1 /**
2   ******************************************************************************
3   * @file    stm32f1xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.</center></h2>
11   *
12   * This software component is licensed by ST under BSD 3-Clause license,
13   * the "License"; You may not use this file except in compliance with the
14   * License. You may obtain a copy of the License at:
15   *                        opensource.org/licenses/BSD-3-Clause
16   *
17   ******************************************************************************
18   */
19 #if defined(USE_FULL_LL_DRIVER)
20 
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32f1xx_ll_tim.h"
23 #include "stm32f1xx_ll_bus.h"
24 
25 #ifdef  USE_FULL_ASSERT
26 #include "stm32_assert.h"
27 #else
28 #define assert_param(expr) ((void)0U)
29 #endif /* USE_FULL_ASSERT */
30 
31 /** @addtogroup STM32F1xx_LL_Driver
32   * @{
33   */
34 
35 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17)
36 
37 /** @addtogroup TIM_LL
38   * @{
39   */
40 
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private constants ---------------------------------------------------------*/
44 /* Private macros ------------------------------------------------------------*/
45 /** @addtogroup TIM_LL_Private_Macros
46   * @{
47   */
48 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
53 
54 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
57 
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
66 
67 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
68                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
69 
70 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
71                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
72 
73 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
74                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
75 
76 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
77                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
78                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
79 
80 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
81                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
82                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
83                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
84 
85 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
86                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
87                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
88                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
89                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
90                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
101 
102 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
103                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
104 
105 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
106                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
107                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
108 
109 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
110                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
111 
112 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
113                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
114 
115 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
116                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
117 
118 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
119                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
120                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
121                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
122 
123 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
124                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
125 
126 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
127                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
128 
129 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
130                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
131 /**
132   * @}
133   */
134 
135 
136 /* Private function prototypes -----------------------------------------------*/
137 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
138   * @{
139   */
140 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
141 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
142 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
143 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
144 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
145 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
146 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
147 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
148 /**
149   * @}
150   */
151 
152 /* Exported functions --------------------------------------------------------*/
153 /** @addtogroup TIM_LL_Exported_Functions
154   * @{
155   */
156 
157 /** @addtogroup TIM_LL_EF_Init
158   * @{
159   */
160 
161 /**
162   * @brief  Set TIMx registers to their reset values.
163   * @param  TIMx Timer instance
164   * @retval An ErrorStatus enumeration value:
165   *          - SUCCESS: TIMx registers are de-initialized
166   *          - ERROR: invalid TIMx instance
167   */
LL_TIM_DeInit(TIM_TypeDef * TIMx)168 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
169 {
170   ErrorStatus result = SUCCESS;
171 
172   /* Check the parameters */
173   assert_param(IS_TIM_INSTANCE(TIMx));
174 
175   if (TIMx == TIM2)
176   {
177     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
178     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
179   }
180 #if defined(TIM1)
181   else if (TIMx == TIM1)
182   {
183     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
184     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
185   }
186 #endif
187 #if defined(TIM3)
188   else if (TIMx == TIM3)
189   {
190     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
191     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
192   }
193 #endif
194 #if defined(TIM4)
195   else if (TIMx == TIM4)
196   {
197     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
198     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
199   }
200 #endif
201 #if defined(TIM5)
202   else if (TIMx == TIM5)
203   {
204     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
205     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
206   }
207 #endif
208 #if defined(TIM6)
209   else if (TIMx == TIM6)
210   {
211     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
212     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
213   }
214 #endif
215 #if defined (TIM7)
216   else if (TIMx == TIM7)
217   {
218     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
219     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
220   }
221 #endif
222 #if defined(TIM8)
223   else if (TIMx == TIM8)
224   {
225     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
226     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
227   }
228 #endif
229 #if defined(TIM9)
230   else if (TIMx == TIM9)
231   {
232     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
233     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
234   }
235 #endif
236 #if defined(TIM10)
237   else if (TIMx == TIM10)
238   {
239     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
240     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
241   }
242 #endif
243 #if defined(TIM11)
244   else if (TIMx == TIM11)
245   {
246     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
247     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
248   }
249 #endif
250 #if defined(TIM12)
251   else if (TIMx == TIM12)
252   {
253     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
254     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
255   }
256 #endif
257 #if defined(TIM13)
258   else if (TIMx == TIM13)
259   {
260     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
261     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
262   }
263 #endif
264 #if defined(TIM14)
265   else if (TIMx == TIM14)
266   {
267     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
268     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
269   }
270 #endif
271 #if defined(TIM15)
272   else if (TIMx == TIM15)
273   {
274     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
275     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
276   }
277 #endif
278 #if defined(TIM16)
279   else if (TIMx == TIM16)
280   {
281     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
282     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
283   }
284 #endif
285 #if defined(TIM17)
286   else if (TIMx == TIM17)
287   {
288     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
289     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
290   }
291 #endif
292   else
293   {
294     result = ERROR;
295   }
296 
297   return result;
298 }
299 
300 /**
301   * @brief  Set the fields of the time base unit configuration data structure
302   *         to their default values.
303   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
304   * @retval None
305   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)306 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
307 {
308   /* Set the default configuration */
309   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
310   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
311   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
312   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
313   TIM_InitStruct->RepetitionCounter = 0x00000000U;
314 }
315 
316 /**
317   * @brief  Configure the TIMx time base unit.
318   * @param  TIMx Timer Instance
319   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
320   *         (TIMx time base unit configuration data structure)
321   * @retval An ErrorStatus enumeration value:
322   *          - SUCCESS: TIMx registers are de-initialized
323   *          - ERROR: not applicable
324   */
LL_TIM_Init(TIM_TypeDef * TIMx,LL_TIM_InitTypeDef * TIM_InitStruct)325 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
326 {
327   uint32_t tmpcr1;
328 
329   /* Check the parameters */
330   assert_param(IS_TIM_INSTANCE(TIMx));
331   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
332   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
333 
334   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
335 
336   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
337   {
338     /* Select the Counter Mode */
339     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
340   }
341 
342   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
343   {
344     /* Set the clock division */
345     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
346   }
347 
348   /* Write to TIMx CR1 */
349   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
350 
351   /* Set the Autoreload value */
352   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
353 
354   /* Set the Prescaler value */
355   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
356 
357   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
358   {
359     /* Set the Repetition Counter value */
360     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
361   }
362 
363   /* Generate an update event to reload the Prescaler
364      and the repetition counter value (if applicable) immediately */
365   LL_TIM_GenerateEvent_UPDATE(TIMx);
366 
367   return SUCCESS;
368 }
369 
370 /**
371   * @brief  Set the fields of the TIMx output channel configuration data
372   *         structure to their default values.
373   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
374   *         (the output channel configuration data structure)
375   * @retval None
376   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)377 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
378 {
379   /* Set the default configuration */
380   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
381   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
382   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
383   TIM_OC_InitStruct->CompareValue = 0x00000000U;
384   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
385   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
386   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
387   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
388 }
389 
390 /**
391   * @brief  Configure the TIMx output channel.
392   * @param  TIMx Timer Instance
393   * @param  Channel This parameter can be one of the following values:
394   *         @arg @ref LL_TIM_CHANNEL_CH1
395   *         @arg @ref LL_TIM_CHANNEL_CH2
396   *         @arg @ref LL_TIM_CHANNEL_CH3
397   *         @arg @ref LL_TIM_CHANNEL_CH4
398   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
399   *         data structure)
400   * @retval An ErrorStatus enumeration value:
401   *          - SUCCESS: TIMx output channel is initialized
402   *          - ERROR: TIMx output channel is not initialized
403   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)404 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
405 {
406   ErrorStatus result = ERROR;
407 
408   switch (Channel)
409   {
410     case LL_TIM_CHANNEL_CH1:
411       result = OC1Config(TIMx, TIM_OC_InitStruct);
412       break;
413     case LL_TIM_CHANNEL_CH2:
414       result = OC2Config(TIMx, TIM_OC_InitStruct);
415       break;
416     case LL_TIM_CHANNEL_CH3:
417       result = OC3Config(TIMx, TIM_OC_InitStruct);
418       break;
419     case LL_TIM_CHANNEL_CH4:
420       result = OC4Config(TIMx, TIM_OC_InitStruct);
421       break;
422     default:
423       break;
424   }
425 
426   return result;
427 }
428 
429 /**
430   * @brief  Set the fields of the TIMx input channel configuration data
431   *         structure to their default values.
432   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
433   *         data structure)
434   * @retval None
435   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)436 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
437 {
438   /* Set the default configuration */
439   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
440   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
441   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
442   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
443 }
444 
445 /**
446   * @brief  Configure the TIMx input channel.
447   * @param  TIMx Timer Instance
448   * @param  Channel This parameter can be one of the following values:
449   *         @arg @ref LL_TIM_CHANNEL_CH1
450   *         @arg @ref LL_TIM_CHANNEL_CH2
451   *         @arg @ref LL_TIM_CHANNEL_CH3
452   *         @arg @ref LL_TIM_CHANNEL_CH4
453   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
454   *         structure)
455   * @retval An ErrorStatus enumeration value:
456   *          - SUCCESS: TIMx output channel is initialized
457   *          - ERROR: TIMx output channel is not initialized
458   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)459 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
460 {
461   ErrorStatus result = ERROR;
462 
463   switch (Channel)
464   {
465     case LL_TIM_CHANNEL_CH1:
466       result = IC1Config(TIMx, TIM_IC_InitStruct);
467       break;
468     case LL_TIM_CHANNEL_CH2:
469       result = IC2Config(TIMx, TIM_IC_InitStruct);
470       break;
471     case LL_TIM_CHANNEL_CH3:
472       result = IC3Config(TIMx, TIM_IC_InitStruct);
473       break;
474     case LL_TIM_CHANNEL_CH4:
475       result = IC4Config(TIMx, TIM_IC_InitStruct);
476       break;
477     default:
478       break;
479   }
480 
481   return result;
482 }
483 
484 /**
485   * @brief  Fills each TIM_EncoderInitStruct field with its default value
486   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
487   *         configuration data structure)
488   * @retval None
489   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)490 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
491 {
492   /* Set the default configuration */
493   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
494   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
495   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
496   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
497   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
498   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
499   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
500   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
501   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
502 }
503 
504 /**
505   * @brief  Configure the encoder interface of the timer instance.
506   * @param  TIMx Timer Instance
507   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
508   *         configuration data structure)
509   * @retval An ErrorStatus enumeration value:
510   *          - SUCCESS: TIMx registers are de-initialized
511   *          - ERROR: not applicable
512   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)513 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
514 {
515   uint32_t tmpccmr1;
516   uint32_t tmpccer;
517 
518   /* Check the parameters */
519   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
520   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
521   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
522   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
523   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
524   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
525   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
526   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
527   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
528   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
529 
530   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
531   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
532 
533   /* Get the TIMx CCMR1 register value */
534   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
535 
536   /* Get the TIMx CCER register value */
537   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
538 
539   /* Configure TI1 */
540   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
541   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
542   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
543   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
544 
545   /* Configure TI2 */
546   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
547   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
548   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
549   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
550 
551   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
552   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
553   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
554   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
555   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
556 
557   /* Set encoder mode */
558   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
559 
560   /* Write to TIMx CCMR1 */
561   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
562 
563   /* Write to TIMx CCER */
564   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
565 
566   return SUCCESS;
567 }
568 
569 /**
570   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
571   *         structure to their default values.
572   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
573   *         configuration data structure)
574   * @retval None
575   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)576 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
577 {
578   /* Set the default configuration */
579   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
580   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
581   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
582   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
583 }
584 
585 /**
586   * @brief  Configure the Hall sensor interface of the timer instance.
587   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
588   *       to the TI1 input channel
589   * @note TIMx slave mode controller is configured in reset mode.
590           Selected internal trigger is TI1F_ED.
591   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
592   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
593   *       between 2 changes on the inputs. It gives information about motor speed.
594   * @note Channel 2 is configured in output PWM 2 mode.
595   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
596   * @note OC2REF is selected as trigger output on TRGO.
597   * @param  TIMx Timer Instance
598   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
599   *         interface configuration data structure)
600   * @retval An ErrorStatus enumeration value:
601   *          - SUCCESS: TIMx registers are de-initialized
602   *          - ERROR: not applicable
603   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)604 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
605 {
606   uint32_t tmpcr2;
607   uint32_t tmpccmr1;
608   uint32_t tmpccer;
609   uint32_t tmpsmcr;
610 
611   /* Check the parameters */
612   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
613   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
614   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
615   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
616 
617   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
618   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
619 
620   /* Get the TIMx CR2 register value */
621   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
622 
623   /* Get the TIMx CCMR1 register value */
624   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
625 
626   /* Get the TIMx CCER register value */
627   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
628 
629   /* Get the TIMx SMCR register value */
630   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
631 
632   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
633   tmpcr2 |= TIM_CR2_TI1S;
634 
635   /* OC2REF signal is used as trigger output (TRGO) */
636   tmpcr2 |= LL_TIM_TRGO_OC2REF;
637 
638   /* Configure the slave mode controller */
639   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
640   tmpsmcr |= LL_TIM_TS_TI1F_ED;
641   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
642 
643   /* Configure input channel 1 */
644   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
645   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
646   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
647   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
648 
649   /* Configure input channel 2 */
650   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
651   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
652 
653   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
654   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
655   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
656   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
657 
658   /* Write to TIMx CR2 */
659   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
660 
661   /* Write to TIMx SMCR */
662   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
663 
664   /* Write to TIMx CCMR1 */
665   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
666 
667   /* Write to TIMx CCER */
668   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
669 
670   /* Write to TIMx CCR2 */
671   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
672 
673   return SUCCESS;
674 }
675 
676 /**
677   * @brief  Set the fields of the Break and Dead Time configuration data structure
678   *         to their default values.
679   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
680   *         data structure)
681   * @retval None
682   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)683 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
684 {
685   /* Set the default configuration */
686   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
687   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
688   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
689   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
690   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
691   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
692   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
693 }
694 
695 /**
696   * @brief  Configure the Break and Dead Time feature of the timer instance.
697   * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
698   *  depending on the LOCK configuration, it can be necessary to configure all of
699   *  them during the first write access to the TIMx_BDTR register.
700   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
701   *       a timer instance provides a break input.
702   * @param  TIMx Timer Instance
703   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
704   *         data structure)
705   * @retval An ErrorStatus enumeration value:
706   *          - SUCCESS: Break and Dead Time is initialized
707   *          - ERROR: not applicable
708   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)709 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
710 {
711   uint32_t tmpbdtr = 0;
712 
713   /* Check the parameters */
714   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
715   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
716   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
717   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
718   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
719   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
720   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
721 
722   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
723   the OSSI State, the dead time value and the Automatic Output Enable Bit */
724 
725   /* Set the BDTR bits */
726   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
727   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
728   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
729   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
730   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
731   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
732   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
733   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
734 
735   /* Set TIMx_BDTR */
736   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
737 
738   return SUCCESS;
739 }
740 /**
741   * @}
742   */
743 
744 /**
745   * @}
746   */
747 
748 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
749   *  @brief   Private functions
750   * @{
751   */
752 /**
753   * @brief  Configure the TIMx output channel 1.
754   * @param  TIMx Timer Instance
755   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
756   * @retval An ErrorStatus enumeration value:
757   *          - SUCCESS: TIMx registers are de-initialized
758   *          - ERROR: not applicable
759   */
OC1Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)760 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
761 {
762   uint32_t tmpccmr1;
763   uint32_t tmpccer;
764   uint32_t tmpcr2;
765 
766   /* Check the parameters */
767   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
768   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
769   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
770   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
771   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
772   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
773 
774   /* Disable the Channel 1: Reset the CC1E Bit */
775   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
776 
777   /* Get the TIMx CCER register value */
778   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
779 
780   /* Get the TIMx CR2 register value */
781   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
782 
783   /* Get the TIMx CCMR1 register value */
784   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
785 
786   /* Reset Capture/Compare selection Bits */
787   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
788 
789   /* Set the Output Compare Mode */
790   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
791 
792   /* Set the Output Compare Polarity */
793   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
794 
795   /* Set the Output State */
796   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
797 
798   if (IS_TIM_BREAK_INSTANCE(TIMx))
799   {
800     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
801     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
802 
803     /* Set the complementary output Polarity */
804     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
805 
806     /* Set the complementary output State */
807     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
808 
809     /* Set the Output Idle state */
810     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
811 
812     /* Set the complementary output Idle state */
813     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
814   }
815 
816   /* Write to TIMx CR2 */
817   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
818 
819   /* Write to TIMx CCMR1 */
820   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
821 
822   /* Set the Capture Compare Register value */
823   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
824 
825   /* Write to TIMx CCER */
826   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
827 
828   return SUCCESS;
829 }
830 
831 /**
832   * @brief  Configure the TIMx output channel 2.
833   * @param  TIMx Timer Instance
834   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
835   * @retval An ErrorStatus enumeration value:
836   *          - SUCCESS: TIMx registers are de-initialized
837   *          - ERROR: not applicable
838   */
OC2Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)839 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
840 {
841   uint32_t tmpccmr1;
842   uint32_t tmpccer;
843   uint32_t tmpcr2;
844 
845   /* Check the parameters */
846   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
847   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
848   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
849   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
850   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
851   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
852 
853   /* Disable the Channel 2: Reset the CC2E Bit */
854   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
855 
856   /* Get the TIMx CCER register value */
857   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
858 
859   /* Get the TIMx CR2 register value */
860   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
861 
862   /* Get the TIMx CCMR1 register value */
863   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
864 
865   /* Reset Capture/Compare selection Bits */
866   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
867 
868   /* Select the Output Compare Mode */
869   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
870 
871   /* Set the Output Compare Polarity */
872   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
873 
874   /* Set the Output State */
875   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
876 
877   if (IS_TIM_BREAK_INSTANCE(TIMx))
878   {
879     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
880     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
881 
882     /* Set the complementary output Polarity */
883     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
884 
885     /* Set the complementary output State */
886     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
887 
888     /* Set the Output Idle state */
889     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
890 
891     /* Set the complementary output Idle state */
892     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
893   }
894 
895   /* Write to TIMx CR2 */
896   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
897 
898   /* Write to TIMx CCMR1 */
899   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
900 
901   /* Set the Capture Compare Register value */
902   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
903 
904   /* Write to TIMx CCER */
905   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
906 
907   return SUCCESS;
908 }
909 
910 /**
911   * @brief  Configure the TIMx output channel 3.
912   * @param  TIMx Timer Instance
913   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
914   * @retval An ErrorStatus enumeration value:
915   *          - SUCCESS: TIMx registers are de-initialized
916   *          - ERROR: not applicable
917   */
OC3Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)918 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
919 {
920   uint32_t tmpccmr2;
921   uint32_t tmpccer;
922   uint32_t tmpcr2;
923 
924   /* Check the parameters */
925   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
926   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
927   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
928   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
929   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
930   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
931 
932   /* Disable the Channel 3: Reset the CC3E Bit */
933   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
934 
935   /* Get the TIMx CCER register value */
936   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
937 
938   /* Get the TIMx CR2 register value */
939   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
940 
941   /* Get the TIMx CCMR2 register value */
942   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
943 
944   /* Reset Capture/Compare selection Bits */
945   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
946 
947   /* Select the Output Compare Mode */
948   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
949 
950   /* Set the Output Compare Polarity */
951   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
952 
953   /* Set the Output State */
954   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
955 
956   if (IS_TIM_BREAK_INSTANCE(TIMx))
957   {
958     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
959     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
960 
961     /* Set the complementary output Polarity */
962     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
963 
964     /* Set the complementary output State */
965     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
966 
967     /* Set the Output Idle state */
968     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
969 
970     /* Set the complementary output Idle state */
971     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
972   }
973 
974   /* Write to TIMx CR2 */
975   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
976 
977   /* Write to TIMx CCMR2 */
978   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
979 
980   /* Set the Capture Compare Register value */
981   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
982 
983   /* Write to TIMx CCER */
984   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
985 
986   return SUCCESS;
987 }
988 
989 /**
990   * @brief  Configure the TIMx output channel 4.
991   * @param  TIMx Timer Instance
992   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
993   * @retval An ErrorStatus enumeration value:
994   *          - SUCCESS: TIMx registers are de-initialized
995   *          - ERROR: not applicable
996   */
OC4Config(TIM_TypeDef * TIMx,LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)997 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
998 {
999   uint32_t tmpccmr2;
1000   uint32_t tmpccer;
1001   uint32_t tmpcr2;
1002 
1003   /* Check the parameters */
1004   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1005   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1006   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1007   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1008   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1009   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1010 
1011   /* Disable the Channel 4: Reset the CC4E Bit */
1012   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1013 
1014   /* Get the TIMx CCER register value */
1015   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1016 
1017   /* Get the TIMx CR2 register value */
1018   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1019 
1020   /* Get the TIMx CCMR2 register value */
1021   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1022 
1023   /* Reset Capture/Compare selection Bits */
1024   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1025 
1026   /* Select the Output Compare Mode */
1027   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1028 
1029   /* Set the Output Compare Polarity */
1030   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1031 
1032   /* Set the Output State */
1033   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1034 
1035   if (IS_TIM_BREAK_INSTANCE(TIMx))
1036   {
1037     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1038     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1039 
1040     /* Set the Output Idle state */
1041     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1042   }
1043 
1044   /* Write to TIMx CR2 */
1045   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1046 
1047   /* Write to TIMx CCMR2 */
1048   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1049 
1050   /* Set the Capture Compare Register value */
1051   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1052 
1053   /* Write to TIMx CCER */
1054   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1055 
1056   return SUCCESS;
1057 }
1058 
1059 
1060 /**
1061   * @brief  Configure the TIMx input channel 1.
1062   * @param  TIMx Timer Instance
1063   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1064   * @retval An ErrorStatus enumeration value:
1065   *          - SUCCESS: TIMx registers are de-initialized
1066   *          - ERROR: not applicable
1067   */
IC1Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1068 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1069 {
1070   /* Check the parameters */
1071   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1072   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1073   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1074   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1075   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1076 
1077   /* Disable the Channel 1: Reset the CC1E Bit */
1078   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1079 
1080   /* Select the Input and set the filter and the prescaler value */
1081   MODIFY_REG(TIMx->CCMR1,
1082              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1083              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1084 
1085   /* Select the Polarity and set the CC1E Bit */
1086   MODIFY_REG(TIMx->CCER,
1087              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1088              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1089 
1090   return SUCCESS;
1091 }
1092 
1093 /**
1094   * @brief  Configure the TIMx input channel 2.
1095   * @param  TIMx Timer Instance
1096   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1097   * @retval An ErrorStatus enumeration value:
1098   *          - SUCCESS: TIMx registers are de-initialized
1099   *          - ERROR: not applicable
1100   */
IC2Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1101 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1102 {
1103   /* Check the parameters */
1104   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1105   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1106   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1107   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1108   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1109 
1110   /* Disable the Channel 2: Reset the CC2E Bit */
1111   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1112 
1113   /* Select the Input and set the filter and the prescaler value */
1114   MODIFY_REG(TIMx->CCMR1,
1115              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1116              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1117 
1118   /* Select the Polarity and set the CC2E Bit */
1119   MODIFY_REG(TIMx->CCER,
1120              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1121              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1122 
1123   return SUCCESS;
1124 }
1125 
1126 /**
1127   * @brief  Configure the TIMx input channel 3.
1128   * @param  TIMx Timer Instance
1129   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1130   * @retval An ErrorStatus enumeration value:
1131   *          - SUCCESS: TIMx registers are de-initialized
1132   *          - ERROR: not applicable
1133   */
IC3Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1134 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1135 {
1136   /* Check the parameters */
1137   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1138   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1139   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1140   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1141   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1142 
1143   /* Disable the Channel 3: Reset the CC3E Bit */
1144   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1145 
1146   /* Select the Input and set the filter and the prescaler value */
1147   MODIFY_REG(TIMx->CCMR2,
1148              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1149              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1150 
1151   /* Select the Polarity and set the CC3E Bit */
1152   MODIFY_REG(TIMx->CCER,
1153              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1154              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1155 
1156   return SUCCESS;
1157 }
1158 
1159 /**
1160   * @brief  Configure the TIMx input channel 4.
1161   * @param  TIMx Timer Instance
1162   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1163   * @retval An ErrorStatus enumeration value:
1164   *          - SUCCESS: TIMx registers are de-initialized
1165   *          - ERROR: not applicable
1166   */
IC4Config(TIM_TypeDef * TIMx,LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1167 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1168 {
1169   /* Check the parameters */
1170   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1171   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1172   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1173   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1174   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1175 
1176   /* Disable the Channel 4: Reset the CC4E Bit */
1177   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1178 
1179   /* Select the Input and set the filter and the prescaler value */
1180   MODIFY_REG(TIMx->CCMR2,
1181              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1182              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1183 
1184   /* Select the Polarity and set the CC4E Bit */
1185   MODIFY_REG(TIMx->CCER,
1186              TIM_CCER_CC4P,
1187              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1188 
1189   return SUCCESS;
1190 }
1191 
1192 
1193 /**
1194   * @}
1195   */
1196 
1197 /**
1198   * @}
1199   */
1200 
1201 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14  || TIM15 || TIM16 || TIM17 */
1202 
1203 /**
1204   * @}
1205   */
1206 
1207 #endif /* USE_FULL_LL_DRIVER */
1208 
1209 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
1210