity period (RX line has not been active for a given period).
196           (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
197                for 1 frame time, after last received byte.
198 
199     (#) There are two mode of transfer:
200        (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
201            or till IDLE event occurs. Reception is handled only during function execution.
202            When function exits, no data reception could occur. HAL status and number of actually received data elements,
203            are returned by function after finishing transfer.
204        (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
205            These API's return the HAL status.
206            The end of the data processing will be indicated through the
207            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
208            The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
209            The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
210 
211     (#) Blocking mode API:
212         (+) HAL_UARTEx_ReceiveToIdle()
213 
214     (#) Non-Blocking mode API with Interrupt:
215         (+) HAL_UARTEx_ReceiveToIdle_IT()
216 
217     (#) Non-Blocking mode API with DMA:
218         (+) HAL_UARTEx_ReceiveToIdle_DMA()
219 
220 
221      *** UART HAL driver macros list ***
222      =============================================
223      [..]
224        Below the list of most used macros in UART HAL driver.
225 
226       (+) __HAL_UART_ENABLE: Enable the UART peripheral
227       (+) __HAL_UART_DISABLE: Disable the UART peripheral
228       (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
229       (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
230       (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
231       (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
232       (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
233 
234      [..]
235        (@) You can refer to the UART HAL driver header file for more useful macros
236 
237   @endverbatim
238      [..]
239        (@) Additional remark: If the parity is enabled, then the MSB bit of the data written
240            in the data register is transmitted but is changed by the parity bit.
241            Depending on the frame length defined by the M bit (8-bits or 9-bits),
242            the possible UART frame formats are as listed in the following table:
243     +-------------------------------------------------------------+
244     |   M bit |  PCE bit  |            UART frame                 |
245     |---------------------|---------------------------------------|
246     |    0    |    0      |    | SB | 8 bit data | STB |          |
247     |---------|-----------|---------------------------------------|
248     |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
249     |---------|-----------|---------------------------------------|
250     |    1    |    0      |    | SB | 9 bit data | STB |          |
251     |---------|-----------|---------------------------------------|
252     |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
253     +-------------------------------------------------------------+
254   ******************************************************************************
255   */
256 
257 /* Includes ------------------------------------------------------------------*/
258 #include "stm32f2xx_hal.h"
259 
260 /** @addtogroup STM32F2xx_HAL_Driver
261   * @{
262   */
263 
264 /** @defgroup UART UART
265   * @brief HAL UART module driver
266   * @{
267   */
268 #ifdef HAL_UART_MODULE_ENABLED
269 
270 /* Private typedef -----------------------------------------------------------*/
271 /* Private define ------------------------------------------------------------*/
272 /** @addtogroup UART_Private_Constants
273   * @{
274   */
275 /**
276   * @}
277   */
278 /* Private macro -------------------------------------------------------------*/
279 /* Private variables ---------------------------------------------------------*/
280 /* Private function prototypes -----------------------------------------------*/
281 /** @addtogroup UART_Private_Functions  UART Private Functions
282   * @{
283   */
284 
285 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
286 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart);
287 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
288 static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
289 static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
290 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
291 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
292 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
293 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
294 static void UART_DMAError(DMA_HandleTypeDef *hdma);
295 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
296 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
297 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
298 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
299 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
300 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
301 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
302 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
303 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
304                                                      uint32_t Tickstart, uint32_t Timeout);
305 static void UART_SetConfig(UART_HandleTypeDef *huart);
306 
307 /**
308   * @}
309   */
310 
311 /* Exported functions ---------------------------------------------------------*/
312 /** @defgroup UART_Exported_Functions UART Exported Functions
313   * @{
314   */
315 
316 /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
317   *  @brief    Initialization and Configuration functions
318   *
319 @verbatim
320  ===============================================================================
321             ##### Initialization and Configuration functions #####
322  ===============================================================================
323     [..]
324     This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
325     in asynchronous mode.
326       (+) For the asynchronous mode only these parameters can be configured:
327         (++) Baud Rate
328         (++) Word Length
329         (++) Stop Bit
330         (++) Parity: If the parity is enabled, then the MSB bit of the data written
331              in the data register is transmitted but is changed by the parity bit.
332              Depending on the frame length defined by the M bit (8-bits or 9-bits),
333              please refer to Reference manual for possible UART frame formats.
334         (++) Hardware flow control
335         (++) Receiver/transmitter modes
336         (++) Over Sampling Method
337     [..]
338     The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
339     follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration
340     procedures (details for the procedures are available in reference manual (RM0033)).
341 
342 @endverbatim
343   * @{
344   */
345 
346 /**
347   * @brief  Initializes the UART mode according to the specified parameters in
348   *         the UART_InitTypeDef and create the associated handle.
349   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
350   *                the configuration information for the specified UART module.
351   * @retval HAL status
352   */
HAL_UART_Init(UART_HandleTypeDef * huart)353 HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
354 {
355   /* Check the UART handle allocation */
356   if (huart == NULL)
357   {
358     return HAL_ERROR;
359   }
360 
361   /* Check the parameters */
362   if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
363   {
364     /* The hardware flow control is available only for USART1, USART2, USART3 and USART6 */
365     assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
366     assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
367   }
368   else
369   {
370     assert_param(IS_UART_INSTANCE(huart->Instance));
371   }
372   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
373   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
374 
375   if (huart->gState == HAL_UART_STATE_RESET)
376   {
377     /* Allocate lock resource and initialize it */
378     huart->Lock = HAL_UNLOCKED;
379 
380 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
381     UART_InitCallbacksToDefault(huart);
382 
383     if (huart->MspInitCallback == NULL)
384     {
385       huart->MspInitCallback = HAL_UART_MspInit;
386     }
387 
388     /* Init the low level hardware */
389     huart->MspInitCallback(huart);
390 #else
391     /* Init the low level hardware : GPIO, CLOCK */
392     HAL_UART_MspInit(huart);
393 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
394   }
395 
396   huart->gState = HAL_UART_STATE_BUSY;
397 
398   /* Disable the peripheral */
399   __HAL_UART_DISABLE(huart);
400 
401   /* Set the UART Communication parameters */
402   UART_SetConfig(huart);
403 
404   /* In asynchronous mode, the following bits must be kept cleared:
405      - LINEN and CLKEN bits in the USART_CR2 register,
406      - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
407   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
408   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
409 
410   /* Enable the peripheral */
411   __HAL_UART_ENABLE(huart);
412 
413   /* Initialize the UART state */
414   huart->ErrorCode = HAL_UART_ERROR_NONE;
415   huart->gState = HAL_UART_STATE_READY;
416   huart->RxState = HAL_UART_STATE_READY;
417   huart->RxEventType = HAL_UART_RXEVENT_TC;
418 
419   return HAL_OK;
420 }
421 
422 /**
423   * @brief  Initializes the half-duplex mode according to the specified
424   *         parameters in the UART_InitTypeDef and create the associated handle.
425   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
426   *                the configuration information for the specified UART module.
427   * @retval HAL status
428   */
HAL_HalfDuplex_Init(UART_HandleTypeDef * huart)429 HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
430 {
431   /* Check the UART handle allocation */
432   if (huart == NULL)
433   {
434     return HAL_ERROR;
435   }
436 
437   /* Check the parameters */
438   assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
439   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
440   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
441 
442   if (huart->gState == HAL_UART_STATE_RESET)
443   {
444     /* Allocate lock resource and initialize it */
445     huart->Lock = HAL_UNLOCKED;
446 
447 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
448     UART_InitCallbacksToDefault(huart);
449 
450     if (huart->MspInitCallback == NULL)
451     {
452       huart->MspInitCallback = HAL_UART_MspInit;
453     }
454 
455     /* Init the low level hardware */
456     huart->MspInitCallback(huart);
457 #else
458     /* Init the low level hardware : GPIO, CLOCK */
459     HAL_UART_MspInit(huart);
460 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
461   }
462 
463   huart->gState = HAL_UART_STATE_BUSY;
464 
465   /* Disable the peripheral */
466   __HAL_UART_DISABLE(huart);
467 
468   /* Set the UART Communication parameters */
469   UART_SetConfig(huart);
470 
471   /* In half-duplex mode, the following bits must be kept cleared:
472      - LINEN and CLKEN bits in the USART_CR2 register,
473      - SCEN and IREN bits in the USART_CR3 register.*/
474   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
475   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
476 
477   /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
478   SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
479 
480   /* Enable the peripheral */
481   __HAL_UART_ENABLE(huart);
482 
483   /* Initialize the UART state*/
484   huart->ErrorCode = HAL_UART_ERROR_NONE;
485   huart->gState = HAL_UART_STATE_READY;
486   huart->RxState = HAL_UART_STATE_READY;
487   huart->RxEventType = HAL_UART_RXEVENT_TC;
488 
489   return HAL_OK;
490 }
491 
492 /**
493   * @brief  Initializes the LIN mode according to the specified
494   *         parameters in the UART_InitTypeDef and create the associated handle.
495   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
496   *                the configuration information for the specified UART module.
497   * @param  BreakDetectLength Specifies the LIN break detection length.
498   *         This parameter can be one of the following values:
499   *            @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
500   *            @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
501   * @retval HAL status
502   */
HAL_LIN_Init(UART_HandleTypeDef * huart,uint32_t BreakDetectLength)503 HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
504 {
505   /* Check the UART handle allocation */
506   if (huart == NULL)
507   {
508     return HAL_ERROR;
509   }
510 
511   /* Check the LIN UART instance */
512   assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
513 
514   /* Check the Break detection length parameter */
515   assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
516   assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
517   assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
518 
519   if (huart->gState == HAL_UART_STATE_RESET)
520   {
521     /* Allocate lock resource and initialize it */
522     huart->Lock = HAL_UNLOCKED;
523 
524 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
525     UART_InitCallbacksToDefault(huart);
526 
527     if (huart->MspInitCallback == NULL)
528     {
529       huart->MspInitCallback = HAL_UART_MspInit;
530     }
531 
532     /* Init the low level hardware */
533     huart->MspInitCallback(huart);
534 #else
535     /* Init the low level hardware : GPIO, CLOCK */
536     HAL_UART_MspInit(huart);
537 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
538   }
539 
540   huart->gState = HAL_UART_STATE_BUSY;
541 
542   /* Disable the peripheral */
543   __HAL_UART_DISABLE(huart);
544 
545   /* Set the UART Communication parameters */
546   UART_SetConfig(huart);
547 
548   /* In LIN mode, the following bits must be kept cleared:
549      - CLKEN bits in the USART_CR2 register,
550      - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
551   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN));
552   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
553 
554   /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
555   SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
556 
557   /* Set the USART LIN Break detection length. */
558   CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
559   SET_BIT(huart->Instance->CR2, BreakDetectLength);
560 
561   /* Enable the peripheral */
562   __HAL_UART_ENABLE(huart);
563 
564   /* Initialize the UART state*/
565   huart->ErrorCode = HAL_UART_ERROR_NONE;
566   huart->gState = HAL_UART_STATE_READY;
567   huart->RxState = HAL_UART_STATE_READY;
568   huart->RxEventType = HAL_UART_RXEVENT_TC;
569 
570   return HAL_OK;
571 }
572 
573 /**
574   * @brief  Initializes the Multi-Processor mode according to the specified
575   *         parameters in the UART_InitTypeDef and create the associated handle.
576   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
577   *                the configuration information for the specified UART module.
578   * @param  Address USART address
579   * @param  WakeUpMethod specifies the USART wake-up method.
580   *         This parameter can be one of the following values:
581   *            @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
582   *            @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
583   * @retval HAL status
584   */
HAL_MultiProcessor_Init(UART_HandleTypeDef * huart,uint8_t Address,uint32_t WakeUpMethod)585 HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
586 {
587   /* Check the UART handle allocation */
588   if (huart == NULL)
589   {
590     return HAL_ERROR;
591   }
592 
593   /* Check the parameters */
594   assert_param(IS_UART_INSTANCE(huart->Instance));
595 
596   /* Check the Address & wake up method parameters */
597   assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
598   assert_param(IS_UART_ADDRESS(Address));
599   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
600   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
601 
602   if (huart->gState == HAL_UART_STATE_RESET)
603   {
604     /* Allocate lock resource and initialize it */
605     huart->Lock = HAL_UNLOCKED;
606 
607 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
608     UART_InitCallbacksToDefault(huart);
609 
610     if (huart->MspInitCallback == NULL)
611     {
612       huart->MspInitCallback = HAL_UART_MspInit;
613     }
614 
615     /* Init the low level hardware */
616     huart->MspInitCallback(huart);
617 #else
618     /* Init the low level hardware : GPIO, CLOCK */
619     HAL_UART_MspInit(huart);
620 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
621   }
622 
623   huart->gState = HAL_UART_STATE_BUSY;
624 
625   /* Disable the peripheral */
626   __HAL_UART_DISABLE(huart);
627 
628   /* Set the UART Communication parameters */
629   UART_SetConfig(huart);
630 
631   /* In Multi-Processor mode, the following bits must be kept cleared:
632      - LINEN and CLKEN bits in the USART_CR2 register,
633      - SCEN, HDSEL and IREN  bits in the USART_CR3 register */
634   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
635   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
636 
637   /* Set the USART address node */
638   CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
639   SET_BIT(huart->Instance->CR2, Address);
640 
641   /* Set the wake up method by setting the WAKE bit in the CR1 register */
642   CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
643   SET_BIT(huart->Instance->CR1, WakeUpMethod);
644 
645   /* Enable the peripheral */
646   __HAL_UART_ENABLE(huart);
647 
648   /* Initialize the UART state */
649   huart->ErrorCode = HAL_UART_ERROR_NONE;
650   huart->gState = HAL_UART_STATE_READY;
651   huart->RxState = HAL_UART_STATE_READY;
652   huart->RxEventType = HAL_UART_RXEVENT_TC;
653 
654   return HAL_OK;
655 }
656 
657 /**
658   * @brief  DeInitializes the UART peripheral.
659   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
660   *                the configuration information for the specified UART module.
661   * @retval HAL status
662   */
HAL_UART_DeInit(UART_HandleTypeDef * huart)663 HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
664 {
665   /* Check the UART handle allocation */
666   if (huart == NULL)
667   {
668     return HAL_ERROR;
669   }
670 
671   /* Check the parameters */
672   assert_param(IS_UART_INSTANCE(huart->Instance));
673 
674   huart->gState = HAL_UART_STATE_BUSY;
675 
676   /* Disable the Peripheral */
677   __HAL_UART_DISABLE(huart);
678 
679 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
680   if (huart->MspDeInitCallback == NULL)
681   {
682     huart->MspDeInitCallback = HAL_UART_MspDeInit;
683   }
684   /* DeInit the low level hardware */
685   huart->MspDeInitCallback(huart);
686 #else
687   /* DeInit the low level hardware */
688   HAL_UART_MspDeInit(huart);
689 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
690 
691   huart->ErrorCode = HAL_UART_ERROR_NONE;
692   huart->gState = HAL_UART_STATE_RESET;
693   huart->RxState = HAL_UART_STATE_RESET;
694   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
695   huart->RxEventType = HAL_UART_RXEVENT_TC;
696 
697   /* Process Unlock */
698   __HAL_UNLOCK(huart);
699 
700   return HAL_OK;
701 }
702 
703 /**
704   * @brief  UART MSP Init.
705   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
706   *                the configuration information for the specified UART module.
707   * @retval None
708   */
HAL_UART_MspInit(UART_HandleTypeDef * huart)709 __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
710 {
711   /* Prevent unused argument(s) compilation warning */
712   UNUSED(huart);
713   /* NOTE: This function should not be modified, when the callback is needed,
714            the HAL_UART_MspInit could be implemented in the user file
715    */
716 }
717 
718 /**
719   * @brief  UART MSP DeInit.
720   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
721   *                the configuration information for the specified UART module.
722   * @retval None
723   */
HAL_UART_MspDeInit(UART_HandleTypeDef * huart)724 __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
725 {
726   /* Prevent unused argument(s) compilation warning */
727   UNUSED(huart);
728   /* NOTE: This function should not be modified, when the callback is needed,
729            the HAL_UART_MspDeInit could be implemented in the user file
730    */
731 }
732 
733 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
734 /**
735   * @brief  Register a User UART Callback
736   *         To be used instead of the weak predefined callback
737   * @note   The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(),
738   *         HAL_MultiProcessor_Init() to register callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
739   * @param  huart uart handle
740   * @param  CallbackID ID of the callback to be registered
741   *         This parameter can be one of the following values:
742   *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
743   *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
744   *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
745   *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
746   *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
747   *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
748   *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
749   *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
750   *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
751   *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
752   * @param  pCallback pointer to the Callback function
753   * @retval HAL status
754   */
HAL_UART_RegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID,pUART_CallbackTypeDef pCallback)755 HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
756                                             pUART_CallbackTypeDef pCallback)
757 {
758   HAL_StatusTypeDef status = HAL_OK;
759 
760   if (pCallback == NULL)
761   {
762     /* Update the error code */
763     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
764 
765     return HAL_ERROR;
766   }
767 
768   if (huart->gState == HAL_UART_STATE_READY)
769   {
770     switch (CallbackID)
771     {
772       case HAL_UART_TX_HALFCOMPLETE_CB_ID :
773         huart->TxHalfCpltCallback = pCallback;
774         break;
775 
776       case HAL_UART_TX_COMPLETE_CB_ID :
777         huart->TxCpltCallback = pCallback;
778         break;
779 
780       case HAL_UART_RX_HALFCOMPLETE_CB_ID :
781         huart->RxHalfCpltCallback = pCallback;
782         break;
783 
784       case HAL_UART_RX_COMPLETE_CB_ID :
785         huart->RxCpltCallback = pCallback;
786         break;
787 
788       case HAL_UART_ERROR_CB_ID :
789         huart->ErrorCallback = pCallback;
790         break;
791 
792       case HAL_UART_ABORT_COMPLETE_CB_ID :
793         huart->AbortCpltCallback = pCallback;
794         break;
795 
796       case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
797         huart->AbortTransmitCpltCallback = pCallback;
798         break;
799 
800       case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
801         huart->AbortReceiveCpltCallback = pCallback;
802         break;
803 
804       case HAL_UART_MSPINIT_CB_ID :
805         huart->MspInitCallback = pCallback;
806         break;
807 
808       case HAL_UART_MSPDEINIT_CB_ID :
809         huart->MspDeInitCallback = pCallback;
810         break;
811 
812       default :
813         /* Update the error code */
814         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
815 
816         /* Return error status */
817         status =  HAL_ERROR;
818         break;
819     }
820   }
821   else if (huart->gState == HAL_UART_STATE_RESET)
822   {
823     switch (CallbackID)
824     {
825       case HAL_UART_MSPINIT_CB_ID :
826         huart->MspInitCallback = pCallback;
827         break;
828 
829       case HAL_UART_MSPDEINIT_CB_ID :
830         huart->MspDeInitCallback = pCallback;
831         break;
832 
833       default :
834         /* Update the error code */
835         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
836 
837         /* Return error status */
838         status =  HAL_ERROR;
839         break;
840     }
841   }
842   else
843   {
844     /* Update the error code */
845     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
846 
847     /* Return error status */
848     status =  HAL_ERROR;
849   }
850 
851   return status;
852 }
853 
854 /**
855   * @brief  Unregister an UART Callback
856   *         UART callaback is redirected to the weak predefined callback
857   * @note   The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
858   *         HAL_LIN_Init(), HAL_MultiProcessor_Init() to un-register callbacks for HAL_UART_MSPINIT_CB_ID
859   *         and HAL_UART_MSPDEINIT_CB_ID
860   * @param  huart uart handle
861   * @param  CallbackID ID of the callback to be unregistered
862   *         This parameter can be one of the following values:
863   *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
864   *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
865   *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
866   *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
867   *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
868   *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
869   *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
870   *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
871   *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
872   *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
873   * @retval HAL status
874   */
HAL_UART_UnRegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID)875 HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
876 {
877   HAL_StatusTypeDef status = HAL_OK;
878 
879   if (HAL_UART_STATE_READY == huart->gState)
880   {
881     switch (CallbackID)
882     {
883       case HAL_UART_TX_HALFCOMPLETE_CB_ID :
884         huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback       */
885         break;
886 
887       case HAL_UART_TX_COMPLETE_CB_ID :
888         huart->TxCpltCallback = HAL_UART_TxCpltCallback;                       /* Legacy weak TxCpltCallback            */
889         break;
890 
891       case HAL_UART_RX_HALFCOMPLETE_CB_ID :
892         huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback        */
893         break;
894 
895       case HAL_UART_RX_COMPLETE_CB_ID :
896         huart->RxCpltCallback = HAL_UART_RxCpltCallback;                       /* Legacy weak RxCpltCallback            */
897         break;
898 
899       case HAL_UART_ERROR_CB_ID :
900         huart->ErrorCallback = HAL_UART_ErrorCallback;                         /* Legacy weak ErrorCallback             */
901         break;
902 
903       case HAL_UART_ABORT_COMPLETE_CB_ID :
904         huart->AbortCpltCallback = HAL_UART_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback         */
905         break;
906 
907       case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
908         huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
909         break;
910 
911       case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
912         huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback;   /* Legacy weak AbortReceiveCpltCallback  */
913         break;
914 
915       case HAL_UART_MSPINIT_CB_ID :
916         huart->MspInitCallback = HAL_UART_MspInit;                             /* Legacy weak MspInitCallback           */
917         break;
918 
919       case HAL_UART_MSPDEINIT_CB_ID :
920         huart->MspDeInitCallback = HAL_UART_MspDeInit;                         /* Legacy weak MspDeInitCallback         */
921         break;
922 
923       default :
924         /* Update the error code */
925         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
926 
927         /* Return error status */
928         status =  HAL_ERROR;
929         break;
930     }
931   }
932   else if (HAL_UART_STATE_RESET == huart->gState)
933   {
934     switch (CallbackID)
935     {
936       case HAL_UART_MSPINIT_CB_ID :
937         huart->MspInitCallback = HAL_UART_MspInit;
938         break;
939 
940       case HAL_UART_MSPDEINIT_CB_ID :
941         huart->MspDeInitCallback = HAL_UART_MspDeInit;
942         break;
943 
944       default :
945         /* Update the error code */
946         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
947 
948         /* Return error status */
949         status =  HAL_ERROR;
950         break;
951     }
952   }
953   else
954   {
955     /* Update the error code */
956     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
957 
958     /* Return error status */
959     status =  HAL_ERROR;
960   }
961 
962   return status;
963 }
964 
965 /**
966   * @brief  Register a User UART Rx Event Callback
967   *         To be used instead of the weak predefined callback
968   * @param  huart     Uart handle
969   * @param  pCallback Pointer to the Rx Event Callback function
970   * @retval HAL status
971   */
HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef * huart,pUART_RxEventCallbackTypeDef pCallback)972 HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
973 {
974   HAL_StatusTypeDef status = HAL_OK;
975 
976   if (pCallback == NULL)
977   {
978     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
979 
980     return HAL_ERROR;
981   }
982 
983   /* Process locked */
984   __HAL_LOCK(huart);
985 
986   if (huart->gState == HAL_UART_STATE_READY)
987   {
988     huart->RxEventCallback = pCallback;
989   }
990   else
991   {
992     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
993 
994     status =  HAL_ERROR;
995   }
996 
997   /* Release Lock */
998   __HAL_UNLOCK(huart);
999 
1000   return status;
1001 }
1002 
1003 /**
1004   * @brief  UnRegister the UART Rx Event Callback
1005   *         UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
1006   * @param  huart     Uart handle
1007   * @retval HAL status
1008   */
HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef * huart)1009 HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
1010 {
1011   HAL_StatusTypeDef status = HAL_OK;
1012 
1013   /* Process locked */
1014   __HAL_LOCK(huart);
1015 
1016   if (huart->gState == HAL_UART_STATE_READY)
1017   {
1018     huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback  */
1019   }
1020   else
1021   {
1022     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
1023 
1024     status =  HAL_ERROR;
1025   }
1026 
1027   /* Release Lock */
1028   __HAL_UNLOCK(huart);
1029   return status;
1030 }
1031 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1032 
1033 /**
1034   * @}
1035   */
1036 
1037 /** @defgroup UART_Exported_Functions_Group2 IO operation functions
1038   *  @brief UART Transmit and Receive functions
1039   *
1040 @verbatim
1041  ===============================================================================
1042                       ##### IO operation functions #####
1043  ===============================================================================
1044     This subsection provides a set of functions allowing to manage the UART asynchronous
1045     and Half duplex data transfers.
1046 
1047     (#) There are two modes of transfer:
1048        (+) Blocking mode: The communication is performed in polling mode.
1049            The HAL status of all data processing is returned by the same function
1050            after finishing transfer.
1051        (+) Non-Blocking mode: The communication is performed using Interrupts
1052            or DMA, these API's return the HAL status.
1053            The end of the data processing will be indicated through the
1054            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
1055            using DMA mode.
1056            The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
1057            will be executed respectively at the end of the transmit or receive process
1058            The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected.
1059 
1060     (#) Blocking mode API's are :
1061         (+) HAL_UART_Transmit()
1062         (+) HAL_UART_Receive()
1063 
1064     (#) Non-Blocking mode API's with Interrupt are :
1065         (+) HAL_UART_Transmit_IT()
1066         (+) HAL_UART_Receive_IT()
1067         (+) HAL_UART_IRQHandler()
1068 
1069     (#) Non-Blocking mode API's with DMA are :
1070         (+) HAL_UART_Transmit_DMA()
1071         (+) HAL_UART_Receive_DMA()
1072         (+) HAL_UART_DMAPause()
1073         (+) HAL_UART_DMAResume()
1074         (+) HAL_UART_DMAStop()
1075 
1076     (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
1077         (+) HAL_UART_TxHalfCpltCallback()
1078         (+) HAL_UART_TxCpltCallback()
1079         (+) HAL_UART_RxHalfCpltCallback()
1080         (+) HAL_UART_RxCpltCallback()
1081         (+) HAL_UART_ErrorCallback()
1082 
1083     (#) Non-Blocking mode transfers could be aborted using Abort API's :
1084         (+) HAL_UART_Abort()
1085         (+) HAL_UART_AbortTransmit()
1086         (+) HAL_UART_AbortReceive()
1087         (+) HAL_UART_Abort_IT()
1088         (+) HAL_UART_AbortTransmit_IT()
1089         (+) HAL_UART_AbortReceive_IT()
1090 
1091     (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
1092         (+) HAL_UART_AbortCpltCallback()
1093         (+) HAL_UART_AbortTransmitCpltCallback()
1094         (+) HAL_UART_AbortReceiveCpltCallback()
1095 
1096     (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services:
1097         (+) HAL_UARTEx_RxEventCallback()
1098 
1099     (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
1100         Errors are handled as follows :
1101        (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
1102            to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
1103            Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
1104            and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
1105            If user wants to abort it, Abort services should be called by user.
1106        (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
1107            This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
1108            Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
1109 
1110     -@- In the Half duplex communication, it is forbidden to run the transmit
1111         and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
1112 
1113 @endverbatim
1114   * @{
1115   */
1116 
1117 /**
1118   * @brief  Sends an amount of data in blocking mode.
1119   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1120   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1121   *         of u16 provided through pData.
1122   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1123   *               the configuration information for the specified UART module.
1124   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1125   * @param  Size  Amount of data elements (u8 or u16) to be sent
1126   * @param  Timeout Timeout duration
1127   * @retval HAL status
1128   */
HAL_UART_Transmit(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size,uint32_t Timeout)1129 HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
1130 {
1131   const uint8_t  *pdata8bits;
1132   const uint16_t *pdata16bits;
1133   uint32_t tickstart = 0U;
1134 
1135   /* Check that a Tx process is not already ongoing */
1136   if (huart->gState == HAL_UART_STATE_READY)
1137   {
1138     if ((pData == NULL) || (Size == 0U))
1139     {
1140       return  HAL_ERROR;
1141     }
1142 
1143     huart->ErrorCode = HAL_UART_ERROR_NONE;
1144     huart->gState = HAL_UART_STATE_BUSY_TX;
1145 
1146     /* Init tickstart for timeout management */
1147     tickstart = HAL_GetTick();
1148 
1149     huart->TxXferSize = Size;
1150     huart->TxXferCount = Size;
1151 
1152     /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
1153     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1154     {
1155       pdata8bits  = NULL;
1156       pdata16bits = (const uint16_t *) pData;
1157     }
1158     else
1159     {
1160       pdata8bits  = pData;
1161       pdata16bits = NULL;
1162     }
1163 
1164     while (huart->TxXferCount > 0U)
1165     {
1166       if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1167       {
1168         return HAL_TIMEOUT;
1169       }
1170       if (pdata8bits == NULL)
1171       {
1172         huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU);
1173         pdata16bits++;
1174       }
1175       else
1176       {
1177         huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU);
1178         pdata8bits++;
1179       }
1180       huart->TxXferCount--;
1181     }
1182 
1183     if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
1184     {
1185       return HAL_TIMEOUT;
1186     }
1187 
1188     /* At end of Tx process, restore huart->gState to Ready */
1189     huart->gState = HAL_UART_STATE_READY;
1190 
1191     return HAL_OK;
1192   }
1193   else
1194   {
1195     return HAL_BUSY;
1196   }
1197 }
1198 
1199 /**
1200   * @brief  Receives an amount of data in blocking mode.
1201   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1202   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1203   *         of u16 available through pData.
1204   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1205   *               the configuration information for the specified UART module.
1206   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1207   * @param  Size  Amount of data elements (u8 or u16) to be received.
1208   * @param  Timeout Timeout duration
1209   * @retval HAL status
1210   */
HAL_UART_Receive(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint32_t Timeout)1211 HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1212 {
1213   uint8_t  *pdata8bits;
1214   uint16_t *pdata16bits;
1215   uint32_t tickstart = 0U;
1216 
1217   /* Check that a Rx process is not already ongoing */
1218   if (huart->RxState == HAL_UART_STATE_READY)
1219   {
1220     if ((pData == NULL) || (Size == 0U))
1221     {
1222       return  HAL_ERROR;
1223     }
1224 
1225     huart->ErrorCode = HAL_UART_ERROR_NONE;
1226     huart->RxState = HAL_UART_STATE_BUSY_RX;
1227     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1228 
1229     /* Init tickstart for timeout management */
1230     tickstart = HAL_GetTick();
1231 
1232     huart->RxXferSize = Size;
1233     huart->RxXferCount = Size;
1234 
1235     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1236     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1237     {
1238       pdata8bits  = NULL;
1239       pdata16bits = (uint16_t *) pData;
1240     }
1241     else
1242     {
1243       pdata8bits  = pData;
1244       pdata16bits = NULL;
1245     }
1246 
1247     /* Check the remain data to be received */
1248     while (huart->RxXferCount > 0U)
1249     {
1250       if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
1251       {
1252         return HAL_TIMEOUT;
1253       }
1254       if (pdata8bits == NULL)
1255       {
1256         *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF);
1257         pdata16bits++;
1258       }
1259       else
1260       {
1261         if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1262         {
1263           *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1264         }
1265         else
1266         {
1267           *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1268         }
1269         pdata8bits++;
1270       }
1271       huart->RxXferCount--;
1272     }
1273 
1274     /* At end of Rx process, restore huart->RxState to Ready */
1275     huart->RxState = HAL_UART_STATE_READY;
1276 
1277     return HAL_OK;
1278   }
1279   else
1280   {
1281     return HAL_BUSY;
1282   }
1283 }
1284 
1285 /**
1286   * @brief  Sends an amount of data in non blocking mode.
1287   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1288   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1289   *         of u16 provided through pData.
1290   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1291   *               the configuration information for the specified UART module.
1292   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1293   * @param  Size  Amount of data elements (u8 or u16) to be sent
1294   * @retval HAL status
1295   */
HAL_UART_Transmit_IT(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1296 HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1297 {
1298   /* Check that a Tx process is not already ongoing */
1299   if (huart->gState == HAL_UART_STATE_READY)
1300   {
1301     if ((pData == NULL) || (Size == 0U))
1302     {
1303       return HAL_ERROR;
1304     }
1305 
1306     huart->pTxBuffPtr = pData;
1307     huart->TxXferSize = Size;
1308     huart->TxXferCount = Size;
1309 
1310     huart->ErrorCode = HAL_UART_ERROR_NONE;
1311     huart->gState = HAL_UART_STATE_BUSY_TX;
1312 
1313     /* Enable the UART Transmit data register empty Interrupt */
1314     __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
1315 
1316     return HAL_OK;
1317   }
1318   else
1319   {
1320     return HAL_BUSY;
1321   }
1322 }
1323 
1324 /**
1325   * @brief  Receives an amount of data in non blocking mode.
1326   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1327   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1328   *         of u16 available through pData.
1329   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1330   *               the configuration information for the specified UART module.
1331   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1332   * @param  Size  Amount of data elements (u8 or u16) to be received.
1333   * @retval HAL status
1334   */
HAL_UART_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1335 HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1336 {
1337   /* Check that a Rx process is not already ongoing */
1338   if (huart->RxState == HAL_UART_STATE_READY)
1339   {
1340     if ((pData == NULL) || (Size == 0U))
1341     {
1342       return HAL_ERROR;
1343     }
1344 
1345     /* Set Reception type to Standard reception */
1346     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1347 
1348     return (UART_Start_Receive_IT(huart, pData, Size));
1349   }
1350   else
1351   {
1352     return HAL_BUSY;
1353   }
1354 }
1355 
1356 /**
1357   * @brief  Sends an amount of data in DMA mode.
1358   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1359   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1360   *         of u16 provided through pData.
1361   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1362   *                the configuration information for the specified UART module.
1363   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1364   * @param  Size  Amount of data elements (u8 or u16) to be sent
1365   * @retval HAL status
1366   */
HAL_UART_Transmit_DMA(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1367 HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1368 {
1369   const uint32_t *tmp;
1370 
1371   /* Check that a Tx process is not already ongoing */
1372   if (huart->gState == HAL_UART_STATE_READY)
1373   {
1374     if ((pData == NULL) || (Size == 0U))
1375     {
1376       return HAL_ERROR;
1377     }
1378 
1379     huart->pTxBuffPtr = pData;
1380     huart->TxXferSize = Size;
1381     huart->TxXferCount = Size;
1382 
1383     huart->ErrorCode = HAL_UART_ERROR_NONE;
1384     huart->gState = HAL_UART_STATE_BUSY_TX;
1385 
1386     /* Set the UART DMA transfer complete callback */
1387     huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
1388 
1389     /* Set the UART DMA Half transfer complete callback */
1390     huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
1391 
1392     /* Set the DMA error callback */
1393     huart->hdmatx->XferErrorCallback = UART_DMAError;
1394 
1395     /* Set the DMA abort callback */
1396     huart->hdmatx->XferAbortCallback = NULL;
1397 
1398     /* Enable the UART transmit DMA stream */
1399     tmp = (const uint32_t *)&pData;
1400     HAL_DMA_Start_IT(huart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
1401 
1402     /* Clear the TC flag in the SR register by writing 0 to it */
1403     __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
1404 
1405     /* Enable the DMA transfer for transmit request by setting the DMAT bit
1406        in the UART CR3 register */
1407     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1408 
1409     return HAL_OK;
1410   }
1411   else
1412   {
1413     return HAL_BUSY;
1414   }
1415 }
1416 
1417 /**
1418   * @brief  Receives an amount of data in DMA mode.
1419   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1420   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1421   *         of u16 available through pData.
1422   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1423   *               the configuration information for the specified UART module.
1424   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1425   * @param  Size  Amount of data elements (u8 or u16) to be received.
1426   * @note   When the UART parity is enabled (PCE = 1) the received data contains the parity bit.
1427   * @retval HAL status
1428   */
HAL_UART_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1429 HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1430 {
1431   /* Check that a Rx process is not already ongoing */
1432   if (huart->RxState == HAL_UART_STATE_READY)
1433   {
1434     if ((pData == NULL) || (Size == 0U))
1435     {
1436       return HAL_ERROR;
1437     }
1438 
1439     /* Set Reception type to Standard reception */
1440     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1441 
1442     return (UART_Start_Receive_DMA(huart, pData, Size));
1443   }
1444   else
1445   {
1446     return HAL_BUSY;
1447   }
1448 }
1449 
1450 /**
1451   * @brief Pauses the DMA Transfer.
1452   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1453   *                the configuration information for the specified UART module.
1454   * @retval HAL status
1455   */
HAL_UART_DMAPause(UART_HandleTypeDef * huart)1456 HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
1457 {
1458   uint32_t dmarequest = 0x00U;
1459 
1460   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1461   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1462   {
1463     /* Disable the UART DMA Tx request */
1464     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1465   }
1466 
1467   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1468   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1469   {
1470     /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1471     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1472     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1473 
1474     /* Disable the UART DMA Rx request */
1475     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1476   }
1477 
1478   return HAL_OK;
1479 }
1480 
1481 /**
1482   * @brief Resumes the DMA Transfer.
1483   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1484   *                the configuration information for the specified UART module.
1485   * @retval HAL status
1486   */
HAL_UART_DMAResume(UART_HandleTypeDef * huart)1487 HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
1488 {
1489 
1490   if (huart->gState == HAL_UART_STATE_BUSY_TX)
1491   {
1492     /* Enable the UART DMA Tx request */
1493     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1494   }
1495 
1496   if (huart->RxState == HAL_UART_STATE_BUSY_RX)
1497   {
1498     /* Clear the Overrun flag before resuming the Rx transfer*/
1499     __HAL_UART_CLEAR_OREFLAG(huart);
1500 
1501     /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1502     if (huart->Init.Parity != UART_PARITY_NONE)
1503     {
1504       ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1505     }
1506     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1507 
1508     /* Enable the UART DMA Rx request */
1509     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1510   }
1511 
1512   return HAL_OK;
1513 }
1514 
1515 /**
1516   * @brief Stops the DMA Transfer.
1517   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1518   *                the configuration information for the specified UART module.
1519   * @retval HAL status
1520   */
HAL_UART_DMAStop(UART_HandleTypeDef * huart)1521 HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
1522 {
1523   uint32_t dmarequest = 0x00U;
1524   /* The Lock is not implemented on this API to allow the user application
1525      to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
1526      when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
1527      and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
1528      */
1529 
1530   /* Stop UART DMA Tx request if ongoing */
1531   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1532   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1533   {
1534     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1535 
1536     /* Abort the UART DMA Tx stream */
1537     if (huart->hdmatx != NULL)
1538     {
1539       HAL_DMA_Abort(huart->hdmatx);
1540     }
1541     UART_EndTxTransfer(huart);
1542   }
1543 
1544   /* Stop UART DMA Rx request if ongoing */
1545   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1546   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1547   {
1548     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1549 
1550     /* Abort the UART DMA Rx stream */
1551     if (huart->hdmarx != NULL)
1552     {
1553       HAL_DMA_Abort(huart->hdmarx);
1554     }
1555     UART_EndRxTransfer(huart);
1556   }
1557 
1558   return HAL_OK;
1559 }
1560 
1561 /**
1562   * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs.
1563   * @note   HAL_OK is returned if reception is completed (expected number of data has been received)
1564   *         or if reception is stopped after IDLE event (less than the expected number of data has been received)
1565   *         In this case, RxLen output parameter indicates number of data available in reception buffer.
1566   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1567   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1568   *         of uint16_t available through pData.
1569   * @param huart   UART handle.
1570   * @param pData   Pointer to data buffer (uint8_t or uint16_t data elements).
1571   * @param Size    Amount of data elements (uint8_t or uint16_t) to be received.
1572   * @param RxLen   Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event)
1573   * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
1574   * @retval HAL status
1575   */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)1576 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
1577                                            uint32_t Timeout)
1578 {
1579   uint8_t  *pdata8bits;
1580   uint16_t *pdata16bits;
1581   uint32_t tickstart;
1582 
1583   /* Check that a Rx process is not already ongoing */
1584   if (huart->RxState == HAL_UART_STATE_READY)
1585   {
1586     if ((pData == NULL) || (Size == 0U))
1587     {
1588       return  HAL_ERROR;
1589     }
1590 
1591     huart->ErrorCode = HAL_UART_ERROR_NONE;
1592     huart->RxState = HAL_UART_STATE_BUSY_RX;
1593     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1594     huart->RxEventType = HAL_UART_RXEVENT_TC;
1595 
1596     /* Init tickstart for timeout management */
1597     tickstart = HAL_GetTick();
1598 
1599     huart->RxXferSize  = Size;
1600     huart->RxXferCount = Size;
1601 
1602     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1603     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1604     {
1605       pdata8bits  = NULL;
1606       pdata16bits = (uint16_t *) pData;
1607     }
1608     else
1609     {
1610       pdata8bits  = pData;
1611       pdata16bits = NULL;
1612     }
1613 
1614     /* Initialize output number of received elements */
1615     *RxLen = 0U;
1616 
1617     /* as long as data have to be received */
1618     while (huart->RxXferCount > 0U)
1619     {
1620       /* Check if IDLE flag is set */
1621       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
1622       {
1623         /* Clear IDLE flag in ISR */
1624         __HAL_UART_CLEAR_IDLEFLAG(huart);
1625 
1626         /* If Set, but no data ever received, clear flag without exiting loop */
1627         /* If Set, and data has already been received, this means Idle Event is valid : End reception */
1628         if (*RxLen > 0U)
1629         {
1630           huart->RxEventType = HAL_UART_RXEVENT_IDLE;
1631           huart->RxState = HAL_UART_STATE_READY;
1632 
1633           return HAL_OK;
1634         }
1635       }
1636 
1637       /* Check if RXNE flag is set */
1638       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
1639       {
1640         if (pdata8bits == NULL)
1641         {
1642           *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
1643           pdata16bits++;
1644         }
1645         else
1646         {
1647           if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1648           {
1649             *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1650           }
1651           else
1652           {
1653             *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1654           }
1655 
1656           pdata8bits++;
1657         }
1658         /* Increment number of received elements */
1659         *RxLen += 1U;
1660         huart->RxXferCount--;
1661       }
1662 
1663       /* Check for the Timeout */
1664       if (Timeout != HAL_MAX_DELAY)
1665       {
1666         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1667         {
1668           huart->RxState = HAL_UART_STATE_READY;
1669 
1670           return HAL_TIMEOUT;
1671         }
1672       }
1673     }
1674 
1675     /* Set number of received elements in output parameter : RxLen */
1676     *RxLen = huart->RxXferSize - huart->RxXferCount;
1677     /* At end of Rx process, restore huart->RxState to Ready */
1678     huart->RxState = HAL_UART_STATE_READY;
1679 
1680     return HAL_OK;
1681   }
1682   else
1683   {
1684     return HAL_BUSY;
1685   }
1686 }
1687 
1688 /**
1689   * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs.
1690   * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
1691   *         to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
1692   *         number of received data elements.
1693   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1694   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1695   *         of uint16_t available through pData.
1696   * @param huart UART handle.
1697   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1698   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
1699   * @retval HAL status
1700   */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1701 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1702 {
1703   HAL_StatusTypeDef status;
1704 
1705   /* Check that a Rx process is not already ongoing */
1706   if (huart->RxState == HAL_UART_STATE_READY)
1707   {
1708     if ((pData == NULL) || (Size == 0U))
1709     {
1710       return HAL_ERROR;
1711     }
1712 
1713     /* Set Reception type to reception till IDLE Event*/
1714     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1715     huart->RxEventType = HAL_UART_RXEVENT_TC;
1716 
1717     status =  UART_Start_Receive_IT(huart, pData, Size);
1718 
1719     /* Check Rx process has been successfully started */
1720     if (status == HAL_OK)
1721     {
1722       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1723       {
1724         __HAL_UART_CLEAR_IDLEFLAG(huart);
1725         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1726       }
1727       else
1728       {
1729         /* In case of errors already pending when reception is started,
1730            Interrupts may have already been raised and lead to reception abortion.
1731            (Overrun error for instance).
1732            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1733         status = HAL_ERROR;
1734       }
1735     }
1736 
1737     return status;
1738   }
1739   else
1740   {
1741     return HAL_BUSY;
1742   }
1743 }
1744 
1745 /**
1746   * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs.
1747   * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
1748   *         to DMA services, transferring automatically received data elements in user reception buffer and
1749   *         calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
1750   *         reception phase as ended. In all cases, callback execution will indicate number of received data elements.
1751   * @note   When the UART parity is enabled (PCE = 1), the received data contain
1752   *         the parity bit (MSB position).
1753   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1754   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1755   *         of uint16_t available through pData.
1756   * @param huart UART handle.
1757   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1758   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
1759   * @retval HAL status
1760   */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1761 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1762 {
1763   HAL_StatusTypeDef status;
1764 
1765   /* Check that a Rx process is not already ongoing */
1766   if (huart->RxState == HAL_UART_STATE_READY)
1767   {
1768     if ((pData == NULL) || (Size == 0U))
1769     {
1770       return HAL_ERROR;
1771     }
1772 
1773     /* Set Reception type to reception till IDLE Event*/
1774     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1775     huart->RxEventType = HAL_UART_RXEVENT_TC;
1776 
1777     status =  UART_Start_Receive_DMA(huart, pData, Size);
1778 
1779     /* Check Rx process has been successfully started */
1780     if (status == HAL_OK)
1781     {
1782       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1783       {
1784         __HAL_UART_CLEAR_IDLEFLAG(huart);
1785         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1786       }
1787       else
1788       {
1789         /* In case of errors already pending when reception is started,
1790            Interrupts may have already been raised and lead to reception abortion.
1791            (Overrun error for instance).
1792            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1793         status = HAL_ERROR;
1794       }
1795     }
1796 
1797     return status;
1798   }
1799   else
1800   {
1801     return HAL_BUSY;
1802   }
1803 }
1804 
1805 /**
1806   * @brief Provide Rx Event type that has lead to RxEvent callback execution.
1807   * @note  When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
1808   *        of reception process is provided to application through calls of Rx Event callback (either default one
1809   *        HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
1810   *        Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
1811   *        to Rx Event callback execution.
1812   * @note  This function is expected to be called within the user implementation of Rx Event Callback,
1813   *        in order to provide the accurate value :
1814   *        In Interrupt Mode :
1815   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1816   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1817   *             received data is lower than expected one)
1818   *        In DMA Mode :
1819   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1820   *           - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
1821   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1822   *             received data is lower than expected one).
1823   *        In DMA mode, RxEvent callback could be called several times;
1824   *        When DMA is configured in Normal Mode, HT event does not stop Reception process;
1825   *        When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
1826   * @param  huart UART handle.
1827   * @retval Rx Event Type (returned value will be a value of @ref UART_RxEvent_Type_Values)
1828   */
HAL_UARTEx_GetRxEventType(UART_HandleTypeDef * huart)1829 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
1830 {
1831   /* Return Rx Event type value, as stored in UART handle */
1832   return(huart->RxEventType);
1833 }
1834 
1835 /**
1836   * @brief  Abort ongoing transfers (blocking mode).
1837   * @param  huart UART handle.
1838   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1839   *         This procedure performs following operations :
1840   *           - Disable UART Interrupts (Tx and Rx)
1841   *           - Disable the DMA transfer in the peripheral register (if enabled)
1842   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1843   *           - Set handle State to READY
1844   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1845   * @retval HAL status
1846   */
HAL_UART_Abort(UART_HandleTypeDef * huart)1847 HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
1848 {
1849   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1850   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1851   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1852 
1853   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1854   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1855   {
1856     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1857   }
1858 
1859   /* Disable the UART DMA Tx request if enabled */
1860   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1861   {
1862     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1863 
1864     /* Abort the UART DMA Tx stream: use blocking DMA Abort API (no callback) */
1865     if (huart->hdmatx != NULL)
1866     {
1867       /* Set the UART DMA Abort callback to Null.
1868          No call back execution at end of DMA abort procedure */
1869       huart->hdmatx->XferAbortCallback = NULL;
1870 
1871       if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1872       {
1873         if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1874         {
1875           /* Set error code to DMA */
1876           huart->ErrorCode = HAL_UART_ERROR_DMA;
1877 
1878           return HAL_TIMEOUT;
1879         }
1880       }
1881     }
1882   }
1883 
1884   /* Disable the UART DMA Rx request if enabled */
1885   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1886   {
1887     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1888 
1889     /* Abort the UART DMA Rx stream: use blocking DMA Abort API (no callback) */
1890     if (huart->hdmarx != NULL)
1891     {
1892       /* Set the UART DMA Abort callback to Null.
1893          No call back execution at end of DMA abort procedure */
1894       huart->hdmarx->XferAbortCallback = NULL;
1895 
1896       if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1897       {
1898         if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1899         {
1900           /* Set error code to DMA */
1901           huart->ErrorCode = HAL_UART_ERROR_DMA;
1902 
1903           return HAL_TIMEOUT;
1904         }
1905       }
1906     }
1907   }
1908 
1909   /* Reset Tx and Rx transfer counters */
1910   huart->TxXferCount = 0x00U;
1911   huart->RxXferCount = 0x00U;
1912 
1913   /* Reset ErrorCode */
1914   huart->ErrorCode = HAL_UART_ERROR_NONE;
1915 
1916   /* Restore huart->RxState and huart->gState to Ready */
1917   huart->RxState = HAL_UART_STATE_READY;
1918   huart->gState = HAL_UART_STATE_READY;
1919   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1920 
1921   return HAL_OK;
1922 }
1923 
1924 /**
1925   * @brief  Abort ongoing Transmit transfer (blocking mode).
1926   * @param  huart UART handle.
1927   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1928   *         This procedure performs following operations :
1929   *           - Disable UART Interrupts (Tx)
1930   *           - Disable the DMA transfer in the peripheral register (if enabled)
1931   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1932   *           - Set handle State to READY
1933   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1934   * @retval HAL status
1935   */
HAL_UART_AbortTransmit(UART_HandleTypeDef * huart)1936 HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
1937 {
1938   /* Disable TXEIE and TCIE interrupts */
1939   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1940 
1941   /* Disable the UART DMA Tx request if enabled */
1942   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1943   {
1944     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1945 
1946     /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
1947     if (huart->hdmatx != NULL)
1948     {
1949       /* Set the UART DMA Abort callback to Null.
1950          No call back execution at end of DMA abort procedure */
1951       huart->hdmatx->XferAbortCallback = NULL;
1952 
1953       if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1954       {
1955         if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1956         {
1957           /* Set error code to DMA */
1958           huart->ErrorCode = HAL_UART_ERROR_DMA;
1959 
1960           return HAL_TIMEOUT;
1961         }
1962       }
1963     }
1964   }
1965 
1966   /* Reset Tx transfer counter */
1967   huart->TxXferCount = 0x00U;
1968 
1969   /* Restore huart->gState to Ready */
1970   huart->gState = HAL_UART_STATE_READY;
1971 
1972   return HAL_OK;
1973 }
1974 
1975 /**
1976   * @brief  Abort ongoing Receive transfer (blocking mode).
1977   * @param  huart UART handle.
1978   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1979   *         This procedure performs following operations :
1980   *           - Disable UART Interrupts (Rx)
1981   *           - Disable the DMA transfer in the peripheral register (if enabled)
1982   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1983   *           - Set handle State to READY
1984   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1985   * @retval HAL status
1986   */
HAL_UART_AbortReceive(UART_HandleTypeDef * huart)1987 HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
1988 {
1989   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1990   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1991   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1992 
1993   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1994   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1995   {
1996     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1997   }
1998 
1999   /* Disable the UART DMA Rx request if enabled */
2000   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2001   {
2002     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2003 
2004     /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
2005     if (huart->hdmarx != NULL)
2006     {
2007       /* Set the UART DMA Abort callback to Null.
2008          No call back execution at end of DMA abort procedure */
2009       huart->hdmarx->XferAbortCallback = NULL;
2010 
2011       if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
2012       {
2013         if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
2014         {
2015           /* Set error code to DMA */
2016           huart->ErrorCode = HAL_UART_ERROR_DMA;
2017 
2018           return HAL_TIMEOUT;
2019         }
2020       }
2021     }
2022   }
2023 
2024   /* Reset Rx transfer counter */
2025   huart->RxXferCount = 0x00U;
2026 
2027   /* Restore huart->RxState to Ready */
2028   huart->RxState = HAL_UART_STATE_READY;
2029   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2030 
2031   return HAL_OK;
2032 }
2033 
2034 /**
2035   * @brief  Abort ongoing transfers (Interrupt mode).
2036   * @param  huart UART handle.
2037   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
2038   *         This procedure performs following operations :
2039   *           - Disable UART Interrupts (Tx and Rx)
2040   *           - Disable the DMA transfer in the peripheral register (if enabled)
2041   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2042   *           - Set handle State to READY
2043   *           - At abort completion, call user abort complete callback
2044   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2045   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2046   * @retval HAL status
2047   */
HAL_UART_Abort_IT(UART_HandleTypeDef * huart)2048 HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
2049 {
2050   uint32_t AbortCplt = 0x01U;
2051 
2052   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2053   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
2054   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2055 
2056   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2057   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2058   {
2059     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2060   }
2061 
2062   /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
2063      before any call to DMA Abort functions */
2064   /* DMA Tx Handle is valid */
2065   if (huart->hdmatx != NULL)
2066   {
2067     /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
2068        Otherwise, set it to NULL */
2069     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2070     {
2071       huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
2072     }
2073     else
2074     {
2075       huart->hdmatx->XferAbortCallback = NULL;
2076     }
2077   }
2078   /* DMA Rx Handle is valid */
2079   if (huart->hdmarx != NULL)
2080   {
2081     /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
2082        Otherwise, set it to NULL */
2083     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2084     {
2085       huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
2086     }
2087     else
2088     {
2089       huart->hdmarx->XferAbortCallback = NULL;
2090     }
2091   }
2092 
2093   /* Disable the UART DMA Tx request if enabled */
2094   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2095   {
2096     /* Disable DMA Tx at UART level */
2097     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2098 
2099     /* Abort the UART DMA Tx stream : use non blocking DMA Abort API (callback) */
2100     if (huart->hdmatx != NULL)
2101     {
2102       /* UART Tx DMA Abort callback has already been initialised :
2103          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2104 
2105       /* Abort DMA TX */
2106       if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2107       {
2108         huart->hdmatx->XferAbortCallback = NULL;
2109       }
2110       else
2111       {
2112         AbortCplt = 0x00U;
2113       }
2114     }
2115   }
2116 
2117   /* Disable the UART DMA Rx request if enabled */
2118   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2119   {
2120     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2121 
2122     /* Abort the UART DMA Rx stream : use non blocking DMA Abort API (callback) */
2123     if (huart->hdmarx != NULL)
2124     {
2125       /* UART Rx DMA Abort callback has already been initialised :
2126          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2127 
2128       /* Abort DMA RX */
2129       if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2130       {
2131         huart->hdmarx->XferAbortCallback = NULL;
2132         AbortCplt = 0x01U;
2133       }
2134       else
2135       {
2136         AbortCplt = 0x00U;
2137       }
2138     }
2139   }
2140 
2141   /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
2142   if (AbortCplt == 0x01U)
2143   {
2144     /* Reset Tx and Rx transfer counters */
2145     huart->TxXferCount = 0x00U;
2146     huart->RxXferCount = 0x00U;
2147 
2148     /* Reset ErrorCode */
2149     huart->ErrorCode = HAL_UART_ERROR_NONE;
2150 
2151     /* Restore huart->gState and huart->RxState to Ready */
2152     huart->gState  = HAL_UART_STATE_READY;
2153     huart->RxState = HAL_UART_STATE_READY;
2154     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2155 
2156     /* As no DMA to be aborted, call directly user Abort complete callback */
2157 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2158     /* Call registered Abort complete callback */
2159     huart->AbortCpltCallback(huart);
2160 #else
2161     /* Call legacy weak Abort complete callback */
2162     HAL_UART_AbortCpltCallback(huart);
2163 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2164   }
2165 
2166   return HAL_OK;
2167 }
2168 
2169 /**
2170   * @brief  Abort ongoing Transmit transfer (Interrupt mode).
2171   * @param  huart UART handle.
2172   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
2173   *         This procedure performs following operations :
2174   *           - Disable UART Interrupts (Tx)
2175   *           - Disable the DMA transfer in the peripheral register (if enabled)
2176   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2177   *           - Set handle State to READY
2178   *           - At abort completion, call user abort complete callback
2179   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2180   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2181   * @retval HAL status
2182   */
HAL_UART_AbortTransmit_IT(UART_HandleTypeDef * huart)2183 HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
2184 {
2185   /* Disable TXEIE and TCIE interrupts */
2186   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
2187 
2188   /* Disable the UART DMA Tx request if enabled */
2189   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2190   {
2191     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2192 
2193     /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
2194     if (huart->hdmatx != NULL)
2195     {
2196       /* Set the UART DMA Abort callback :
2197          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2198       huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
2199 
2200       /* Abort DMA TX */
2201       if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2202       {
2203         /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
2204         huart->hdmatx->XferAbortCallback(huart->hdmatx);
2205       }
2206     }
2207     else
2208     {
2209       /* Reset Tx transfer counter */
2210       huart->TxXferCount = 0x00U;
2211 
2212       /* Restore huart->gState to Ready */
2213       huart->gState = HAL_UART_STATE_READY;
2214 
2215       /* As no DMA to be aborted, call directly user Abort complete callback */
2216 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2217       /* Call registered Abort Transmit Complete Callback */
2218       huart->AbortTransmitCpltCallback(huart);
2219 #else
2220       /* Call legacy weak Abort Transmit Complete Callback */
2221       HAL_UART_AbortTransmitCpltCallback(huart);
2222 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2223     }
2224   }
2225   else
2226   {
2227     /* Reset Tx transfer counter */
2228     huart->TxXferCount = 0x00U;
2229 
2230     /* Restore huart->gState to Ready */
2231     huart->gState = HAL_UART_STATE_READY;
2232 
2233     /* As no DMA to be aborted, call directly user Abort complete callback */
2234 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2235     /* Call registered Abort Transmit Complete Callback */
2236     huart->AbortTransmitCpltCallback(huart);
2237 #else
2238     /* Call legacy weak Abort Transmit Complete Callback */
2239     HAL_UART_AbortTransmitCpltCallback(huart);
2240 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2241   }
2242 
2243   return HAL_OK;
2244 }
2245 
2246 /**
2247   * @brief  Abort ongoing Receive transfer (Interrupt mode).
2248   * @param  huart UART handle.
2249   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
2250   *         This procedure performs following operations :
2251   *           - Disable UART Interrupts (Rx)
2252   *           - Disable the DMA transfer in the peripheral register (if enabled)
2253   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2254   *           - Set handle State to READY
2255   *           - At abort completion, call user abort complete callback
2256   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2257   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2258   * @retval HAL status
2259   */
HAL_UART_AbortReceive_IT(UART_HandleTypeDef * huart)2260 HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
2261 {
2262   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2263   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2264   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2265 
2266   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2267   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2268   {
2269     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2270   }
2271 
2272   /* Disable the UART DMA Rx request if enabled */
2273   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2274   {
2275     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2276 
2277     /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
2278     if (huart->hdmarx != NULL)
2279     {
2280       /* Set the UART DMA Abort callback :
2281          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2282       huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
2283 
2284       /* Abort DMA RX */
2285       if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2286       {
2287         /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
2288         huart->hdmarx->XferAbortCallback(huart->hdmarx);
2289       }
2290     }
2291     else
2292     {
2293       /* Reset Rx transfer counter */
2294       huart->RxXferCount = 0x00U;
2295 
2296       /* Restore huart->RxState to Ready */
2297       huart->RxState = HAL_UART_STATE_READY;
2298       huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2299 
2300       /* As no DMA to be aborted, call directly user Abort complete callback */
2301 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2302       /* Call registered Abort Receive Complete Callback */
2303       huart->AbortReceiveCpltCallback(huart);
2304 #else
2305       /* Call legacy weak Abort Receive Complete Callback */
2306       HAL_UART_AbortReceiveCpltCallback(huart);
2307 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2308     }
2309   }
2310   else
2311   {
2312     /* Reset Rx transfer counter */
2313     huart->RxXferCount = 0x00U;
2314 
2315     /* Restore huart->RxState to Ready */
2316     huart->RxState = HAL_UART_STATE_READY;
2317     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2318 
2319     /* As no DMA to be aborted, call directly user Abort complete callback */
2320 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2321     /* Call registered Abort Receive Complete Callback */
2322     huart->AbortReceiveCpltCallback(huart);
2323 #else
2324     /* Call legacy weak Abort Receive Complete Callback */
2325     HAL_UART_AbortReceiveCpltCallback(huart);
2326 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2327   }
2328 
2329   return HAL_OK;
2330 }
2331 
2332 /**
2333   * @brief  This function handles UART interrupt request.
2334   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2335   *                the configuration information for the specified UART module.
2336   * @retval None
2337   */
HAL_UART_IRQHandler(UART_HandleTypeDef * huart)2338 void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
2339 {
2340   uint32_t isrflags   = READ_REG(huart->Instance->SR);
2341   uint32_t cr1its     = READ_REG(huart->Instance->CR1);
2342   uint32_t cr3its     = READ_REG(huart->Instance->CR3);
2343   uint32_t errorflags = 0x00U;
2344   uint32_t dmarequest = 0x00U;
2345 
2346   /* If no error occurs */
2347   errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
2348   if (errorflags == RESET)
2349   {
2350     /* UART in mode Receiver -------------------------------------------------*/
2351     if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2352     {
2353       UART_Receive_IT(huart);
2354       return;
2355     }
2356   }
2357 
2358   /* If some errors occur */
2359   if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET)
2360                                 || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
2361   {
2362     /* UART parity error interrupt occurred ----------------------------------*/
2363     if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
2364     {
2365       huart->ErrorCode |= HAL_UART_ERROR_PE;
2366     }
2367 
2368     /* UART noise error interrupt occurred -----------------------------------*/
2369     if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2370     {
2371       huart->ErrorCode |= HAL_UART_ERROR_NE;
2372     }
2373 
2374     /* UART frame error interrupt occurred -----------------------------------*/
2375     if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2376     {
2377       huart->ErrorCode |= HAL_UART_ERROR_FE;
2378     }
2379 
2380     /* UART Over-Run interrupt occurred --------------------------------------*/
2381     if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET)
2382                                                  || ((cr3its & USART_CR3_EIE) != RESET)))
2383     {
2384       huart->ErrorCode |= HAL_UART_ERROR_ORE;
2385     }
2386 
2387     /* Call UART Error Call back function if need be --------------------------*/
2388     if (huart->ErrorCode != HAL_UART_ERROR_NONE)
2389     {
2390       /* UART in mode Receiver -----------------------------------------------*/
2391       if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2392       {
2393         UART_Receive_IT(huart);
2394       }
2395 
2396       /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2397          consider error as blocking */
2398       dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
2399       if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
2400       {
2401         /* Blocking error : transfer is aborted
2402            Set the UART state ready to be able to start again the process,
2403            Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2404         UART_EndRxTransfer(huart);
2405 
2406         /* Disable the UART DMA Rx request if enabled */
2407         if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2408         {
2409           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2410 
2411           /* Abort the UART DMA Rx stream */
2412           if (huart->hdmarx != NULL)
2413           {
2414             /* Set the UART DMA Abort callback :
2415                will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
2416             huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
2417             if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2418             {
2419               /* Call Directly XferAbortCallback function in case of error */
2420               huart->hdmarx->XferAbortCallback(huart->hdmarx);
2421             }
2422           }
2423           else
2424           {
2425             /* Call user error callback */
2426 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2427             /*Call registered error callback*/
2428             huart->ErrorCallback(huart);
2429 #else
2430             /*Call legacy weak error callback*/
2431             HAL_UART_ErrorCallback(huart);
2432 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2433           }
2434         }
2435         else
2436         {
2437           /* Call user error callback */
2438 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2439           /*Call registered error callback*/
2440           huart->ErrorCallback(huart);
2441 #else
2442           /*Call legacy weak error callback*/
2443           HAL_UART_ErrorCallback(huart);
2444 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2445         }
2446       }
2447       else
2448       {
2449         /* Non Blocking error : transfer could go on.
2450            Error is notified to user through user error callback */
2451 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2452         /*Call registered error callback*/
2453         huart->ErrorCallback(huart);
2454 #else
2455         /*Call legacy weak error callback*/
2456         HAL_UART_ErrorCallback(huart);
2457 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2458 
2459         huart->ErrorCode = HAL_UART_ERROR_NONE;
2460       }
2461     }
2462     return;
2463   } /* End if some error occurs */
2464 
2465   /* Check current reception Mode :
2466      If Reception till IDLE event has been selected : */
2467   if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2468       && ((isrflags & USART_SR_IDLE) != 0U)
2469       && ((cr1its & USART_SR_IDLE) != 0U))
2470   {
2471     __HAL_UART_CLEAR_IDLEFLAG(huart);
2472 
2473     /* Check if DMA mode is enabled in UART */
2474     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2475     {
2476       /* DMA mode enabled */
2477       /* Check received length : If all expected data are received, do nothing,
2478          (DMA cplt callback will be called).
2479          Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2480       uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
2481       if ((nb_remaining_rx_data > 0U)
2482           && (nb_remaining_rx_data < huart->RxXferSize))
2483       {
2484         /* Reception is not complete */
2485         huart->RxXferCount = nb_remaining_rx_data;
2486 
2487         /* In Normal mode, end DMA xfer and HAL UART Rx process*/
2488         if (huart->hdmarx->Init.Mode != DMA_CIRCULAR)
2489         {
2490           /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2491           ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
2492           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2493 
2494           /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2495              in the UART CR3 register */
2496           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2497 
2498           /* At end of Rx process, restore huart->RxState to Ready */
2499           huart->RxState = HAL_UART_STATE_READY;
2500           huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2501 
2502           ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2503 
2504           /* Last bytes received, so no need as the abort is immediate */
2505           (void)HAL_DMA_Abort(huart->hdmarx);
2506         }
2507 
2508         /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2509         In this case, Rx Event type is Idle Event */
2510         huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2511 
2512 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2513         /*Call registered Rx Event callback*/
2514         huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2515 #else
2516         /*Call legacy weak Rx Event callback*/
2517         HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2518 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2519       }
2520       return;
2521     }
2522     else
2523     {
2524       /* DMA mode not enabled */
2525       /* Check received length : If all expected data are received, do nothing.
2526          Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2527       uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
2528       if ((huart->RxXferCount > 0U)
2529           && (nb_rx_data > 0U))
2530       {
2531         /* Disable the UART Parity Error Interrupt and RXNE interrupts */
2532         ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2533 
2534         /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
2535         ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2536 
2537         /* Rx process is completed, restore huart->RxState to Ready */
2538         huart->RxState = HAL_UART_STATE_READY;
2539         huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2540 
2541         ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2542 
2543         /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2544            In this case, Rx Event type is Idle Event */
2545         huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2546 
2547 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2548         /*Call registered Rx complete callback*/
2549         huart->RxEventCallback(huart, nb_rx_data);
2550 #else
2551         /*Call legacy weak Rx Event callback*/
2552         HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
2553 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2554       }
2555       return;
2556     }
2557   }
2558 
2559   /* UART in mode Transmitter ------------------------------------------------*/
2560   if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
2561   {
2562     UART_Transmit_IT(huart);
2563     return;
2564   }
2565 
2566   /* UART in mode Transmitter end --------------------------------------------*/
2567   if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
2568   {
2569     UART_EndTransmit_IT(huart);
2570     return;
2571   }
2572 }
2573 
2574 /**
2575   * @brief  Tx Transfer completed callbacks.
2576   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2577   *                the configuration information for the specified UART module.
2578   * @retval None
2579   */
HAL_UART_TxCpltCallback(UART_HandleTypeDef * huart)2580 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
2581 {
2582   /* Prevent unused argument(s) compilation warning */
2583   UNUSED(huart);
2584   /* NOTE: This function should not be modified, when the callback is needed,
2585            the HAL_UART_TxCpltCallback could be implemented in the user file
2586    */
2587 }
2588 
2589 /**
2590   * @brief  Tx Half Transfer completed callbacks.
2591   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2592   *                the configuration information for the specified UART module.
2593   * @retval None
2594   */
HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef * huart)2595 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
2596 {
2597   /* Prevent unused argument(s) compilation warning */
2598   UNUSED(huart);
2599   /* NOTE: This function should not be modified, when the callback is needed,
2600            the HAL_UART_TxHalfCpltCallback could be implemented in the user file
2601    */
2602 }
2603 
2604 /**
2605   * @brief  Rx Transfer completed callbacks.
2606   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2607   *                the configuration information for the specified UART module.
2608   * @retval None
2609   */
HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)2610 __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
2611 {
2612   /* Prevent unused argument(s) compilation warning */
2613   UNUSED(huart);
2614   /* NOTE: This function should not be modified, when the callback is needed,
2615            the HAL_UART_RxCpltCallback could be implemented in the user file
2616    */
2617 }
2618 
2619 /**
2620   * @brief  Rx Half Transfer completed callbacks.
2621   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2622   *                the configuration information for the specified UART module.
2623   * @retval None
2624   */
HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef * huart)2625 __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
2626 {
2627   /* Prevent unused argument(s) compilation warning */
2628   UNUSED(huart);
2629   /* NOTE: This function should not be modified, when the callback is needed,
2630            the HAL_UART_RxHalfCpltCallback could be implemented in the user file
2631    */
2632 }
2633 
2634 /**
2635   * @brief  UART error callbacks.
2636   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2637   *                the configuration information for the specified UART module.
2638   * @retval None
2639   */
HAL_UART_ErrorCallback(UART_HandleTypeDef * huart)2640 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
2641 {
2642   /* Prevent unused argument(s) compilation warning */
2643   UNUSED(huart);
2644   /* NOTE: This function should not be modified, when the callback is needed,
2645            the HAL_UART_ErrorCallback could be implemented in the user file
2646    */
2647 }
2648 
2649 /**
2650   * @brief  UART Abort Complete callback.
2651   * @param  huart UART handle.
2652   * @retval None
2653   */
HAL_UART_AbortCpltCallback(UART_HandleTypeDef * huart)2654 __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
2655 {
2656   /* Prevent unused argument(s) compilation warning */
2657   UNUSED(huart);
2658 
2659   /* NOTE : This function should not be modified, when the callback is needed,
2660             the HAL_UART_AbortCpltCallback can be implemented in the user file.
2661    */
2662 }
2663 
2664 /**
2665   * @brief  UART Abort Complete callback.
2666   * @param  huart UART handle.
2667   * @retval None
2668   */
HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef * huart)2669 __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
2670 {
2671   /* Prevent unused argument(s) compilation warning */
2672   UNUSED(huart);
2673 
2674   /* NOTE : This function should not be modified, when the callback is needed,
2675             the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
2676    */
2677 }
2678 
2679 /**
2680   * @brief  UART Abort Receive Complete callback.
2681   * @param  huart UART handle.
2682   * @retval None
2683   */
HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef * huart)2684 __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
2685 {
2686   /* Prevent unused argument(s) compilation warning */
2687   UNUSED(huart);
2688 
2689   /* NOTE : This function should not be modified, when the callback is needed,
2690             the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
2691    */
2692 }
2693 
2694 /**
2695   * @brief  Reception Event Callback (Rx event notification called after use of advanced reception service).
2696   * @param  huart UART handle
2697   * @param  Size  Number of data available in application reception buffer (indicates a position in
2698   *               reception buffer until which, data are available)
2699   * @retval None
2700   */
HAL_UARTEx_RxEventCallback(UART_HandleTypeDef * huart,uint16_t Size)2701 __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
2702 {
2703   /* Prevent unused argument(s) compilation warning */
2704   UNUSED(huart);
2705   UNUSED(Size);
2706 
2707   /* NOTE : This function should not be modified, when the callback is needed,
2708             the HAL_UARTEx_RxEventCallback can be implemented in the user file.
2709    */
2710 }
2711 
2712 /**
2713   * @}
2714   */
2715 
2716 /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
2717   *  @brief   UART control functions
2718   *
2719 @verbatim
2720   ==============================================================================
2721                       ##### Peripheral Control functions #####
2722   ==============================================================================
2723   [..]
2724     This subsection provides a set of functions allowing to control the UART:
2725     (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
2726     (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
2727     (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
2728     (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
2729     (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
2730 
2731 @endverbatim
2732   * @{
2733   */
2734 
2735 /**
2736   * @brief  Transmits break characters.
2737   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2738   *                the configuration information for the specified UART module.
2739   * @retval HAL status
2740   */
HAL_LIN_SendBreak(UART_HandleTypeDef * huart)2741 HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
2742 {
2743   /* Check the parameters */
2744   assert_param(IS_UART_INSTANCE(huart->Instance));
2745 
2746   /* Process Locked */
2747   __HAL_LOCK(huart);
2748 
2749   huart->gState = HAL_UART_STATE_BUSY;
2750 
2751   /* Send break characters */
2752   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
2753 
2754   huart->gState = HAL_UART_STATE_READY;
2755 
2756   /* Process Unlocked */
2757   __HAL_UNLOCK(huart);
2758 
2759   return HAL_OK;
2760 }
2761 
2762 /**
2763   * @brief  Enters the UART in mute mode.
2764   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2765   *                the configuration information for the specified UART module.
2766   * @retval HAL status
2767   */
HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef * huart)2768 HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
2769 {
2770   /* Check the parameters */
2771   assert_param(IS_UART_INSTANCE(huart->Instance));
2772 
2773   /* Process Locked */
2774   __HAL_LOCK(huart);
2775 
2776   huart->gState = HAL_UART_STATE_BUSY;
2777 
2778   /* Enable the USART mute mode  by setting the RWU bit in the CR1 register */
2779   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
2780 
2781   huart->gState = HAL_UART_STATE_READY;
2782   huart->RxEventType = HAL_UART_RXEVENT_TC;
2783 
2784   /* Process Unlocked */
2785   __HAL_UNLOCK(huart);
2786 
2787   return HAL_OK;
2788 }
2789 
2790 /**
2791   * @brief  Exits the UART mute mode: wake up software.
2792   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2793   *                the configuration information for the specified UART module.
2794   * @retval HAL status
2795   */
HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef * huart)2796 HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
2797 {
2798   /* Check the parameters */
2799   assert_param(IS_UART_INSTANCE(huart->Instance));
2800 
2801   /* Process Locked */
2802   __HAL_LOCK(huart);
2803 
2804   huart->gState = HAL_UART_STATE_BUSY;
2805 
2806   /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
2807   ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
2808 
2809   huart->gState = HAL_UART_STATE_READY;
2810   huart->RxEventType = HAL_UART_RXEVENT_TC;
2811 
2812   /* Process Unlocked */
2813   __HAL_UNLOCK(huart);
2814 
2815   return HAL_OK;
2816 }
2817 
2818 /**
2819   * @brief  Enables the UART transmitter and disables the UART receiver.
2820   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2821   *                the configuration information for the specified UART module.
2822   * @retval HAL status
2823   */
HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef * huart)2824 HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
2825 {
2826   uint32_t tmpreg = 0x00U;
2827 
2828   /* Process Locked */
2829   __HAL_LOCK(huart);
2830 
2831   huart->gState = HAL_UART_STATE_BUSY;
2832 
2833   /*-------------------------- USART CR1 Configuration -----------------------*/
2834   tmpreg = huart->Instance->CR1;
2835 
2836   /* Clear TE and RE bits */
2837   tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2838 
2839   /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
2840   tmpreg |= (uint32_t)USART_CR1_TE;
2841 
2842   /* Write to USART CR1 */
2843   WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2844 
2845   huart->gState = HAL_UART_STATE_READY;
2846 
2847   /* Process Unlocked */
2848   __HAL_UNLOCK(huart);
2849 
2850   return HAL_OK;
2851 }
2852 
2853 /**
2854   * @brief  Enables the UART receiver and disables the UART transmitter.
2855   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2856   *                the configuration information for the specified UART module.
2857   * @retval HAL status
2858   */
HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef * huart)2859 HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
2860 {
2861   uint32_t tmpreg = 0x00U;
2862 
2863   /* Process Locked */
2864   __HAL_LOCK(huart);
2865 
2866   huart->gState = HAL_UART_STATE_BUSY;
2867 
2868   /*-------------------------- USART CR1 Configuration -----------------------*/
2869   tmpreg = huart->Instance->CR1;
2870 
2871   /* Clear TE and RE bits */
2872   tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2873 
2874   /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
2875   tmpreg |= (uint32_t)USART_CR1_RE;
2876 
2877   /* Write to USART CR1 */
2878   WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2879 
2880   huart->gState = HAL_UART_STATE_READY;
2881 
2882   /* Process Unlocked */
2883   __HAL_UNLOCK(huart);
2884 
2885   return HAL_OK;
2886 }
2887 
2888 /**
2889   * @}
2890   */
2891 
2892 /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
2893   *  @brief   UART State and Errors functions
2894   *
2895 @verbatim
2896   ==============================================================================
2897                  ##### Peripheral State and Errors functions #####
2898   ==============================================================================
2899  [..]
2900    This subsection provides a set of functions allowing to return the State of
2901    UART communication process, return Peripheral Errors occurred during communication
2902    process
2903    (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
2904    (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
2905 
2906 @endverbatim
2907   * @{
2908   */
2909 
2910 /**
2911   * @brief  Returns the UART state.
2912   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2913   *                the configuration information for the specified UART module.
2914   * @retval HAL state
2915   */
HAL_UART_GetState(const UART_HandleTypeDef * huart)2916 HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
2917 {
2918   uint32_t temp1 = 0x00U, temp2 = 0x00U;
2919   temp1 = huart->gState;
2920   temp2 = huart->RxState;
2921 
2922   return (HAL_UART_StateTypeDef)(temp1 | temp2);
2923 }
2924 
2925 /**
2926   * @brief  Return the UART error code
2927   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
2928   *               the configuration information for the specified UART.
2929   * @retval UART Error Code
2930   */
HAL_UART_GetError(const UART_HandleTypeDef * huart)2931 uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
2932 {
2933   return huart->ErrorCode;
2934 }
2935 
2936 /**
2937   * @}
2938   */
2939 
2940 /**
2941   * @}
2942   */
2943 
2944 /** @defgroup UART_Private_Functions UART Private Functions
2945   * @{
2946   */
2947 
2948 /**
2949   * @brief  Initialize the callbacks to their default values.
2950   * @param  huart UART handle.
2951   * @retval none
2952   */
2953 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(UART_HandleTypeDef * huart)2954 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
2955 {
2956   /* Init the UART Callback settings */
2957   huart->TxHalfCpltCallback        = HAL_UART_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
2958   huart->TxCpltCallback            = HAL_UART_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
2959   huart->RxHalfCpltCallback        = HAL_UART_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
2960   huart->RxCpltCallback            = HAL_UART_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
2961   huart->ErrorCallback             = HAL_UART_ErrorCallback;             /* Legacy weak ErrorCallback             */
2962   huart->AbortCpltCallback         = HAL_UART_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
2963   huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2964   huart->AbortReceiveCpltCallback  = HAL_UART_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */
2965   huart->RxEventCallback           = HAL_UARTEx_RxEventCallback;         /* Legacy weak RxEventCallback           */
2966 
2967 }
2968 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2969 
2970 /**
2971   * @brief  DMA UART transmit process complete callback.
2972   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2973   *               the configuration information for the specified DMA module.
2974   * @retval None
2975   */
UART_DMATransmitCplt(DMA_HandleTypeDef * hdma)2976 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2977 {
2978   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2979   /* DMA Normal mode*/
2980   if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
2981   {
2982     huart->TxXferCount = 0x00U;
2983 
2984     /* Disable the DMA transfer for transmit request by setting the DMAT bit
2985        in the UART CR3 register */
2986     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2987 
2988     /* Enable the UART Transmit Complete Interrupt */
2989     ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
2990 
2991   }
2992   /* DMA Circular mode */
2993   else
2994   {
2995 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2996     /*Call registered Tx complete callback*/
2997     huart->TxCpltCallback(huart);
2998 #else
2999     /*Call legacy weak Tx complete callback*/
3000     HAL_UART_TxCpltCallback(huart);
3001 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3002   }
3003 }
3004 
3005 /**
3006   * @brief DMA UART transmit process half complete callback
3007   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3008   *               the configuration information for the specified DMA module.
3009   * @retval None
3010   */
UART_DMATxHalfCplt(DMA_HandleTypeDef * hdma)3011 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
3012 {
3013   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3014 
3015 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3016   /*Call registered Tx complete callback*/
3017   huart->TxHalfCpltCallback(huart);
3018 #else
3019   /*Call legacy weak Tx complete callback*/
3020   HAL_UART_TxHalfCpltCallback(huart);
3021 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3022 }
3023 
3024 /**
3025   * @brief  DMA UART receive process complete callback.
3026   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3027   *               the configuration information for the specified DMA module.
3028   * @retval None
3029   */
UART_DMAReceiveCplt(DMA_HandleTypeDef * hdma)3030 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
3031 {
3032   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3033 
3034   /* DMA Normal mode*/
3035   if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
3036   {
3037     huart->RxXferCount = 0U;
3038 
3039     /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3040     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3041     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3042 
3043     /* Disable the DMA transfer for the receiver request by setting the DMAR bit
3044        in the UART CR3 register */
3045     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3046 
3047     /* At end of Rx process, restore huart->RxState to Ready */
3048     huart->RxState = HAL_UART_STATE_READY;
3049 
3050     /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
3051     if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3052     {
3053       ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3054     }
3055   }
3056 
3057   /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3058    In this case, Rx Event type is Transfer Complete */
3059   huart->RxEventType = HAL_UART_RXEVENT_TC;
3060 
3061   /* Check current reception Mode :
3062      If Reception till IDLE event has been selected : use Rx Event callback */
3063   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3064   {
3065 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3066     /*Call registered Rx Event callback*/
3067     huart->RxEventCallback(huart, huart->RxXferSize);
3068 #else
3069     /*Call legacy weak Rx Event callback*/
3070     HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3071 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3072   }
3073   else
3074   {
3075     /* In other cases : use Rx Complete callback */
3076 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3077     /*Call registered Rx complete callback*/
3078     huart->RxCpltCallback(huart);
3079 #else
3080     /*Call legacy weak Rx complete callback*/
3081     HAL_UART_RxCpltCallback(huart);
3082 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3083   }
3084 }
3085 
3086 /**
3087   * @brief DMA UART receive process half complete callback
3088   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3089   *               the configuration information for the specified DMA module.
3090   * @retval None
3091   */
UART_DMARxHalfCplt(DMA_HandleTypeDef * hdma)3092 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
3093 {
3094   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3095 
3096   /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3097      In this case, Rx Event type is Half Transfer */
3098   huart->RxEventType = HAL_UART_RXEVENT_HT;
3099 
3100   /* Check current reception Mode :
3101      If Reception till IDLE event has been selected : use Rx Event callback */
3102   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3103   {
3104 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3105     /*Call registered Rx Event callback*/
3106     huart->RxEventCallback(huart, huart->RxXferSize / 2U);
3107 #else
3108     /*Call legacy weak Rx Event callback*/
3109     HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
3110 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3111   }
3112   else
3113   {
3114     /* In other cases : use Rx Half Complete callback */
3115 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3116     /*Call registered Rx Half complete callback*/
3117     huart->RxHalfCpltCallback(huart);
3118 #else
3119     /*Call legacy weak Rx Half complete callback*/
3120     HAL_UART_RxHalfCpltCallback(huart);
3121 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3122   }
3123 }
3124 
3125 /**
3126   * @brief  DMA UART communication error callback.
3127   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3128   *               the configuration information for the specified DMA module.
3129   * @retval None
3130   */
UART_DMAError(DMA_HandleTypeDef * hdma)3131 static void UART_DMAError(DMA_HandleTypeDef *hdma)
3132 {
3133   uint32_t dmarequest = 0x00U;
3134   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3135 
3136   /* Stop UART DMA Tx request if ongoing */
3137   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
3138   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
3139   {
3140     huart->TxXferCount = 0x00U;
3141     UART_EndTxTransfer(huart);
3142   }
3143 
3144   /* Stop UART DMA Rx request if ongoing */
3145   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
3146   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
3147   {
3148     huart->RxXferCount = 0x00U;
3149     UART_EndRxTransfer(huart);
3150   }
3151 
3152   huart->ErrorCode |= HAL_UART_ERROR_DMA;
3153 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3154   /*Call registered error callback*/
3155   huart->ErrorCallback(huart);
3156 #else
3157   /*Call legacy weak error callback*/
3158   HAL_UART_ErrorCallback(huart);
3159 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3160 }
3161 
3162 /**
3163   * @brief  This function handles UART Communication Timeout. It waits
3164   *         until a flag is no longer in the specified status.
3165   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3166   *                the configuration information for the specified UART module.
3167   * @param  Flag specifies the UART flag to check.
3168   * @param  Status The actual Flag status (SET or RESET).
3169   * @param  Tickstart Tick start value
3170   * @param  Timeout Timeout duration
3171   * @retval HAL status
3172   */
UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef * huart,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)3173 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
3174                                                      uint32_t Tickstart, uint32_t Timeout)
3175 {
3176   /* Wait until flag is set */
3177   while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
3178   {
3179     /* Check for the Timeout */
3180     if (Timeout != HAL_MAX_DELAY)
3181     {
3182       if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout))
3183       {
3184         /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
3185         ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
3186         ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3187 
3188         huart->gState  = HAL_UART_STATE_READY;
3189         huart->RxState = HAL_UART_STATE_READY;
3190 
3191         /* Process Unlocked */
3192         __HAL_UNLOCK(huart);
3193 
3194         return HAL_TIMEOUT;
3195       }
3196     }
3197   }
3198   return HAL_OK;
3199 }
3200 
3201 /**
3202   * @brief  Start Receive operation in interrupt mode.
3203   * @note   This function could be called by all HAL UART API providing reception in Interrupt mode.
3204   * @note   When calling this function, parameters validity is considered as already checked,
3205   *         i.e. Rx State, buffer address, ...
3206   *         UART Handle is assumed as Locked.
3207   * @param  huart UART handle.
3208   * @param  pData Pointer to data buffer (u8 or u16 data elements).
3209   * @param  Size  Amount of data elements (u8 or u16) to be received.
3210   * @retval HAL status
3211   */
UART_Start_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3212 HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3213 {
3214   huart->pRxBuffPtr = pData;
3215   huart->RxXferSize = Size;
3216   huart->RxXferCount = Size;
3217 
3218   huart->ErrorCode = HAL_UART_ERROR_NONE;
3219   huart->RxState = HAL_UART_STATE_BUSY_RX;
3220 
3221   if (huart->Init.Parity != UART_PARITY_NONE)
3222   {
3223     /* Enable the UART Parity Error Interrupt */
3224     __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
3225   }
3226 
3227   /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3228   __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
3229 
3230   /* Enable the UART Data Register not empty Interrupt */
3231   __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
3232 
3233   return HAL_OK;
3234 }
3235 
3236 /**
3237   * @brief  Start Receive operation in DMA mode.
3238   * @note   This function could be called by all HAL UART API providing reception in DMA mode.
3239   * @note   When calling this function, parameters validity is considered as already checked,
3240   *         i.e. Rx State, buffer address, ...
3241   *         UART Handle is assumed as Locked.
3242   * @param  huart UART handle.
3243   * @param  pData Pointer to data buffer (u8 or u16 data elements).
3244   * @param  Size  Amount of data elements (u8 or u16) to be received.
3245   * @retval HAL status
3246   */
UART_Start_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3247 HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3248 {
3249   uint32_t *tmp;
3250 
3251   huart->pRxBuffPtr = pData;
3252   huart->RxXferSize = Size;
3253 
3254   huart->ErrorCode = HAL_UART_ERROR_NONE;
3255   huart->RxState = HAL_UART_STATE_BUSY_RX;
3256 
3257   /* Set the UART DMA transfer complete callback */
3258   huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
3259 
3260   /* Set the UART DMA Half transfer complete callback */
3261   huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
3262 
3263   /* Set the DMA error callback */
3264   huart->hdmarx->XferErrorCallback = UART_DMAError;
3265 
3266   /* Set the DMA abort callback */
3267   huart->hdmarx->XferAbortCallback = NULL;
3268 
3269   /* Enable the DMA stream */
3270   tmp = (uint32_t *)&pData;
3271   HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size);
3272 
3273   /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
3274   __HAL_UART_CLEAR_OREFLAG(huart);
3275 
3276   if (huart->Init.Parity != UART_PARITY_NONE)
3277   {
3278     /* Enable the UART Parity Error Interrupt */
3279     ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3280   }
3281 
3282   /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3283   ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
3284 
3285   /* Enable the DMA transfer for the receiver request by setting the DMAR bit
3286   in the UART CR3 register */
3287   ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3288 
3289   return HAL_OK;
3290 }
3291 
3292 /**
3293   * @brief  End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
3294   * @param  huart UART handle.
3295   * @retval None
3296   */
UART_EndTxTransfer(UART_HandleTypeDef * huart)3297 static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
3298 {
3299   /* Disable TXEIE and TCIE interrupts */
3300   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
3301 
3302   /* At end of Tx process, restore huart->gState to Ready */
3303   huart->gState = HAL_UART_STATE_READY;
3304 }
3305 
3306 /**
3307   * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
3308   * @param  huart UART handle.
3309   * @retval None
3310   */
UART_EndRxTransfer(UART_HandleTypeDef * huart)3311 static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
3312 {
3313   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3314   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
3315   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3316 
3317   /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
3318   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3319   {
3320     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3321   }
3322 
3323   /* At end of Rx process, restore huart->RxState to Ready */
3324   huart->RxState = HAL_UART_STATE_READY;
3325   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3326 }
3327 
3328 /**
3329   * @brief  DMA UART communication abort callback, when initiated by HAL services on Error
3330   *         (To be called at end of DMA Abort procedure following error occurrence).
3331   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3332   *               the configuration information for the specified DMA module.
3333   * @retval None
3334   */
UART_DMAAbortOnError(DMA_HandleTypeDef * hdma)3335 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
3336 {
3337   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3338   huart->RxXferCount = 0x00U;
3339   huart->TxXferCount = 0x00U;
3340 
3341 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3342   /*Call registered error callback*/
3343   huart->ErrorCallback(huart);
3344 #else
3345   /*Call legacy weak error callback*/
3346   HAL_UART_ErrorCallback(huart);
3347 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3348 }
3349 
3350 /**
3351   * @brief  DMA UART Tx communication abort callback, when initiated by user
3352   *         (To be called at end of DMA Tx Abort procedure following user abort request).
3353   * @note   When this callback is executed, User Abort complete call back is called only if no
3354   *         Abort still ongoing for Rx DMA Handle.
3355   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3356   *               the configuration information for the specified DMA module.
3357   * @retval None
3358   */
UART_DMATxAbortCallback(DMA_HandleTypeDef * hdma)3359 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
3360 {
3361   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3362 
3363   huart->hdmatx->XferAbortCallback = NULL;
3364 
3365   /* Check if an Abort process is still ongoing */
3366   if (huart->hdmarx != NULL)
3367   {
3368     if (huart->hdmarx->XferAbortCallback != NULL)
3369     {
3370       return;
3371     }
3372   }
3373 
3374   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3375   huart->TxXferCount = 0x00U;
3376   huart->RxXferCount = 0x00U;
3377 
3378   /* Reset ErrorCode */
3379   huart->ErrorCode = HAL_UART_ERROR_NONE;
3380 
3381   /* Restore huart->gState and huart->RxState to Ready */
3382   huart->gState  = HAL_UART_STATE_READY;
3383   huart->RxState = HAL_UART_STATE_READY;
3384   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3385 
3386   /* Call user Abort complete callback */
3387 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3388   /* Call registered Abort complete callback */
3389   huart->AbortCpltCallback(huart);
3390 #else
3391   /* Call legacy weak Abort complete callback */
3392   HAL_UART_AbortCpltCallback(huart);
3393 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3394 }
3395 
3396 /**
3397   * @brief  DMA UART Rx communication abort callback, when initiated by user
3398   *         (To be called at end of DMA Rx Abort procedure following user abort request).
3399   * @note   When this callback is executed, User Abort complete call back is called only if no
3400   *         Abort still ongoing for Tx DMA Handle.
3401   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3402   *               the configuration information for the specified DMA module.
3403   * @retval None
3404   */
UART_DMARxAbortCallback(DMA_HandleTypeDef * hdma)3405 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
3406 {
3407   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3408 
3409   huart->hdmarx->XferAbortCallback = NULL;
3410 
3411   /* Check if an Abort process is still ongoing */
3412   if (huart->hdmatx != NULL)
3413   {
3414     if (huart->hdmatx->XferAbortCallback != NULL)
3415     {
3416       return;
3417     }
3418   }
3419 
3420   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3421   huart->TxXferCount = 0x00U;
3422   huart->RxXferCount = 0x00U;
3423 
3424   /* Reset ErrorCode */
3425   huart->ErrorCode = HAL_UART_ERROR_NONE;
3426 
3427   /* Restore huart->gState and huart->RxState to Ready */
3428   huart->gState  = HAL_UART_STATE_READY;
3429   huart->RxState = HAL_UART_STATE_READY;
3430   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3431 
3432   /* Call user Abort complete callback */
3433 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3434   /* Call registered Abort complete callback */
3435   huart->AbortCpltCallback(huart);
3436 #else
3437   /* Call legacy weak Abort complete callback */
3438   HAL_UART_AbortCpltCallback(huart);
3439 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3440 }
3441 
3442 /**
3443   * @brief  DMA UART Tx communication abort callback, when initiated by user by a call to
3444   *         HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
3445   *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
3446   *         and leads to user Tx Abort Complete callback execution).
3447   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3448   *               the configuration information for the specified DMA module.
3449   * @retval None
3450   */
UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3451 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3452 {
3453   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3454 
3455   huart->TxXferCount = 0x00U;
3456 
3457   /* Restore huart->gState to Ready */
3458   huart->gState = HAL_UART_STATE_READY;
3459 
3460   /* Call user Abort complete callback */
3461 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3462   /* Call registered Abort Transmit Complete Callback */
3463   huart->AbortTransmitCpltCallback(huart);
3464 #else
3465   /* Call legacy weak Abort Transmit Complete Callback */
3466   HAL_UART_AbortTransmitCpltCallback(huart);
3467 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3468 }
3469 
3470 /**
3471   * @brief  DMA UART Rx communication abort callback, when initiated by user by a call to
3472   *         HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
3473   *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
3474   *         and leads to user Rx Abort Complete callback execution).
3475   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3476   *               the configuration information for the specified DMA module.
3477   * @retval None
3478   */
UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3479 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3480 {
3481   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3482 
3483   huart->RxXferCount = 0x00U;
3484 
3485   /* Restore huart->RxState to Ready */
3486   huart->RxState = HAL_UART_STATE_READY;
3487   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3488 
3489   /* Call user Abort complete callback */
3490 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3491   /* Call registered Abort Receive Complete Callback */
3492   huart->AbortReceiveCpltCallback(huart);
3493 #else
3494   /* Call legacy weak Abort Receive Complete Callback */
3495   HAL_UART_AbortReceiveCpltCallback(huart);
3496 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3497 }
3498 
3499 /**
3500   * @brief  Sends an amount of data in non blocking mode.
3501   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3502   *                the configuration information for the specified UART module.
3503   * @retval HAL status
3504   */
UART_Transmit_IT(UART_HandleTypeDef * huart)3505 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
3506 {
3507   const uint16_t *tmp;
3508 
3509   /* Check that a Tx process is ongoing */
3510   if (huart->gState == HAL_UART_STATE_BUSY_TX)
3511   {
3512     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3513     {
3514       tmp = (const uint16_t *) huart->pTxBuffPtr;
3515       huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
3516       huart->pTxBuffPtr += 2U;
3517     }
3518     else
3519     {
3520       huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
3521     }
3522 
3523     if (--huart->TxXferCount == 0U)
3524     {
3525       /* Disable the UART Transmit Data Register Empty Interrupt */
3526       __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
3527 
3528       /* Enable the UART Transmit Complete Interrupt */
3529       __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
3530     }
3531     return HAL_OK;
3532   }
3533   else
3534   {
3535     return HAL_BUSY;
3536   }
3537 }
3538 
3539 /**
3540   * @brief  Wraps up transmission in non blocking mode.
3541   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3542   *                the configuration information for the specified UART module.
3543   * @retval HAL status
3544   */
UART_EndTransmit_IT(UART_HandleTypeDef * huart)3545 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
3546 {
3547   /* Disable the UART Transmit Complete Interrupt */
3548   __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
3549 
3550   /* Tx process is ended, restore huart->gState to Ready */
3551   huart->gState = HAL_UART_STATE_READY;
3552 
3553 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3554   /*Call registered Tx complete callback*/
3555   huart->TxCpltCallback(huart);
3556 #else
3557   /*Call legacy weak Tx complete callback*/
3558   HAL_UART_TxCpltCallback(huart);
3559 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3560 
3561   return HAL_OK;
3562 }
3563 
3564 /**
3565   * @brief  Receives an amount of data in non blocking mode
3566   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3567   *                the configuration information for the specified UART module.
3568   * @retval HAL status
3569   */
UART_Receive_IT(UART_HandleTypeDef * huart)3570 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
3571 {
3572   uint8_t  *pdata8bits;
3573   uint16_t *pdata16bits;
3574 
3575   /* Check that a Rx process is ongoing */
3576   if (huart->RxState == HAL_UART_STATE_BUSY_RX)
3577   {
3578     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3579     {
3580       pdata8bits  = NULL;
3581       pdata16bits = (uint16_t *) huart->pRxBuffPtr;
3582       *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
3583       huart->pRxBuffPtr += 2U;
3584     }
3585     else
3586     {
3587       pdata8bits = (uint8_t *) huart->pRxBuffPtr;
3588       pdata16bits  = NULL;
3589 
3590       if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
3591       {
3592         *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
3593       }
3594       else
3595       {
3596         *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
3597       }
3598       huart->pRxBuffPtr += 1U;
3599     }
3600 
3601     if (--huart->RxXferCount == 0U)
3602     {
3603       /* Disable the UART Data Register not empty Interrupt */
3604       __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
3605 
3606       /* Disable the UART Parity Error Interrupt */
3607       __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
3608 
3609       /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3610       __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
3611 
3612       /* Rx process is completed, restore huart->RxState to Ready */
3613       huart->RxState = HAL_UART_STATE_READY;
3614 
3615       /* Initialize type of RxEvent to Transfer Complete */
3616       huart->RxEventType = HAL_UART_RXEVENT_TC;
3617 
3618       /* Check current reception Mode :
3619          If Reception till IDLE event has been selected : */
3620       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3621       {
3622         /* Set reception type to Standard */
3623         huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3624 
3625         /* Disable IDLE interrupt */
3626         ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3627 
3628         /* Check if IDLE flag is set */
3629         if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
3630         {
3631           /* Clear IDLE flag in ISR */
3632           __HAL_UART_CLEAR_IDLEFLAG(huart);
3633         }
3634 
3635 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3636         /*Call registered Rx Event callback*/
3637         huart->RxEventCallback(huart, huart->RxXferSize);
3638 #else
3639         /*Call legacy weak Rx Event callback*/
3640         HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3641 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3642       }
3643       else
3644       {
3645         /* Standard reception API called */
3646 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3647         /*Call registered Rx complete callback*/
3648         huart->RxCpltCallback(huart);
3649 #else
3650         /*Call legacy weak Rx complete callback*/
3651         HAL_UART_RxCpltCallback(huart);
3652 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3653       }
3654 
3655       return HAL_OK;
3656     }
3657     return HAL_OK;
3658   }
3659   else
3660   {
3661     return HAL_BUSY;
3662   }
3663 }
3664 
3665 /**
3666   * @brief  Configures the UART peripheral.
3667   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3668   *                the configuration information for the specified UART module.
3669   * @retval None
3670   */
UART_SetConfig(UART_HandleTypeDef * huart)3671 static void UART_SetConfig(UART_HandleTypeDef *huart)
3672 {
3673   uint32_t tmpreg;
3674   uint32_t pclk;
3675 
3676   /* Check the parameters */
3677   assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
3678   assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
3679   assert_param(IS_UART_PARITY(huart->Init.Parity));
3680   assert_param(IS_UART_MODE(huart->Init.Mode));
3681 
3682   /*-------------------------- USART CR2 Configuration -----------------------*/
3683   /* Configure the UART Stop Bits: Set STOP[13:12] bits
3684      according to huart->Init.StopBits value */
3685   MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
3686 
3687   /*-------------------------- USART CR1 Configuration -----------------------*/
3688   /* Configure the UART Word Length, Parity and mode:
3689      Set the M bits according to huart->Init.WordLength value
3690      Set PCE and PS bits according to huart->Init.Parity value
3691      Set TE and RE bits according to huart->Init.Mode value
3692      Set OVER8 bit according to huart->Init.OverSampling value */
3693 
3694   tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
3695   MODIFY_REG(huart->Instance->CR1,
3696              (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
3697              tmpreg);
3698 
3699   /*-------------------------- USART CR3 Configuration -----------------------*/
3700   /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
3701   MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
3702 
3703 
3704   if((huart->Instance == USART1) || (huart->Instance == USART6))
3705   {
3706     pclk = HAL_RCC_GetPCLK2Freq();
3707   }
3708   else
3709   {
3710     pclk = HAL_RCC_GetPCLK1Freq();
3711   }
3712 
3713   /*-------------------------- USART BRR Configuration ---------------------*/
3714   if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
3715   {
3716     huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate);
3717   }
3718   else
3719   {
3720     huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate);
3721   }
3722 }
3723 
3724 /**
3725   * @}
3726   */
3727 
3728 #endif /* HAL_UART_MODULE_ENABLED */
3729 /**
3730   * @}
3731   */
3732 
3733 /**
3734   * @}
3735   */
3736 
3737