1 /**
2   ******************************************************************************
3   * @file    stm32f2xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2016 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156 
157   [..]
158 By default, after the Init and when the state is HAL_TIM_STATE_RESET
159 all interrupt callbacks are set to the corresponding weak functions:
160   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
161 
162   [..]
163   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
164   functionalities in the Init / DeInit only when these callbacks are null
165   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
166     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
167 
168   [..]
169     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
170     Exception done MspInit / MspDeInit that can be registered / unregistered
171     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
172     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
173   In that case first register the MspInit/MspDeInit user callbacks
174       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
175 
176   [..]
177       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
178       not defined, the callback registration feature is not available and all callbacks
179       are set to the corresponding weak functions.
180 
181   @endverbatim
182   ******************************************************************************
183   */
184 
185 /* Includes ------------------------------------------------------------------*/
186 #include "stm32f2xx_hal.h"
187 
188 /** @addtogroup STM32F2xx_HAL_Driver
189   * @{
190   */
191 
192 /** @defgroup TIM TIM
193   * @brief TIM HAL module driver
194   * @{
195   */
196 
197 #ifdef HAL_TIM_MODULE_ENABLED
198 
199 /* Private typedef -----------------------------------------------------------*/
200 /* Private define ------------------------------------------------------------*/
201 /* Private macros ------------------------------------------------------------*/
202 /* Private variables ---------------------------------------------------------*/
203 /* Private function prototypes -----------------------------------------------*/
204 /** @addtogroup TIM_Private_Functions
205   * @{
206   */
207 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
208 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
209 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
210 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
211 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
212                               uint32_t TIM_ICFilter);
213 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
214 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
215                               uint32_t TIM_ICFilter);
216 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
217                               uint32_t TIM_ICFilter);
218 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
219 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
220 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
221 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
222 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
223 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
224 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
225                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
226 /**
227   * @}
228   */
229 /* Exported functions --------------------------------------------------------*/
230 
231 /** @defgroup TIM_Exported_Functions TIM Exported Functions
232   * @{
233   */
234 
235 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
236   *  @brief    Time Base functions
237   *
238 @verbatim
239   ==============================================================================
240               ##### Time Base functions #####
241   ==============================================================================
242   [..]
243     This section provides functions allowing to:
244     (+) Initialize and configure the TIM base.
245     (+) De-initialize the TIM base.
246     (+) Start the Time Base.
247     (+) Stop the Time Base.
248     (+) Start the Time Base and enable interrupt.
249     (+) Stop the Time Base and disable interrupt.
250     (+) Start the Time Base and enable DMA transfer.
251     (+) Stop the Time Base and disable DMA transfer.
252 
253 @endverbatim
254   * @{
255   */
256 /**
257   * @brief  Initializes the TIM Time base Unit according to the specified
258   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
259   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
260   *         requires a timer reset to avoid unexpected direction
261   *         due to DIR bit readonly in center aligned mode.
262   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
263   * @param  htim TIM Base handle
264   * @retval HAL status
265   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)266 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
267 {
268   /* Check the TIM handle allocation */
269   if (htim == NULL)
270   {
271     return HAL_ERROR;
272   }
273 
274   /* Check the parameters */
275   assert_param(IS_TIM_INSTANCE(htim->Instance));
276   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
277   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
278   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
279   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
280 
281   if (htim->State == HAL_TIM_STATE_RESET)
282   {
283     /* Allocate lock resource and initialize it */
284     htim->Lock = HAL_UNLOCKED;
285 
286 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
287     /* Reset interrupt callbacks to legacy weak callbacks */
288     TIM_ResetCallback(htim);
289 
290     if (htim->Base_MspInitCallback == NULL)
291     {
292       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
293     }
294     /* Init the low level hardware : GPIO, CLOCK, NVIC */
295     htim->Base_MspInitCallback(htim);
296 #else
297     /* Init the low level hardware : GPIO, CLOCK, NVIC */
298     HAL_TIM_Base_MspInit(htim);
299 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
300   }
301 
302   /* Set the TIM state */
303   htim->State = HAL_TIM_STATE_BUSY;
304 
305   /* Set the Time Base configuration */
306   TIM_Base_SetConfig(htim->Instance, &htim->Init);
307 
308   /* Initialize the DMA burst operation state */
309   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
310 
311   /* Initialize the TIM channels state */
312   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
313   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
314 
315   /* Initialize the TIM state*/
316   htim->State = HAL_TIM_STATE_READY;
317 
318   return HAL_OK;
319 }
320 
321 /**
322   * @brief  DeInitializes the TIM Base peripheral
323   * @param  htim TIM Base handle
324   * @retval HAL status
325   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)326 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
327 {
328   /* Check the parameters */
329   assert_param(IS_TIM_INSTANCE(htim->Instance));
330 
331   htim->State = HAL_TIM_STATE_BUSY;
332 
333   /* Disable the TIM Peripheral Clock */
334   __HAL_TIM_DISABLE(htim);
335 
336 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
337   if (htim->Base_MspDeInitCallback == NULL)
338   {
339     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
340   }
341   /* DeInit the low level hardware */
342   htim->Base_MspDeInitCallback(htim);
343 #else
344   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
345   HAL_TIM_Base_MspDeInit(htim);
346 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
347 
348   /* Change the DMA burst operation state */
349   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
350 
351   /* Change the TIM channels state */
352   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
353   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
354 
355   /* Change TIM state */
356   htim->State = HAL_TIM_STATE_RESET;
357 
358   /* Release Lock */
359   __HAL_UNLOCK(htim);
360 
361   return HAL_OK;
362 }
363 
364 /**
365   * @brief  Initializes the TIM Base MSP.
366   * @param  htim TIM Base handle
367   * @retval None
368   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)369 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
370 {
371   /* Prevent unused argument(s) compilation warning */
372   UNUSED(htim);
373 
374   /* NOTE : This function should not be modified, when the callback is needed,
375             the HAL_TIM_Base_MspInit could be implemented in the user file
376    */
377 }
378 
379 /**
380   * @brief  DeInitializes TIM Base MSP.
381   * @param  htim TIM Base handle
382   * @retval None
383   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)384 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
385 {
386   /* Prevent unused argument(s) compilation warning */
387   UNUSED(htim);
388 
389   /* NOTE : This function should not be modified, when the callback is needed,
390             the HAL_TIM_Base_MspDeInit could be implemented in the user file
391    */
392 }
393 
394 
395 /**
396   * @brief  Starts the TIM Base generation.
397   * @param  htim TIM Base handle
398   * @retval HAL status
399   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)400 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
401 {
402   uint32_t tmpsmcr;
403 
404   /* Check the parameters */
405   assert_param(IS_TIM_INSTANCE(htim->Instance));
406 
407   /* Check the TIM state */
408   if (htim->State != HAL_TIM_STATE_READY)
409   {
410     return HAL_ERROR;
411   }
412 
413   /* Set the TIM state */
414   htim->State = HAL_TIM_STATE_BUSY;
415 
416   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
417   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
418   {
419     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
420     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
421     {
422       __HAL_TIM_ENABLE(htim);
423     }
424   }
425   else
426   {
427     __HAL_TIM_ENABLE(htim);
428   }
429 
430   /* Return function status */
431   return HAL_OK;
432 }
433 
434 /**
435   * @brief  Stops the TIM Base generation.
436   * @param  htim TIM Base handle
437   * @retval HAL status
438   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)439 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
440 {
441   /* Check the parameters */
442   assert_param(IS_TIM_INSTANCE(htim->Instance));
443 
444   /* Disable the Peripheral */
445   __HAL_TIM_DISABLE(htim);
446 
447   /* Set the TIM state */
448   htim->State = HAL_TIM_STATE_READY;
449 
450   /* Return function status */
451   return HAL_OK;
452 }
453 
454 /**
455   * @brief  Starts the TIM Base generation in interrupt mode.
456   * @param  htim TIM Base handle
457   * @retval HAL status
458   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)459 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
460 {
461   uint32_t tmpsmcr;
462 
463   /* Check the parameters */
464   assert_param(IS_TIM_INSTANCE(htim->Instance));
465 
466   /* Check the TIM state */
467   if (htim->State != HAL_TIM_STATE_READY)
468   {
469     return HAL_ERROR;
470   }
471 
472   /* Set the TIM state */
473   htim->State = HAL_TIM_STATE_BUSY;
474 
475   /* Enable the TIM Update interrupt */
476   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
477 
478   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
479   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
480   {
481     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
482     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
483     {
484       __HAL_TIM_ENABLE(htim);
485     }
486   }
487   else
488   {
489     __HAL_TIM_ENABLE(htim);
490   }
491 
492   /* Return function status */
493   return HAL_OK;
494 }
495 
496 /**
497   * @brief  Stops the TIM Base generation in interrupt mode.
498   * @param  htim TIM Base handle
499   * @retval HAL status
500   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)501 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
502 {
503   /* Check the parameters */
504   assert_param(IS_TIM_INSTANCE(htim->Instance));
505 
506   /* Disable the TIM Update interrupt */
507   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
508 
509   /* Disable the Peripheral */
510   __HAL_TIM_DISABLE(htim);
511 
512   /* Set the TIM state */
513   htim->State = HAL_TIM_STATE_READY;
514 
515   /* Return function status */
516   return HAL_OK;
517 }
518 
519 /**
520   * @brief  Starts the TIM Base generation in DMA mode.
521   * @param  htim TIM Base handle
522   * @param  pData The source Buffer address.
523   * @param  Length The length of data to be transferred from memory to peripheral.
524   * @retval HAL status
525   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)526 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
527 {
528   uint32_t tmpsmcr;
529 
530   /* Check the parameters */
531   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
532 
533   /* Set the TIM state */
534   if (htim->State == HAL_TIM_STATE_BUSY)
535   {
536     return HAL_BUSY;
537   }
538   else if (htim->State == HAL_TIM_STATE_READY)
539   {
540     if ((pData == NULL) || (Length == 0U))
541     {
542       return HAL_ERROR;
543     }
544     else
545     {
546       htim->State = HAL_TIM_STATE_BUSY;
547     }
548   }
549   else
550   {
551     return HAL_ERROR;
552   }
553 
554   /* Set the DMA Period elapsed callbacks */
555   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
556   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
557 
558   /* Set the DMA error callback */
559   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
560 
561   /* Enable the DMA stream */
562   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
563                        Length) != HAL_OK)
564   {
565     /* Return error status */
566     return HAL_ERROR;
567   }
568 
569   /* Enable the TIM Update DMA request */
570   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
571 
572   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
573   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
574   {
575     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
576     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
577     {
578       __HAL_TIM_ENABLE(htim);
579     }
580   }
581   else
582   {
583     __HAL_TIM_ENABLE(htim);
584   }
585 
586   /* Return function status */
587   return HAL_OK;
588 }
589 
590 /**
591   * @brief  Stops the TIM Base generation in DMA mode.
592   * @param  htim TIM Base handle
593   * @retval HAL status
594   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)595 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
596 {
597   /* Check the parameters */
598   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
599 
600   /* Disable the TIM Update DMA request */
601   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
602 
603   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
604 
605   /* Disable the Peripheral */
606   __HAL_TIM_DISABLE(htim);
607 
608   /* Set the TIM state */
609   htim->State = HAL_TIM_STATE_READY;
610 
611   /* Return function status */
612   return HAL_OK;
613 }
614 
615 /**
616   * @}
617   */
618 
619 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
620   *  @brief    TIM Output Compare functions
621   *
622 @verbatim
623   ==============================================================================
624                   ##### TIM Output Compare functions #####
625   ==============================================================================
626   [..]
627     This section provides functions allowing to:
628     (+) Initialize and configure the TIM Output Compare.
629     (+) De-initialize the TIM Output Compare.
630     (+) Start the TIM Output Compare.
631     (+) Stop the TIM Output Compare.
632     (+) Start the TIM Output Compare and enable interrupt.
633     (+) Stop the TIM Output Compare and disable interrupt.
634     (+) Start the TIM Output Compare and enable DMA transfer.
635     (+) Stop the TIM Output Compare and disable DMA transfer.
636 
637 @endverbatim
638   * @{
639   */
640 /**
641   * @brief  Initializes the TIM Output Compare according to the specified
642   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
643   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
644   *         requires a timer reset to avoid unexpected direction
645   *         due to DIR bit readonly in center aligned mode.
646   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
647   * @param  htim TIM Output Compare handle
648   * @retval HAL status
649   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)650 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
651 {
652   /* Check the TIM handle allocation */
653   if (htim == NULL)
654   {
655     return HAL_ERROR;
656   }
657 
658   /* Check the parameters */
659   assert_param(IS_TIM_INSTANCE(htim->Instance));
660   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
661   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
662   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
663   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
664 
665   if (htim->State == HAL_TIM_STATE_RESET)
666   {
667     /* Allocate lock resource and initialize it */
668     htim->Lock = HAL_UNLOCKED;
669 
670 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
671     /* Reset interrupt callbacks to legacy weak callbacks */
672     TIM_ResetCallback(htim);
673 
674     if (htim->OC_MspInitCallback == NULL)
675     {
676       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
677     }
678     /* Init the low level hardware : GPIO, CLOCK, NVIC */
679     htim->OC_MspInitCallback(htim);
680 #else
681     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
682     HAL_TIM_OC_MspInit(htim);
683 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
684   }
685 
686   /* Set the TIM state */
687   htim->State = HAL_TIM_STATE_BUSY;
688 
689   /* Init the base time for the Output Compare */
690   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
691 
692   /* Initialize the DMA burst operation state */
693   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
694 
695   /* Initialize the TIM channels state */
696   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
697   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
698 
699   /* Initialize the TIM state*/
700   htim->State = HAL_TIM_STATE_READY;
701 
702   return HAL_OK;
703 }
704 
705 /**
706   * @brief  DeInitializes the TIM peripheral
707   * @param  htim TIM Output Compare handle
708   * @retval HAL status
709   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)710 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
711 {
712   /* Check the parameters */
713   assert_param(IS_TIM_INSTANCE(htim->Instance));
714 
715   htim->State = HAL_TIM_STATE_BUSY;
716 
717   /* Disable the TIM Peripheral Clock */
718   __HAL_TIM_DISABLE(htim);
719 
720 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
721   if (htim->OC_MspDeInitCallback == NULL)
722   {
723     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
724   }
725   /* DeInit the low level hardware */
726   htim->OC_MspDeInitCallback(htim);
727 #else
728   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
729   HAL_TIM_OC_MspDeInit(htim);
730 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
731 
732   /* Change the DMA burst operation state */
733   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
734 
735   /* Change the TIM channels state */
736   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
737   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
738 
739   /* Change TIM state */
740   htim->State = HAL_TIM_STATE_RESET;
741 
742   /* Release Lock */
743   __HAL_UNLOCK(htim);
744 
745   return HAL_OK;
746 }
747 
748 /**
749   * @brief  Initializes the TIM Output Compare MSP.
750   * @param  htim TIM Output Compare handle
751   * @retval None
752   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)753 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
754 {
755   /* Prevent unused argument(s) compilation warning */
756   UNUSED(htim);
757 
758   /* NOTE : This function should not be modified, when the callback is needed,
759             the HAL_TIM_OC_MspInit could be implemented in the user file
760    */
761 }
762 
763 /**
764   * @brief  DeInitializes TIM Output Compare MSP.
765   * @param  htim TIM Output Compare handle
766   * @retval None
767   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)768 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
769 {
770   /* Prevent unused argument(s) compilation warning */
771   UNUSED(htim);
772 
773   /* NOTE : This function should not be modified, when the callback is needed,
774             the HAL_TIM_OC_MspDeInit could be implemented in the user file
775    */
776 }
777 
778 /**
779   * @brief  Starts the TIM Output Compare signal generation.
780   * @param  htim TIM Output Compare handle
781   * @param  Channel TIM Channel to be enabled
782   *          This parameter can be one of the following values:
783   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
784   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
785   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
786   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
787   * @retval HAL status
788   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)789 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
790 {
791   uint32_t tmpsmcr;
792 
793   /* Check the parameters */
794   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
795 
796   /* Check the TIM channel state */
797   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
798   {
799     return HAL_ERROR;
800   }
801 
802   /* Set the TIM channel state */
803   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
804 
805   /* Enable the Output compare channel */
806   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
807 
808   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
809   {
810     /* Enable the main output */
811     __HAL_TIM_MOE_ENABLE(htim);
812   }
813 
814   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
815   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
816   {
817     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
818     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
819     {
820       __HAL_TIM_ENABLE(htim);
821     }
822   }
823   else
824   {
825     __HAL_TIM_ENABLE(htim);
826   }
827 
828   /* Return function status */
829   return HAL_OK;
830 }
831 
832 /**
833   * @brief  Stops the TIM Output Compare signal generation.
834   * @param  htim TIM Output Compare handle
835   * @param  Channel TIM Channel to be disabled
836   *          This parameter can be one of the following values:
837   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
838   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
839   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
840   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
841   * @retval HAL status
842   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)843 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
844 {
845   /* Check the parameters */
846   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
847 
848   /* Disable the Output compare channel */
849   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
850 
851   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
852   {
853     /* Disable the Main Output */
854     __HAL_TIM_MOE_DISABLE(htim);
855   }
856 
857   /* Disable the Peripheral */
858   __HAL_TIM_DISABLE(htim);
859 
860   /* Set the TIM channel state */
861   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
862 
863   /* Return function status */
864   return HAL_OK;
865 }
866 
867 /**
868   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
869   * @param  htim TIM Output Compare handle
870   * @param  Channel TIM Channel to be enabled
871   *          This parameter can be one of the following values:
872   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
873   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
874   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
875   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
876   * @retval HAL status
877   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)878 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
879 {
880   HAL_StatusTypeDef status = HAL_OK;
881   uint32_t tmpsmcr;
882 
883   /* Check the parameters */
884   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
885 
886   /* Check the TIM channel state */
887   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
888   {
889     return HAL_ERROR;
890   }
891 
892   /* Set the TIM channel state */
893   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
894 
895   switch (Channel)
896   {
897     case TIM_CHANNEL_1:
898     {
899       /* Enable the TIM Capture/Compare 1 interrupt */
900       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
901       break;
902     }
903 
904     case TIM_CHANNEL_2:
905     {
906       /* Enable the TIM Capture/Compare 2 interrupt */
907       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
908       break;
909     }
910 
911     case TIM_CHANNEL_3:
912     {
913       /* Enable the TIM Capture/Compare 3 interrupt */
914       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
915       break;
916     }
917 
918     case TIM_CHANNEL_4:
919     {
920       /* Enable the TIM Capture/Compare 4 interrupt */
921       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
922       break;
923     }
924 
925     default:
926       status = HAL_ERROR;
927       break;
928   }
929 
930   if (status == HAL_OK)
931   {
932     /* Enable the Output compare channel */
933     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
934 
935     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
936     {
937       /* Enable the main output */
938       __HAL_TIM_MOE_ENABLE(htim);
939     }
940 
941     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
942     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
943     {
944       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
945       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
946       {
947         __HAL_TIM_ENABLE(htim);
948       }
949     }
950     else
951     {
952       __HAL_TIM_ENABLE(htim);
953     }
954   }
955 
956   /* Return function status */
957   return status;
958 }
959 
960 /**
961   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
962   * @param  htim TIM Output Compare handle
963   * @param  Channel TIM Channel to be disabled
964   *          This parameter can be one of the following values:
965   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
966   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
967   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
968   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
969   * @retval HAL status
970   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)971 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
972 {
973   HAL_StatusTypeDef status = HAL_OK;
974 
975   /* Check the parameters */
976   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
977 
978   switch (Channel)
979   {
980     case TIM_CHANNEL_1:
981     {
982       /* Disable the TIM Capture/Compare 1 interrupt */
983       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
984       break;
985     }
986 
987     case TIM_CHANNEL_2:
988     {
989       /* Disable the TIM Capture/Compare 2 interrupt */
990       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
991       break;
992     }
993 
994     case TIM_CHANNEL_3:
995     {
996       /* Disable the TIM Capture/Compare 3 interrupt */
997       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
998       break;
999     }
1000 
1001     case TIM_CHANNEL_4:
1002     {
1003       /* Disable the TIM Capture/Compare 4 interrupt */
1004       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1005       break;
1006     }
1007 
1008     default:
1009       status = HAL_ERROR;
1010       break;
1011   }
1012 
1013   if (status == HAL_OK)
1014   {
1015     /* Disable the Output compare channel */
1016     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1017 
1018     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1019     {
1020       /* Disable the Main Output */
1021       __HAL_TIM_MOE_DISABLE(htim);
1022     }
1023 
1024     /* Disable the Peripheral */
1025     __HAL_TIM_DISABLE(htim);
1026 
1027     /* Set the TIM channel state */
1028     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1029   }
1030 
1031   /* Return function status */
1032   return status;
1033 }
1034 
1035 /**
1036   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1037   * @param  htim TIM Output Compare handle
1038   * @param  Channel TIM Channel to be enabled
1039   *          This parameter can be one of the following values:
1040   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1041   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1042   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1043   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1044   * @param  pData The source Buffer address.
1045   * @param  Length The length of data to be transferred from memory to TIM peripheral
1046   * @retval HAL status
1047   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1048 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1049                                        uint16_t Length)
1050 {
1051   HAL_StatusTypeDef status = HAL_OK;
1052   uint32_t tmpsmcr;
1053 
1054   /* Check the parameters */
1055   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1056 
1057   /* Set the TIM channel state */
1058   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1059   {
1060     return HAL_BUSY;
1061   }
1062   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1063   {
1064     if ((pData == NULL) || (Length == 0U))
1065     {
1066       return HAL_ERROR;
1067     }
1068     else
1069     {
1070       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1071     }
1072   }
1073   else
1074   {
1075     return HAL_ERROR;
1076   }
1077 
1078   switch (Channel)
1079   {
1080     case TIM_CHANNEL_1:
1081     {
1082       /* Set the DMA compare callbacks */
1083       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1084       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1085 
1086       /* Set the DMA error callback */
1087       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1088 
1089       /* Enable the DMA stream */
1090       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1091                            Length) != HAL_OK)
1092       {
1093         /* Return error status */
1094         return HAL_ERROR;
1095       }
1096 
1097       /* Enable the TIM Capture/Compare 1 DMA request */
1098       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1099       break;
1100     }
1101 
1102     case TIM_CHANNEL_2:
1103     {
1104       /* Set the DMA compare callbacks */
1105       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1106       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1107 
1108       /* Set the DMA error callback */
1109       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1110 
1111       /* Enable the DMA stream */
1112       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1113                            Length) != HAL_OK)
1114       {
1115         /* Return error status */
1116         return HAL_ERROR;
1117       }
1118 
1119       /* Enable the TIM Capture/Compare 2 DMA request */
1120       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1121       break;
1122     }
1123 
1124     case TIM_CHANNEL_3:
1125     {
1126       /* Set the DMA compare callbacks */
1127       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1128       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1129 
1130       /* Set the DMA error callback */
1131       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1132 
1133       /* Enable the DMA stream */
1134       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1135                            Length) != HAL_OK)
1136       {
1137         /* Return error status */
1138         return HAL_ERROR;
1139       }
1140       /* Enable the TIM Capture/Compare 3 DMA request */
1141       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1142       break;
1143     }
1144 
1145     case TIM_CHANNEL_4:
1146     {
1147       /* Set the DMA compare callbacks */
1148       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1149       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1150 
1151       /* Set the DMA error callback */
1152       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1153 
1154       /* Enable the DMA stream */
1155       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1156                            Length) != HAL_OK)
1157       {
1158         /* Return error status */
1159         return HAL_ERROR;
1160       }
1161       /* Enable the TIM Capture/Compare 4 DMA request */
1162       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1163       break;
1164     }
1165 
1166     default:
1167       status = HAL_ERROR;
1168       break;
1169   }
1170 
1171   if (status == HAL_OK)
1172   {
1173     /* Enable the Output compare channel */
1174     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1175 
1176     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1177     {
1178       /* Enable the main output */
1179       __HAL_TIM_MOE_ENABLE(htim);
1180     }
1181 
1182     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1183     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1184     {
1185       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1186       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1187       {
1188         __HAL_TIM_ENABLE(htim);
1189       }
1190     }
1191     else
1192     {
1193       __HAL_TIM_ENABLE(htim);
1194     }
1195   }
1196 
1197   /* Return function status */
1198   return status;
1199 }
1200 
1201 /**
1202   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1203   * @param  htim TIM Output Compare handle
1204   * @param  Channel TIM Channel to be disabled
1205   *          This parameter can be one of the following values:
1206   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1207   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1208   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1209   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1210   * @retval HAL status
1211   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1212 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1213 {
1214   HAL_StatusTypeDef status = HAL_OK;
1215 
1216   /* Check the parameters */
1217   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1218 
1219   switch (Channel)
1220   {
1221     case TIM_CHANNEL_1:
1222     {
1223       /* Disable the TIM Capture/Compare 1 DMA request */
1224       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1225       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1226       break;
1227     }
1228 
1229     case TIM_CHANNEL_2:
1230     {
1231       /* Disable the TIM Capture/Compare 2 DMA request */
1232       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1233       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1234       break;
1235     }
1236 
1237     case TIM_CHANNEL_3:
1238     {
1239       /* Disable the TIM Capture/Compare 3 DMA request */
1240       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1241       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1242       break;
1243     }
1244 
1245     case TIM_CHANNEL_4:
1246     {
1247       /* Disable the TIM Capture/Compare 4 interrupt */
1248       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1249       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1250       break;
1251     }
1252 
1253     default:
1254       status = HAL_ERROR;
1255       break;
1256   }
1257 
1258   if (status == HAL_OK)
1259   {
1260     /* Disable the Output compare channel */
1261     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1262 
1263     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1264     {
1265       /* Disable the Main Output */
1266       __HAL_TIM_MOE_DISABLE(htim);
1267     }
1268 
1269     /* Disable the Peripheral */
1270     __HAL_TIM_DISABLE(htim);
1271 
1272     /* Set the TIM channel state */
1273     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1274   }
1275 
1276   /* Return function status */
1277   return status;
1278 }
1279 
1280 /**
1281   * @}
1282   */
1283 
1284 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1285   *  @brief    TIM PWM functions
1286   *
1287 @verbatim
1288   ==============================================================================
1289                           ##### TIM PWM functions #####
1290   ==============================================================================
1291   [..]
1292     This section provides functions allowing to:
1293     (+) Initialize and configure the TIM PWM.
1294     (+) De-initialize the TIM PWM.
1295     (+) Start the TIM PWM.
1296     (+) Stop the TIM PWM.
1297     (+) Start the TIM PWM and enable interrupt.
1298     (+) Stop the TIM PWM and disable interrupt.
1299     (+) Start the TIM PWM and enable DMA transfer.
1300     (+) Stop the TIM PWM and disable DMA transfer.
1301 
1302 @endverbatim
1303   * @{
1304   */
1305 /**
1306   * @brief  Initializes the TIM PWM Time Base according to the specified
1307   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1308   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1309   *         requires a timer reset to avoid unexpected direction
1310   *         due to DIR bit readonly in center aligned mode.
1311   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1312   * @param  htim TIM PWM handle
1313   * @retval HAL status
1314   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1315 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1316 {
1317   /* Check the TIM handle allocation */
1318   if (htim == NULL)
1319   {
1320     return HAL_ERROR;
1321   }
1322 
1323   /* Check the parameters */
1324   assert_param(IS_TIM_INSTANCE(htim->Instance));
1325   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1326   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1327   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1328   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1329 
1330   if (htim->State == HAL_TIM_STATE_RESET)
1331   {
1332     /* Allocate lock resource and initialize it */
1333     htim->Lock = HAL_UNLOCKED;
1334 
1335 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1336     /* Reset interrupt callbacks to legacy weak callbacks */
1337     TIM_ResetCallback(htim);
1338 
1339     if (htim->PWM_MspInitCallback == NULL)
1340     {
1341       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1342     }
1343     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1344     htim->PWM_MspInitCallback(htim);
1345 #else
1346     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1347     HAL_TIM_PWM_MspInit(htim);
1348 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1349   }
1350 
1351   /* Set the TIM state */
1352   htim->State = HAL_TIM_STATE_BUSY;
1353 
1354   /* Init the base time for the PWM */
1355   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1356 
1357   /* Initialize the DMA burst operation state */
1358   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1359 
1360   /* Initialize the TIM channels state */
1361   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1362   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1363 
1364   /* Initialize the TIM state*/
1365   htim->State = HAL_TIM_STATE_READY;
1366 
1367   return HAL_OK;
1368 }
1369 
1370 /**
1371   * @brief  DeInitializes the TIM peripheral
1372   * @param  htim TIM PWM handle
1373   * @retval HAL status
1374   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1375 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1376 {
1377   /* Check the parameters */
1378   assert_param(IS_TIM_INSTANCE(htim->Instance));
1379 
1380   htim->State = HAL_TIM_STATE_BUSY;
1381 
1382   /* Disable the TIM Peripheral Clock */
1383   __HAL_TIM_DISABLE(htim);
1384 
1385 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1386   if (htim->PWM_MspDeInitCallback == NULL)
1387   {
1388     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1389   }
1390   /* DeInit the low level hardware */
1391   htim->PWM_MspDeInitCallback(htim);
1392 #else
1393   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1394   HAL_TIM_PWM_MspDeInit(htim);
1395 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1396 
1397   /* Change the DMA burst operation state */
1398   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1399 
1400   /* Change the TIM channels state */
1401   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1402   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1403 
1404   /* Change TIM state */
1405   htim->State = HAL_TIM_STATE_RESET;
1406 
1407   /* Release Lock */
1408   __HAL_UNLOCK(htim);
1409 
1410   return HAL_OK;
1411 }
1412 
1413 /**
1414   * @brief  Initializes the TIM PWM MSP.
1415   * @param  htim TIM PWM handle
1416   * @retval None
1417   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1418 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1419 {
1420   /* Prevent unused argument(s) compilation warning */
1421   UNUSED(htim);
1422 
1423   /* NOTE : This function should not be modified, when the callback is needed,
1424             the HAL_TIM_PWM_MspInit could be implemented in the user file
1425    */
1426 }
1427 
1428 /**
1429   * @brief  DeInitializes TIM PWM MSP.
1430   * @param  htim TIM PWM handle
1431   * @retval None
1432   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1434 {
1435   /* Prevent unused argument(s) compilation warning */
1436   UNUSED(htim);
1437 
1438   /* NOTE : This function should not be modified, when the callback is needed,
1439             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1440    */
1441 }
1442 
1443 /**
1444   * @brief  Starts the PWM signal generation.
1445   * @param  htim TIM handle
1446   * @param  Channel TIM Channels to be enabled
1447   *          This parameter can be one of the following values:
1448   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1449   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1450   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1451   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1452   * @retval HAL status
1453   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1454 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1455 {
1456   uint32_t tmpsmcr;
1457 
1458   /* Check the parameters */
1459   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1460 
1461   /* Check the TIM channel state */
1462   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1463   {
1464     return HAL_ERROR;
1465   }
1466 
1467   /* Set the TIM channel state */
1468   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1469 
1470   /* Enable the Capture compare channel */
1471   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1472 
1473   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1474   {
1475     /* Enable the main output */
1476     __HAL_TIM_MOE_ENABLE(htim);
1477   }
1478 
1479   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1480   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1481   {
1482     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1483     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1484     {
1485       __HAL_TIM_ENABLE(htim);
1486     }
1487   }
1488   else
1489   {
1490     __HAL_TIM_ENABLE(htim);
1491   }
1492 
1493   /* Return function status */
1494   return HAL_OK;
1495 }
1496 
1497 /**
1498   * @brief  Stops the PWM signal generation.
1499   * @param  htim TIM PWM handle
1500   * @param  Channel TIM Channels to be disabled
1501   *          This parameter can be one of the following values:
1502   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1503   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1504   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1505   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1506   * @retval HAL status
1507   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1508 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1509 {
1510   /* Check the parameters */
1511   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1512 
1513   /* Disable the Capture compare channel */
1514   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1515 
1516   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1517   {
1518     /* Disable the Main Output */
1519     __HAL_TIM_MOE_DISABLE(htim);
1520   }
1521 
1522   /* Disable the Peripheral */
1523   __HAL_TIM_DISABLE(htim);
1524 
1525   /* Set the TIM channel state */
1526   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1527 
1528   /* Return function status */
1529   return HAL_OK;
1530 }
1531 
1532 /**
1533   * @brief  Starts the PWM signal generation in interrupt mode.
1534   * @param  htim TIM PWM handle
1535   * @param  Channel TIM Channel to be enabled
1536   *          This parameter can be one of the following values:
1537   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1538   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1539   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1540   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1541   * @retval HAL status
1542   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1543 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1544 {
1545   HAL_StatusTypeDef status = HAL_OK;
1546   uint32_t tmpsmcr;
1547 
1548   /* Check the parameters */
1549   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1550 
1551   /* Check the TIM channel state */
1552   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1553   {
1554     return HAL_ERROR;
1555   }
1556 
1557   /* Set the TIM channel state */
1558   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1559 
1560   switch (Channel)
1561   {
1562     case TIM_CHANNEL_1:
1563     {
1564       /* Enable the TIM Capture/Compare 1 interrupt */
1565       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1566       break;
1567     }
1568 
1569     case TIM_CHANNEL_2:
1570     {
1571       /* Enable the TIM Capture/Compare 2 interrupt */
1572       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1573       break;
1574     }
1575 
1576     case TIM_CHANNEL_3:
1577     {
1578       /* Enable the TIM Capture/Compare 3 interrupt */
1579       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1580       break;
1581     }
1582 
1583     case TIM_CHANNEL_4:
1584     {
1585       /* Enable the TIM Capture/Compare 4 interrupt */
1586       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1587       break;
1588     }
1589 
1590     default:
1591       status = HAL_ERROR;
1592       break;
1593   }
1594 
1595   if (status == HAL_OK)
1596   {
1597     /* Enable the Capture compare channel */
1598     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1599 
1600     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1601     {
1602       /* Enable the main output */
1603       __HAL_TIM_MOE_ENABLE(htim);
1604     }
1605 
1606     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1607     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1608     {
1609       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1610       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1611       {
1612         __HAL_TIM_ENABLE(htim);
1613       }
1614     }
1615     else
1616     {
1617       __HAL_TIM_ENABLE(htim);
1618     }
1619   }
1620 
1621   /* Return function status */
1622   return status;
1623 }
1624 
1625 /**
1626   * @brief  Stops the PWM signal generation in interrupt mode.
1627   * @param  htim TIM PWM handle
1628   * @param  Channel TIM Channels to be disabled
1629   *          This parameter can be one of the following values:
1630   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1631   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1632   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1633   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1634   * @retval HAL status
1635   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1636 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1637 {
1638   HAL_StatusTypeDef status = HAL_OK;
1639 
1640   /* Check the parameters */
1641   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1642 
1643   switch (Channel)
1644   {
1645     case TIM_CHANNEL_1:
1646     {
1647       /* Disable the TIM Capture/Compare 1 interrupt */
1648       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1649       break;
1650     }
1651 
1652     case TIM_CHANNEL_2:
1653     {
1654       /* Disable the TIM Capture/Compare 2 interrupt */
1655       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1656       break;
1657     }
1658 
1659     case TIM_CHANNEL_3:
1660     {
1661       /* Disable the TIM Capture/Compare 3 interrupt */
1662       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1663       break;
1664     }
1665 
1666     case TIM_CHANNEL_4:
1667     {
1668       /* Disable the TIM Capture/Compare 4 interrupt */
1669       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1670       break;
1671     }
1672 
1673     default:
1674       status = HAL_ERROR;
1675       break;
1676   }
1677 
1678   if (status == HAL_OK)
1679   {
1680     /* Disable the Capture compare channel */
1681     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1682 
1683     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1684     {
1685       /* Disable the Main Output */
1686       __HAL_TIM_MOE_DISABLE(htim);
1687     }
1688 
1689     /* Disable the Peripheral */
1690     __HAL_TIM_DISABLE(htim);
1691 
1692     /* Set the TIM channel state */
1693     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1694   }
1695 
1696   /* Return function status */
1697   return status;
1698 }
1699 
1700 /**
1701   * @brief  Starts the TIM PWM signal generation in DMA mode.
1702   * @param  htim TIM PWM handle
1703   * @param  Channel TIM Channels to be enabled
1704   *          This parameter can be one of the following values:
1705   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1706   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1707   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1708   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1709   * @param  pData The source Buffer address.
1710   * @param  Length The length of data to be transferred from memory to TIM peripheral
1711   * @retval HAL status
1712   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1713 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1714                                         uint16_t Length)
1715 {
1716   HAL_StatusTypeDef status = HAL_OK;
1717   uint32_t tmpsmcr;
1718 
1719   /* Check the parameters */
1720   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1721 
1722   /* Set the TIM channel state */
1723   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1724   {
1725     return HAL_BUSY;
1726   }
1727   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1728   {
1729     if ((pData == NULL) || (Length == 0U))
1730     {
1731       return HAL_ERROR;
1732     }
1733     else
1734     {
1735       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1736     }
1737   }
1738   else
1739   {
1740     return HAL_ERROR;
1741   }
1742 
1743   switch (Channel)
1744   {
1745     case TIM_CHANNEL_1:
1746     {
1747       /* Set the DMA compare callbacks */
1748       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1749       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1750 
1751       /* Set the DMA error callback */
1752       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1753 
1754       /* Enable the DMA stream */
1755       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1756                            Length) != HAL_OK)
1757       {
1758         /* Return error status */
1759         return HAL_ERROR;
1760       }
1761 
1762       /* Enable the TIM Capture/Compare 1 DMA request */
1763       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1764       break;
1765     }
1766 
1767     case TIM_CHANNEL_2:
1768     {
1769       /* Set the DMA compare callbacks */
1770       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1771       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1772 
1773       /* Set the DMA error callback */
1774       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1775 
1776       /* Enable the DMA stream */
1777       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1778                            Length) != HAL_OK)
1779       {
1780         /* Return error status */
1781         return HAL_ERROR;
1782       }
1783       /* Enable the TIM Capture/Compare 2 DMA request */
1784       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1785       break;
1786     }
1787 
1788     case TIM_CHANNEL_3:
1789     {
1790       /* Set the DMA compare callbacks */
1791       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1792       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1793 
1794       /* Set the DMA error callback */
1795       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1796 
1797       /* Enable the DMA stream */
1798       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1799                            Length) != HAL_OK)
1800       {
1801         /* Return error status */
1802         return HAL_ERROR;
1803       }
1804       /* Enable the TIM Output Capture/Compare 3 request */
1805       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1806       break;
1807     }
1808 
1809     case TIM_CHANNEL_4:
1810     {
1811       /* Set the DMA compare callbacks */
1812       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1813       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1814 
1815       /* Set the DMA error callback */
1816       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1817 
1818       /* Enable the DMA stream */
1819       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1820                            Length) != HAL_OK)
1821       {
1822         /* Return error status */
1823         return HAL_ERROR;
1824       }
1825       /* Enable the TIM Capture/Compare 4 DMA request */
1826       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1827       break;
1828     }
1829 
1830     default:
1831       status = HAL_ERROR;
1832       break;
1833   }
1834 
1835   if (status == HAL_OK)
1836   {
1837     /* Enable the Capture compare channel */
1838     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1839 
1840     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1841     {
1842       /* Enable the main output */
1843       __HAL_TIM_MOE_ENABLE(htim);
1844     }
1845 
1846     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1847     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1848     {
1849       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1850       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1851       {
1852         __HAL_TIM_ENABLE(htim);
1853       }
1854     }
1855     else
1856     {
1857       __HAL_TIM_ENABLE(htim);
1858     }
1859   }
1860 
1861   /* Return function status */
1862   return status;
1863 }
1864 
1865 /**
1866   * @brief  Stops the TIM PWM signal generation in DMA mode.
1867   * @param  htim TIM PWM handle
1868   * @param  Channel TIM Channels to be disabled
1869   *          This parameter can be one of the following values:
1870   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1871   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1872   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1873   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1874   * @retval HAL status
1875   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1876 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1877 {
1878   HAL_StatusTypeDef status = HAL_OK;
1879 
1880   /* Check the parameters */
1881   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1882 
1883   switch (Channel)
1884   {
1885     case TIM_CHANNEL_1:
1886     {
1887       /* Disable the TIM Capture/Compare 1 DMA request */
1888       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1889       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1890       break;
1891     }
1892 
1893     case TIM_CHANNEL_2:
1894     {
1895       /* Disable the TIM Capture/Compare 2 DMA request */
1896       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1897       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1898       break;
1899     }
1900 
1901     case TIM_CHANNEL_3:
1902     {
1903       /* Disable the TIM Capture/Compare 3 DMA request */
1904       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1905       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1906       break;
1907     }
1908 
1909     case TIM_CHANNEL_4:
1910     {
1911       /* Disable the TIM Capture/Compare 4 interrupt */
1912       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1913       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1914       break;
1915     }
1916 
1917     default:
1918       status = HAL_ERROR;
1919       break;
1920   }
1921 
1922   if (status == HAL_OK)
1923   {
1924     /* Disable the Capture compare channel */
1925     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1926 
1927     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1928     {
1929       /* Disable the Main Output */
1930       __HAL_TIM_MOE_DISABLE(htim);
1931     }
1932 
1933     /* Disable the Peripheral */
1934     __HAL_TIM_DISABLE(htim);
1935 
1936     /* Set the TIM channel state */
1937     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1938   }
1939 
1940   /* Return function status */
1941   return status;
1942 }
1943 
1944 /**
1945   * @}
1946   */
1947 
1948 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1949   *  @brief    TIM Input Capture functions
1950   *
1951 @verbatim
1952   ==============================================================================
1953               ##### TIM Input Capture functions #####
1954   ==============================================================================
1955  [..]
1956    This section provides functions allowing to:
1957    (+) Initialize and configure the TIM Input Capture.
1958    (+) De-initialize the TIM Input Capture.
1959    (+) Start the TIM Input Capture.
1960    (+) Stop the TIM Input Capture.
1961    (+) Start the TIM Input Capture and enable interrupt.
1962    (+) Stop the TIM Input Capture and disable interrupt.
1963    (+) Start the TIM Input Capture and enable DMA transfer.
1964    (+) Stop the TIM Input Capture and disable DMA transfer.
1965 
1966 @endverbatim
1967   * @{
1968   */
1969 /**
1970   * @brief  Initializes the TIM Input Capture Time base according to the specified
1971   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1972   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1973   *         requires a timer reset to avoid unexpected direction
1974   *         due to DIR bit readonly in center aligned mode.
1975   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1976   * @param  htim TIM Input Capture handle
1977   * @retval HAL status
1978   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1979 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1980 {
1981   /* Check the TIM handle allocation */
1982   if (htim == NULL)
1983   {
1984     return HAL_ERROR;
1985   }
1986 
1987   /* Check the parameters */
1988   assert_param(IS_TIM_INSTANCE(htim->Instance));
1989   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1990   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1991   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1992   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1993 
1994   if (htim->State == HAL_TIM_STATE_RESET)
1995   {
1996     /* Allocate lock resource and initialize it */
1997     htim->Lock = HAL_UNLOCKED;
1998 
1999 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2000     /* Reset interrupt callbacks to legacy weak callbacks */
2001     TIM_ResetCallback(htim);
2002 
2003     if (htim->IC_MspInitCallback == NULL)
2004     {
2005       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2006     }
2007     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2008     htim->IC_MspInitCallback(htim);
2009 #else
2010     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2011     HAL_TIM_IC_MspInit(htim);
2012 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2013   }
2014 
2015   /* Set the TIM state */
2016   htim->State = HAL_TIM_STATE_BUSY;
2017 
2018   /* Init the base time for the input capture */
2019   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2020 
2021   /* Initialize the DMA burst operation state */
2022   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2023 
2024   /* Initialize the TIM channels state */
2025   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2026   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2027 
2028   /* Initialize the TIM state*/
2029   htim->State = HAL_TIM_STATE_READY;
2030 
2031   return HAL_OK;
2032 }
2033 
2034 /**
2035   * @brief  DeInitializes the TIM peripheral
2036   * @param  htim TIM Input Capture handle
2037   * @retval HAL status
2038   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2039 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2040 {
2041   /* Check the parameters */
2042   assert_param(IS_TIM_INSTANCE(htim->Instance));
2043 
2044   htim->State = HAL_TIM_STATE_BUSY;
2045 
2046   /* Disable the TIM Peripheral Clock */
2047   __HAL_TIM_DISABLE(htim);
2048 
2049 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2050   if (htim->IC_MspDeInitCallback == NULL)
2051   {
2052     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2053   }
2054   /* DeInit the low level hardware */
2055   htim->IC_MspDeInitCallback(htim);
2056 #else
2057   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2058   HAL_TIM_IC_MspDeInit(htim);
2059 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2060 
2061   /* Change the DMA burst operation state */
2062   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2063 
2064   /* Change the TIM channels state */
2065   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2066   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2067 
2068   /* Change TIM state */
2069   htim->State = HAL_TIM_STATE_RESET;
2070 
2071   /* Release Lock */
2072   __HAL_UNLOCK(htim);
2073 
2074   return HAL_OK;
2075 }
2076 
2077 /**
2078   * @brief  Initializes the TIM Input Capture MSP.
2079   * @param  htim TIM Input Capture handle
2080   * @retval None
2081   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2082 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2083 {
2084   /* Prevent unused argument(s) compilation warning */
2085   UNUSED(htim);
2086 
2087   /* NOTE : This function should not be modified, when the callback is needed,
2088             the HAL_TIM_IC_MspInit could be implemented in the user file
2089    */
2090 }
2091 
2092 /**
2093   * @brief  DeInitializes TIM Input Capture MSP.
2094   * @param  htim TIM handle
2095   * @retval None
2096   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2097 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2098 {
2099   /* Prevent unused argument(s) compilation warning */
2100   UNUSED(htim);
2101 
2102   /* NOTE : This function should not be modified, when the callback is needed,
2103             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2104    */
2105 }
2106 
2107 /**
2108   * @brief  Starts the TIM Input Capture measurement.
2109   * @param  htim TIM Input Capture handle
2110   * @param  Channel TIM Channels to be enabled
2111   *          This parameter can be one of the following values:
2112   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2113   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2114   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2115   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2116   * @retval HAL status
2117   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2118 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2119 {
2120   uint32_t tmpsmcr;
2121   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2122   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2123 
2124   /* Check the parameters */
2125   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2126 
2127   /* Check the TIM channel state */
2128   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2129       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2130   {
2131     return HAL_ERROR;
2132   }
2133 
2134   /* Set the TIM channel state */
2135   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2136   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2137 
2138   /* Enable the Input Capture channel */
2139   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2140 
2141   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2142   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2143   {
2144     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2145     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2146     {
2147       __HAL_TIM_ENABLE(htim);
2148     }
2149   }
2150   else
2151   {
2152     __HAL_TIM_ENABLE(htim);
2153   }
2154 
2155   /* Return function status */
2156   return HAL_OK;
2157 }
2158 
2159 /**
2160   * @brief  Stops the TIM Input Capture measurement.
2161   * @param  htim TIM Input Capture handle
2162   * @param  Channel TIM Channels to be disabled
2163   *          This parameter can be one of the following values:
2164   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2165   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2166   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2167   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2168   * @retval HAL status
2169   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2170 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2171 {
2172   /* Check the parameters */
2173   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2174 
2175   /* Disable the Input Capture channel */
2176   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2177 
2178   /* Disable the Peripheral */
2179   __HAL_TIM_DISABLE(htim);
2180 
2181   /* Set the TIM channel state */
2182   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2183   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2184 
2185   /* Return function status */
2186   return HAL_OK;
2187 }
2188 
2189 /**
2190   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2191   * @param  htim TIM Input Capture handle
2192   * @param  Channel TIM Channels to be enabled
2193   *          This parameter can be one of the following values:
2194   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2195   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2196   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2197   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2198   * @retval HAL status
2199   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2200 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2201 {
2202   HAL_StatusTypeDef status = HAL_OK;
2203   uint32_t tmpsmcr;
2204 
2205   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2206   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2207 
2208   /* Check the parameters */
2209   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2210 
2211   /* Check the TIM channel state */
2212   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2213       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2214   {
2215     return HAL_ERROR;
2216   }
2217 
2218   /* Set the TIM channel state */
2219   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2220   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2221 
2222   switch (Channel)
2223   {
2224     case TIM_CHANNEL_1:
2225     {
2226       /* Enable the TIM Capture/Compare 1 interrupt */
2227       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2228       break;
2229     }
2230 
2231     case TIM_CHANNEL_2:
2232     {
2233       /* Enable the TIM Capture/Compare 2 interrupt */
2234       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2235       break;
2236     }
2237 
2238     case TIM_CHANNEL_3:
2239     {
2240       /* Enable the TIM Capture/Compare 3 interrupt */
2241       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2242       break;
2243     }
2244 
2245     case TIM_CHANNEL_4:
2246     {
2247       /* Enable the TIM Capture/Compare 4 interrupt */
2248       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2249       break;
2250     }
2251 
2252     default:
2253       status = HAL_ERROR;
2254       break;
2255   }
2256 
2257   if (status == HAL_OK)
2258   {
2259     /* Enable the Input Capture channel */
2260     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2261 
2262     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2263     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2264     {
2265       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2266       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2267       {
2268         __HAL_TIM_ENABLE(htim);
2269       }
2270     }
2271     else
2272     {
2273       __HAL_TIM_ENABLE(htim);
2274     }
2275   }
2276 
2277   /* Return function status */
2278   return status;
2279 }
2280 
2281 /**
2282   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2283   * @param  htim TIM Input Capture handle
2284   * @param  Channel TIM Channels to be disabled
2285   *          This parameter can be one of the following values:
2286   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2287   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2288   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2289   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2290   * @retval HAL status
2291   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2292 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2293 {
2294   HAL_StatusTypeDef status = HAL_OK;
2295 
2296   /* Check the parameters */
2297   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2298 
2299   switch (Channel)
2300   {
2301     case TIM_CHANNEL_1:
2302     {
2303       /* Disable the TIM Capture/Compare 1 interrupt */
2304       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2305       break;
2306     }
2307 
2308     case TIM_CHANNEL_2:
2309     {
2310       /* Disable the TIM Capture/Compare 2 interrupt */
2311       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2312       break;
2313     }
2314 
2315     case TIM_CHANNEL_3:
2316     {
2317       /* Disable the TIM Capture/Compare 3 interrupt */
2318       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2319       break;
2320     }
2321 
2322     case TIM_CHANNEL_4:
2323     {
2324       /* Disable the TIM Capture/Compare 4 interrupt */
2325       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2326       break;
2327     }
2328 
2329     default:
2330       status = HAL_ERROR;
2331       break;
2332   }
2333 
2334   if (status == HAL_OK)
2335   {
2336     /* Disable the Input Capture channel */
2337     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2338 
2339     /* Disable the Peripheral */
2340     __HAL_TIM_DISABLE(htim);
2341 
2342     /* Set the TIM channel state */
2343     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2344     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2345   }
2346 
2347   /* Return function status */
2348   return status;
2349 }
2350 
2351 /**
2352   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2353   * @param  htim TIM Input Capture handle
2354   * @param  Channel TIM Channels to be enabled
2355   *          This parameter can be one of the following values:
2356   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2357   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2358   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2359   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2360   * @param  pData The destination Buffer address.
2361   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2362   * @retval HAL status
2363   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2364 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2365 {
2366   HAL_StatusTypeDef status = HAL_OK;
2367   uint32_t tmpsmcr;
2368 
2369   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2370   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2371 
2372   /* Check the parameters */
2373   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2374   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2375 
2376   /* Set the TIM channel state */
2377   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2378       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2379   {
2380     return HAL_BUSY;
2381   }
2382   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2383            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2384   {
2385     if ((pData == NULL) || (Length == 0U))
2386     {
2387       return HAL_ERROR;
2388     }
2389     else
2390     {
2391       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2392       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2393     }
2394   }
2395   else
2396   {
2397     return HAL_ERROR;
2398   }
2399 
2400   /* Enable the Input Capture channel */
2401   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2402 
2403   switch (Channel)
2404   {
2405     case TIM_CHANNEL_1:
2406     {
2407       /* Set the DMA capture callbacks */
2408       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2409       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2410 
2411       /* Set the DMA error callback */
2412       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2413 
2414       /* Enable the DMA stream */
2415       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2416                            Length) != HAL_OK)
2417       {
2418         /* Return error status */
2419         return HAL_ERROR;
2420       }
2421       /* Enable the TIM Capture/Compare 1 DMA request */
2422       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2423       break;
2424     }
2425 
2426     case TIM_CHANNEL_2:
2427     {
2428       /* Set the DMA capture callbacks */
2429       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2430       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2431 
2432       /* Set the DMA error callback */
2433       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2434 
2435       /* Enable the DMA stream */
2436       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2437                            Length) != HAL_OK)
2438       {
2439         /* Return error status */
2440         return HAL_ERROR;
2441       }
2442       /* Enable the TIM Capture/Compare 2  DMA request */
2443       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2444       break;
2445     }
2446 
2447     case TIM_CHANNEL_3:
2448     {
2449       /* Set the DMA capture callbacks */
2450       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2451       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2452 
2453       /* Set the DMA error callback */
2454       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2455 
2456       /* Enable the DMA stream */
2457       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2458                            Length) != HAL_OK)
2459       {
2460         /* Return error status */
2461         return HAL_ERROR;
2462       }
2463       /* Enable the TIM Capture/Compare 3  DMA request */
2464       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2465       break;
2466     }
2467 
2468     case TIM_CHANNEL_4:
2469     {
2470       /* Set the DMA capture callbacks */
2471       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2472       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2473 
2474       /* Set the DMA error callback */
2475       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2476 
2477       /* Enable the DMA stream */
2478       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2479                            Length) != HAL_OK)
2480       {
2481         /* Return error status */
2482         return HAL_ERROR;
2483       }
2484       /* Enable the TIM Capture/Compare 4  DMA request */
2485       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2486       break;
2487     }
2488 
2489     default:
2490       status = HAL_ERROR;
2491       break;
2492   }
2493 
2494   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2495   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2496   {
2497     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2498     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2499     {
2500       __HAL_TIM_ENABLE(htim);
2501     }
2502   }
2503   else
2504   {
2505     __HAL_TIM_ENABLE(htim);
2506   }
2507 
2508   /* Return function status */
2509   return status;
2510 }
2511 
2512 /**
2513   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2514   * @param  htim TIM Input Capture handle
2515   * @param  Channel TIM Channels to be disabled
2516   *          This parameter can be one of the following values:
2517   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2518   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2519   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2520   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2521   * @retval HAL status
2522   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2523 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2524 {
2525   HAL_StatusTypeDef status = HAL_OK;
2526 
2527   /* Check the parameters */
2528   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2529   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2530 
2531   /* Disable the Input Capture channel */
2532   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2533 
2534   switch (Channel)
2535   {
2536     case TIM_CHANNEL_1:
2537     {
2538       /* Disable the TIM Capture/Compare 1 DMA request */
2539       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2540       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2541       break;
2542     }
2543 
2544     case TIM_CHANNEL_2:
2545     {
2546       /* Disable the TIM Capture/Compare 2 DMA request */
2547       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2548       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2549       break;
2550     }
2551 
2552     case TIM_CHANNEL_3:
2553     {
2554       /* Disable the TIM Capture/Compare 3  DMA request */
2555       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2556       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2557       break;
2558     }
2559 
2560     case TIM_CHANNEL_4:
2561     {
2562       /* Disable the TIM Capture/Compare 4  DMA request */
2563       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2564       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2565       break;
2566     }
2567 
2568     default:
2569       status = HAL_ERROR;
2570       break;
2571   }
2572 
2573   if (status == HAL_OK)
2574   {
2575     /* Disable the Peripheral */
2576     __HAL_TIM_DISABLE(htim);
2577 
2578     /* Set the TIM channel state */
2579     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2580     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2581   }
2582 
2583   /* Return function status */
2584   return status;
2585 }
2586 /**
2587   * @}
2588   */
2589 
2590 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2591   *  @brief    TIM One Pulse functions
2592   *
2593 @verbatim
2594   ==============================================================================
2595                         ##### TIM One Pulse functions #####
2596   ==============================================================================
2597   [..]
2598     This section provides functions allowing to:
2599     (+) Initialize and configure the TIM One Pulse.
2600     (+) De-initialize the TIM One Pulse.
2601     (+) Start the TIM One Pulse.
2602     (+) Stop the TIM One Pulse.
2603     (+) Start the TIM One Pulse and enable interrupt.
2604     (+) Stop the TIM One Pulse and disable interrupt.
2605     (+) Start the TIM One Pulse and enable DMA transfer.
2606     (+) Stop the TIM One Pulse and disable DMA transfer.
2607 
2608 @endverbatim
2609   * @{
2610   */
2611 /**
2612   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2613   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2614   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2615   *         requires a timer reset to avoid unexpected direction
2616   *         due to DIR bit readonly in center aligned mode.
2617   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2618   * @note   When the timer instance is initialized in One Pulse mode, timer
2619   *         channels 1 and channel 2 are reserved and cannot be used for other
2620   *         purpose.
2621   * @param  htim TIM One Pulse handle
2622   * @param  OnePulseMode Select the One pulse mode.
2623   *         This parameter can be one of the following values:
2624   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2625   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2626   * @retval HAL status
2627   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2628 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2629 {
2630   /* Check the TIM handle allocation */
2631   if (htim == NULL)
2632   {
2633     return HAL_ERROR;
2634   }
2635 
2636   /* Check the parameters */
2637   assert_param(IS_TIM_INSTANCE(htim->Instance));
2638   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2639   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2640   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2641   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2642   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2643 
2644   if (htim->State == HAL_TIM_STATE_RESET)
2645   {
2646     /* Allocate lock resource and initialize it */
2647     htim->Lock = HAL_UNLOCKED;
2648 
2649 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2650     /* Reset interrupt callbacks to legacy weak callbacks */
2651     TIM_ResetCallback(htim);
2652 
2653     if (htim->OnePulse_MspInitCallback == NULL)
2654     {
2655       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2656     }
2657     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2658     htim->OnePulse_MspInitCallback(htim);
2659 #else
2660     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2661     HAL_TIM_OnePulse_MspInit(htim);
2662 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2663   }
2664 
2665   /* Set the TIM state */
2666   htim->State = HAL_TIM_STATE_BUSY;
2667 
2668   /* Configure the Time base in the One Pulse Mode */
2669   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2670 
2671   /* Reset the OPM Bit */
2672   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2673 
2674   /* Configure the OPM Mode */
2675   htim->Instance->CR1 |= OnePulseMode;
2676 
2677   /* Initialize the DMA burst operation state */
2678   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2679 
2680   /* Initialize the TIM channels state */
2681   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2682   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2683   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2684   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2685 
2686   /* Initialize the TIM state*/
2687   htim->State = HAL_TIM_STATE_READY;
2688 
2689   return HAL_OK;
2690 }
2691 
2692 /**
2693   * @brief  DeInitializes the TIM One Pulse
2694   * @param  htim TIM One Pulse handle
2695   * @retval HAL status
2696   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2697 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2698 {
2699   /* Check the parameters */
2700   assert_param(IS_TIM_INSTANCE(htim->Instance));
2701 
2702   htim->State = HAL_TIM_STATE_BUSY;
2703 
2704   /* Disable the TIM Peripheral Clock */
2705   __HAL_TIM_DISABLE(htim);
2706 
2707 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2708   if (htim->OnePulse_MspDeInitCallback == NULL)
2709   {
2710     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2711   }
2712   /* DeInit the low level hardware */
2713   htim->OnePulse_MspDeInitCallback(htim);
2714 #else
2715   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2716   HAL_TIM_OnePulse_MspDeInit(htim);
2717 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2718 
2719   /* Change the DMA burst operation state */
2720   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2721 
2722   /* Set the TIM channel state */
2723   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2724   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2725   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2726   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2727 
2728   /* Change TIM state */
2729   htim->State = HAL_TIM_STATE_RESET;
2730 
2731   /* Release Lock */
2732   __HAL_UNLOCK(htim);
2733 
2734   return HAL_OK;
2735 }
2736 
2737 /**
2738   * @brief  Initializes the TIM One Pulse MSP.
2739   * @param  htim TIM One Pulse handle
2740   * @retval None
2741   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2742 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2743 {
2744   /* Prevent unused argument(s) compilation warning */
2745   UNUSED(htim);
2746 
2747   /* NOTE : This function should not be modified, when the callback is needed,
2748             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2749    */
2750 }
2751 
2752 /**
2753   * @brief  DeInitializes TIM One Pulse MSP.
2754   * @param  htim TIM One Pulse handle
2755   * @retval None
2756   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2757 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2758 {
2759   /* Prevent unused argument(s) compilation warning */
2760   UNUSED(htim);
2761 
2762   /* NOTE : This function should not be modified, when the callback is needed,
2763             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2764    */
2765 }
2766 
2767 /**
2768   * @brief  Starts the TIM One Pulse signal generation.
2769   * @note Though OutputChannel parameter is deprecated and ignored by the function
2770   *        it has been kept to avoid HAL_TIM API compatibility break.
2771   * @note The pulse output channel is determined when calling
2772   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2773   * @param  htim TIM One Pulse handle
2774   * @param  OutputChannel See note above
2775   * @retval HAL status
2776   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2777 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2778 {
2779   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2780   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2781   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2782   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2783 
2784   /* Prevent unused argument(s) compilation warning */
2785   UNUSED(OutputChannel);
2786 
2787   /* Check the TIM channels state */
2788   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2789       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2790       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2791       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2792   {
2793     return HAL_ERROR;
2794   }
2795 
2796   /* Set the TIM channels state */
2797   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2798   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2799   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2800   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2801 
2802   /* Enable the Capture compare and the Input Capture channels
2803     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2804     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2805     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2806     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2807 
2808     No need to enable the counter, it's enabled automatically by hardware
2809     (the counter starts in response to a stimulus and generate a pulse */
2810 
2811   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2812   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2813 
2814   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2815   {
2816     /* Enable the main output */
2817     __HAL_TIM_MOE_ENABLE(htim);
2818   }
2819 
2820   /* Return function status */
2821   return HAL_OK;
2822 }
2823 
2824 /**
2825   * @brief  Stops the TIM One Pulse signal generation.
2826   * @note Though OutputChannel parameter is deprecated and ignored by the function
2827   *        it has been kept to avoid HAL_TIM API compatibility break.
2828   * @note The pulse output channel is determined when calling
2829   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2830   * @param  htim TIM One Pulse handle
2831   * @param  OutputChannel See note above
2832   * @retval HAL status
2833   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2834 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2835 {
2836   /* Prevent unused argument(s) compilation warning */
2837   UNUSED(OutputChannel);
2838 
2839   /* Disable the Capture compare and the Input Capture channels
2840   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2841   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2842   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2843   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2844 
2845   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2846   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2847 
2848   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2849   {
2850     /* Disable the Main Output */
2851     __HAL_TIM_MOE_DISABLE(htim);
2852   }
2853 
2854   /* Disable the Peripheral */
2855   __HAL_TIM_DISABLE(htim);
2856 
2857   /* Set the TIM channels state */
2858   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2859   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2860   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2861   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2862 
2863   /* Return function status */
2864   return HAL_OK;
2865 }
2866 
2867 /**
2868   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2869   * @note Though OutputChannel parameter is deprecated and ignored by the function
2870   *        it has been kept to avoid HAL_TIM API compatibility break.
2871   * @note The pulse output channel is determined when calling
2872   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2873   * @param  htim TIM One Pulse handle
2874   * @param  OutputChannel See note above
2875   * @retval HAL status
2876   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2877 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2878 {
2879   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2880   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2881   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2882   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2883 
2884   /* Prevent unused argument(s) compilation warning */
2885   UNUSED(OutputChannel);
2886 
2887   /* Check the TIM channels state */
2888   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2889       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2890       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2891       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2892   {
2893     return HAL_ERROR;
2894   }
2895 
2896   /* Set the TIM channels state */
2897   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2898   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2899   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2900   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2901 
2902   /* Enable the Capture compare and the Input Capture channels
2903     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2904     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2905     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2906     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2907 
2908     No need to enable the counter, it's enabled automatically by hardware
2909     (the counter starts in response to a stimulus and generate a pulse */
2910 
2911   /* Enable the TIM Capture/Compare 1 interrupt */
2912   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2913 
2914   /* Enable the TIM Capture/Compare 2 interrupt */
2915   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2916 
2917   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2918   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2919 
2920   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2921   {
2922     /* Enable the main output */
2923     __HAL_TIM_MOE_ENABLE(htim);
2924   }
2925 
2926   /* Return function status */
2927   return HAL_OK;
2928 }
2929 
2930 /**
2931   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2932   * @note Though OutputChannel parameter is deprecated and ignored by the function
2933   *        it has been kept to avoid HAL_TIM API compatibility break.
2934   * @note The pulse output channel is determined when calling
2935   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2936   * @param  htim TIM One Pulse handle
2937   * @param  OutputChannel See note above
2938   * @retval HAL status
2939   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2940 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2941 {
2942   /* Prevent unused argument(s) compilation warning */
2943   UNUSED(OutputChannel);
2944 
2945   /* Disable the TIM Capture/Compare 1 interrupt */
2946   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2947 
2948   /* Disable the TIM Capture/Compare 2 interrupt */
2949   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2950 
2951   /* Disable the Capture compare and the Input Capture channels
2952   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2953   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2954   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2955   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2956   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2957   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2958 
2959   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2960   {
2961     /* Disable the Main Output */
2962     __HAL_TIM_MOE_DISABLE(htim);
2963   }
2964 
2965   /* Disable the Peripheral */
2966   __HAL_TIM_DISABLE(htim);
2967 
2968   /* Set the TIM channels state */
2969   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2970   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2971   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2972   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2973 
2974   /* Return function status */
2975   return HAL_OK;
2976 }
2977 
2978 /**
2979   * @}
2980   */
2981 
2982 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
2983   *  @brief    TIM Encoder functions
2984   *
2985 @verbatim
2986   ==============================================================================
2987                           ##### TIM Encoder functions #####
2988   ==============================================================================
2989   [..]
2990     This section provides functions allowing to:
2991     (+) Initialize and configure the TIM Encoder.
2992     (+) De-initialize the TIM Encoder.
2993     (+) Start the TIM Encoder.
2994     (+) Stop the TIM Encoder.
2995     (+) Start the TIM Encoder and enable interrupt.
2996     (+) Stop the TIM Encoder and disable interrupt.
2997     (+) Start the TIM Encoder and enable DMA transfer.
2998     (+) Stop the TIM Encoder and disable DMA transfer.
2999 
3000 @endverbatim
3001   * @{
3002   */
3003 /**
3004   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3005   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3006   *         requires a timer reset to avoid unexpected direction
3007   *         due to DIR bit readonly in center aligned mode.
3008   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3009   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3010   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3011   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3012   * @note   When the timer instance is initialized in Encoder mode, timer
3013   *         channels 1 and channel 2 are reserved and cannot be used for other
3014   *         purpose.
3015   * @param  htim TIM Encoder Interface handle
3016   * @param  sConfig TIM Encoder Interface configuration structure
3017   * @retval HAL status
3018   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3019 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3020 {
3021   uint32_t tmpsmcr;
3022   uint32_t tmpccmr1;
3023   uint32_t tmpccer;
3024 
3025   /* Check the TIM handle allocation */
3026   if (htim == NULL)
3027   {
3028     return HAL_ERROR;
3029   }
3030 
3031   /* Check the parameters */
3032   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3033   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3034   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3035   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3036   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3037   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3038   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3039   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3040   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3041   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3042   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3043   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3044   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3045   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3046 
3047   if (htim->State == HAL_TIM_STATE_RESET)
3048   {
3049     /* Allocate lock resource and initialize it */
3050     htim->Lock = HAL_UNLOCKED;
3051 
3052 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3053     /* Reset interrupt callbacks to legacy weak callbacks */
3054     TIM_ResetCallback(htim);
3055 
3056     if (htim->Encoder_MspInitCallback == NULL)
3057     {
3058       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3059     }
3060     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3061     htim->Encoder_MspInitCallback(htim);
3062 #else
3063     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3064     HAL_TIM_Encoder_MspInit(htim);
3065 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3066   }
3067 
3068   /* Set the TIM state */
3069   htim->State = HAL_TIM_STATE_BUSY;
3070 
3071   /* Reset the SMS and ECE bits */
3072   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3073 
3074   /* Configure the Time base in the Encoder Mode */
3075   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3076 
3077   /* Get the TIMx SMCR register value */
3078   tmpsmcr = htim->Instance->SMCR;
3079 
3080   /* Get the TIMx CCMR1 register value */
3081   tmpccmr1 = htim->Instance->CCMR1;
3082 
3083   /* Get the TIMx CCER register value */
3084   tmpccer = htim->Instance->CCER;
3085 
3086   /* Set the encoder Mode */
3087   tmpsmcr |= sConfig->EncoderMode;
3088 
3089   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3090   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3091   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3092 
3093   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3094   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3095   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3096   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3097   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3098 
3099   /* Set the TI1 and the TI2 Polarities */
3100   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3101   tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3102   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3103 
3104   /* Write to TIMx SMCR */
3105   htim->Instance->SMCR = tmpsmcr;
3106 
3107   /* Write to TIMx CCMR1 */
3108   htim->Instance->CCMR1 = tmpccmr1;
3109 
3110   /* Write to TIMx CCER */
3111   htim->Instance->CCER = tmpccer;
3112 
3113   /* Initialize the DMA burst operation state */
3114   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3115 
3116   /* Set the TIM channels state */
3117   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3118   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3119   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3120   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3121 
3122   /* Initialize the TIM state*/
3123   htim->State = HAL_TIM_STATE_READY;
3124 
3125   return HAL_OK;
3126 }
3127 
3128 
3129 /**
3130   * @brief  DeInitializes the TIM Encoder interface
3131   * @param  htim TIM Encoder Interface handle
3132   * @retval HAL status
3133   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3134 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3135 {
3136   /* Check the parameters */
3137   assert_param(IS_TIM_INSTANCE(htim->Instance));
3138 
3139   htim->State = HAL_TIM_STATE_BUSY;
3140 
3141   /* Disable the TIM Peripheral Clock */
3142   __HAL_TIM_DISABLE(htim);
3143 
3144 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3145   if (htim->Encoder_MspDeInitCallback == NULL)
3146   {
3147     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3148   }
3149   /* DeInit the low level hardware */
3150   htim->Encoder_MspDeInitCallback(htim);
3151 #else
3152   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3153   HAL_TIM_Encoder_MspDeInit(htim);
3154 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3155 
3156   /* Change the DMA burst operation state */
3157   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3158 
3159   /* Set the TIM channels state */
3160   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3161   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3162   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3163   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3164 
3165   /* Change TIM state */
3166   htim->State = HAL_TIM_STATE_RESET;
3167 
3168   /* Release Lock */
3169   __HAL_UNLOCK(htim);
3170 
3171   return HAL_OK;
3172 }
3173 
3174 /**
3175   * @brief  Initializes the TIM Encoder Interface MSP.
3176   * @param  htim TIM Encoder Interface handle
3177   * @retval None
3178   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3179 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3180 {
3181   /* Prevent unused argument(s) compilation warning */
3182   UNUSED(htim);
3183 
3184   /* NOTE : This function should not be modified, when the callback is needed,
3185             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3186    */
3187 }
3188 
3189 /**
3190   * @brief  DeInitializes TIM Encoder Interface MSP.
3191   * @param  htim TIM Encoder Interface handle
3192   * @retval None
3193   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3194 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3195 {
3196   /* Prevent unused argument(s) compilation warning */
3197   UNUSED(htim);
3198 
3199   /* NOTE : This function should not be modified, when the callback is needed,
3200             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3201    */
3202 }
3203 
3204 /**
3205   * @brief  Starts the TIM Encoder Interface.
3206   * @param  htim TIM Encoder Interface handle
3207   * @param  Channel TIM Channels to be enabled
3208   *          This parameter can be one of the following values:
3209   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3210   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3211   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3212   * @retval HAL status
3213   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3214 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3215 {
3216   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3217   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3218   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3219   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3220 
3221   /* Check the parameters */
3222   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3223 
3224   /* Set the TIM channel(s) state */
3225   if (Channel == TIM_CHANNEL_1)
3226   {
3227     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3228         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3229     {
3230       return HAL_ERROR;
3231     }
3232     else
3233     {
3234       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3235       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3236     }
3237   }
3238   else if (Channel == TIM_CHANNEL_2)
3239   {
3240     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3241         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3242     {
3243       return HAL_ERROR;
3244     }
3245     else
3246     {
3247       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3248       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3249     }
3250   }
3251   else
3252   {
3253     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3254         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3255         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3256         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3257     {
3258       return HAL_ERROR;
3259     }
3260     else
3261     {
3262       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3263       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3264       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3265       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3266     }
3267   }
3268 
3269   /* Enable the encoder interface channels */
3270   switch (Channel)
3271   {
3272     case TIM_CHANNEL_1:
3273     {
3274       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3275       break;
3276     }
3277 
3278     case TIM_CHANNEL_2:
3279     {
3280       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3281       break;
3282     }
3283 
3284     default :
3285     {
3286       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3287       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3288       break;
3289     }
3290   }
3291   /* Enable the Peripheral */
3292   __HAL_TIM_ENABLE(htim);
3293 
3294   /* Return function status */
3295   return HAL_OK;
3296 }
3297 
3298 /**
3299   * @brief  Stops the TIM Encoder Interface.
3300   * @param  htim TIM Encoder Interface handle
3301   * @param  Channel TIM Channels to be disabled
3302   *          This parameter can be one of the following values:
3303   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3304   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3305   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3306   * @retval HAL status
3307   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3308 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3309 {
3310   /* Check the parameters */
3311   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3312 
3313   /* Disable the Input Capture channels 1 and 2
3314     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3315   switch (Channel)
3316   {
3317     case TIM_CHANNEL_1:
3318     {
3319       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3320       break;
3321     }
3322 
3323     case TIM_CHANNEL_2:
3324     {
3325       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3326       break;
3327     }
3328 
3329     default :
3330     {
3331       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3332       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3333       break;
3334     }
3335   }
3336 
3337   /* Disable the Peripheral */
3338   __HAL_TIM_DISABLE(htim);
3339 
3340   /* Set the TIM channel(s) state */
3341   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3342   {
3343     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3344     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3345   }
3346   else
3347   {
3348     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3349     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3350     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3351     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3352   }
3353 
3354   /* Return function status */
3355   return HAL_OK;
3356 }
3357 
3358 /**
3359   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3360   * @param  htim TIM Encoder Interface handle
3361   * @param  Channel TIM Channels to be enabled
3362   *          This parameter can be one of the following values:
3363   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3364   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3365   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3366   * @retval HAL status
3367   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3368 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3369 {
3370   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3371   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3372   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3373   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3374 
3375   /* Check the parameters */
3376   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3377 
3378   /* Set the TIM channel(s) state */
3379   if (Channel == TIM_CHANNEL_1)
3380   {
3381     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3382         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3383     {
3384       return HAL_ERROR;
3385     }
3386     else
3387     {
3388       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3389       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3390     }
3391   }
3392   else if (Channel == TIM_CHANNEL_2)
3393   {
3394     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3395         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3396     {
3397       return HAL_ERROR;
3398     }
3399     else
3400     {
3401       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3402       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3403     }
3404   }
3405   else
3406   {
3407     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3408         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3409         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3410         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3411     {
3412       return HAL_ERROR;
3413     }
3414     else
3415     {
3416       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3417       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3418       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3419       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3420     }
3421   }
3422 
3423   /* Enable the encoder interface channels */
3424   /* Enable the capture compare Interrupts 1 and/or 2 */
3425   switch (Channel)
3426   {
3427     case TIM_CHANNEL_1:
3428     {
3429       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3430       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3431       break;
3432     }
3433 
3434     case TIM_CHANNEL_2:
3435     {
3436       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3437       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3438       break;
3439     }
3440 
3441     default :
3442     {
3443       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3444       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3445       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3446       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3447       break;
3448     }
3449   }
3450 
3451   /* Enable the Peripheral */
3452   __HAL_TIM_ENABLE(htim);
3453 
3454   /* Return function status */
3455   return HAL_OK;
3456 }
3457 
3458 /**
3459   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3460   * @param  htim TIM Encoder Interface handle
3461   * @param  Channel TIM Channels to be disabled
3462   *          This parameter can be one of the following values:
3463   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3464   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3465   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3466   * @retval HAL status
3467   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3468 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3469 {
3470   /* Check the parameters */
3471   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3472 
3473   /* Disable the Input Capture channels 1 and 2
3474     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3475   if (Channel == TIM_CHANNEL_1)
3476   {
3477     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3478 
3479     /* Disable the capture compare Interrupts 1 */
3480     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3481   }
3482   else if (Channel == TIM_CHANNEL_2)
3483   {
3484     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3485 
3486     /* Disable the capture compare Interrupts 2 */
3487     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3488   }
3489   else
3490   {
3491     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3492     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3493 
3494     /* Disable the capture compare Interrupts 1 and 2 */
3495     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3496     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3497   }
3498 
3499   /* Disable the Peripheral */
3500   __HAL_TIM_DISABLE(htim);
3501 
3502   /* Set the TIM channel(s) state */
3503   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3504   {
3505     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3506     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3507   }
3508   else
3509   {
3510     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3511     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3512     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3513     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3514   }
3515 
3516   /* Return function status */
3517   return HAL_OK;
3518 }
3519 
3520 /**
3521   * @brief  Starts the TIM Encoder Interface in DMA mode.
3522   * @param  htim TIM Encoder Interface handle
3523   * @param  Channel TIM Channels to be enabled
3524   *          This parameter can be one of the following values:
3525   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3526   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3527   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3528   * @param  pData1 The destination Buffer address for IC1.
3529   * @param  pData2 The destination Buffer address for IC2.
3530   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3531   * @retval HAL status
3532   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3533 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3534                                             uint32_t *pData2, uint16_t Length)
3535 {
3536   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3537   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3538   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3539   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3540 
3541   /* Check the parameters */
3542   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3543 
3544   /* Set the TIM channel(s) state */
3545   if (Channel == TIM_CHANNEL_1)
3546   {
3547     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3548         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3549     {
3550       return HAL_BUSY;
3551     }
3552     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3553              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3554     {
3555       if ((pData1 == NULL) || (Length == 0U))
3556       {
3557         return HAL_ERROR;
3558       }
3559       else
3560       {
3561         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3562         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3563       }
3564     }
3565     else
3566     {
3567       return HAL_ERROR;
3568     }
3569   }
3570   else if (Channel == TIM_CHANNEL_2)
3571   {
3572     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3573         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3574     {
3575       return HAL_BUSY;
3576     }
3577     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3578              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3579     {
3580       if ((pData2 == NULL) || (Length == 0U))
3581       {
3582         return HAL_ERROR;
3583       }
3584       else
3585       {
3586         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3587         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3588       }
3589     }
3590     else
3591     {
3592       return HAL_ERROR;
3593     }
3594   }
3595   else
3596   {
3597     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3598         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3599         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3600         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3601     {
3602       return HAL_BUSY;
3603     }
3604     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3605              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3606              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3607              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3608     {
3609       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3610       {
3611         return HAL_ERROR;
3612       }
3613       else
3614       {
3615         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3616         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3617         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3618         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3619       }
3620     }
3621     else
3622     {
3623       return HAL_ERROR;
3624     }
3625   }
3626 
3627   switch (Channel)
3628   {
3629     case TIM_CHANNEL_1:
3630     {
3631       /* Set the DMA capture callbacks */
3632       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3633       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3634 
3635       /* Set the DMA error callback */
3636       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3637 
3638       /* Enable the DMA stream */
3639       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3640                            Length) != HAL_OK)
3641       {
3642         /* Return error status */
3643         return HAL_ERROR;
3644       }
3645       /* Enable the TIM Input Capture DMA request */
3646       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3647 
3648       /* Enable the Capture compare channel */
3649       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3650 
3651       /* Enable the Peripheral */
3652       __HAL_TIM_ENABLE(htim);
3653 
3654       break;
3655     }
3656 
3657     case TIM_CHANNEL_2:
3658     {
3659       /* Set the DMA capture callbacks */
3660       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3661       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3662 
3663       /* Set the DMA error callback */
3664       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3665       /* Enable the DMA stream */
3666       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3667                            Length) != HAL_OK)
3668       {
3669         /* Return error status */
3670         return HAL_ERROR;
3671       }
3672       /* Enable the TIM Input Capture  DMA request */
3673       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3674 
3675       /* Enable the Capture compare channel */
3676       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3677 
3678       /* Enable the Peripheral */
3679       __HAL_TIM_ENABLE(htim);
3680 
3681       break;
3682     }
3683 
3684     default:
3685     {
3686       /* Set the DMA capture callbacks */
3687       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3688       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3689 
3690       /* Set the DMA error callback */
3691       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3692 
3693       /* Enable the DMA stream */
3694       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3695                            Length) != HAL_OK)
3696       {
3697         /* Return error status */
3698         return HAL_ERROR;
3699       }
3700 
3701       /* Set the DMA capture callbacks */
3702       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3703       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3704 
3705       /* Set the DMA error callback */
3706       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3707 
3708       /* Enable the DMA stream */
3709       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3710                            Length) != HAL_OK)
3711       {
3712         /* Return error status */
3713         return HAL_ERROR;
3714       }
3715 
3716       /* Enable the TIM Input Capture  DMA request */
3717       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3718       /* Enable the TIM Input Capture  DMA request */
3719       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3720 
3721       /* Enable the Capture compare channel */
3722       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3723       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3724 
3725       /* Enable the Peripheral */
3726       __HAL_TIM_ENABLE(htim);
3727 
3728       break;
3729     }
3730   }
3731 
3732   /* Return function status */
3733   return HAL_OK;
3734 }
3735 
3736 /**
3737   * @brief  Stops the TIM Encoder Interface in DMA mode.
3738   * @param  htim TIM Encoder Interface handle
3739   * @param  Channel TIM Channels to be enabled
3740   *          This parameter can be one of the following values:
3741   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3742   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3743   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3744   * @retval HAL status
3745   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3746 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3747 {
3748   /* Check the parameters */
3749   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3750 
3751   /* Disable the Input Capture channels 1 and 2
3752     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3753   if (Channel == TIM_CHANNEL_1)
3754   {
3755     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3756 
3757     /* Disable the capture compare DMA Request 1 */
3758     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3759     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3760   }
3761   else if (Channel == TIM_CHANNEL_2)
3762   {
3763     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3764 
3765     /* Disable the capture compare DMA Request 2 */
3766     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3767     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3768   }
3769   else
3770   {
3771     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3772     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3773 
3774     /* Disable the capture compare DMA Request 1 and 2 */
3775     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3776     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3777     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3778     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3779   }
3780 
3781   /* Disable the Peripheral */
3782   __HAL_TIM_DISABLE(htim);
3783 
3784   /* Set the TIM channel(s) state */
3785   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3786   {
3787     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3788     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3789   }
3790   else
3791   {
3792     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3793     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3794     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3795     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3796   }
3797 
3798   /* Return function status */
3799   return HAL_OK;
3800 }
3801 
3802 /**
3803   * @}
3804   */
3805 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3806   *  @brief    TIM IRQ handler management
3807   *
3808 @verbatim
3809   ==============================================================================
3810                         ##### IRQ handler management #####
3811   ==============================================================================
3812   [..]
3813     This section provides Timer IRQ handler function.
3814 
3815 @endverbatim
3816   * @{
3817   */
3818 /**
3819   * @brief  This function handles TIM interrupts requests.
3820   * @param  htim TIM  handle
3821   * @retval None
3822   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3823 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3824 {
3825   /* Capture compare 1 event */
3826   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
3827   {
3828     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
3829     {
3830       {
3831         __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
3832         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3833 
3834         /* Input capture event */
3835         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3836         {
3837 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3838           htim->IC_CaptureCallback(htim);
3839 #else
3840           HAL_TIM_IC_CaptureCallback(htim);
3841 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3842         }
3843         /* Output compare event */
3844         else
3845         {
3846 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3847           htim->OC_DelayElapsedCallback(htim);
3848           htim->PWM_PulseFinishedCallback(htim);
3849 #else
3850           HAL_TIM_OC_DelayElapsedCallback(htim);
3851           HAL_TIM_PWM_PulseFinishedCallback(htim);
3852 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3853         }
3854         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3855       }
3856     }
3857   }
3858   /* Capture compare 2 event */
3859   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
3860   {
3861     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
3862     {
3863       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
3864       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3865       /* Input capture event */
3866       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3867       {
3868 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3869         htim->IC_CaptureCallback(htim);
3870 #else
3871         HAL_TIM_IC_CaptureCallback(htim);
3872 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3873       }
3874       /* Output compare event */
3875       else
3876       {
3877 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3878         htim->OC_DelayElapsedCallback(htim);
3879         htim->PWM_PulseFinishedCallback(htim);
3880 #else
3881         HAL_TIM_OC_DelayElapsedCallback(htim);
3882         HAL_TIM_PWM_PulseFinishedCallback(htim);
3883 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3884       }
3885       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3886     }
3887   }
3888   /* Capture compare 3 event */
3889   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
3890   {
3891     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
3892     {
3893       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
3894       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3895       /* Input capture event */
3896       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3897       {
3898 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3899         htim->IC_CaptureCallback(htim);
3900 #else
3901         HAL_TIM_IC_CaptureCallback(htim);
3902 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3903       }
3904       /* Output compare event */
3905       else
3906       {
3907 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3908         htim->OC_DelayElapsedCallback(htim);
3909         htim->PWM_PulseFinishedCallback(htim);
3910 #else
3911         HAL_TIM_OC_DelayElapsedCallback(htim);
3912         HAL_TIM_PWM_PulseFinishedCallback(htim);
3913 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3914       }
3915       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3916     }
3917   }
3918   /* Capture compare 4 event */
3919   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
3920   {
3921     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
3922     {
3923       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
3924       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3925       /* Input capture event */
3926       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3927       {
3928 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3929         htim->IC_CaptureCallback(htim);
3930 #else
3931         HAL_TIM_IC_CaptureCallback(htim);
3932 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3933       }
3934       /* Output compare event */
3935       else
3936       {
3937 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3938         htim->OC_DelayElapsedCallback(htim);
3939         htim->PWM_PulseFinishedCallback(htim);
3940 #else
3941         HAL_TIM_OC_DelayElapsedCallback(htim);
3942         HAL_TIM_PWM_PulseFinishedCallback(htim);
3943 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3944       }
3945       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3946     }
3947   }
3948   /* TIM Update event */
3949   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
3950   {
3951     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
3952     {
3953       __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
3954 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3955       htim->PeriodElapsedCallback(htim);
3956 #else
3957       HAL_TIM_PeriodElapsedCallback(htim);
3958 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3959     }
3960   }
3961   /* TIM Break input event */
3962   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
3963   {
3964     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3965     {
3966       __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
3967 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3968       htim->BreakCallback(htim);
3969 #else
3970       HAL_TIMEx_BreakCallback(htim);
3971 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3972     }
3973   }
3974   /* TIM Trigger detection event */
3975   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
3976   {
3977     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
3978     {
3979       __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
3980 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3981       htim->TriggerCallback(htim);
3982 #else
3983       HAL_TIM_TriggerCallback(htim);
3984 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3985     }
3986   }
3987   /* TIM commutation event */
3988   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
3989   {
3990     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
3991     {
3992       __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
3993 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3994       htim->CommutationCallback(htim);
3995 #else
3996       HAL_TIMEx_CommutCallback(htim);
3997 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3998     }
3999   }
4000 }
4001 
4002 /**
4003   * @}
4004   */
4005 
4006 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4007   *  @brief    TIM Peripheral Control functions
4008   *
4009 @verbatim
4010   ==============================================================================
4011                    ##### Peripheral Control functions #####
4012   ==============================================================================
4013  [..]
4014    This section provides functions allowing to:
4015       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4016       (+) Configure External Clock source.
4017       (+) Configure Complementary channels, break features and dead time.
4018       (+) Configure Master and the Slave synchronization.
4019       (+) Configure the DMA Burst Mode.
4020 
4021 @endverbatim
4022   * @{
4023   */
4024 
4025 /**
4026   * @brief  Initializes the TIM Output Compare Channels according to the specified
4027   *         parameters in the TIM_OC_InitTypeDef.
4028   * @param  htim TIM Output Compare handle
4029   * @param  sConfig TIM Output Compare configuration structure
4030   * @param  Channel TIM Channels to configure
4031   *          This parameter can be one of the following values:
4032   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4033   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4034   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4035   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4036   * @retval HAL status
4037   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4038 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4039                                            const TIM_OC_InitTypeDef *sConfig,
4040                                            uint32_t Channel)
4041 {
4042   HAL_StatusTypeDef status = HAL_OK;
4043 
4044   /* Check the parameters */
4045   assert_param(IS_TIM_CHANNELS(Channel));
4046   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4047   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4048 
4049   /* Process Locked */
4050   __HAL_LOCK(htim);
4051 
4052   switch (Channel)
4053   {
4054     case TIM_CHANNEL_1:
4055     {
4056       /* Check the parameters */
4057       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4058 
4059       /* Configure the TIM Channel 1 in Output Compare */
4060       TIM_OC1_SetConfig(htim->Instance, sConfig);
4061       break;
4062     }
4063 
4064     case TIM_CHANNEL_2:
4065     {
4066       /* Check the parameters */
4067       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4068 
4069       /* Configure the TIM Channel 2 in Output Compare */
4070       TIM_OC2_SetConfig(htim->Instance, sConfig);
4071       break;
4072     }
4073 
4074     case TIM_CHANNEL_3:
4075     {
4076       /* Check the parameters */
4077       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4078 
4079       /* Configure the TIM Channel 3 in Output Compare */
4080       TIM_OC3_SetConfig(htim->Instance, sConfig);
4081       break;
4082     }
4083 
4084     case TIM_CHANNEL_4:
4085     {
4086       /* Check the parameters */
4087       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4088 
4089       /* Configure the TIM Channel 4 in Output Compare */
4090       TIM_OC4_SetConfig(htim->Instance, sConfig);
4091       break;
4092     }
4093 
4094     default:
4095       status = HAL_ERROR;
4096       break;
4097   }
4098 
4099   __HAL_UNLOCK(htim);
4100 
4101   return status;
4102 }
4103 
4104 /**
4105   * @brief  Initializes the TIM Input Capture Channels according to the specified
4106   *         parameters in the TIM_IC_InitTypeDef.
4107   * @param  htim TIM IC handle
4108   * @param  sConfig TIM Input Capture configuration structure
4109   * @param  Channel TIM Channel to configure
4110   *          This parameter can be one of the following values:
4111   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4112   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4113   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4114   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4115   * @retval HAL status
4116   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4117 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4118 {
4119   HAL_StatusTypeDef status = HAL_OK;
4120 
4121   /* Check the parameters */
4122   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4123   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4124   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4125   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4126   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4127 
4128   /* Process Locked */
4129   __HAL_LOCK(htim);
4130 
4131   if (Channel == TIM_CHANNEL_1)
4132   {
4133     /* TI1 Configuration */
4134     TIM_TI1_SetConfig(htim->Instance,
4135                       sConfig->ICPolarity,
4136                       sConfig->ICSelection,
4137                       sConfig->ICFilter);
4138 
4139     /* Reset the IC1PSC Bits */
4140     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4141 
4142     /* Set the IC1PSC value */
4143     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4144   }
4145   else if (Channel == TIM_CHANNEL_2)
4146   {
4147     /* TI2 Configuration */
4148     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4149 
4150     TIM_TI2_SetConfig(htim->Instance,
4151                       sConfig->ICPolarity,
4152                       sConfig->ICSelection,
4153                       sConfig->ICFilter);
4154 
4155     /* Reset the IC2PSC Bits */
4156     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4157 
4158     /* Set the IC2PSC value */
4159     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4160   }
4161   else if (Channel == TIM_CHANNEL_3)
4162   {
4163     /* TI3 Configuration */
4164     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4165 
4166     TIM_TI3_SetConfig(htim->Instance,
4167                       sConfig->ICPolarity,
4168                       sConfig->ICSelection,
4169                       sConfig->ICFilter);
4170 
4171     /* Reset the IC3PSC Bits */
4172     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4173 
4174     /* Set the IC3PSC value */
4175     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4176   }
4177   else if (Channel == TIM_CHANNEL_4)
4178   {
4179     /* TI4 Configuration */
4180     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4181 
4182     TIM_TI4_SetConfig(htim->Instance,
4183                       sConfig->ICPolarity,
4184                       sConfig->ICSelection,
4185                       sConfig->ICFilter);
4186 
4187     /* Reset the IC4PSC Bits */
4188     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4189 
4190     /* Set the IC4PSC value */
4191     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4192   }
4193   else
4194   {
4195     status = HAL_ERROR;
4196   }
4197 
4198   __HAL_UNLOCK(htim);
4199 
4200   return status;
4201 }
4202 
4203 /**
4204   * @brief  Initializes the TIM PWM  channels according to the specified
4205   *         parameters in the TIM_OC_InitTypeDef.
4206   * @param  htim TIM PWM handle
4207   * @param  sConfig TIM PWM configuration structure
4208   * @param  Channel TIM Channels to be configured
4209   *          This parameter can be one of the following values:
4210   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4211   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4212   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4213   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4214   * @retval HAL status
4215   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4216 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4217                                             const TIM_OC_InitTypeDef *sConfig,
4218                                             uint32_t Channel)
4219 {
4220   HAL_StatusTypeDef status = HAL_OK;
4221 
4222   /* Check the parameters */
4223   assert_param(IS_TIM_CHANNELS(Channel));
4224   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4225   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4226   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4227 
4228   /* Process Locked */
4229   __HAL_LOCK(htim);
4230 
4231   switch (Channel)
4232   {
4233     case TIM_CHANNEL_1:
4234     {
4235       /* Check the parameters */
4236       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4237 
4238       /* Configure the Channel 1 in PWM mode */
4239       TIM_OC1_SetConfig(htim->Instance, sConfig);
4240 
4241       /* Set the Preload enable bit for channel1 */
4242       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4243 
4244       /* Configure the Output Fast mode */
4245       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4246       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4247       break;
4248     }
4249 
4250     case TIM_CHANNEL_2:
4251     {
4252       /* Check the parameters */
4253       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4254 
4255       /* Configure the Channel 2 in PWM mode */
4256       TIM_OC2_SetConfig(htim->Instance, sConfig);
4257 
4258       /* Set the Preload enable bit for channel2 */
4259       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4260 
4261       /* Configure the Output Fast mode */
4262       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4263       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4264       break;
4265     }
4266 
4267     case TIM_CHANNEL_3:
4268     {
4269       /* Check the parameters */
4270       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4271 
4272       /* Configure the Channel 3 in PWM mode */
4273       TIM_OC3_SetConfig(htim->Instance, sConfig);
4274 
4275       /* Set the Preload enable bit for channel3 */
4276       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4277 
4278       /* Configure the Output Fast mode */
4279       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4280       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4281       break;
4282     }
4283 
4284     case TIM_CHANNEL_4:
4285     {
4286       /* Check the parameters */
4287       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4288 
4289       /* Configure the Channel 4 in PWM mode */
4290       TIM_OC4_SetConfig(htim->Instance, sConfig);
4291 
4292       /* Set the Preload enable bit for channel4 */
4293       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4294 
4295       /* Configure the Output Fast mode */
4296       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4297       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4298       break;
4299     }
4300 
4301     default:
4302       status = HAL_ERROR;
4303       break;
4304   }
4305 
4306   __HAL_UNLOCK(htim);
4307 
4308   return status;
4309 }
4310 
4311 /**
4312   * @brief  Initializes the TIM One Pulse Channels according to the specified
4313   *         parameters in the TIM_OnePulse_InitTypeDef.
4314   * @param  htim TIM One Pulse handle
4315   * @param  sConfig TIM One Pulse configuration structure
4316   * @param  OutputChannel TIM output channel to configure
4317   *          This parameter can be one of the following values:
4318   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4319   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4320   * @param  InputChannel TIM input Channel to configure
4321   *          This parameter can be one of the following values:
4322   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4323   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4324   * @note  To output a waveform with a minimum delay user can enable the fast
4325   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4326   *        output is forced in response to the edge detection on TIx input,
4327   *        without taking in account the comparison.
4328   * @retval HAL status
4329   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4330 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4331                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4332 {
4333   HAL_StatusTypeDef status = HAL_OK;
4334   TIM_OC_InitTypeDef temp1;
4335 
4336   /* Check the parameters */
4337   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4338   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4339 
4340   if (OutputChannel != InputChannel)
4341   {
4342     /* Process Locked */
4343     __HAL_LOCK(htim);
4344 
4345     htim->State = HAL_TIM_STATE_BUSY;
4346 
4347     /* Extract the Output compare configuration from sConfig structure */
4348     temp1.OCMode = sConfig->OCMode;
4349     temp1.Pulse = sConfig->Pulse;
4350     temp1.OCPolarity = sConfig->OCPolarity;
4351     temp1.OCNPolarity = sConfig->OCNPolarity;
4352     temp1.OCIdleState = sConfig->OCIdleState;
4353     temp1.OCNIdleState = sConfig->OCNIdleState;
4354 
4355     switch (OutputChannel)
4356     {
4357       case TIM_CHANNEL_1:
4358       {
4359         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4360 
4361         TIM_OC1_SetConfig(htim->Instance, &temp1);
4362         break;
4363       }
4364 
4365       case TIM_CHANNEL_2:
4366       {
4367         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4368 
4369         TIM_OC2_SetConfig(htim->Instance, &temp1);
4370         break;
4371       }
4372 
4373       default:
4374         status = HAL_ERROR;
4375         break;
4376     }
4377 
4378     if (status == HAL_OK)
4379     {
4380       switch (InputChannel)
4381       {
4382         case TIM_CHANNEL_1:
4383         {
4384           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4385 
4386           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4387                             sConfig->ICSelection, sConfig->ICFilter);
4388 
4389           /* Reset the IC1PSC Bits */
4390           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4391 
4392           /* Select the Trigger source */
4393           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4394           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4395 
4396           /* Select the Slave Mode */
4397           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4398           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4399           break;
4400         }
4401 
4402         case TIM_CHANNEL_2:
4403         {
4404           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4405 
4406           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4407                             sConfig->ICSelection, sConfig->ICFilter);
4408 
4409           /* Reset the IC2PSC Bits */
4410           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4411 
4412           /* Select the Trigger source */
4413           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4414           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4415 
4416           /* Select the Slave Mode */
4417           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4418           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4419           break;
4420         }
4421 
4422         default:
4423           status = HAL_ERROR;
4424           break;
4425       }
4426     }
4427 
4428     htim->State = HAL_TIM_STATE_READY;
4429 
4430     __HAL_UNLOCK(htim);
4431 
4432     return status;
4433   }
4434   else
4435   {
4436     return HAL_ERROR;
4437   }
4438 }
4439 
4440 /**
4441   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4442   * @param  htim TIM handle
4443   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4444   *         This parameter can be one of the following values:
4445   *            @arg TIM_DMABASE_CR1
4446   *            @arg TIM_DMABASE_CR2
4447   *            @arg TIM_DMABASE_SMCR
4448   *            @arg TIM_DMABASE_DIER
4449   *            @arg TIM_DMABASE_SR
4450   *            @arg TIM_DMABASE_EGR
4451   *            @arg TIM_DMABASE_CCMR1
4452   *            @arg TIM_DMABASE_CCMR2
4453   *            @arg TIM_DMABASE_CCER
4454   *            @arg TIM_DMABASE_CNT
4455   *            @arg TIM_DMABASE_PSC
4456   *            @arg TIM_DMABASE_ARR
4457   *            @arg TIM_DMABASE_RCR
4458   *            @arg TIM_DMABASE_CCR1
4459   *            @arg TIM_DMABASE_CCR2
4460   *            @arg TIM_DMABASE_CCR3
4461   *            @arg TIM_DMABASE_CCR4
4462   *            @arg TIM_DMABASE_BDTR
4463   * @param  BurstRequestSrc TIM DMA Request sources
4464   *         This parameter can be one of the following values:
4465   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4466   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4467   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4468   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4469   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4470   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4471   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4472   * @param  BurstBuffer The Buffer address.
4473   * @param  BurstLength DMA Burst length. This parameter can be one value
4474   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4475   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4476   * @retval HAL status
4477   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4478 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4479                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t  BurstLength)
4480 {
4481   HAL_StatusTypeDef status;
4482 
4483   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4484                                             ((BurstLength) >> 8U) + 1U);
4485 
4486 
4487 
4488   return status;
4489 }
4490 
4491 /**
4492   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4493   * @param  htim TIM handle
4494   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4495   *         This parameter can be one of the following values:
4496   *            @arg TIM_DMABASE_CR1
4497   *            @arg TIM_DMABASE_CR2
4498   *            @arg TIM_DMABASE_SMCR
4499   *            @arg TIM_DMABASE_DIER
4500   *            @arg TIM_DMABASE_SR
4501   *            @arg TIM_DMABASE_EGR
4502   *            @arg TIM_DMABASE_CCMR1
4503   *            @arg TIM_DMABASE_CCMR2
4504   *            @arg TIM_DMABASE_CCER
4505   *            @arg TIM_DMABASE_CNT
4506   *            @arg TIM_DMABASE_PSC
4507   *            @arg TIM_DMABASE_ARR
4508   *            @arg TIM_DMABASE_RCR
4509   *            @arg TIM_DMABASE_CCR1
4510   *            @arg TIM_DMABASE_CCR2
4511   *            @arg TIM_DMABASE_CCR3
4512   *            @arg TIM_DMABASE_CCR4
4513   *            @arg TIM_DMABASE_BDTR
4514   * @param  BurstRequestSrc TIM DMA Request sources
4515   *         This parameter can be one of the following values:
4516   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4517   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4518   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4519   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4520   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4521   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4522   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4523   * @param  BurstBuffer The Buffer address.
4524   * @param  BurstLength DMA Burst length. This parameter can be one value
4525   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4526   * @param  DataLength Data length. This parameter can be one value
4527   *         between 1 and 0xFFFF.
4528   * @retval HAL status
4529   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4530 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4531                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4532                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4533 {
4534   HAL_StatusTypeDef status = HAL_OK;
4535 
4536   /* Check the parameters */
4537   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4538   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4539   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4540   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4541   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4542 
4543   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4544   {
4545     return HAL_BUSY;
4546   }
4547   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4548   {
4549     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4550     {
4551       return HAL_ERROR;
4552     }
4553     else
4554     {
4555       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4556     }
4557   }
4558   else
4559   {
4560     /* nothing to do */
4561   }
4562 
4563   switch (BurstRequestSrc)
4564   {
4565     case TIM_DMA_UPDATE:
4566     {
4567       /* Set the DMA Period elapsed callbacks */
4568       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4569       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4570 
4571       /* Set the DMA error callback */
4572       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4573 
4574       /* Enable the DMA stream */
4575       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4576                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4577       {
4578         /* Return error status */
4579         return HAL_ERROR;
4580       }
4581       break;
4582     }
4583     case TIM_DMA_CC1:
4584     {
4585       /* Set the DMA compare callbacks */
4586       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4587       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4588 
4589       /* Set the DMA error callback */
4590       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4591 
4592       /* Enable the DMA stream */
4593       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4594                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4595       {
4596         /* Return error status */
4597         return HAL_ERROR;
4598       }
4599       break;
4600     }
4601     case TIM_DMA_CC2:
4602     {
4603       /* Set the DMA compare callbacks */
4604       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4605       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4606 
4607       /* Set the DMA error callback */
4608       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4609 
4610       /* Enable the DMA stream */
4611       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4612                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4613       {
4614         /* Return error status */
4615         return HAL_ERROR;
4616       }
4617       break;
4618     }
4619     case TIM_DMA_CC3:
4620     {
4621       /* Set the DMA compare callbacks */
4622       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4623       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4624 
4625       /* Set the DMA error callback */
4626       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4627 
4628       /* Enable the DMA stream */
4629       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4630                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4631       {
4632         /* Return error status */
4633         return HAL_ERROR;
4634       }
4635       break;
4636     }
4637     case TIM_DMA_CC4:
4638     {
4639       /* Set the DMA compare callbacks */
4640       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4641       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4642 
4643       /* Set the DMA error callback */
4644       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4645 
4646       /* Enable the DMA stream */
4647       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4648                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4649       {
4650         /* Return error status */
4651         return HAL_ERROR;
4652       }
4653       break;
4654     }
4655     case TIM_DMA_COM:
4656     {
4657       /* Set the DMA commutation callbacks */
4658       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4659       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4660 
4661       /* Set the DMA error callback */
4662       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4663 
4664       /* Enable the DMA stream */
4665       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4666                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4667       {
4668         /* Return error status */
4669         return HAL_ERROR;
4670       }
4671       break;
4672     }
4673     case TIM_DMA_TRIGGER:
4674     {
4675       /* Set the DMA trigger callbacks */
4676       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4677       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4678 
4679       /* Set the DMA error callback */
4680       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4681 
4682       /* Enable the DMA stream */
4683       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4684                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4685       {
4686         /* Return error status */
4687         return HAL_ERROR;
4688       }
4689       break;
4690     }
4691     default:
4692       status = HAL_ERROR;
4693       break;
4694   }
4695 
4696   if (status == HAL_OK)
4697   {
4698     /* Configure the DMA Burst Mode */
4699     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4700     /* Enable the TIM DMA Request */
4701     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4702   }
4703 
4704   /* Return function status */
4705   return status;
4706 }
4707 
4708 /**
4709   * @brief  Stops the TIM DMA Burst mode
4710   * @param  htim TIM handle
4711   * @param  BurstRequestSrc TIM DMA Request sources to disable
4712   * @retval HAL status
4713   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4714 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4715 {
4716   HAL_StatusTypeDef status = HAL_OK;
4717 
4718   /* Check the parameters */
4719   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4720 
4721   /* Abort the DMA transfer (at least disable the DMA stream) */
4722   switch (BurstRequestSrc)
4723   {
4724     case TIM_DMA_UPDATE:
4725     {
4726       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4727       break;
4728     }
4729     case TIM_DMA_CC1:
4730     {
4731       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4732       break;
4733     }
4734     case TIM_DMA_CC2:
4735     {
4736       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4737       break;
4738     }
4739     case TIM_DMA_CC3:
4740     {
4741       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4742       break;
4743     }
4744     case TIM_DMA_CC4:
4745     {
4746       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4747       break;
4748     }
4749     case TIM_DMA_COM:
4750     {
4751       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4752       break;
4753     }
4754     case TIM_DMA_TRIGGER:
4755     {
4756       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4757       break;
4758     }
4759     default:
4760       status = HAL_ERROR;
4761       break;
4762   }
4763 
4764   if (status == HAL_OK)
4765   {
4766     /* Disable the TIM Update DMA request */
4767     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4768 
4769     /* Change the DMA burst operation state */
4770     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4771   }
4772 
4773   /* Return function status */
4774   return status;
4775 }
4776 
4777 /**
4778   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4779   * @param  htim TIM handle
4780   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4781   *         This parameter can be one of the following values:
4782   *            @arg TIM_DMABASE_CR1
4783   *            @arg TIM_DMABASE_CR2
4784   *            @arg TIM_DMABASE_SMCR
4785   *            @arg TIM_DMABASE_DIER
4786   *            @arg TIM_DMABASE_SR
4787   *            @arg TIM_DMABASE_EGR
4788   *            @arg TIM_DMABASE_CCMR1
4789   *            @arg TIM_DMABASE_CCMR2
4790   *            @arg TIM_DMABASE_CCER
4791   *            @arg TIM_DMABASE_CNT
4792   *            @arg TIM_DMABASE_PSC
4793   *            @arg TIM_DMABASE_ARR
4794   *            @arg TIM_DMABASE_RCR
4795   *            @arg TIM_DMABASE_CCR1
4796   *            @arg TIM_DMABASE_CCR2
4797   *            @arg TIM_DMABASE_CCR3
4798   *            @arg TIM_DMABASE_CCR4
4799   *            @arg TIM_DMABASE_BDTR
4800   * @param  BurstRequestSrc TIM DMA Request sources
4801   *         This parameter can be one of the following values:
4802   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4803   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4804   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4805   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4806   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4807   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4808   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4809   * @param  BurstBuffer The Buffer address.
4810   * @param  BurstLength DMA Burst length. This parameter can be one value
4811   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4812   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4813   * @retval HAL status
4814   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4815 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4816                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4817 {
4818   HAL_StatusTypeDef status;
4819 
4820   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4821                                            ((BurstLength) >> 8U) + 1U);
4822 
4823 
4824   return status;
4825 }
4826 
4827 /**
4828   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4829   * @param  htim TIM handle
4830   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4831   *         This parameter can be one of the following values:
4832   *            @arg TIM_DMABASE_CR1
4833   *            @arg TIM_DMABASE_CR2
4834   *            @arg TIM_DMABASE_SMCR
4835   *            @arg TIM_DMABASE_DIER
4836   *            @arg TIM_DMABASE_SR
4837   *            @arg TIM_DMABASE_EGR
4838   *            @arg TIM_DMABASE_CCMR1
4839   *            @arg TIM_DMABASE_CCMR2
4840   *            @arg TIM_DMABASE_CCER
4841   *            @arg TIM_DMABASE_CNT
4842   *            @arg TIM_DMABASE_PSC
4843   *            @arg TIM_DMABASE_ARR
4844   *            @arg TIM_DMABASE_RCR
4845   *            @arg TIM_DMABASE_CCR1
4846   *            @arg TIM_DMABASE_CCR2
4847   *            @arg TIM_DMABASE_CCR3
4848   *            @arg TIM_DMABASE_CCR4
4849   *            @arg TIM_DMABASE_BDTR
4850   * @param  BurstRequestSrc TIM DMA Request sources
4851   *         This parameter can be one of the following values:
4852   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4853   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4854   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4855   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4856   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4857   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4858   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4859   * @param  BurstBuffer The Buffer address.
4860   * @param  BurstLength DMA Burst length. This parameter can be one value
4861   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4862   * @param  DataLength Data length. This parameter can be one value
4863   *         between 1 and 0xFFFF.
4864   * @retval HAL status
4865   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4866 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4867                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4868                                                   uint32_t  BurstLength, uint32_t  DataLength)
4869 {
4870   HAL_StatusTypeDef status = HAL_OK;
4871 
4872   /* Check the parameters */
4873   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4874   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4875   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4876   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4877   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4878 
4879   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4880   {
4881     return HAL_BUSY;
4882   }
4883   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4884   {
4885     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4886     {
4887       return HAL_ERROR;
4888     }
4889     else
4890     {
4891       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4892     }
4893   }
4894   else
4895   {
4896     /* nothing to do */
4897   }
4898   switch (BurstRequestSrc)
4899   {
4900     case TIM_DMA_UPDATE:
4901     {
4902       /* Set the DMA Period elapsed callbacks */
4903       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4904       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4905 
4906       /* Set the DMA error callback */
4907       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4908 
4909       /* Enable the DMA stream */
4910       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4911                            DataLength) != HAL_OK)
4912       {
4913         /* Return error status */
4914         return HAL_ERROR;
4915       }
4916       break;
4917     }
4918     case TIM_DMA_CC1:
4919     {
4920       /* Set the DMA capture callbacks */
4921       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
4922       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4923 
4924       /* Set the DMA error callback */
4925       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4926 
4927       /* Enable the DMA stream */
4928       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4929                            DataLength) != HAL_OK)
4930       {
4931         /* Return error status */
4932         return HAL_ERROR;
4933       }
4934       break;
4935     }
4936     case TIM_DMA_CC2:
4937     {
4938       /* Set the DMA capture callbacks */
4939       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
4940       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4941 
4942       /* Set the DMA error callback */
4943       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4944 
4945       /* Enable the DMA stream */
4946       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4947                            DataLength) != HAL_OK)
4948       {
4949         /* Return error status */
4950         return HAL_ERROR;
4951       }
4952       break;
4953     }
4954     case TIM_DMA_CC3:
4955     {
4956       /* Set the DMA capture callbacks */
4957       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
4958       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4959 
4960       /* Set the DMA error callback */
4961       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4962 
4963       /* Enable the DMA stream */
4964       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4965                            DataLength) != HAL_OK)
4966       {
4967         /* Return error status */
4968         return HAL_ERROR;
4969       }
4970       break;
4971     }
4972     case TIM_DMA_CC4:
4973     {
4974       /* Set the DMA capture callbacks */
4975       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
4976       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4977 
4978       /* Set the DMA error callback */
4979       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4980 
4981       /* Enable the DMA stream */
4982       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4983                            DataLength) != HAL_OK)
4984       {
4985         /* Return error status */
4986         return HAL_ERROR;
4987       }
4988       break;
4989     }
4990     case TIM_DMA_COM:
4991     {
4992       /* Set the DMA commutation callbacks */
4993       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4994       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4995 
4996       /* Set the DMA error callback */
4997       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4998 
4999       /* Enable the DMA stream */
5000       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5001                            DataLength) != HAL_OK)
5002       {
5003         /* Return error status */
5004         return HAL_ERROR;
5005       }
5006       break;
5007     }
5008     case TIM_DMA_TRIGGER:
5009     {
5010       /* Set the DMA trigger callbacks */
5011       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5012       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5013 
5014       /* Set the DMA error callback */
5015       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5016 
5017       /* Enable the DMA stream */
5018       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5019                            DataLength) != HAL_OK)
5020       {
5021         /* Return error status */
5022         return HAL_ERROR;
5023       }
5024       break;
5025     }
5026     default:
5027       status = HAL_ERROR;
5028       break;
5029   }
5030 
5031   if (status == HAL_OK)
5032   {
5033     /* Configure the DMA Burst Mode */
5034     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5035 
5036     /* Enable the TIM DMA Request */
5037     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5038   }
5039 
5040   /* Return function status */
5041   return status;
5042 }
5043 
5044 /**
5045   * @brief  Stop the DMA burst reading
5046   * @param  htim TIM handle
5047   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5048   * @retval HAL status
5049   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5050 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5051 {
5052   HAL_StatusTypeDef status = HAL_OK;
5053 
5054   /* Check the parameters */
5055   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5056 
5057   /* Abort the DMA transfer (at least disable the DMA stream) */
5058   switch (BurstRequestSrc)
5059   {
5060     case TIM_DMA_UPDATE:
5061     {
5062       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5063       break;
5064     }
5065     case TIM_DMA_CC1:
5066     {
5067       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5068       break;
5069     }
5070     case TIM_DMA_CC2:
5071     {
5072       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5073       break;
5074     }
5075     case TIM_DMA_CC3:
5076     {
5077       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5078       break;
5079     }
5080     case TIM_DMA_CC4:
5081     {
5082       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5083       break;
5084     }
5085     case TIM_DMA_COM:
5086     {
5087       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5088       break;
5089     }
5090     case TIM_DMA_TRIGGER:
5091     {
5092       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5093       break;
5094     }
5095     default:
5096       status = HAL_ERROR;
5097       break;
5098   }
5099 
5100   if (status == HAL_OK)
5101   {
5102     /* Disable the TIM Update DMA request */
5103     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5104 
5105     /* Change the DMA burst operation state */
5106     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5107   }
5108 
5109   /* Return function status */
5110   return status;
5111 }
5112 
5113 /**
5114   * @brief  Generate a software event
5115   * @param  htim TIM handle
5116   * @param  EventSource specifies the event source.
5117   *          This parameter can be one of the following values:
5118   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5119   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5120   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5121   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5122   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5123   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5124   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5125   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5126   * @note   Basic timers can only generate an update event.
5127   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5128   * @note   TIM_EVENTSOURCE_BREAK are relevant only for timer instances
5129   *         supporting a break input.
5130   * @retval HAL status
5131   */
5132 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5133 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5134 {
5135   /* Check the parameters */
5136   assert_param(IS_TIM_INSTANCE(htim->Instance));
5137   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5138 
5139   /* Process Locked */
5140   __HAL_LOCK(htim);
5141 
5142   /* Change the TIM state */
5143   htim->State = HAL_TIM_STATE_BUSY;
5144 
5145   /* Set the event sources */
5146   htim->Instance->EGR = EventSource;
5147 
5148   /* Change the TIM state */
5149   htim->State = HAL_TIM_STATE_READY;
5150 
5151   __HAL_UNLOCK(htim);
5152 
5153   /* Return function status */
5154   return HAL_OK;
5155 }
5156 
5157 /**
5158   * @brief  Configures the OCRef clear feature
5159   * @param  htim TIM handle
5160   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5161   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5162   * @param  Channel specifies the TIM Channel
5163   *          This parameter can be one of the following values:
5164   *            @arg TIM_CHANNEL_1: TIM Channel 1
5165   *            @arg TIM_CHANNEL_2: TIM Channel 2
5166   *            @arg TIM_CHANNEL_3: TIM Channel 3
5167   *            @arg TIM_CHANNEL_4: TIM Channel 4
5168   * @retval HAL status
5169   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5170 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5171                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5172                                            uint32_t Channel)
5173 {
5174   HAL_StatusTypeDef status = HAL_OK;
5175 
5176   /* Check the parameters */
5177   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5178   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5179 
5180   /* Process Locked */
5181   __HAL_LOCK(htim);
5182 
5183   htim->State = HAL_TIM_STATE_BUSY;
5184 
5185   switch (sClearInputConfig->ClearInputSource)
5186   {
5187     case TIM_CLEARINPUTSOURCE_NONE:
5188     {
5189       /* Clear the OCREF clear selection bit and the the ETR Bits */
5190       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5191       break;
5192     }
5193 
5194     case TIM_CLEARINPUTSOURCE_ETR:
5195     {
5196       /* Check the parameters */
5197       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5198       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5199       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5200 
5201       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5202       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5203       {
5204         htim->State = HAL_TIM_STATE_READY;
5205         __HAL_UNLOCK(htim);
5206         return HAL_ERROR;
5207       }
5208 
5209       TIM_ETR_SetConfig(htim->Instance,
5210                         sClearInputConfig->ClearInputPrescaler,
5211                         sClearInputConfig->ClearInputPolarity,
5212                         sClearInputConfig->ClearInputFilter);
5213       break;
5214     }
5215 
5216     default:
5217       status = HAL_ERROR;
5218       break;
5219   }
5220 
5221   if (status == HAL_OK)
5222   {
5223     switch (Channel)
5224     {
5225       case TIM_CHANNEL_1:
5226       {
5227         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5228         {
5229           /* Enable the OCREF clear feature for Channel 1 */
5230           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5231         }
5232         else
5233         {
5234           /* Disable the OCREF clear feature for Channel 1 */
5235           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5236         }
5237         break;
5238       }
5239       case TIM_CHANNEL_2:
5240       {
5241         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5242         {
5243           /* Enable the OCREF clear feature for Channel 2 */
5244           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5245         }
5246         else
5247         {
5248           /* Disable the OCREF clear feature for Channel 2 */
5249           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5250         }
5251         break;
5252       }
5253       case TIM_CHANNEL_3:
5254       {
5255         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5256         {
5257           /* Enable the OCREF clear feature for Channel 3 */
5258           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5259         }
5260         else
5261         {
5262           /* Disable the OCREF clear feature for Channel 3 */
5263           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5264         }
5265         break;
5266       }
5267       case TIM_CHANNEL_4:
5268       {
5269         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5270         {
5271           /* Enable the OCREF clear feature for Channel 4 */
5272           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5273         }
5274         else
5275         {
5276           /* Disable the OCREF clear feature for Channel 4 */
5277           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5278         }
5279         break;
5280       }
5281       default:
5282         break;
5283     }
5284   }
5285 
5286   htim->State = HAL_TIM_STATE_READY;
5287 
5288   __HAL_UNLOCK(htim);
5289 
5290   return status;
5291 }
5292 
5293 /**
5294   * @brief   Configures the clock source to be used
5295   * @param  htim TIM handle
5296   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5297   *         contains the clock source information for the TIM peripheral.
5298   * @retval HAL status
5299   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5300 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5301 {
5302   HAL_StatusTypeDef status = HAL_OK;
5303   uint32_t tmpsmcr;
5304 
5305   /* Process Locked */
5306   __HAL_LOCK(htim);
5307 
5308   htim->State = HAL_TIM_STATE_BUSY;
5309 
5310   /* Check the parameters */
5311   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5312 
5313   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5314   tmpsmcr = htim->Instance->SMCR;
5315   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5316   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5317   htim->Instance->SMCR = tmpsmcr;
5318 
5319   switch (sClockSourceConfig->ClockSource)
5320   {
5321     case TIM_CLOCKSOURCE_INTERNAL:
5322     {
5323       assert_param(IS_TIM_INSTANCE(htim->Instance));
5324       break;
5325     }
5326 
5327     case TIM_CLOCKSOURCE_ETRMODE1:
5328     {
5329       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5330       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5331 
5332       /* Check ETR input conditioning related parameters */
5333       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5334       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5335       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5336 
5337       /* Configure the ETR Clock source */
5338       TIM_ETR_SetConfig(htim->Instance,
5339                         sClockSourceConfig->ClockPrescaler,
5340                         sClockSourceConfig->ClockPolarity,
5341                         sClockSourceConfig->ClockFilter);
5342 
5343       /* Select the External clock mode1 and the ETRF trigger */
5344       tmpsmcr = htim->Instance->SMCR;
5345       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5346       /* Write to TIMx SMCR */
5347       htim->Instance->SMCR = tmpsmcr;
5348       break;
5349     }
5350 
5351     case TIM_CLOCKSOURCE_ETRMODE2:
5352     {
5353       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5354       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5355 
5356       /* Check ETR input conditioning related parameters */
5357       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5358       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5359       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5360 
5361       /* Configure the ETR Clock source */
5362       TIM_ETR_SetConfig(htim->Instance,
5363                         sClockSourceConfig->ClockPrescaler,
5364                         sClockSourceConfig->ClockPolarity,
5365                         sClockSourceConfig->ClockFilter);
5366       /* Enable the External clock mode2 */
5367       htim->Instance->SMCR |= TIM_SMCR_ECE;
5368       break;
5369     }
5370 
5371     case TIM_CLOCKSOURCE_TI1:
5372     {
5373       /* Check whether or not the timer instance supports external clock mode 1 */
5374       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5375 
5376       /* Check TI1 input conditioning related parameters */
5377       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5378       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5379 
5380       TIM_TI1_ConfigInputStage(htim->Instance,
5381                                sClockSourceConfig->ClockPolarity,
5382                                sClockSourceConfig->ClockFilter);
5383       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5384       break;
5385     }
5386 
5387     case TIM_CLOCKSOURCE_TI2:
5388     {
5389       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5390       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5391 
5392       /* Check TI2 input conditioning related parameters */
5393       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5394       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5395 
5396       TIM_TI2_ConfigInputStage(htim->Instance,
5397                                sClockSourceConfig->ClockPolarity,
5398                                sClockSourceConfig->ClockFilter);
5399       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5400       break;
5401     }
5402 
5403     case TIM_CLOCKSOURCE_TI1ED:
5404     {
5405       /* Check whether or not the timer instance supports external clock mode 1 */
5406       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5407 
5408       /* Check TI1 input conditioning related parameters */
5409       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5410       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5411 
5412       TIM_TI1_ConfigInputStage(htim->Instance,
5413                                sClockSourceConfig->ClockPolarity,
5414                                sClockSourceConfig->ClockFilter);
5415       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5416       break;
5417     }
5418 
5419     case TIM_CLOCKSOURCE_ITR0:
5420     case TIM_CLOCKSOURCE_ITR1:
5421     case TIM_CLOCKSOURCE_ITR2:
5422     case TIM_CLOCKSOURCE_ITR3:
5423     {
5424       /* Check whether or not the timer instance supports internal trigger input */
5425       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5426 
5427       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5428       break;
5429     }
5430 
5431     default:
5432       status = HAL_ERROR;
5433       break;
5434   }
5435   htim->State = HAL_TIM_STATE_READY;
5436 
5437   __HAL_UNLOCK(htim);
5438 
5439   return status;
5440 }
5441 
5442 /**
5443   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5444   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5445   * @param  htim TIM handle.
5446   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5447   *         output of a XOR gate.
5448   *          This parameter can be one of the following values:
5449   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5450   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5451   *            pins are connected to the TI1 input (XOR combination)
5452   * @retval HAL status
5453   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5454 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5455 {
5456   uint32_t tmpcr2;
5457 
5458   /* Check the parameters */
5459   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5460   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5461 
5462   /* Get the TIMx CR2 register value */
5463   tmpcr2 = htim->Instance->CR2;
5464 
5465   /* Reset the TI1 selection */
5466   tmpcr2 &= ~TIM_CR2_TI1S;
5467 
5468   /* Set the TI1 selection */
5469   tmpcr2 |= TI1_Selection;
5470 
5471   /* Write to TIMxCR2 */
5472   htim->Instance->CR2 = tmpcr2;
5473 
5474   return HAL_OK;
5475 }
5476 
5477 /**
5478   * @brief  Configures the TIM in Slave mode
5479   * @param  htim TIM handle.
5480   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5481   *         contains the selected trigger (internal trigger input, filtered
5482   *         timer input or external trigger input) and the Slave mode
5483   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5484   * @retval HAL status
5485   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5486 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5487 {
5488   /* Check the parameters */
5489   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5490   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5491   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5492 
5493   __HAL_LOCK(htim);
5494 
5495   htim->State = HAL_TIM_STATE_BUSY;
5496 
5497   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5498   {
5499     htim->State = HAL_TIM_STATE_READY;
5500     __HAL_UNLOCK(htim);
5501     return HAL_ERROR;
5502   }
5503 
5504   /* Disable Trigger Interrupt */
5505   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5506 
5507   /* Disable Trigger DMA request */
5508   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5509 
5510   htim->State = HAL_TIM_STATE_READY;
5511 
5512   __HAL_UNLOCK(htim);
5513 
5514   return HAL_OK;
5515 }
5516 
5517 /**
5518   * @brief  Configures the TIM in Slave mode in interrupt mode
5519   * @param  htim TIM handle.
5520   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5521   *         contains the selected trigger (internal trigger input, filtered
5522   *         timer input or external trigger input) and the Slave mode
5523   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5524   * @retval HAL status
5525   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5526 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5527                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5528 {
5529   /* Check the parameters */
5530   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5531   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5532   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5533 
5534   __HAL_LOCK(htim);
5535 
5536   htim->State = HAL_TIM_STATE_BUSY;
5537 
5538   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5539   {
5540     htim->State = HAL_TIM_STATE_READY;
5541     __HAL_UNLOCK(htim);
5542     return HAL_ERROR;
5543   }
5544 
5545   /* Enable Trigger Interrupt */
5546   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5547 
5548   /* Disable Trigger DMA request */
5549   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5550 
5551   htim->State = HAL_TIM_STATE_READY;
5552 
5553   __HAL_UNLOCK(htim);
5554 
5555   return HAL_OK;
5556 }
5557 
5558 /**
5559   * @brief  Read the captured value from Capture Compare unit
5560   * @param  htim TIM handle.
5561   * @param  Channel TIM Channels to be enabled
5562   *          This parameter can be one of the following values:
5563   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5564   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5565   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5566   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5567   * @retval Captured value
5568   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5569 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5570 {
5571   uint32_t tmpreg = 0U;
5572 
5573   switch (Channel)
5574   {
5575     case TIM_CHANNEL_1:
5576     {
5577       /* Check the parameters */
5578       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5579 
5580       /* Return the capture 1 value */
5581       tmpreg =  htim->Instance->CCR1;
5582 
5583       break;
5584     }
5585     case TIM_CHANNEL_2:
5586     {
5587       /* Check the parameters */
5588       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5589 
5590       /* Return the capture 2 value */
5591       tmpreg =   htim->Instance->CCR2;
5592 
5593       break;
5594     }
5595 
5596     case TIM_CHANNEL_3:
5597     {
5598       /* Check the parameters */
5599       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5600 
5601       /* Return the capture 3 value */
5602       tmpreg =   htim->Instance->CCR3;
5603 
5604       break;
5605     }
5606 
5607     case TIM_CHANNEL_4:
5608     {
5609       /* Check the parameters */
5610       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5611 
5612       /* Return the capture 4 value */
5613       tmpreg =   htim->Instance->CCR4;
5614 
5615       break;
5616     }
5617 
5618     default:
5619       break;
5620   }
5621 
5622   return tmpreg;
5623 }
5624 
5625 /**
5626   * @}
5627   */
5628 
5629 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5630   *  @brief    TIM Callbacks functions
5631   *
5632 @verbatim
5633   ==============================================================================
5634                         ##### TIM Callbacks functions #####
5635   ==============================================================================
5636  [..]
5637    This section provides TIM callback functions:
5638    (+) TIM Period elapsed callback
5639    (+) TIM Output Compare callback
5640    (+) TIM Input capture callback
5641    (+) TIM Trigger callback
5642    (+) TIM Error callback
5643 
5644 @endverbatim
5645   * @{
5646   */
5647 
5648 /**
5649   * @brief  Period elapsed callback in non-blocking mode
5650   * @param  htim TIM handle
5651   * @retval None
5652   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5653 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5654 {
5655   /* Prevent unused argument(s) compilation warning */
5656   UNUSED(htim);
5657 
5658   /* NOTE : This function should not be modified, when the callback is needed,
5659             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5660    */
5661 }
5662 
5663 /**
5664   * @brief  Period elapsed half complete callback in non-blocking mode
5665   * @param  htim TIM handle
5666   * @retval None
5667   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5668 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5669 {
5670   /* Prevent unused argument(s) compilation warning */
5671   UNUSED(htim);
5672 
5673   /* NOTE : This function should not be modified, when the callback is needed,
5674             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5675    */
5676 }
5677 
5678 /**
5679   * @brief  Output Compare callback in non-blocking mode
5680   * @param  htim TIM OC handle
5681   * @retval None
5682   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5683 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5684 {
5685   /* Prevent unused argument(s) compilation warning */
5686   UNUSED(htim);
5687 
5688   /* NOTE : This function should not be modified, when the callback is needed,
5689             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5690    */
5691 }
5692 
5693 /**
5694   * @brief  Input Capture callback in non-blocking mode
5695   * @param  htim TIM IC handle
5696   * @retval None
5697   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5698 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5699 {
5700   /* Prevent unused argument(s) compilation warning */
5701   UNUSED(htim);
5702 
5703   /* NOTE : This function should not be modified, when the callback is needed,
5704             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5705    */
5706 }
5707 
5708 /**
5709   * @brief  Input Capture half complete callback in non-blocking mode
5710   * @param  htim TIM IC handle
5711   * @retval None
5712   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5713 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5714 {
5715   /* Prevent unused argument(s) compilation warning */
5716   UNUSED(htim);
5717 
5718   /* NOTE : This function should not be modified, when the callback is needed,
5719             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5720    */
5721 }
5722 
5723 /**
5724   * @brief  PWM Pulse finished callback in non-blocking mode
5725   * @param  htim TIM handle
5726   * @retval None
5727   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5728 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5729 {
5730   /* Prevent unused argument(s) compilation warning */
5731   UNUSED(htim);
5732 
5733   /* NOTE : This function should not be modified, when the callback is needed,
5734             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5735    */
5736 }
5737 
5738 /**
5739   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5740   * @param  htim TIM handle
5741   * @retval None
5742   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5743 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5744 {
5745   /* Prevent unused argument(s) compilation warning */
5746   UNUSED(htim);
5747 
5748   /* NOTE : This function should not be modified, when the callback is needed,
5749             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5750    */
5751 }
5752 
5753 /**
5754   * @brief  Hall Trigger detection callback in non-blocking mode
5755   * @param  htim TIM handle
5756   * @retval None
5757   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5758 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5759 {
5760   /* Prevent unused argument(s) compilation warning */
5761   UNUSED(htim);
5762 
5763   /* NOTE : This function should not be modified, when the callback is needed,
5764             the HAL_TIM_TriggerCallback could be implemented in the user file
5765    */
5766 }
5767 
5768 /**
5769   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5770   * @param  htim TIM handle
5771   * @retval None
5772   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5773 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5774 {
5775   /* Prevent unused argument(s) compilation warning */
5776   UNUSED(htim);
5777 
5778   /* NOTE : This function should not be modified, when the callback is needed,
5779             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5780    */
5781 }
5782 
5783 /**
5784   * @brief  Timer error callback in non-blocking mode
5785   * @param  htim TIM handle
5786   * @retval None
5787   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5788 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5789 {
5790   /* Prevent unused argument(s) compilation warning */
5791   UNUSED(htim);
5792 
5793   /* NOTE : This function should not be modified, when the callback is needed,
5794             the HAL_TIM_ErrorCallback could be implemented in the user file
5795    */
5796 }
5797 
5798 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5799 /**
5800   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5801   * @param htim tim handle
5802   * @param CallbackID ID of the callback to be registered
5803   *        This parameter can be one of the following values:
5804   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5805   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5806   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5807   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5808   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5809   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5810   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5811   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5812   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5813   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5814   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5815   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5816   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5817   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5818   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5819   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5820   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5821   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5822   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5823   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5824   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
5825   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
5826   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
5827   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
5828   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
5829   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
5830   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
5831   *          @param pCallback pointer to the callback function
5832   *          @retval status
5833   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)5834 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
5835                                            pTIM_CallbackTypeDef pCallback)
5836 {
5837   HAL_StatusTypeDef status = HAL_OK;
5838 
5839   if (pCallback == NULL)
5840   {
5841     return HAL_ERROR;
5842   }
5843 
5844   if (htim->State == HAL_TIM_STATE_READY)
5845   {
5846     switch (CallbackID)
5847     {
5848       case HAL_TIM_BASE_MSPINIT_CB_ID :
5849         htim->Base_MspInitCallback                 = pCallback;
5850         break;
5851 
5852       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
5853         htim->Base_MspDeInitCallback               = pCallback;
5854         break;
5855 
5856       case HAL_TIM_IC_MSPINIT_CB_ID :
5857         htim->IC_MspInitCallback                   = pCallback;
5858         break;
5859 
5860       case HAL_TIM_IC_MSPDEINIT_CB_ID :
5861         htim->IC_MspDeInitCallback                 = pCallback;
5862         break;
5863 
5864       case HAL_TIM_OC_MSPINIT_CB_ID :
5865         htim->OC_MspInitCallback                   = pCallback;
5866         break;
5867 
5868       case HAL_TIM_OC_MSPDEINIT_CB_ID :
5869         htim->OC_MspDeInitCallback                 = pCallback;
5870         break;
5871 
5872       case HAL_TIM_PWM_MSPINIT_CB_ID :
5873         htim->PWM_MspInitCallback                  = pCallback;
5874         break;
5875 
5876       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
5877         htim->PWM_MspDeInitCallback                = pCallback;
5878         break;
5879 
5880       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
5881         htim->OnePulse_MspInitCallback             = pCallback;
5882         break;
5883 
5884       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
5885         htim->OnePulse_MspDeInitCallback           = pCallback;
5886         break;
5887 
5888       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
5889         htim->Encoder_MspInitCallback              = pCallback;
5890         break;
5891 
5892       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
5893         htim->Encoder_MspDeInitCallback            = pCallback;
5894         break;
5895 
5896       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
5897         htim->HallSensor_MspInitCallback           = pCallback;
5898         break;
5899 
5900       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
5901         htim->HallSensor_MspDeInitCallback         = pCallback;
5902         break;
5903 
5904       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
5905         htim->PeriodElapsedCallback                = pCallback;
5906         break;
5907 
5908       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
5909         htim->PeriodElapsedHalfCpltCallback        = pCallback;
5910         break;
5911 
5912       case HAL_TIM_TRIGGER_CB_ID :
5913         htim->TriggerCallback                      = pCallback;
5914         break;
5915 
5916       case HAL_TIM_TRIGGER_HALF_CB_ID :
5917         htim->TriggerHalfCpltCallback              = pCallback;
5918         break;
5919 
5920       case HAL_TIM_IC_CAPTURE_CB_ID :
5921         htim->IC_CaptureCallback                   = pCallback;
5922         break;
5923 
5924       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
5925         htim->IC_CaptureHalfCpltCallback           = pCallback;
5926         break;
5927 
5928       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
5929         htim->OC_DelayElapsedCallback              = pCallback;
5930         break;
5931 
5932       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
5933         htim->PWM_PulseFinishedCallback            = pCallback;
5934         break;
5935 
5936       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
5937         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
5938         break;
5939 
5940       case HAL_TIM_ERROR_CB_ID :
5941         htim->ErrorCallback                        = pCallback;
5942         break;
5943 
5944       case HAL_TIM_COMMUTATION_CB_ID :
5945         htim->CommutationCallback                  = pCallback;
5946         break;
5947 
5948       case HAL_TIM_COMMUTATION_HALF_CB_ID :
5949         htim->CommutationHalfCpltCallback          = pCallback;
5950         break;
5951 
5952       case HAL_TIM_BREAK_CB_ID :
5953         htim->BreakCallback                        = pCallback;
5954         break;
5955 
5956       default :
5957         /* Return error status */
5958         status = HAL_ERROR;
5959         break;
5960     }
5961   }
5962   else if (htim->State == HAL_TIM_STATE_RESET)
5963   {
5964     switch (CallbackID)
5965     {
5966       case HAL_TIM_BASE_MSPINIT_CB_ID :
5967         htim->Base_MspInitCallback         = pCallback;
5968         break;
5969 
5970       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
5971         htim->Base_MspDeInitCallback       = pCallback;
5972         break;
5973 
5974       case HAL_TIM_IC_MSPINIT_CB_ID :
5975         htim->IC_MspInitCallback           = pCallback;
5976         break;
5977 
5978       case HAL_TIM_IC_MSPDEINIT_CB_ID :
5979         htim->IC_MspDeInitCallback         = pCallback;
5980         break;
5981 
5982       case HAL_TIM_OC_MSPINIT_CB_ID :
5983         htim->OC_MspInitCallback           = pCallback;
5984         break;
5985 
5986       case HAL_TIM_OC_MSPDEINIT_CB_ID :
5987         htim->OC_MspDeInitCallback         = pCallback;
5988         break;
5989 
5990       case HAL_TIM_PWM_MSPINIT_CB_ID :
5991         htim->PWM_MspInitCallback          = pCallback;
5992         break;
5993 
5994       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
5995         htim->PWM_MspDeInitCallback        = pCallback;
5996         break;
5997 
5998       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
5999         htim->OnePulse_MspInitCallback     = pCallback;
6000         break;
6001 
6002       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6003         htim->OnePulse_MspDeInitCallback   = pCallback;
6004         break;
6005 
6006       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6007         htim->Encoder_MspInitCallback      = pCallback;
6008         break;
6009 
6010       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6011         htim->Encoder_MspDeInitCallback    = pCallback;
6012         break;
6013 
6014       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6015         htim->HallSensor_MspInitCallback   = pCallback;
6016         break;
6017 
6018       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6019         htim->HallSensor_MspDeInitCallback = pCallback;
6020         break;
6021 
6022       default :
6023         /* Return error status */
6024         status = HAL_ERROR;
6025         break;
6026     }
6027   }
6028   else
6029   {
6030     /* Return error status */
6031     status = HAL_ERROR;
6032   }
6033 
6034   return status;
6035 }
6036 
6037 /**
6038   * @brief  Unregister a TIM callback
6039   *         TIM callback is redirected to the weak predefined callback
6040   * @param htim tim handle
6041   * @param CallbackID ID of the callback to be unregistered
6042   *        This parameter can be one of the following values:
6043   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6044   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6045   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6046   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6047   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6048   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6049   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6050   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6051   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6052   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6053   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6054   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6055   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6056   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6057   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6058   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6059   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6060   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6061   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6062   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6063   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6064   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6065   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6066   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6067   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6068   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6069   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6070   *          @retval status
6071   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6072 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6073 {
6074   HAL_StatusTypeDef status = HAL_OK;
6075 
6076   if (htim->State == HAL_TIM_STATE_READY)
6077   {
6078     switch (CallbackID)
6079     {
6080       case HAL_TIM_BASE_MSPINIT_CB_ID :
6081         /* Legacy weak Base MspInit Callback */
6082         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6083         break;
6084 
6085       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6086         /* Legacy weak Base Msp DeInit Callback */
6087         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6088         break;
6089 
6090       case HAL_TIM_IC_MSPINIT_CB_ID :
6091         /* Legacy weak IC Msp Init Callback */
6092         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6093         break;
6094 
6095       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6096         /* Legacy weak IC Msp DeInit Callback */
6097         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6098         break;
6099 
6100       case HAL_TIM_OC_MSPINIT_CB_ID :
6101         /* Legacy weak OC Msp Init Callback */
6102         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6103         break;
6104 
6105       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6106         /* Legacy weak OC Msp DeInit Callback */
6107         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6108         break;
6109 
6110       case HAL_TIM_PWM_MSPINIT_CB_ID :
6111         /* Legacy weak PWM Msp Init Callback */
6112         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6113         break;
6114 
6115       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6116         /* Legacy weak PWM Msp DeInit Callback */
6117         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6118         break;
6119 
6120       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6121         /* Legacy weak One Pulse Msp Init Callback */
6122         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6123         break;
6124 
6125       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6126         /* Legacy weak One Pulse Msp DeInit Callback */
6127         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6128         break;
6129 
6130       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6131         /* Legacy weak Encoder Msp Init Callback */
6132         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6133         break;
6134 
6135       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6136         /* Legacy weak Encoder Msp DeInit Callback */
6137         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6138         break;
6139 
6140       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6141         /* Legacy weak Hall Sensor Msp Init Callback */
6142         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6143         break;
6144 
6145       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6146         /* Legacy weak Hall Sensor Msp DeInit Callback */
6147         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6148         break;
6149 
6150       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6151         /* Legacy weak Period Elapsed Callback */
6152         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6153         break;
6154 
6155       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6156         /* Legacy weak Period Elapsed half complete Callback */
6157         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6158         break;
6159 
6160       case HAL_TIM_TRIGGER_CB_ID :
6161         /* Legacy weak Trigger Callback */
6162         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6163         break;
6164 
6165       case HAL_TIM_TRIGGER_HALF_CB_ID :
6166         /* Legacy weak Trigger half complete Callback */
6167         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6168         break;
6169 
6170       case HAL_TIM_IC_CAPTURE_CB_ID :
6171         /* Legacy weak IC Capture Callback */
6172         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6173         break;
6174 
6175       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6176         /* Legacy weak IC Capture half complete Callback */
6177         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6178         break;
6179 
6180       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6181         /* Legacy weak OC Delay Elapsed Callback */
6182         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6183         break;
6184 
6185       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6186         /* Legacy weak PWM Pulse Finished Callback */
6187         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6188         break;
6189 
6190       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6191         /* Legacy weak PWM Pulse Finished half complete Callback */
6192         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6193         break;
6194 
6195       case HAL_TIM_ERROR_CB_ID :
6196         /* Legacy weak Error Callback */
6197         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6198         break;
6199 
6200       case HAL_TIM_COMMUTATION_CB_ID :
6201         /* Legacy weak Commutation Callback */
6202         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6203         break;
6204 
6205       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6206         /* Legacy weak Commutation half complete Callback */
6207         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6208         break;
6209 
6210       case HAL_TIM_BREAK_CB_ID :
6211         /* Legacy weak Break Callback */
6212         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6213         break;
6214 
6215       default :
6216         /* Return error status */
6217         status = HAL_ERROR;
6218         break;
6219     }
6220   }
6221   else if (htim->State == HAL_TIM_STATE_RESET)
6222   {
6223     switch (CallbackID)
6224     {
6225       case HAL_TIM_BASE_MSPINIT_CB_ID :
6226         /* Legacy weak Base MspInit Callback */
6227         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6228         break;
6229 
6230       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6231         /* Legacy weak Base Msp DeInit Callback */
6232         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6233         break;
6234 
6235       case HAL_TIM_IC_MSPINIT_CB_ID :
6236         /* Legacy weak IC Msp Init Callback */
6237         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6238         break;
6239 
6240       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6241         /* Legacy weak IC Msp DeInit Callback */
6242         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6243         break;
6244 
6245       case HAL_TIM_OC_MSPINIT_CB_ID :
6246         /* Legacy weak OC Msp Init Callback */
6247         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6248         break;
6249 
6250       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6251         /* Legacy weak OC Msp DeInit Callback */
6252         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6253         break;
6254 
6255       case HAL_TIM_PWM_MSPINIT_CB_ID :
6256         /* Legacy weak PWM Msp Init Callback */
6257         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6258         break;
6259 
6260       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6261         /* Legacy weak PWM Msp DeInit Callback */
6262         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6263         break;
6264 
6265       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6266         /* Legacy weak One Pulse Msp Init Callback */
6267         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6268         break;
6269 
6270       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6271         /* Legacy weak One Pulse Msp DeInit Callback */
6272         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6273         break;
6274 
6275       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6276         /* Legacy weak Encoder Msp Init Callback */
6277         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6278         break;
6279 
6280       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6281         /* Legacy weak Encoder Msp DeInit Callback */
6282         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6283         break;
6284 
6285       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6286         /* Legacy weak Hall Sensor Msp Init Callback */
6287         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6288         break;
6289 
6290       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6291         /* Legacy weak Hall Sensor Msp DeInit Callback */
6292         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6293         break;
6294 
6295       default :
6296         /* Return error status */
6297         status = HAL_ERROR;
6298         break;
6299     }
6300   }
6301   else
6302   {
6303     /* Return error status */
6304     status = HAL_ERROR;
6305   }
6306 
6307   return status;
6308 }
6309 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6310 
6311 /**
6312   * @}
6313   */
6314 
6315 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6316   *  @brief   TIM Peripheral State functions
6317   *
6318 @verbatim
6319   ==============================================================================
6320                         ##### Peripheral State functions #####
6321   ==============================================================================
6322     [..]
6323     This subsection permits to get in run-time the status of the peripheral
6324     and the data flow.
6325 
6326 @endverbatim
6327   * @{
6328   */
6329 
6330 /**
6331   * @brief  Return the TIM Base handle state.
6332   * @param  htim TIM Base handle
6333   * @retval HAL state
6334   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6335 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6336 {
6337   return htim->State;
6338 }
6339 
6340 /**
6341   * @brief  Return the TIM OC handle state.
6342   * @param  htim TIM Output Compare handle
6343   * @retval HAL state
6344   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6345 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6346 {
6347   return htim->State;
6348 }
6349 
6350 /**
6351   * @brief  Return the TIM PWM handle state.
6352   * @param  htim TIM handle
6353   * @retval HAL state
6354   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6355 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6356 {
6357   return htim->State;
6358 }
6359 
6360 /**
6361   * @brief  Return the TIM Input Capture handle state.
6362   * @param  htim TIM IC handle
6363   * @retval HAL state
6364   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6365 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6366 {
6367   return htim->State;
6368 }
6369 
6370 /**
6371   * @brief  Return the TIM One Pulse Mode handle state.
6372   * @param  htim TIM OPM handle
6373   * @retval HAL state
6374   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6375 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6376 {
6377   return htim->State;
6378 }
6379 
6380 /**
6381   * @brief  Return the TIM Encoder Mode handle state.
6382   * @param  htim TIM Encoder Interface handle
6383   * @retval HAL state
6384   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6385 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6386 {
6387   return htim->State;
6388 }
6389 
6390 /**
6391   * @brief  Return the TIM Encoder Mode handle state.
6392   * @param  htim TIM handle
6393   * @retval Active channel
6394   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6395 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6396 {
6397   return htim->Channel;
6398 }
6399 
6400 /**
6401   * @brief  Return actual state of the TIM channel.
6402   * @param  htim TIM handle
6403   * @param  Channel TIM Channel
6404   *          This parameter can be one of the following values:
6405   *            @arg TIM_CHANNEL_1: TIM Channel 1
6406   *            @arg TIM_CHANNEL_2: TIM Channel 2
6407   *            @arg TIM_CHANNEL_3: TIM Channel 3
6408   *            @arg TIM_CHANNEL_4: TIM Channel 4
6409   *            @arg TIM_CHANNEL_5: TIM Channel 5
6410   *            @arg TIM_CHANNEL_6: TIM Channel 6
6411   * @retval TIM Channel state
6412   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6413 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6414 {
6415   HAL_TIM_ChannelStateTypeDef channel_state;
6416 
6417   /* Check the parameters */
6418   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6419 
6420   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6421 
6422   return channel_state;
6423 }
6424 
6425 /**
6426   * @brief  Return actual state of a DMA burst operation.
6427   * @param  htim TIM handle
6428   * @retval DMA burst state
6429   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6430 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6431 {
6432   /* Check the parameters */
6433   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6434 
6435   return htim->DMABurstState;
6436 }
6437 
6438 /**
6439   * @}
6440   */
6441 
6442 /**
6443   * @}
6444   */
6445 
6446 /** @defgroup TIM_Private_Functions TIM Private Functions
6447   * @{
6448   */
6449 
6450 /**
6451   * @brief  TIM DMA error callback
6452   * @param  hdma pointer to DMA handle.
6453   * @retval None
6454   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6455 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6456 {
6457   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6458 
6459   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6460   {
6461     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6462     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6463   }
6464   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6465   {
6466     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6467     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6468   }
6469   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6470   {
6471     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6472     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6473   }
6474   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6475   {
6476     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6477     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6478   }
6479   else
6480   {
6481     htim->State = HAL_TIM_STATE_READY;
6482   }
6483 
6484 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6485   htim->ErrorCallback(htim);
6486 #else
6487   HAL_TIM_ErrorCallback(htim);
6488 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6489 
6490   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6491 }
6492 
6493 /**
6494   * @brief  TIM DMA Delay Pulse complete callback.
6495   * @param  hdma pointer to DMA handle.
6496   * @retval None
6497   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6498 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6499 {
6500   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6501 
6502   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6503   {
6504     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6505 
6506     if (hdma->Init.Mode == DMA_NORMAL)
6507     {
6508       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6509     }
6510   }
6511   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6512   {
6513     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6514 
6515     if (hdma->Init.Mode == DMA_NORMAL)
6516     {
6517       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6518     }
6519   }
6520   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6521   {
6522     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6523 
6524     if (hdma->Init.Mode == DMA_NORMAL)
6525     {
6526       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6527     }
6528   }
6529   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6530   {
6531     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6532 
6533     if (hdma->Init.Mode == DMA_NORMAL)
6534     {
6535       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6536     }
6537   }
6538   else
6539   {
6540     /* nothing to do */
6541   }
6542 
6543 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6544   htim->PWM_PulseFinishedCallback(htim);
6545 #else
6546   HAL_TIM_PWM_PulseFinishedCallback(htim);
6547 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6548 
6549   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6550 }
6551 
6552 /**
6553   * @brief  TIM DMA Delay Pulse half complete callback.
6554   * @param  hdma pointer to DMA handle.
6555   * @retval None
6556   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6557 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6558 {
6559   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6560 
6561   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6562   {
6563     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6564   }
6565   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6566   {
6567     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6568   }
6569   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6570   {
6571     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6572   }
6573   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6574   {
6575     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6576   }
6577   else
6578   {
6579     /* nothing to do */
6580   }
6581 
6582 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6583   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6584 #else
6585   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6586 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6587 
6588   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6589 }
6590 
6591 /**
6592   * @brief  TIM DMA Capture complete callback.
6593   * @param  hdma pointer to DMA handle.
6594   * @retval None
6595   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6596 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6597 {
6598   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6599 
6600   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6601   {
6602     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6603 
6604     if (hdma->Init.Mode == DMA_NORMAL)
6605     {
6606       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6607       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6608     }
6609   }
6610   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6611   {
6612     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6613 
6614     if (hdma->Init.Mode == DMA_NORMAL)
6615     {
6616       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6617       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6618     }
6619   }
6620   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6621   {
6622     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6623 
6624     if (hdma->Init.Mode == DMA_NORMAL)
6625     {
6626       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6627       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6628     }
6629   }
6630   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6631   {
6632     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6633 
6634     if (hdma->Init.Mode == DMA_NORMAL)
6635     {
6636       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6637       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6638     }
6639   }
6640   else
6641   {
6642     /* nothing to do */
6643   }
6644 
6645 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6646   htim->IC_CaptureCallback(htim);
6647 #else
6648   HAL_TIM_IC_CaptureCallback(htim);
6649 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6650 
6651   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6652 }
6653 
6654 /**
6655   * @brief  TIM DMA Capture half complete callback.
6656   * @param  hdma pointer to DMA handle.
6657   * @retval None
6658   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6659 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6660 {
6661   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6662 
6663   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6664   {
6665     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6666   }
6667   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6668   {
6669     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6670   }
6671   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6672   {
6673     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6674   }
6675   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6676   {
6677     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6678   }
6679   else
6680   {
6681     /* nothing to do */
6682   }
6683 
6684 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6685   htim->IC_CaptureHalfCpltCallback(htim);
6686 #else
6687   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6688 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6689 
6690   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6691 }
6692 
6693 /**
6694   * @brief  TIM DMA Period Elapse complete callback.
6695   * @param  hdma pointer to DMA handle.
6696   * @retval None
6697   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6698 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6699 {
6700   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6701 
6702   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6703   {
6704     htim->State = HAL_TIM_STATE_READY;
6705   }
6706 
6707 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6708   htim->PeriodElapsedCallback(htim);
6709 #else
6710   HAL_TIM_PeriodElapsedCallback(htim);
6711 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6712 }
6713 
6714 /**
6715   * @brief  TIM DMA Period Elapse half complete callback.
6716   * @param  hdma pointer to DMA handle.
6717   * @retval None
6718   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6719 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6720 {
6721   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6722 
6723 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6724   htim->PeriodElapsedHalfCpltCallback(htim);
6725 #else
6726   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6727 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6728 }
6729 
6730 /**
6731   * @brief  TIM DMA Trigger callback.
6732   * @param  hdma pointer to DMA handle.
6733   * @retval None
6734   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6735 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6736 {
6737   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6738 
6739   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6740   {
6741     htim->State = HAL_TIM_STATE_READY;
6742   }
6743 
6744 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6745   htim->TriggerCallback(htim);
6746 #else
6747   HAL_TIM_TriggerCallback(htim);
6748 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6749 }
6750 
6751 /**
6752   * @brief  TIM DMA Trigger half complete callback.
6753   * @param  hdma pointer to DMA handle.
6754   * @retval None
6755   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6756 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6757 {
6758   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6759 
6760 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6761   htim->TriggerHalfCpltCallback(htim);
6762 #else
6763   HAL_TIM_TriggerHalfCpltCallback(htim);
6764 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6765 }
6766 
6767 /**
6768   * @brief  Time Base configuration
6769   * @param  TIMx TIM peripheral
6770   * @param  Structure TIM Base configuration structure
6771   * @retval None
6772   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6773 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6774 {
6775   uint32_t tmpcr1;
6776   tmpcr1 = TIMx->CR1;
6777 
6778   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6779   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6780   {
6781     /* Select the Counter Mode */
6782     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6783     tmpcr1 |= Structure->CounterMode;
6784   }
6785 
6786   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6787   {
6788     /* Set the clock division */
6789     tmpcr1 &= ~TIM_CR1_CKD;
6790     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6791   }
6792 
6793   /* Set the auto-reload preload */
6794   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6795 
6796   TIMx->CR1 = tmpcr1;
6797 
6798   /* Set the Autoreload value */
6799   TIMx->ARR = (uint32_t)Structure->Period ;
6800 
6801   /* Set the Prescaler value */
6802   TIMx->PSC = Structure->Prescaler;
6803 
6804   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6805   {
6806     /* Set the Repetition Counter value */
6807     TIMx->RCR = Structure->RepetitionCounter;
6808   }
6809 
6810   /* Generate an update event to reload the Prescaler
6811      and the repetition counter (only for advanced timer) value immediately */
6812   TIMx->EGR = TIM_EGR_UG;
6813 }
6814 
6815 /**
6816   * @brief  Timer Output Compare 1 configuration
6817   * @param  TIMx to select the TIM peripheral
6818   * @param  OC_Config The output configuration structure
6819   * @retval None
6820   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6821 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6822 {
6823   uint32_t tmpccmrx;
6824   uint32_t tmpccer;
6825   uint32_t tmpcr2;
6826 
6827   /* Get the TIMx CCER register value */
6828   tmpccer = TIMx->CCER;
6829 
6830   /* Disable the Channel 1: Reset the CC1E Bit */
6831   TIMx->CCER &= ~TIM_CCER_CC1E;
6832 
6833   /* Get the TIMx CR2 register value */
6834   tmpcr2 =  TIMx->CR2;
6835 
6836   /* Get the TIMx CCMR1 register value */
6837   tmpccmrx = TIMx->CCMR1;
6838 
6839   /* Reset the Output Compare Mode Bits */
6840   tmpccmrx &= ~TIM_CCMR1_OC1M;
6841   tmpccmrx &= ~TIM_CCMR1_CC1S;
6842   /* Select the Output Compare Mode */
6843   tmpccmrx |= OC_Config->OCMode;
6844 
6845   /* Reset the Output Polarity level */
6846   tmpccer &= ~TIM_CCER_CC1P;
6847   /* Set the Output Compare Polarity */
6848   tmpccer |= OC_Config->OCPolarity;
6849 
6850   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
6851   {
6852     /* Check parameters */
6853     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
6854 
6855     /* Reset the Output N Polarity level */
6856     tmpccer &= ~TIM_CCER_CC1NP;
6857     /* Set the Output N Polarity */
6858     tmpccer |= OC_Config->OCNPolarity;
6859     /* Reset the Output N State */
6860     tmpccer &= ~TIM_CCER_CC1NE;
6861   }
6862 
6863   if (IS_TIM_BREAK_INSTANCE(TIMx))
6864   {
6865     /* Check parameters */
6866     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
6867     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
6868 
6869     /* Reset the Output Compare and Output Compare N IDLE State */
6870     tmpcr2 &= ~TIM_CR2_OIS1;
6871     tmpcr2 &= ~TIM_CR2_OIS1N;
6872     /* Set the Output Idle state */
6873     tmpcr2 |= OC_Config->OCIdleState;
6874     /* Set the Output N Idle state */
6875     tmpcr2 |= OC_Config->OCNIdleState;
6876   }
6877 
6878   /* Write to TIMx CR2 */
6879   TIMx->CR2 = tmpcr2;
6880 
6881   /* Write to TIMx CCMR1 */
6882   TIMx->CCMR1 = tmpccmrx;
6883 
6884   /* Set the Capture Compare Register value */
6885   TIMx->CCR1 = OC_Config->Pulse;
6886 
6887   /* Write to TIMx CCER */
6888   TIMx->CCER = tmpccer;
6889 }
6890 
6891 /**
6892   * @brief  Timer Output Compare 2 configuration
6893   * @param  TIMx to select the TIM peripheral
6894   * @param  OC_Config The output configuration structure
6895   * @retval None
6896   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6897 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6898 {
6899   uint32_t tmpccmrx;
6900   uint32_t tmpccer;
6901   uint32_t tmpcr2;
6902 
6903   /* Get the TIMx CCER register value */
6904   tmpccer = TIMx->CCER;
6905 
6906   /* Disable the Channel 2: Reset the CC2E Bit */
6907   TIMx->CCER &= ~TIM_CCER_CC2E;
6908 
6909   /* Get the TIMx CR2 register value */
6910   tmpcr2 =  TIMx->CR2;
6911 
6912   /* Get the TIMx CCMR1 register value */
6913   tmpccmrx = TIMx->CCMR1;
6914 
6915   /* Reset the Output Compare mode and Capture/Compare selection Bits */
6916   tmpccmrx &= ~TIM_CCMR1_OC2M;
6917   tmpccmrx &= ~TIM_CCMR1_CC2S;
6918 
6919   /* Select the Output Compare Mode */
6920   tmpccmrx |= (OC_Config->OCMode << 8U);
6921 
6922   /* Reset the Output Polarity level */
6923   tmpccer &= ~TIM_CCER_CC2P;
6924   /* Set the Output Compare Polarity */
6925   tmpccer |= (OC_Config->OCPolarity << 4U);
6926 
6927   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
6928   {
6929     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
6930 
6931     /* Reset the Output N Polarity level */
6932     tmpccer &= ~TIM_CCER_CC2NP;
6933     /* Set the Output N Polarity */
6934     tmpccer |= (OC_Config->OCNPolarity << 4U);
6935     /* Reset the Output N State */
6936     tmpccer &= ~TIM_CCER_CC2NE;
6937 
6938   }
6939 
6940   if (IS_TIM_BREAK_INSTANCE(TIMx))
6941   {
6942     /* Check parameters */
6943     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
6944     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
6945 
6946     /* Reset the Output Compare and Output Compare N IDLE State */
6947     tmpcr2 &= ~TIM_CR2_OIS2;
6948     tmpcr2 &= ~TIM_CR2_OIS2N;
6949     /* Set the Output Idle state */
6950     tmpcr2 |= (OC_Config->OCIdleState << 2U);
6951     /* Set the Output N Idle state */
6952     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
6953   }
6954 
6955   /* Write to TIMx CR2 */
6956   TIMx->CR2 = tmpcr2;
6957 
6958   /* Write to TIMx CCMR1 */
6959   TIMx->CCMR1 = tmpccmrx;
6960 
6961   /* Set the Capture Compare Register value */
6962   TIMx->CCR2 = OC_Config->Pulse;
6963 
6964   /* Write to TIMx CCER */
6965   TIMx->CCER = tmpccer;
6966 }
6967 
6968 /**
6969   * @brief  Timer Output Compare 3 configuration
6970   * @param  TIMx to select the TIM peripheral
6971   * @param  OC_Config The output configuration structure
6972   * @retval None
6973   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6974 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6975 {
6976   uint32_t tmpccmrx;
6977   uint32_t tmpccer;
6978   uint32_t tmpcr2;
6979 
6980   /* Get the TIMx CCER register value */
6981   tmpccer = TIMx->CCER;
6982 
6983   /* Disable the Channel 3: Reset the CC2E Bit */
6984   TIMx->CCER &= ~TIM_CCER_CC3E;
6985 
6986   /* Get the TIMx CR2 register value */
6987   tmpcr2 =  TIMx->CR2;
6988 
6989   /* Get the TIMx CCMR2 register value */
6990   tmpccmrx = TIMx->CCMR2;
6991 
6992   /* Reset the Output Compare mode and Capture/Compare selection Bits */
6993   tmpccmrx &= ~TIM_CCMR2_OC3M;
6994   tmpccmrx &= ~TIM_CCMR2_CC3S;
6995   /* Select the Output Compare Mode */
6996   tmpccmrx |= OC_Config->OCMode;
6997 
6998   /* Reset the Output Polarity level */
6999   tmpccer &= ~TIM_CCER_CC3P;
7000   /* Set the Output Compare Polarity */
7001   tmpccer |= (OC_Config->OCPolarity << 8U);
7002 
7003   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7004   {
7005     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7006 
7007     /* Reset the Output N Polarity level */
7008     tmpccer &= ~TIM_CCER_CC3NP;
7009     /* Set the Output N Polarity */
7010     tmpccer |= (OC_Config->OCNPolarity << 8U);
7011     /* Reset the Output N State */
7012     tmpccer &= ~TIM_CCER_CC3NE;
7013   }
7014 
7015   if (IS_TIM_BREAK_INSTANCE(TIMx))
7016   {
7017     /* Check parameters */
7018     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7019     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7020 
7021     /* Reset the Output Compare and Output Compare N IDLE State */
7022     tmpcr2 &= ~TIM_CR2_OIS3;
7023     tmpcr2 &= ~TIM_CR2_OIS3N;
7024     /* Set the Output Idle state */
7025     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7026     /* Set the Output N Idle state */
7027     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7028   }
7029 
7030   /* Write to TIMx CR2 */
7031   TIMx->CR2 = tmpcr2;
7032 
7033   /* Write to TIMx CCMR2 */
7034   TIMx->CCMR2 = tmpccmrx;
7035 
7036   /* Set the Capture Compare Register value */
7037   TIMx->CCR3 = OC_Config->Pulse;
7038 
7039   /* Write to TIMx CCER */
7040   TIMx->CCER = tmpccer;
7041 }
7042 
7043 /**
7044   * @brief  Timer Output Compare 4 configuration
7045   * @param  TIMx to select the TIM peripheral
7046   * @param  OC_Config The output configuration structure
7047   * @retval None
7048   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7049 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7050 {
7051   uint32_t tmpccmrx;
7052   uint32_t tmpccer;
7053   uint32_t tmpcr2;
7054 
7055   /* Get the TIMx CCER register value */
7056   tmpccer = TIMx->CCER;
7057 
7058   /* Disable the Channel 4: Reset the CC4E Bit */
7059   TIMx->CCER &= ~TIM_CCER_CC4E;
7060 
7061   /* Get the TIMx CR2 register value */
7062   tmpcr2 =  TIMx->CR2;
7063 
7064   /* Get the TIMx CCMR2 register value */
7065   tmpccmrx = TIMx->CCMR2;
7066 
7067   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7068   tmpccmrx &= ~TIM_CCMR2_OC4M;
7069   tmpccmrx &= ~TIM_CCMR2_CC4S;
7070 
7071   /* Select the Output Compare Mode */
7072   tmpccmrx |= (OC_Config->OCMode << 8U);
7073 
7074   /* Reset the Output Polarity level */
7075   tmpccer &= ~TIM_CCER_CC4P;
7076   /* Set the Output Compare Polarity */
7077   tmpccer |= (OC_Config->OCPolarity << 12U);
7078 
7079   if (IS_TIM_BREAK_INSTANCE(TIMx))
7080   {
7081     /* Check parameters */
7082     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7083 
7084     /* Reset the Output Compare IDLE State */
7085     tmpcr2 &= ~TIM_CR2_OIS4;
7086 
7087     /* Set the Output Idle state */
7088     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7089   }
7090 
7091   /* Write to TIMx CR2 */
7092   TIMx->CR2 = tmpcr2;
7093 
7094   /* Write to TIMx CCMR2 */
7095   TIMx->CCMR2 = tmpccmrx;
7096 
7097   /* Set the Capture Compare Register value */
7098   TIMx->CCR4 = OC_Config->Pulse;
7099 
7100   /* Write to TIMx CCER */
7101   TIMx->CCER = tmpccer;
7102 }
7103 
7104 /**
7105   * @brief  Slave Timer configuration function
7106   * @param  htim TIM handle
7107   * @param  sSlaveConfig Slave timer configuration
7108   * @retval None
7109   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7110 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7111                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7112 {
7113   HAL_StatusTypeDef status = HAL_OK;
7114   uint32_t tmpsmcr;
7115   uint32_t tmpccmr1;
7116   uint32_t tmpccer;
7117 
7118   /* Get the TIMx SMCR register value */
7119   tmpsmcr = htim->Instance->SMCR;
7120 
7121   /* Reset the Trigger Selection Bits */
7122   tmpsmcr &= ~TIM_SMCR_TS;
7123   /* Set the Input Trigger source */
7124   tmpsmcr |= sSlaveConfig->InputTrigger;
7125 
7126   /* Reset the slave mode Bits */
7127   tmpsmcr &= ~TIM_SMCR_SMS;
7128   /* Set the slave mode */
7129   tmpsmcr |= sSlaveConfig->SlaveMode;
7130 
7131   /* Write to TIMx SMCR */
7132   htim->Instance->SMCR = tmpsmcr;
7133 
7134   /* Configure the trigger prescaler, filter, and polarity */
7135   switch (sSlaveConfig->InputTrigger)
7136   {
7137     case TIM_TS_ETRF:
7138     {
7139       /* Check the parameters */
7140       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7141       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7142       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7143       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7144       /* Configure the ETR Trigger source */
7145       TIM_ETR_SetConfig(htim->Instance,
7146                         sSlaveConfig->TriggerPrescaler,
7147                         sSlaveConfig->TriggerPolarity,
7148                         sSlaveConfig->TriggerFilter);
7149       break;
7150     }
7151 
7152     case TIM_TS_TI1F_ED:
7153     {
7154       /* Check the parameters */
7155       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7156       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7157 
7158       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7159       {
7160         return HAL_ERROR;
7161       }
7162 
7163       /* Disable the Channel 1: Reset the CC1E Bit */
7164       tmpccer = htim->Instance->CCER;
7165       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7166       tmpccmr1 = htim->Instance->CCMR1;
7167 
7168       /* Set the filter */
7169       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7170       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7171 
7172       /* Write to TIMx CCMR1 and CCER registers */
7173       htim->Instance->CCMR1 = tmpccmr1;
7174       htim->Instance->CCER = tmpccer;
7175       break;
7176     }
7177 
7178     case TIM_TS_TI1FP1:
7179     {
7180       /* Check the parameters */
7181       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7182       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7183       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7184 
7185       /* Configure TI1 Filter and Polarity */
7186       TIM_TI1_ConfigInputStage(htim->Instance,
7187                                sSlaveConfig->TriggerPolarity,
7188                                sSlaveConfig->TriggerFilter);
7189       break;
7190     }
7191 
7192     case TIM_TS_TI2FP2:
7193     {
7194       /* Check the parameters */
7195       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7196       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7197       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7198 
7199       /* Configure TI2 Filter and Polarity */
7200       TIM_TI2_ConfigInputStage(htim->Instance,
7201                                sSlaveConfig->TriggerPolarity,
7202                                sSlaveConfig->TriggerFilter);
7203       break;
7204     }
7205 
7206     case TIM_TS_ITR0:
7207     case TIM_TS_ITR1:
7208     case TIM_TS_ITR2:
7209     case TIM_TS_ITR3:
7210     {
7211       /* Check the parameter */
7212       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7213       break;
7214     }
7215 
7216     default:
7217       status = HAL_ERROR;
7218       break;
7219   }
7220 
7221   return status;
7222 }
7223 
7224 /**
7225   * @brief  Configure the TI1 as Input.
7226   * @param  TIMx to select the TIM peripheral.
7227   * @param  TIM_ICPolarity The Input Polarity.
7228   *          This parameter can be one of the following values:
7229   *            @arg TIM_ICPOLARITY_RISING
7230   *            @arg TIM_ICPOLARITY_FALLING
7231   *            @arg TIM_ICPOLARITY_BOTHEDGE
7232   * @param  TIM_ICSelection specifies the input to be used.
7233   *          This parameter can be one of the following values:
7234   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7235   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7236   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7237   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7238   *          This parameter must be a value between 0x00 and 0x0F.
7239   * @retval None
7240   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7241   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7242   *        protected against un-initialized filter and polarity values.
7243   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7244 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7245                        uint32_t TIM_ICFilter)
7246 {
7247   uint32_t tmpccmr1;
7248   uint32_t tmpccer;
7249 
7250   /* Disable the Channel 1: Reset the CC1E Bit */
7251   tmpccer = TIMx->CCER;
7252   TIMx->CCER &= ~TIM_CCER_CC1E;
7253   tmpccmr1 = TIMx->CCMR1;
7254 
7255   /* Select the Input */
7256   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7257   {
7258     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7259     tmpccmr1 |= TIM_ICSelection;
7260   }
7261   else
7262   {
7263     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7264   }
7265 
7266   /* Set the filter */
7267   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7268   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7269 
7270   /* Select the Polarity and set the CC1E Bit */
7271   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7272   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7273 
7274   /* Write to TIMx CCMR1 and CCER registers */
7275   TIMx->CCMR1 = tmpccmr1;
7276   TIMx->CCER = tmpccer;
7277 }
7278 
7279 /**
7280   * @brief  Configure the Polarity and Filter for TI1.
7281   * @param  TIMx to select the TIM peripheral.
7282   * @param  TIM_ICPolarity The Input Polarity.
7283   *          This parameter can be one of the following values:
7284   *            @arg TIM_ICPOLARITY_RISING
7285   *            @arg TIM_ICPOLARITY_FALLING
7286   *            @arg TIM_ICPOLARITY_BOTHEDGE
7287   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7288   *          This parameter must be a value between 0x00 and 0x0F.
7289   * @retval None
7290   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7291 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7292 {
7293   uint32_t tmpccmr1;
7294   uint32_t tmpccer;
7295 
7296   /* Disable the Channel 1: Reset the CC1E Bit */
7297   tmpccer = TIMx->CCER;
7298   TIMx->CCER &= ~TIM_CCER_CC1E;
7299   tmpccmr1 = TIMx->CCMR1;
7300 
7301   /* Set the filter */
7302   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7303   tmpccmr1 |= (TIM_ICFilter << 4U);
7304 
7305   /* Select the Polarity and set the CC1E Bit */
7306   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7307   tmpccer |= TIM_ICPolarity;
7308 
7309   /* Write to TIMx CCMR1 and CCER registers */
7310   TIMx->CCMR1 = tmpccmr1;
7311   TIMx->CCER = tmpccer;
7312 }
7313 
7314 /**
7315   * @brief  Configure the TI2 as Input.
7316   * @param  TIMx to select the TIM peripheral
7317   * @param  TIM_ICPolarity The Input Polarity.
7318   *          This parameter can be one of the following values:
7319   *            @arg TIM_ICPOLARITY_RISING
7320   *            @arg TIM_ICPOLARITY_FALLING
7321   *            @arg TIM_ICPOLARITY_BOTHEDGE
7322   * @param  TIM_ICSelection specifies the input to be used.
7323   *          This parameter can be one of the following values:
7324   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7325   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7326   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7327   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7328   *          This parameter must be a value between 0x00 and 0x0F.
7329   * @retval None
7330   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7331   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7332   *        protected against un-initialized filter and polarity values.
7333   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7334 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7335                               uint32_t TIM_ICFilter)
7336 {
7337   uint32_t tmpccmr1;
7338   uint32_t tmpccer;
7339 
7340   /* Disable the Channel 2: Reset the CC2E Bit */
7341   tmpccer = TIMx->CCER;
7342   TIMx->CCER &= ~TIM_CCER_CC2E;
7343   tmpccmr1 = TIMx->CCMR1;
7344 
7345   /* Select the Input */
7346   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7347   tmpccmr1 |= (TIM_ICSelection << 8U);
7348 
7349   /* Set the filter */
7350   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7351   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7352 
7353   /* Select the Polarity and set the CC2E Bit */
7354   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7355   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7356 
7357   /* Write to TIMx CCMR1 and CCER registers */
7358   TIMx->CCMR1 = tmpccmr1 ;
7359   TIMx->CCER = tmpccer;
7360 }
7361 
7362 /**
7363   * @brief  Configure the Polarity and Filter for TI2.
7364   * @param  TIMx to select the TIM peripheral.
7365   * @param  TIM_ICPolarity The Input Polarity.
7366   *          This parameter can be one of the following values:
7367   *            @arg TIM_ICPOLARITY_RISING
7368   *            @arg TIM_ICPOLARITY_FALLING
7369   *            @arg TIM_ICPOLARITY_BOTHEDGE
7370   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7371   *          This parameter must be a value between 0x00 and 0x0F.
7372   * @retval None
7373   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7374 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7375 {
7376   uint32_t tmpccmr1;
7377   uint32_t tmpccer;
7378 
7379   /* Disable the Channel 2: Reset the CC2E Bit */
7380   tmpccer = TIMx->CCER;
7381   TIMx->CCER &= ~TIM_CCER_CC2E;
7382   tmpccmr1 = TIMx->CCMR1;
7383 
7384   /* Set the filter */
7385   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7386   tmpccmr1 |= (TIM_ICFilter << 12U);
7387 
7388   /* Select the Polarity and set the CC2E Bit */
7389   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7390   tmpccer |= (TIM_ICPolarity << 4U);
7391 
7392   /* Write to TIMx CCMR1 and CCER registers */
7393   TIMx->CCMR1 = tmpccmr1 ;
7394   TIMx->CCER = tmpccer;
7395 }
7396 
7397 /**
7398   * @brief  Configure the TI3 as Input.
7399   * @param  TIMx to select the TIM peripheral
7400   * @param  TIM_ICPolarity The Input Polarity.
7401   *          This parameter can be one of the following values:
7402   *            @arg TIM_ICPOLARITY_RISING
7403   *            @arg TIM_ICPOLARITY_FALLING
7404   *            @arg TIM_ICPOLARITY_BOTHEDGE
7405   * @param  TIM_ICSelection specifies the input to be used.
7406   *          This parameter can be one of the following values:
7407   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7408   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7409   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7410   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7411   *          This parameter must be a value between 0x00 and 0x0F.
7412   * @retval None
7413   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7414   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7415   *        protected against un-initialized filter and polarity values.
7416   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7417 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7418                               uint32_t TIM_ICFilter)
7419 {
7420   uint32_t tmpccmr2;
7421   uint32_t tmpccer;
7422 
7423   /* Disable the Channel 3: Reset the CC3E Bit */
7424   tmpccer = TIMx->CCER;
7425   TIMx->CCER &= ~TIM_CCER_CC3E;
7426   tmpccmr2 = TIMx->CCMR2;
7427 
7428   /* Select the Input */
7429   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7430   tmpccmr2 |= TIM_ICSelection;
7431 
7432   /* Set the filter */
7433   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7434   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7435 
7436   /* Select the Polarity and set the CC3E Bit */
7437   tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7438   tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7439 
7440   /* Write to TIMx CCMR2 and CCER registers */
7441   TIMx->CCMR2 = tmpccmr2;
7442   TIMx->CCER = tmpccer;
7443 }
7444 
7445 /**
7446   * @brief  Configure the TI4 as Input.
7447   * @param  TIMx to select the TIM peripheral
7448   * @param  TIM_ICPolarity The Input Polarity.
7449   *          This parameter can be one of the following values:
7450   *            @arg TIM_ICPOLARITY_RISING
7451   *            @arg TIM_ICPOLARITY_FALLING
7452   *            @arg TIM_ICPOLARITY_BOTHEDGE
7453   * @param  TIM_ICSelection specifies the input to be used.
7454   *          This parameter can be one of the following values:
7455   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7456   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7457   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7458   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7459   *          This parameter must be a value between 0x00 and 0x0F.
7460   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7461   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7462   *        protected against un-initialized filter and polarity values.
7463   * @retval None
7464   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7465 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7466                               uint32_t TIM_ICFilter)
7467 {
7468   uint32_t tmpccmr2;
7469   uint32_t tmpccer;
7470 
7471   /* Disable the Channel 4: Reset the CC4E Bit */
7472   tmpccer = TIMx->CCER;
7473   TIMx->CCER &= ~TIM_CCER_CC4E;
7474   tmpccmr2 = TIMx->CCMR2;
7475 
7476   /* Select the Input */
7477   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7478   tmpccmr2 |= (TIM_ICSelection << 8U);
7479 
7480   /* Set the filter */
7481   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7482   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7483 
7484   /* Select the Polarity and set the CC4E Bit */
7485   tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7486   tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7487 
7488   /* Write to TIMx CCMR2 and CCER registers */
7489   TIMx->CCMR2 = tmpccmr2;
7490   TIMx->CCER = tmpccer ;
7491 }
7492 
7493 /**
7494   * @brief  Selects the Input Trigger source
7495   * @param  TIMx to select the TIM peripheral
7496   * @param  InputTriggerSource The Input Trigger source.
7497   *          This parameter can be one of the following values:
7498   *            @arg TIM_TS_ITR0: Internal Trigger 0
7499   *            @arg TIM_TS_ITR1: Internal Trigger 1
7500   *            @arg TIM_TS_ITR2: Internal Trigger 2
7501   *            @arg TIM_TS_ITR3: Internal Trigger 3
7502   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7503   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7504   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7505   *            @arg TIM_TS_ETRF: External Trigger input
7506   * @retval None
7507   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7508 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7509 {
7510   uint32_t tmpsmcr;
7511 
7512   /* Get the TIMx SMCR register value */
7513   tmpsmcr = TIMx->SMCR;
7514   /* Reset the TS Bits */
7515   tmpsmcr &= ~TIM_SMCR_TS;
7516   /* Set the Input Trigger source and the slave mode*/
7517   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7518   /* Write to TIMx SMCR */
7519   TIMx->SMCR = tmpsmcr;
7520 }
7521 /**
7522   * @brief  Configures the TIMx External Trigger (ETR).
7523   * @param  TIMx to select the TIM peripheral
7524   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7525   *          This parameter can be one of the following values:
7526   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7527   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7528   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7529   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7530   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7531   *          This parameter can be one of the following values:
7532   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7533   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7534   * @param  ExtTRGFilter External Trigger Filter.
7535   *          This parameter must be a value between 0x00 and 0x0F
7536   * @retval None
7537   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7538 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7539                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7540 {
7541   uint32_t tmpsmcr;
7542 
7543   tmpsmcr = TIMx->SMCR;
7544 
7545   /* Reset the ETR Bits */
7546   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7547 
7548   /* Set the Prescaler, the Filter value and the Polarity */
7549   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7550 
7551   /* Write to TIMx SMCR */
7552   TIMx->SMCR = tmpsmcr;
7553 }
7554 
7555 /**
7556   * @brief  Enables or disables the TIM Capture Compare Channel x.
7557   * @param  TIMx to select the TIM peripheral
7558   * @param  Channel specifies the TIM Channel
7559   *          This parameter can be one of the following values:
7560   *            @arg TIM_CHANNEL_1: TIM Channel 1
7561   *            @arg TIM_CHANNEL_2: TIM Channel 2
7562   *            @arg TIM_CHANNEL_3: TIM Channel 3
7563   *            @arg TIM_CHANNEL_4: TIM Channel 4
7564   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7565   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7566   * @retval None
7567   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7568 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7569 {
7570   uint32_t tmp;
7571 
7572   /* Check the parameters */
7573   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7574   assert_param(IS_TIM_CHANNELS(Channel));
7575 
7576   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7577 
7578   /* Reset the CCxE Bit */
7579   TIMx->CCER &= ~tmp;
7580 
7581   /* Set or reset the CCxE Bit */
7582   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7583 }
7584 
7585 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7586 /**
7587   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7588   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7589   *                the configuration information for TIM module.
7590   * @retval None
7591   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7592 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7593 {
7594   /* Reset the TIM callback to the legacy weak callbacks */
7595   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7596   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7597   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7598   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7599   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7600   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7601   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7602   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7603   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7604   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7605   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7606   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7607   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7608 }
7609 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7610 
7611 /**
7612   * @}
7613   */
7614 
7615 #endif /* HAL_TIM_MODULE_ENABLED */
7616 /**
7617   * @}
7618   */
7619 
7620 /**
7621   * @}
7622   */
7623