1 /**
2   ******************************************************************************
3   * @file    stm32f1xx_ll_usart.h
4   * @author  MCD Application Team
5   * @brief   Header file of USART LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.</center></h2>
11   *
12   * This software component is licensed by ST under BSD 3-Clause license,
13   * the "License"; You may not use this file except in compliance with the
14   * License. You may obtain a copy of the License at:
15   *                        opensource.org/licenses/BSD-3-Clause
16   *
17   ******************************************************************************
18   */
19 
20 /* Define to prevent recursive inclusion -------------------------------------*/
21 #ifndef __STM32F1xx_LL_USART_H
22 #define __STM32F1xx_LL_USART_H
23 
24 #ifdef __cplusplus
25 extern "C" {
26 #endif
27 
28 /* Includes ------------------------------------------------------------------*/
29 #include "stm32f1xx.h"
30 
31 /** @addtogroup STM32F1xx_LL_Driver
32   * @{
33   */
34 
35 #if defined (USART1) || defined (USART2) || defined (USART3) || defined (UART4) || defined (UART5)
36 
37 /** @defgroup USART_LL USART
38   * @{
39   */
40 
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 
44 /* Private constants ---------------------------------------------------------*/
45 /** @defgroup USART_LL_Private_Constants USART Private Constants
46   * @{
47   */
48 
49 /* Defines used for the bit position in the register and perform offsets*/
50 #define USART_POSITION_GTPR_GT                  USART_GTPR_GT_Pos
51 /**
52   * @}
53   */
54 
55 /* Private macros ------------------------------------------------------------*/
56 #if defined(USE_FULL_LL_DRIVER)
57 /** @defgroup USART_LL_Private_Macros USART Private Macros
58   * @{
59   */
60 /**
61   * @}
62   */
63 #endif /*USE_FULL_LL_DRIVER*/
64 
65 /* Exported types ------------------------------------------------------------*/
66 #if defined(USE_FULL_LL_DRIVER)
67 /** @defgroup USART_LL_ES_INIT USART Exported Init structures
68   * @{
69   */
70 
71 /**
72   * @brief LL USART Init Structure definition
73   */
74 typedef struct
75 {
76   uint32_t BaudRate;                  /*!< This field defines expected Usart communication baud rate.
77 
78                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/
79 
80   uint32_t DataWidth;                 /*!< Specifies the number of data bits transmitted or received in a frame.
81                                            This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
82 
83                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/
84 
85   uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
86                                            This parameter can be a value of @ref USART_LL_EC_STOPBITS.
87 
88                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/
89 
90   uint32_t Parity;                    /*!< Specifies the parity mode.
91                                            This parameter can be a value of @ref USART_LL_EC_PARITY.
92 
93                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/
94 
95   uint32_t TransferDirection;         /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
96                                            This parameter can be a value of @ref USART_LL_EC_DIRECTION.
97 
98                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/
99 
100   uint32_t HardwareFlowControl;       /*!< Specifies whether the hardware flow control mode is enabled or disabled.
101                                            This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
102 
103                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/
104 
105   uint32_t OverSampling;              /*!< Specifies whether USART oversampling mode is 16 or 8.
106                                            This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
107 
108                                            This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/
109 
110 } LL_USART_InitTypeDef;
111 
112 /**
113   * @brief LL USART Clock Init Structure definition
114   */
115 typedef struct
116 {
117   uint32_t ClockOutput;               /*!< Specifies whether the USART clock is enabled or disabled.
118                                            This parameter can be a value of @ref USART_LL_EC_CLOCK.
119 
120                                            USART HW configuration can be modified afterwards using unitary functions
121                                            @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
122                                            For more details, refer to description of this function. */
123 
124   uint32_t ClockPolarity;             /*!< Specifies the steady state of the serial clock.
125                                            This parameter can be a value of @ref USART_LL_EC_POLARITY.
126 
127                                            USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity().
128                                            For more details, refer to description of this function. */
129 
130   uint32_t ClockPhase;                /*!< Specifies the clock transition on which the bit capture is made.
131                                            This parameter can be a value of @ref USART_LL_EC_PHASE.
132 
133                                            USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase().
134                                            For more details, refer to description of this function. */
135 
136   uint32_t LastBitClockPulse;         /*!< Specifies whether the clock pulse corresponding to the last transmitted
137                                            data bit (MSB) has to be output on the SCLK pin in synchronous mode.
138                                            This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
139 
140                                            USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput().
141                                            For more details, refer to description of this function. */
142 
143 } LL_USART_ClockInitTypeDef;
144 
145 /**
146   * @}
147   */
148 #endif /* USE_FULL_LL_DRIVER */
149 
150 /* Exported constants --------------------------------------------------------*/
151 /** @defgroup USART_LL_Exported_Constants USART Exported Constants
152   * @{
153   */
154 
155 /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
156   * @brief    Flags defines which can be used with LL_USART_ReadReg function
157   * @{
158   */
159 #define LL_USART_SR_PE                          USART_SR_PE                   /*!< Parity error flag */
160 #define LL_USART_SR_FE                          USART_SR_FE                   /*!< Framing error flag */
161 #define LL_USART_SR_NE                          USART_SR_NE                   /*!< Noise detected flag */
162 #define LL_USART_SR_ORE                         USART_SR_ORE                  /*!< Overrun error flag */
163 #define LL_USART_SR_IDLE                        USART_SR_IDLE                 /*!< Idle line detected flag */
164 #define LL_USART_SR_RXNE                        USART_SR_RXNE                 /*!< Read data register not empty flag */
165 #define LL_USART_SR_TC                          USART_SR_TC                   /*!< Transmission complete flag */
166 #define LL_USART_SR_TXE                         USART_SR_TXE                  /*!< Transmit data register empty flag */
167 #define LL_USART_SR_LBD                         USART_SR_LBD                  /*!< LIN break detection flag */
168 #define LL_USART_SR_CTS                         USART_SR_CTS                  /*!< CTS flag */
169 /**
170   * @}
171   */
172 
173 /** @defgroup USART_LL_EC_IT IT Defines
174   * @brief    IT defines which can be used with LL_USART_ReadReg and  LL_USART_WriteReg functions
175   * @{
176   */
177 #define LL_USART_CR1_IDLEIE                     USART_CR1_IDLEIE              /*!< IDLE interrupt enable */
178 #define LL_USART_CR1_RXNEIE                     USART_CR1_RXNEIE              /*!< Read data register not empty interrupt enable */
179 #define LL_USART_CR1_TCIE                       USART_CR1_TCIE                /*!< Transmission complete interrupt enable */
180 #define LL_USART_CR1_TXEIE                      USART_CR1_TXEIE               /*!< Transmit data register empty interrupt enable */
181 #define LL_USART_CR1_PEIE                       USART_CR1_PEIE                /*!< Parity error */
182 #define LL_USART_CR2_LBDIE                      USART_CR2_LBDIE               /*!< LIN break detection interrupt enable */
183 #define LL_USART_CR3_EIE                        USART_CR3_EIE                 /*!< Error interrupt enable */
184 #define LL_USART_CR3_CTSIE                      USART_CR3_CTSIE               /*!< CTS interrupt enable */
185 /**
186   * @}
187   */
188 
189 /** @defgroup USART_LL_EC_DIRECTION Communication Direction
190   * @{
191   */
192 #define LL_USART_DIRECTION_NONE                 0x00000000U                        /*!< Transmitter and Receiver are disabled */
193 #define LL_USART_DIRECTION_RX                   USART_CR1_RE                       /*!< Transmitter is disabled and Receiver is enabled */
194 #define LL_USART_DIRECTION_TX                   USART_CR1_TE                       /*!< Transmitter is enabled and Receiver is disabled */
195 #define LL_USART_DIRECTION_TX_RX                (USART_CR1_TE |USART_CR1_RE)       /*!< Transmitter and Receiver are enabled */
196 /**
197   * @}
198   */
199 
200 /** @defgroup USART_LL_EC_PARITY Parity Control
201   * @{
202   */
203 #define LL_USART_PARITY_NONE                    0x00000000U                          /*!< Parity control disabled */
204 #define LL_USART_PARITY_EVEN                    USART_CR1_PCE                        /*!< Parity control enabled and Even Parity is selected */
205 #define LL_USART_PARITY_ODD                     (USART_CR1_PCE | USART_CR1_PS)       /*!< Parity control enabled and Odd Parity is selected */
206 /**
207   * @}
208   */
209 
210 /** @defgroup USART_LL_EC_WAKEUP Wakeup
211   * @{
212   */
213 #define LL_USART_WAKEUP_IDLELINE                0x00000000U           /*!<  USART wake up from Mute mode on Idle Line */
214 #define LL_USART_WAKEUP_ADDRESSMARK             USART_CR1_WAKE        /*!<  USART wake up from Mute mode on Address Mark */
215 /**
216   * @}
217   */
218 
219 /** @defgroup USART_LL_EC_DATAWIDTH Datawidth
220   * @{
221   */
222 #define LL_USART_DATAWIDTH_8B                   0x00000000U             /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
223 #define LL_USART_DATAWIDTH_9B                   USART_CR1_M             /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
224 /**
225   * @}
226   */
227 
228 /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
229   * @{
230   */
231 #define LL_USART_OVERSAMPLING_16                0x00000000U            /*!< Oversampling by 16 */
232 #if  defined(USART_CR1_OVER8)
233 #define LL_USART_OVERSAMPLING_8                 USART_CR1_OVER8        /*!< Oversampling by 8 */
234 #endif /* USART_OverSampling_Feature */
235 /**
236   * @}
237   */
238 
239 #if defined(USE_FULL_LL_DRIVER)
240 /** @defgroup USART_LL_EC_CLOCK Clock Signal
241   * @{
242   */
243 
244 #define LL_USART_CLOCK_DISABLE                  0x00000000U            /*!< Clock signal not provided */
245 #define LL_USART_CLOCK_ENABLE                   USART_CR2_CLKEN        /*!< Clock signal provided */
246 /**
247   * @}
248   */
249 #endif /*USE_FULL_LL_DRIVER*/
250 
251 /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
252   * @{
253   */
254 #define LL_USART_LASTCLKPULSE_NO_OUTPUT         0x00000000U           /*!< The clock pulse of the last data bit is not output to the SCLK pin */
255 #define LL_USART_LASTCLKPULSE_OUTPUT            USART_CR2_LBCL        /*!< The clock pulse of the last data bit is output to the SCLK pin */
256 /**
257   * @}
258   */
259 
260 /** @defgroup USART_LL_EC_PHASE Clock Phase
261   * @{
262   */
263 #define LL_USART_PHASE_1EDGE                    0x00000000U           /*!< The first clock transition is the first data capture edge */
264 #define LL_USART_PHASE_2EDGE                    USART_CR2_CPHA        /*!< The second clock transition is the first data capture edge */
265 /**
266   * @}
267   */
268 
269 /** @defgroup USART_LL_EC_POLARITY Clock Polarity
270   * @{
271   */
272 #define LL_USART_POLARITY_LOW                   0x00000000U           /*!< Steady low value on SCLK pin outside transmission window*/
273 #define LL_USART_POLARITY_HIGH                  USART_CR2_CPOL        /*!< Steady high value on SCLK pin outside transmission window */
274 /**
275   * @}
276   */
277 
278 /** @defgroup USART_LL_EC_STOPBITS Stop Bits
279   * @{
280   */
281 #define LL_USART_STOPBITS_0_5                   USART_CR2_STOP_0                           /*!< 0.5 stop bit */
282 #define LL_USART_STOPBITS_1                     0x00000000U                                /*!< 1 stop bit */
283 #define LL_USART_STOPBITS_1_5                   (USART_CR2_STOP_0 | USART_CR2_STOP_1)      /*!< 1.5 stop bits */
284 #define LL_USART_STOPBITS_2                     USART_CR2_STOP_1                           /*!< 2 stop bits */
285 /**
286   * @}
287   */
288 
289 /** @defgroup USART_LL_EC_HWCONTROL Hardware Control
290   * @{
291   */
292 #define LL_USART_HWCONTROL_NONE                 0x00000000U                          /*!< CTS and RTS hardware flow control disabled */
293 #define LL_USART_HWCONTROL_RTS                  USART_CR3_RTSE                       /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
294 #define LL_USART_HWCONTROL_CTS                  USART_CR3_CTSE                       /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
295 #define LL_USART_HWCONTROL_RTS_CTS              (USART_CR3_RTSE | USART_CR3_CTSE)    /*!< CTS and RTS hardware flow control enabled */
296 /**
297   * @}
298   */
299 
300 /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
301   * @{
302   */
303 #define LL_USART_IRDA_POWER_NORMAL              0x00000000U           /*!< IrDA normal power mode */
304 #define LL_USART_IRDA_POWER_LOW                 USART_CR3_IRLP        /*!< IrDA low power mode */
305 /**
306   * @}
307   */
308 
309 /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
310   * @{
311   */
312 #define LL_USART_LINBREAK_DETECT_10B            0x00000000U           /*!< 10-bit break detection method selected */
313 #define LL_USART_LINBREAK_DETECT_11B            USART_CR2_LBDL        /*!< 11-bit break detection method selected */
314 /**
315   * @}
316   */
317 
318 /**
319   * @}
320   */
321 
322 /* Exported macro ------------------------------------------------------------*/
323 /** @defgroup USART_LL_Exported_Macros USART Exported Macros
324   * @{
325   */
326 
327 /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
328   * @{
329   */
330 
331 /**
332   * @brief  Write a value in USART register
333   * @param  __INSTANCE__ USART Instance
334   * @param  __REG__ Register to be written
335   * @param  __VALUE__ Value to be written in the register
336   * @retval None
337   */
338 #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
339 
340 /**
341   * @brief  Read a value in USART register
342   * @param  __INSTANCE__ USART Instance
343   * @param  __REG__ Register to be read
344   * @retval Register value
345   */
346 #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
347 /**
348   * @}
349   */
350 
351 /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
352   * @{
353   */
354 
355 /**
356   * @brief  Compute USARTDIV value according to Peripheral Clock and
357   *         expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
358   * @param  __PERIPHCLK__ Peripheral Clock frequency used for USART instance
359   * @param  __BAUDRATE__ Baud rate value to achieve
360   * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
361   */
362 #define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__)      (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__)))
363 #define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)      (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100)
364 #define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)      (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100)
365 /* UART BRR = mantissa + overflow + fraction
366             = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */
367 #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__)             (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
368                                                                            ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \
369                                                                            (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07))
370 
371 /**
372   * @brief  Compute USARTDIV value according to Peripheral Clock and
373   *         expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
374   * @param  __PERIPHCLK__ Peripheral Clock frequency used for USART instance
375   * @param  __BAUDRATE__ Baud rate value to achieve
376   * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
377   */
378 #define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__)     (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__)))
379 #define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)     (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100)
380 #define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)     ((((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16) + 50) / 100)
381 /* USART BRR = mantissa + overflow + fraction
382             = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */
383 #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__)            (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
384                                                                            (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \
385                                                                            (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F))
386 
387 /**
388   * @}
389   */
390 
391 /**
392   * @}
393   */
394 
395 /* Exported functions --------------------------------------------------------*/
396 
397 /** @defgroup USART_LL_Exported_Functions USART Exported Functions
398   * @{
399   */
400 
401 /** @defgroup USART_LL_EF_Configuration Configuration functions
402   * @{
403   */
404 
405 /**
406   * @brief  USART Enable
407   * @rmtoll CR1          UE            LL_USART_Enable
408   * @param  USARTx USART Instance
409   * @retval None
410   */
LL_USART_Enable(USART_TypeDef * USARTx)411 __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
412 {
413   SET_BIT(USARTx->CR1, USART_CR1_UE);
414 }
415 
416 /**
417   * @brief  USART Disable (all USART prescalers and outputs are disabled)
418   * @note   When USART is disabled, USART prescalers and outputs are stopped immediately,
419   *         and current operations are discarded. The configuration of the USART is kept, but all the status
420   *         flags, in the USARTx_SR are set to their default values.
421   * @rmtoll CR1          UE            LL_USART_Disable
422   * @param  USARTx USART Instance
423   * @retval None
424   */
LL_USART_Disable(USART_TypeDef * USARTx)425 __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
426 {
427   CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
428 }
429 
430 /**
431   * @brief  Indicate if USART is enabled
432   * @rmtoll CR1          UE            LL_USART_IsEnabled
433   * @param  USARTx USART Instance
434   * @retval State of bit (1 or 0).
435   */
LL_USART_IsEnabled(USART_TypeDef * USARTx)436 __STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx)
437 {
438   return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE));
439 }
440 
441 /**
442   * @brief  Receiver Enable (Receiver is enabled and begins searching for a start bit)
443   * @rmtoll CR1          RE            LL_USART_EnableDirectionRx
444   * @param  USARTx USART Instance
445   * @retval None
446   */
LL_USART_EnableDirectionRx(USART_TypeDef * USARTx)447 __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
448 {
449   SET_BIT(USARTx->CR1, USART_CR1_RE);
450 }
451 
452 /**
453   * @brief  Receiver Disable
454   * @rmtoll CR1          RE            LL_USART_DisableDirectionRx
455   * @param  USARTx USART Instance
456   * @retval None
457   */
LL_USART_DisableDirectionRx(USART_TypeDef * USARTx)458 __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
459 {
460   CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
461 }
462 
463 /**
464   * @brief  Transmitter Enable
465   * @rmtoll CR1          TE            LL_USART_EnableDirectionTx
466   * @param  USARTx USART Instance
467   * @retval None
468   */
LL_USART_EnableDirectionTx(USART_TypeDef * USARTx)469 __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
470 {
471   SET_BIT(USARTx->CR1, USART_CR1_TE);
472 }
473 
474 /**
475   * @brief  Transmitter Disable
476   * @rmtoll CR1          TE            LL_USART_DisableDirectionTx
477   * @param  USARTx USART Instance
478   * @retval None
479   */
LL_USART_DisableDirectionTx(USART_TypeDef * USARTx)480 __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
481 {
482   CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
483 }
484 
485 /**
486   * @brief  Configure simultaneously enabled/disabled states
487   *         of Transmitter and Receiver
488   * @rmtoll CR1          RE            LL_USART_SetTransferDirection\n
489   *         CR1          TE            LL_USART_SetTransferDirection
490   * @param  USARTx USART Instance
491   * @param  TransferDirection This parameter can be one of the following values:
492   *         @arg @ref LL_USART_DIRECTION_NONE
493   *         @arg @ref LL_USART_DIRECTION_RX
494   *         @arg @ref LL_USART_DIRECTION_TX
495   *         @arg @ref LL_USART_DIRECTION_TX_RX
496   * @retval None
497   */
LL_USART_SetTransferDirection(USART_TypeDef * USARTx,uint32_t TransferDirection)498 __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
499 {
500   MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
501 }
502 
503 /**
504   * @brief  Return enabled/disabled states of Transmitter and Receiver
505   * @rmtoll CR1          RE            LL_USART_GetTransferDirection\n
506   *         CR1          TE            LL_USART_GetTransferDirection
507   * @param  USARTx USART Instance
508   * @retval Returned value can be one of the following values:
509   *         @arg @ref LL_USART_DIRECTION_NONE
510   *         @arg @ref LL_USART_DIRECTION_RX
511   *         @arg @ref LL_USART_DIRECTION_TX
512   *         @arg @ref LL_USART_DIRECTION_TX_RX
513   */
LL_USART_GetTransferDirection(USART_TypeDef * USARTx)514 __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx)
515 {
516   return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
517 }
518 
519 /**
520   * @brief  Configure Parity (enabled/disabled and parity mode if enabled).
521   * @note   This function selects if hardware parity control (generation and detection) is enabled or disabled.
522   *         When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
523   *         (9th or 8th bit depending on data width) and parity is checked on the received data.
524   * @rmtoll CR1          PS            LL_USART_SetParity\n
525   *         CR1          PCE           LL_USART_SetParity
526   * @param  USARTx USART Instance
527   * @param  Parity This parameter can be one of the following values:
528   *         @arg @ref LL_USART_PARITY_NONE
529   *         @arg @ref LL_USART_PARITY_EVEN
530   *         @arg @ref LL_USART_PARITY_ODD
531   * @retval None
532   */
LL_USART_SetParity(USART_TypeDef * USARTx,uint32_t Parity)533 __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
534 {
535   MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
536 }
537 
538 /**
539   * @brief  Return Parity configuration (enabled/disabled and parity mode if enabled)
540   * @rmtoll CR1          PS            LL_USART_GetParity\n
541   *         CR1          PCE           LL_USART_GetParity
542   * @param  USARTx USART Instance
543   * @retval Returned value can be one of the following values:
544   *         @arg @ref LL_USART_PARITY_NONE
545   *         @arg @ref LL_USART_PARITY_EVEN
546   *         @arg @ref LL_USART_PARITY_ODD
547   */
LL_USART_GetParity(USART_TypeDef * USARTx)548 __STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx)
549 {
550   return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
551 }
552 
553 /**
554   * @brief  Set Receiver Wake Up method from Mute mode.
555   * @rmtoll CR1          WAKE          LL_USART_SetWakeUpMethod
556   * @param  USARTx USART Instance
557   * @param  Method This parameter can be one of the following values:
558   *         @arg @ref LL_USART_WAKEUP_IDLELINE
559   *         @arg @ref LL_USART_WAKEUP_ADDRESSMARK
560   * @retval None
561   */
LL_USART_SetWakeUpMethod(USART_TypeDef * USARTx,uint32_t Method)562 __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
563 {
564   MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
565 }
566 
567 /**
568   * @brief  Return Receiver Wake Up method from Mute mode
569   * @rmtoll CR1          WAKE          LL_USART_GetWakeUpMethod
570   * @param  USARTx USART Instance
571   * @retval Returned value can be one of the following values:
572   *         @arg @ref LL_USART_WAKEUP_IDLELINE
573   *         @arg @ref LL_USART_WAKEUP_ADDRESSMARK
574   */
LL_USART_GetWakeUpMethod(USART_TypeDef * USARTx)575 __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx)
576 {
577   return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
578 }
579 
580 /**
581   * @brief  Set Word length (i.e. nb of data bits, excluding start and stop bits)
582   * @rmtoll CR1          M             LL_USART_SetDataWidth
583   * @param  USARTx USART Instance
584   * @param  DataWidth This parameter can be one of the following values:
585   *         @arg @ref LL_USART_DATAWIDTH_8B
586   *         @arg @ref LL_USART_DATAWIDTH_9B
587   * @retval None
588   */
LL_USART_SetDataWidth(USART_TypeDef * USARTx,uint32_t DataWidth)589 __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
590 {
591   MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
592 }
593 
594 /**
595   * @brief  Return Word length (i.e. nb of data bits, excluding start and stop bits)
596   * @rmtoll CR1          M             LL_USART_GetDataWidth
597   * @param  USARTx USART Instance
598   * @retval Returned value can be one of the following values:
599   *         @arg @ref LL_USART_DATAWIDTH_8B
600   *         @arg @ref LL_USART_DATAWIDTH_9B
601   */
LL_USART_GetDataWidth(USART_TypeDef * USARTx)602 __STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx)
603 {
604   return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
605 }
606 
607 #if defined(USART_CR1_OVER8)
608 /**
609   * @brief  Set Oversampling to 8-bit or 16-bit mode
610   * @rmtoll CR1          OVER8         LL_USART_SetOverSampling
611   * @param  USARTx USART Instance
612   * @param  OverSampling This parameter can be one of the following values:
613   *         @arg @ref LL_USART_OVERSAMPLING_16
614   *         @arg @ref LL_USART_OVERSAMPLING_8
615   * @retval None
616   */
LL_USART_SetOverSampling(USART_TypeDef * USARTx,uint32_t OverSampling)617 __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
618 {
619   MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
620 }
621 
622 /**
623   * @brief  Return Oversampling mode
624   * @rmtoll CR1          OVER8         LL_USART_GetOverSampling
625   * @param  USARTx USART Instance
626   * @retval Returned value can be one of the following values:
627   *         @arg @ref LL_USART_OVERSAMPLING_16
628   *         @arg @ref LL_USART_OVERSAMPLING_8
629   */
LL_USART_GetOverSampling(USART_TypeDef * USARTx)630 __STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx)
631 {
632   return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
633 }
634 
635 #endif /* USART_OverSampling_Feature */
636 /**
637   * @brief  Configure if Clock pulse of the last data bit is output to the SCLK pin or not
638   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
639   *         Synchronous mode is supported by the USARTx instance.
640   * @rmtoll CR2          LBCL          LL_USART_SetLastClkPulseOutput
641   * @param  USARTx USART Instance
642   * @param  LastBitClockPulse This parameter can be one of the following values:
643   *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
644   *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
645   * @retval None
646   */
LL_USART_SetLastClkPulseOutput(USART_TypeDef * USARTx,uint32_t LastBitClockPulse)647 __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
648 {
649   MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
650 }
651 
652 /**
653   * @brief  Retrieve Clock pulse of the last data bit output configuration
654   *         (Last bit Clock pulse output to the SCLK pin or not)
655   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
656   *         Synchronous mode is supported by the USARTx instance.
657   * @rmtoll CR2          LBCL          LL_USART_GetLastClkPulseOutput
658   * @param  USARTx USART Instance
659   * @retval Returned value can be one of the following values:
660   *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
661   *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
662   */
LL_USART_GetLastClkPulseOutput(USART_TypeDef * USARTx)663 __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx)
664 {
665   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
666 }
667 
668 /**
669   * @brief  Select the phase of the clock output on the SCLK pin in synchronous mode
670   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
671   *         Synchronous mode is supported by the USARTx instance.
672   * @rmtoll CR2          CPHA          LL_USART_SetClockPhase
673   * @param  USARTx USART Instance
674   * @param  ClockPhase This parameter can be one of the following values:
675   *         @arg @ref LL_USART_PHASE_1EDGE
676   *         @arg @ref LL_USART_PHASE_2EDGE
677   * @retval None
678   */
LL_USART_SetClockPhase(USART_TypeDef * USARTx,uint32_t ClockPhase)679 __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
680 {
681   MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
682 }
683 
684 /**
685   * @brief  Return phase of the clock output on the SCLK pin in synchronous mode
686   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
687   *         Synchronous mode is supported by the USARTx instance.
688   * @rmtoll CR2          CPHA          LL_USART_GetClockPhase
689   * @param  USARTx USART Instance
690   * @retval Returned value can be one of the following values:
691   *         @arg @ref LL_USART_PHASE_1EDGE
692   *         @arg @ref LL_USART_PHASE_2EDGE
693   */
LL_USART_GetClockPhase(USART_TypeDef * USARTx)694 __STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx)
695 {
696   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
697 }
698 
699 /**
700   * @brief  Select the polarity of the clock output on the SCLK pin in synchronous mode
701   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
702   *         Synchronous mode is supported by the USARTx instance.
703   * @rmtoll CR2          CPOL          LL_USART_SetClockPolarity
704   * @param  USARTx USART Instance
705   * @param  ClockPolarity This parameter can be one of the following values:
706   *         @arg @ref LL_USART_POLARITY_LOW
707   *         @arg @ref LL_USART_POLARITY_HIGH
708   * @retval None
709   */
LL_USART_SetClockPolarity(USART_TypeDef * USARTx,uint32_t ClockPolarity)710 __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
711 {
712   MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
713 }
714 
715 /**
716   * @brief  Return polarity of the clock output on the SCLK pin in synchronous mode
717   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
718   *         Synchronous mode is supported by the USARTx instance.
719   * @rmtoll CR2          CPOL          LL_USART_GetClockPolarity
720   * @param  USARTx USART Instance
721   * @retval Returned value can be one of the following values:
722   *         @arg @ref LL_USART_POLARITY_LOW
723   *         @arg @ref LL_USART_POLARITY_HIGH
724   */
LL_USART_GetClockPolarity(USART_TypeDef * USARTx)725 __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx)
726 {
727   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
728 }
729 
730 /**
731   * @brief  Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
732   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
733   *         Synchronous mode is supported by the USARTx instance.
734   * @note   Call of this function is equivalent to following function call sequence :
735   *         - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
736   *         - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
737   *         - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
738   * @rmtoll CR2          CPHA          LL_USART_ConfigClock\n
739   *         CR2          CPOL          LL_USART_ConfigClock\n
740   *         CR2          LBCL          LL_USART_ConfigClock
741   * @param  USARTx USART Instance
742   * @param  Phase This parameter can be one of the following values:
743   *         @arg @ref LL_USART_PHASE_1EDGE
744   *         @arg @ref LL_USART_PHASE_2EDGE
745   * @param  Polarity This parameter can be one of the following values:
746   *         @arg @ref LL_USART_POLARITY_LOW
747   *         @arg @ref LL_USART_POLARITY_HIGH
748   * @param  LBCPOutput This parameter can be one of the following values:
749   *         @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
750   *         @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
751   * @retval None
752   */
LL_USART_ConfigClock(USART_TypeDef * USARTx,uint32_t Phase,uint32_t Polarity,uint32_t LBCPOutput)753 __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
754 {
755   MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
756 }
757 
758 /**
759   * @brief  Enable Clock output on SCLK pin
760   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
761   *         Synchronous mode is supported by the USARTx instance.
762   * @rmtoll CR2          CLKEN         LL_USART_EnableSCLKOutput
763   * @param  USARTx USART Instance
764   * @retval None
765   */
LL_USART_EnableSCLKOutput(USART_TypeDef * USARTx)766 __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
767 {
768   SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
769 }
770 
771 /**
772   * @brief  Disable Clock output on SCLK pin
773   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
774   *         Synchronous mode is supported by the USARTx instance.
775   * @rmtoll CR2          CLKEN         LL_USART_DisableSCLKOutput
776   * @param  USARTx USART Instance
777   * @retval None
778   */
LL_USART_DisableSCLKOutput(USART_TypeDef * USARTx)779 __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
780 {
781   CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
782 }
783 
784 /**
785   * @brief  Indicate if Clock output on SCLK pin is enabled
786   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
787   *         Synchronous mode is supported by the USARTx instance.
788   * @rmtoll CR2          CLKEN         LL_USART_IsEnabledSCLKOutput
789   * @param  USARTx USART Instance
790   * @retval State of bit (1 or 0).
791   */
LL_USART_IsEnabledSCLKOutput(USART_TypeDef * USARTx)792 __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx)
793 {
794   return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN));
795 }
796 
797 /**
798   * @brief  Set the length of the stop bits
799   * @rmtoll CR2          STOP          LL_USART_SetStopBitsLength
800   * @param  USARTx USART Instance
801   * @param  StopBits This parameter can be one of the following values:
802   *         @arg @ref LL_USART_STOPBITS_0_5
803   *         @arg @ref LL_USART_STOPBITS_1
804   *         @arg @ref LL_USART_STOPBITS_1_5
805   *         @arg @ref LL_USART_STOPBITS_2
806   * @retval None
807   */
LL_USART_SetStopBitsLength(USART_TypeDef * USARTx,uint32_t StopBits)808 __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
809 {
810   MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
811 }
812 
813 /**
814   * @brief  Retrieve the length of the stop bits
815   * @rmtoll CR2          STOP          LL_USART_GetStopBitsLength
816   * @param  USARTx USART Instance
817   * @retval Returned value can be one of the following values:
818   *         @arg @ref LL_USART_STOPBITS_0_5
819   *         @arg @ref LL_USART_STOPBITS_1
820   *         @arg @ref LL_USART_STOPBITS_1_5
821   *         @arg @ref LL_USART_STOPBITS_2
822   */
LL_USART_GetStopBitsLength(USART_TypeDef * USARTx)823 __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx)
824 {
825   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
826 }
827 
828 /**
829   * @brief  Configure Character frame format (Datawidth, Parity control, Stop Bits)
830   * @note   Call of this function is equivalent to following function call sequence :
831   *         - Data Width configuration using @ref LL_USART_SetDataWidth() function
832   *         - Parity Control and mode configuration using @ref LL_USART_SetParity() function
833   *         - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
834   * @rmtoll CR1          PS            LL_USART_ConfigCharacter\n
835   *         CR1          PCE           LL_USART_ConfigCharacter\n
836   *         CR1          M             LL_USART_ConfigCharacter\n
837   *         CR2          STOP          LL_USART_ConfigCharacter
838   * @param  USARTx USART Instance
839   * @param  DataWidth This parameter can be one of the following values:
840   *         @arg @ref LL_USART_DATAWIDTH_8B
841   *         @arg @ref LL_USART_DATAWIDTH_9B
842   * @param  Parity This parameter can be one of the following values:
843   *         @arg @ref LL_USART_PARITY_NONE
844   *         @arg @ref LL_USART_PARITY_EVEN
845   *         @arg @ref LL_USART_PARITY_ODD
846   * @param  StopBits This parameter can be one of the following values:
847   *         @arg @ref LL_USART_STOPBITS_0_5
848   *         @arg @ref LL_USART_STOPBITS_1
849   *         @arg @ref LL_USART_STOPBITS_1_5
850   *         @arg @ref LL_USART_STOPBITS_2
851   * @retval None
852   */
LL_USART_ConfigCharacter(USART_TypeDef * USARTx,uint32_t DataWidth,uint32_t Parity,uint32_t StopBits)853 __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
854                                               uint32_t StopBits)
855 {
856   MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
857   MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
858 }
859 
860 /**
861   * @brief  Set Address of the USART node.
862   * @note   This is used in multiprocessor communication during Mute mode or Stop mode,
863   *         for wake up with address mark detection.
864   * @rmtoll CR2          ADD           LL_USART_SetNodeAddress
865   * @param  USARTx USART Instance
866   * @param  NodeAddress 4 bit Address of the USART node.
867   * @retval None
868   */
LL_USART_SetNodeAddress(USART_TypeDef * USARTx,uint32_t NodeAddress)869 __STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress)
870 {
871   MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD));
872 }
873 
874 /**
875   * @brief  Return 4 bit Address of the USART node as set in ADD field of CR2.
876   * @note   only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
877   * @rmtoll CR2          ADD           LL_USART_GetNodeAddress
878   * @param  USARTx USART Instance
879   * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
880   */
LL_USART_GetNodeAddress(USART_TypeDef * USARTx)881 __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx)
882 {
883   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD));
884 }
885 
886 /**
887   * @brief  Enable RTS HW Flow Control
888   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
889   *         Hardware Flow control feature is supported by the USARTx instance.
890   * @rmtoll CR3          RTSE          LL_USART_EnableRTSHWFlowCtrl
891   * @param  USARTx USART Instance
892   * @retval None
893   */
LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef * USARTx)894 __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
895 {
896   SET_BIT(USARTx->CR3, USART_CR3_RTSE);
897 }
898 
899 /**
900   * @brief  Disable RTS HW Flow Control
901   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
902   *         Hardware Flow control feature is supported by the USARTx instance.
903   * @rmtoll CR3          RTSE          LL_USART_DisableRTSHWFlowCtrl
904   * @param  USARTx USART Instance
905   * @retval None
906   */
LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef * USARTx)907 __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
908 {
909   CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
910 }
911 
912 /**
913   * @brief  Enable CTS HW Flow Control
914   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
915   *         Hardware Flow control feature is supported by the USARTx instance.
916   * @rmtoll CR3          CTSE          LL_USART_EnableCTSHWFlowCtrl
917   * @param  USARTx USART Instance
918   * @retval None
919   */
LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef * USARTx)920 __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
921 {
922   SET_BIT(USARTx->CR3, USART_CR3_CTSE);
923 }
924 
925 /**
926   * @brief  Disable CTS HW Flow Control
927   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
928   *         Hardware Flow control feature is supported by the USARTx instance.
929   * @rmtoll CR3          CTSE          LL_USART_DisableCTSHWFlowCtrl
930   * @param  USARTx USART Instance
931   * @retval None
932   */
LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef * USARTx)933 __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
934 {
935   CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
936 }
937 
938 /**
939   * @brief  Configure HW Flow Control mode (both CTS and RTS)
940   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
941   *         Hardware Flow control feature is supported by the USARTx instance.
942   * @rmtoll CR3          RTSE          LL_USART_SetHWFlowCtrl\n
943   *         CR3          CTSE          LL_USART_SetHWFlowCtrl
944   * @param  USARTx USART Instance
945   * @param  HardwareFlowControl This parameter can be one of the following values:
946   *         @arg @ref LL_USART_HWCONTROL_NONE
947   *         @arg @ref LL_USART_HWCONTROL_RTS
948   *         @arg @ref LL_USART_HWCONTROL_CTS
949   *         @arg @ref LL_USART_HWCONTROL_RTS_CTS
950   * @retval None
951   */
LL_USART_SetHWFlowCtrl(USART_TypeDef * USARTx,uint32_t HardwareFlowControl)952 __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
953 {
954   MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
955 }
956 
957 /**
958   * @brief  Return HW Flow Control configuration (both CTS and RTS)
959   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
960   *         Hardware Flow control feature is supported by the USARTx instance.
961   * @rmtoll CR3          RTSE          LL_USART_GetHWFlowCtrl\n
962   *         CR3          CTSE          LL_USART_GetHWFlowCtrl
963   * @param  USARTx USART Instance
964   * @retval Returned value can be one of the following values:
965   *         @arg @ref LL_USART_HWCONTROL_NONE
966   *         @arg @ref LL_USART_HWCONTROL_RTS
967   *         @arg @ref LL_USART_HWCONTROL_CTS
968   *         @arg @ref LL_USART_HWCONTROL_RTS_CTS
969   */
LL_USART_GetHWFlowCtrl(USART_TypeDef * USARTx)970 __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx)
971 {
972   return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
973 }
974 
975 #if defined(USART_CR3_ONEBIT)
976 /**
977   * @brief  Enable One bit sampling method
978   * @rmtoll CR3          ONEBIT        LL_USART_EnableOneBitSamp
979   * @param  USARTx USART Instance
980   * @retval None
981   */
LL_USART_EnableOneBitSamp(USART_TypeDef * USARTx)982 __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
983 {
984   SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
985 }
986 
987 /**
988   * @brief  Disable One bit sampling method
989   * @rmtoll CR3          ONEBIT        LL_USART_DisableOneBitSamp
990   * @param  USARTx USART Instance
991   * @retval None
992   */
LL_USART_DisableOneBitSamp(USART_TypeDef * USARTx)993 __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
994 {
995   CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
996 }
997 
998 /**
999   * @brief  Indicate if One bit sampling method is enabled
1000   * @rmtoll CR3          ONEBIT        LL_USART_IsEnabledOneBitSamp
1001   * @param  USARTx USART Instance
1002   * @retval State of bit (1 or 0).
1003   */
LL_USART_IsEnabledOneBitSamp(USART_TypeDef * USARTx)1004 __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx)
1005 {
1006   return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT));
1007 }
1008 #endif /* USART_OneBitSampling_Feature */
1009 
1010 #if defined(USART_CR1_OVER8)
1011 /**
1012   * @brief  Configure USART BRR register for achieving expected Baud Rate value.
1013   * @note   Compute and set USARTDIV value in BRR Register (full BRR content)
1014   *         according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1015   * @note   Peripheral clock and Baud rate values provided as function parameters should be valid
1016   *         (Baud rate value != 0)
1017   * @rmtoll BRR          BRR           LL_USART_SetBaudRate
1018   * @param  USARTx USART Instance
1019   * @param  PeriphClk Peripheral Clock
1020   * @param  OverSampling This parameter can be one of the following values:
1021   *         @arg @ref LL_USART_OVERSAMPLING_16
1022   *         @arg @ref LL_USART_OVERSAMPLING_8
1023   * @param  BaudRate Baud Rate
1024   * @retval None
1025   */
LL_USART_SetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t OverSampling,uint32_t BaudRate)1026 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling,
1027                                           uint32_t BaudRate)
1028 {
1029   if (OverSampling == LL_USART_OVERSAMPLING_8)
1030   {
1031     USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate));
1032   }
1033   else
1034   {
1035     USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
1036   }
1037 }
1038 
1039 /**
1040   * @brief  Return current Baud Rate value, according to USARTDIV present in BRR register
1041   *         (full BRR content), and to used Peripheral Clock and Oversampling mode values
1042   * @note   In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1043   * @rmtoll BRR          BRR           LL_USART_GetBaudRate
1044   * @param  USARTx USART Instance
1045   * @param  PeriphClk Peripheral Clock
1046   * @param  OverSampling This parameter can be one of the following values:
1047   *         @arg @ref LL_USART_OVERSAMPLING_16
1048   *         @arg @ref LL_USART_OVERSAMPLING_8
1049   * @retval Baud Rate
1050   */
LL_USART_GetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t OverSampling)1051 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling)
1052 {
1053   uint32_t usartdiv = 0x0U;
1054   uint32_t brrresult = 0x0U;
1055 
1056   usartdiv = USARTx->BRR;
1057 
1058   if (OverSampling == LL_USART_OVERSAMPLING_8)
1059   {
1060     if ((usartdiv & 0xFFF7U) != 0U)
1061     {
1062       usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
1063       brrresult = (PeriphClk * 2U) / usartdiv;
1064     }
1065   }
1066   else
1067   {
1068     if ((usartdiv & 0xFFFFU) != 0U)
1069     {
1070       brrresult = PeriphClk / usartdiv;
1071     }
1072   }
1073   return (brrresult);
1074 }
1075 #else
1076 /**
1077   * @brief  Configure USART BRR register for achieving expected Baud Rate value.
1078   * @note   Compute and set USARTDIV value in BRR Register (full BRR content)
1079   *         according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1080   * @note   Peripheral clock and Baud rate values provided as function parameters should be valid
1081   *         (Baud rate value != 0)
1082   * @rmtoll BRR          BRR           LL_USART_SetBaudRate
1083   * @param  USARTx USART Instance
1084   * @param  PeriphClk Peripheral Clock
1085   * @param  BaudRate Baud Rate
1086   * @retval None
1087   */
LL_USART_SetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t BaudRate)1088 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t BaudRate)
1089 {
1090   USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
1091 }
1092 
1093 /**
1094   * @brief  Return current Baud Rate value, according to USARTDIV present in BRR register
1095   *         (full BRR content), and to used Peripheral Clock and Oversampling mode values
1096   * @note   In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1097   * @rmtoll BRR          BRR           LL_USART_GetBaudRate
1098   * @param  USARTx USART Instance
1099   * @param  PeriphClk Peripheral Clock
1100   * @retval Baud Rate
1101   */
LL_USART_GetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk)1102 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk)
1103 {
1104   uint32_t usartdiv = 0x0U;
1105   uint32_t brrresult = 0x0U;
1106 
1107   usartdiv = USARTx->BRR;
1108 
1109   if ((usartdiv & 0xFFFFU) != 0U)
1110   {
1111     brrresult = PeriphClk / usartdiv;
1112   }
1113   return (brrresult);
1114 }
1115 #endif /* USART_OverSampling_Feature */
1116 
1117 /**
1118   * @}
1119   */
1120 
1121 /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
1122   * @{
1123   */
1124 
1125 /**
1126   * @brief  Enable IrDA mode
1127   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1128   *         IrDA feature is supported by the USARTx instance.
1129   * @rmtoll CR3          IREN          LL_USART_EnableIrda
1130   * @param  USARTx USART Instance
1131   * @retval None
1132   */
LL_USART_EnableIrda(USART_TypeDef * USARTx)1133 __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
1134 {
1135   SET_BIT(USARTx->CR3, USART_CR3_IREN);
1136 }
1137 
1138 /**
1139   * @brief  Disable IrDA mode
1140   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1141   *         IrDA feature is supported by the USARTx instance.
1142   * @rmtoll CR3          IREN          LL_USART_DisableIrda
1143   * @param  USARTx USART Instance
1144   * @retval None
1145   */
LL_USART_DisableIrda(USART_TypeDef * USARTx)1146 __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
1147 {
1148   CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
1149 }
1150 
1151 /**
1152   * @brief  Indicate if IrDA mode is enabled
1153   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1154   *         IrDA feature is supported by the USARTx instance.
1155   * @rmtoll CR3          IREN          LL_USART_IsEnabledIrda
1156   * @param  USARTx USART Instance
1157   * @retval State of bit (1 or 0).
1158   */
LL_USART_IsEnabledIrda(USART_TypeDef * USARTx)1159 __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx)
1160 {
1161   return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN));
1162 }
1163 
1164 /**
1165   * @brief  Configure IrDA Power Mode (Normal or Low Power)
1166   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1167   *         IrDA feature is supported by the USARTx instance.
1168   * @rmtoll CR3          IRLP          LL_USART_SetIrdaPowerMode
1169   * @param  USARTx USART Instance
1170   * @param  PowerMode This parameter can be one of the following values:
1171   *         @arg @ref LL_USART_IRDA_POWER_NORMAL
1172   *         @arg @ref LL_USART_IRDA_POWER_LOW
1173   * @retval None
1174   */
LL_USART_SetIrdaPowerMode(USART_TypeDef * USARTx,uint32_t PowerMode)1175 __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
1176 {
1177   MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
1178 }
1179 
1180 /**
1181   * @brief  Retrieve IrDA Power Mode configuration (Normal or Low Power)
1182   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1183   *         IrDA feature is supported by the USARTx instance.
1184   * @rmtoll CR3          IRLP          LL_USART_GetIrdaPowerMode
1185   * @param  USARTx USART Instance
1186   * @retval Returned value can be one of the following values:
1187   *         @arg @ref LL_USART_IRDA_POWER_NORMAL
1188   *         @arg @ref LL_USART_PHASE_2EDGE
1189   */
LL_USART_GetIrdaPowerMode(USART_TypeDef * USARTx)1190 __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx)
1191 {
1192   return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
1193 }
1194 
1195 /**
1196   * @brief  Set Irda prescaler value, used for dividing the USART clock source
1197   *         to achieve the Irda Low Power frequency (8 bits value)
1198   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1199   *         IrDA feature is supported by the USARTx instance.
1200   * @rmtoll GTPR         PSC           LL_USART_SetIrdaPrescaler
1201   * @param  USARTx USART Instance
1202   * @param  PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
1203   * @retval None
1204   */
LL_USART_SetIrdaPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)1205 __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1206 {
1207   MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1208 }
1209 
1210 /**
1211   * @brief  Return Irda prescaler value, used for dividing the USART clock source
1212   *         to achieve the Irda Low Power frequency (8 bits value)
1213   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1214   *         IrDA feature is supported by the USARTx instance.
1215   * @rmtoll GTPR         PSC           LL_USART_GetIrdaPrescaler
1216   * @param  USARTx USART Instance
1217   * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
1218   */
LL_USART_GetIrdaPrescaler(USART_TypeDef * USARTx)1219 __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx)
1220 {
1221   return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1222 }
1223 
1224 /**
1225   * @}
1226   */
1227 
1228 /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
1229   * @{
1230   */
1231 
1232 /**
1233   * @brief  Enable Smartcard NACK transmission
1234   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1235   *         Smartcard feature is supported by the USARTx instance.
1236   * @rmtoll CR3          NACK          LL_USART_EnableSmartcardNACK
1237   * @param  USARTx USART Instance
1238   * @retval None
1239   */
LL_USART_EnableSmartcardNACK(USART_TypeDef * USARTx)1240 __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
1241 {
1242   SET_BIT(USARTx->CR3, USART_CR3_NACK);
1243 }
1244 
1245 /**
1246   * @brief  Disable Smartcard NACK transmission
1247   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1248   *         Smartcard feature is supported by the USARTx instance.
1249   * @rmtoll CR3          NACK          LL_USART_DisableSmartcardNACK
1250   * @param  USARTx USART Instance
1251   * @retval None
1252   */
LL_USART_DisableSmartcardNACK(USART_TypeDef * USARTx)1253 __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
1254 {
1255   CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
1256 }
1257 
1258 /**
1259   * @brief  Indicate if Smartcard NACK transmission is enabled
1260   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1261   *         Smartcard feature is supported by the USARTx instance.
1262   * @rmtoll CR3          NACK          LL_USART_IsEnabledSmartcardNACK
1263   * @param  USARTx USART Instance
1264   * @retval State of bit (1 or 0).
1265   */
LL_USART_IsEnabledSmartcardNACK(USART_TypeDef * USARTx)1266 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx)
1267 {
1268   return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK));
1269 }
1270 
1271 /**
1272   * @brief  Enable Smartcard mode
1273   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1274   *         Smartcard feature is supported by the USARTx instance.
1275   * @rmtoll CR3          SCEN          LL_USART_EnableSmartcard
1276   * @param  USARTx USART Instance
1277   * @retval None
1278   */
LL_USART_EnableSmartcard(USART_TypeDef * USARTx)1279 __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
1280 {
1281   SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1282 }
1283 
1284 /**
1285   * @brief  Disable Smartcard mode
1286   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1287   *         Smartcard feature is supported by the USARTx instance.
1288   * @rmtoll CR3          SCEN          LL_USART_DisableSmartcard
1289   * @param  USARTx USART Instance
1290   * @retval None
1291   */
LL_USART_DisableSmartcard(USART_TypeDef * USARTx)1292 __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
1293 {
1294   CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
1295 }
1296 
1297 /**
1298   * @brief  Indicate if Smartcard mode is enabled
1299   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1300   *         Smartcard feature is supported by the USARTx instance.
1301   * @rmtoll CR3          SCEN          LL_USART_IsEnabledSmartcard
1302   * @param  USARTx USART Instance
1303   * @retval State of bit (1 or 0).
1304   */
LL_USART_IsEnabledSmartcard(USART_TypeDef * USARTx)1305 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx)
1306 {
1307   return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN));
1308 }
1309 
1310 /**
1311   * @brief  Set Smartcard prescaler value, used for dividing the USART clock
1312   *         source to provide the SMARTCARD Clock (5 bits value)
1313   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1314   *         Smartcard feature is supported by the USARTx instance.
1315   * @rmtoll GTPR         PSC           LL_USART_SetSmartcardPrescaler
1316   * @param  USARTx USART Instance
1317   * @param  PrescalerValue Value between Min_Data=0 and Max_Data=31
1318   * @retval None
1319   */
LL_USART_SetSmartcardPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)1320 __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1321 {
1322   MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1323 }
1324 
1325 /**
1326   * @brief  Return Smartcard prescaler value, used for dividing the USART clock
1327   *         source to provide the SMARTCARD Clock (5 bits value)
1328   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1329   *         Smartcard feature is supported by the USARTx instance.
1330   * @rmtoll GTPR         PSC           LL_USART_GetSmartcardPrescaler
1331   * @param  USARTx USART Instance
1332   * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
1333   */
LL_USART_GetSmartcardPrescaler(USART_TypeDef * USARTx)1334 __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx)
1335 {
1336   return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1337 }
1338 
1339 /**
1340   * @brief  Set Smartcard Guard time value, expressed in nb of baud clocks periods
1341   *         (GT[7:0] bits : Guard time value)
1342   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1343   *         Smartcard feature is supported by the USARTx instance.
1344   * @rmtoll GTPR         GT            LL_USART_SetSmartcardGuardTime
1345   * @param  USARTx USART Instance
1346   * @param  GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
1347   * @retval None
1348   */
LL_USART_SetSmartcardGuardTime(USART_TypeDef * USARTx,uint32_t GuardTime)1349 __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
1350 {
1351   MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT);
1352 }
1353 
1354 /**
1355   * @brief  Return Smartcard Guard time value, expressed in nb of baud clocks periods
1356   *         (GT[7:0] bits : Guard time value)
1357   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1358   *         Smartcard feature is supported by the USARTx instance.
1359   * @rmtoll GTPR         GT            LL_USART_GetSmartcardGuardTime
1360   * @param  USARTx USART Instance
1361   * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
1362   */
LL_USART_GetSmartcardGuardTime(USART_TypeDef * USARTx)1363 __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx)
1364 {
1365   return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT);
1366 }
1367 
1368 /**
1369   * @}
1370   */
1371 
1372 /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
1373   * @{
1374   */
1375 
1376 /**
1377   * @brief  Enable Single Wire Half-Duplex mode
1378   * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1379   *         Half-Duplex mode is supported by the USARTx instance.
1380   * @rmtoll CR3          HDSEL         LL_USART_EnableHalfDuplex
1381   * @param  USARTx USART Instance
1382   * @retval None
1383   */
LL_USART_EnableHalfDuplex(USART_TypeDef * USARTx)1384 __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
1385 {
1386   SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1387 }
1388 
1389 /**
1390   * @brief  Disable Single Wire Half-Duplex mode
1391   * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1392   *         Half-Duplex mode is supported by the USARTx instance.
1393   * @rmtoll CR3          HDSEL         LL_USART_DisableHalfDuplex
1394   * @param  USARTx USART Instance
1395   * @retval None
1396   */
LL_USART_DisableHalfDuplex(USART_TypeDef * USARTx)1397 __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
1398 {
1399   CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
1400 }
1401 
1402 /**
1403   * @brief  Indicate if Single Wire Half-Duplex mode is enabled
1404   * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1405   *         Half-Duplex mode is supported by the USARTx instance.
1406   * @rmtoll CR3          HDSEL         LL_USART_IsEnabledHalfDuplex
1407   * @param  USARTx USART Instance
1408   * @retval State of bit (1 or 0).
1409   */
LL_USART_IsEnabledHalfDuplex(USART_TypeDef * USARTx)1410 __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx)
1411 {
1412   return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL));
1413 }
1414 
1415 /**
1416   * @}
1417   */
1418 
1419 /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
1420   * @{
1421   */
1422 
1423 /**
1424   * @brief  Set LIN Break Detection Length
1425   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1426   *         LIN feature is supported by the USARTx instance.
1427   * @rmtoll CR2          LBDL          LL_USART_SetLINBrkDetectionLen
1428   * @param  USARTx USART Instance
1429   * @param  LINBDLength This parameter can be one of the following values:
1430   *         @arg @ref LL_USART_LINBREAK_DETECT_10B
1431   *         @arg @ref LL_USART_LINBREAK_DETECT_11B
1432   * @retval None
1433   */
LL_USART_SetLINBrkDetectionLen(USART_TypeDef * USARTx,uint32_t LINBDLength)1434 __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
1435 {
1436   MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
1437 }
1438 
1439 /**
1440   * @brief  Return LIN Break Detection Length
1441   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1442   *         LIN feature is supported by the USARTx instance.
1443   * @rmtoll CR2          LBDL          LL_USART_GetLINBrkDetectionLen
1444   * @param  USARTx USART Instance
1445   * @retval Returned value can be one of the following values:
1446   *         @arg @ref LL_USART_LINBREAK_DETECT_10B
1447   *         @arg @ref LL_USART_LINBREAK_DETECT_11B
1448   */
LL_USART_GetLINBrkDetectionLen(USART_TypeDef * USARTx)1449 __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx)
1450 {
1451   return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
1452 }
1453 
1454 /**
1455   * @brief  Enable LIN mode
1456   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1457   *         LIN feature is supported by the USARTx instance.
1458   * @rmtoll CR2          LINEN         LL_USART_EnableLIN
1459   * @param  USARTx USART Instance
1460   * @retval None
1461   */
LL_USART_EnableLIN(USART_TypeDef * USARTx)1462 __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
1463 {
1464   SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1465 }
1466 
1467 /**
1468   * @brief  Disable LIN mode
1469   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1470   *         LIN feature is supported by the USARTx instance.
1471   * @rmtoll CR2          LINEN         LL_USART_DisableLIN
1472   * @param  USARTx USART Instance
1473   * @retval None
1474   */
LL_USART_DisableLIN(USART_TypeDef * USARTx)1475 __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
1476 {
1477   CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
1478 }
1479 
1480 /**
1481   * @brief  Indicate if LIN mode is enabled
1482   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1483   *         LIN feature is supported by the USARTx instance.
1484   * @rmtoll CR2          LINEN         LL_USART_IsEnabledLIN
1485   * @param  USARTx USART Instance
1486   * @retval State of bit (1 or 0).
1487   */
LL_USART_IsEnabledLIN(USART_TypeDef * USARTx)1488 __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx)
1489 {
1490   return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN));
1491 }
1492 
1493 /**
1494   * @}
1495   */
1496 
1497 /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
1498   * @{
1499   */
1500 
1501 /**
1502   * @brief  Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
1503   * @note   In UART mode, the following bits must be kept cleared:
1504   *           - LINEN bit in the USART_CR2 register,
1505   *           - CLKEN bit in the USART_CR2 register,
1506   *           - SCEN bit in the USART_CR3 register,
1507   *           - IREN bit in the USART_CR3 register,
1508   *           - HDSEL bit in the USART_CR3 register.
1509   * @note   Call of this function is equivalent to following function call sequence :
1510   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1511   *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1512   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1513   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1514   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1515   * @note   Other remaining configurations items related to Asynchronous Mode
1516   *         (as Baud Rate, Word length, Parity, ...) should be set using
1517   *         dedicated functions
1518   * @rmtoll CR2          LINEN         LL_USART_ConfigAsyncMode\n
1519   *         CR2          CLKEN         LL_USART_ConfigAsyncMode\n
1520   *         CR3          SCEN          LL_USART_ConfigAsyncMode\n
1521   *         CR3          IREN          LL_USART_ConfigAsyncMode\n
1522   *         CR3          HDSEL         LL_USART_ConfigAsyncMode
1523   * @param  USARTx USART Instance
1524   * @retval None
1525   */
LL_USART_ConfigAsyncMode(USART_TypeDef * USARTx)1526 __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
1527 {
1528   /* In Asynchronous mode, the following bits must be kept cleared:
1529   - LINEN, CLKEN bits in the USART_CR2 register,
1530   - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1531   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1532   CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1533 }
1534 
1535 /**
1536   * @brief  Perform basic configuration of USART for enabling use in Synchronous Mode
1537   * @note   In Synchronous mode, the following bits must be kept cleared:
1538   *           - LINEN bit in the USART_CR2 register,
1539   *           - SCEN bit in the USART_CR3 register,
1540   *           - IREN bit in the USART_CR3 register,
1541   *           - HDSEL bit in the USART_CR3 register.
1542   *         This function also sets the USART in Synchronous mode.
1543   * @note   Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
1544   *         Synchronous mode is supported by the USARTx instance.
1545   * @note   Call of this function is equivalent to following function call sequence :
1546   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1547   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1548   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1549   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1550   *         - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1551   * @note   Other remaining configurations items related to Synchronous Mode
1552   *         (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
1553   *         dedicated functions
1554   * @rmtoll CR2          LINEN         LL_USART_ConfigSyncMode\n
1555   *         CR2          CLKEN         LL_USART_ConfigSyncMode\n
1556   *         CR3          SCEN          LL_USART_ConfigSyncMode\n
1557   *         CR3          IREN          LL_USART_ConfigSyncMode\n
1558   *         CR3          HDSEL         LL_USART_ConfigSyncMode
1559   * @param  USARTx USART Instance
1560   * @retval None
1561   */
LL_USART_ConfigSyncMode(USART_TypeDef * USARTx)1562 __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
1563 {
1564   /* In Synchronous mode, the following bits must be kept cleared:
1565   - LINEN bit in the USART_CR2 register,
1566   - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1567   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1568   CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1569   /* set the UART/USART in Synchronous mode */
1570   SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
1571 }
1572 
1573 /**
1574   * @brief  Perform basic configuration of USART for enabling use in LIN Mode
1575   * @note   In LIN mode, the following bits must be kept cleared:
1576   *           - STOP and CLKEN bits in the USART_CR2 register,
1577   *           - SCEN bit in the USART_CR3 register,
1578   *           - IREN bit in the USART_CR3 register,
1579   *           - HDSEL bit in the USART_CR3 register.
1580   *         This function also set the UART/USART in LIN mode.
1581   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1582   *         LIN feature is supported by the USARTx instance.
1583   * @note   Call of this function is equivalent to following function call sequence :
1584   *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1585   *         - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1586   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1587   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1588   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1589   *         - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
1590   * @note   Other remaining configurations items related to LIN Mode
1591   *         (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
1592   *         dedicated functions
1593   * @rmtoll CR2          CLKEN         LL_USART_ConfigLINMode\n
1594   *         CR2          STOP          LL_USART_ConfigLINMode\n
1595   *         CR2          LINEN         LL_USART_ConfigLINMode\n
1596   *         CR3          IREN          LL_USART_ConfigLINMode\n
1597   *         CR3          SCEN          LL_USART_ConfigLINMode\n
1598   *         CR3          HDSEL         LL_USART_ConfigLINMode
1599   * @param  USARTx USART Instance
1600   * @retval None
1601   */
LL_USART_ConfigLINMode(USART_TypeDef * USARTx)1602 __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
1603 {
1604   /* In LIN mode, the following bits must be kept cleared:
1605   - STOP and CLKEN bits in the USART_CR2 register,
1606   - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1607   CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
1608   CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
1609   /* Set the UART/USART in LIN mode */
1610   SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1611 }
1612 
1613 /**
1614   * @brief  Perform basic configuration of USART for enabling use in Half Duplex Mode
1615   * @note   In Half Duplex mode, the following bits must be kept cleared:
1616   *           - LINEN bit in the USART_CR2 register,
1617   *           - CLKEN bit in the USART_CR2 register,
1618   *           - SCEN bit in the USART_CR3 register,
1619   *           - IREN bit in the USART_CR3 register,
1620   *         This function also sets the UART/USART in Half Duplex mode.
1621   * @note   Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1622   *         Half-Duplex mode is supported by the USARTx instance.
1623   * @note   Call of this function is equivalent to following function call sequence :
1624   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1625   *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1626   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1627   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1628   *         - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
1629   * @note   Other remaining configurations items related to Half Duplex Mode
1630   *         (as Baud Rate, Word length, Parity, ...) should be set using
1631   *         dedicated functions
1632   * @rmtoll CR2          LINEN         LL_USART_ConfigHalfDuplexMode\n
1633   *         CR2          CLKEN         LL_USART_ConfigHalfDuplexMode\n
1634   *         CR3          HDSEL         LL_USART_ConfigHalfDuplexMode\n
1635   *         CR3          SCEN          LL_USART_ConfigHalfDuplexMode\n
1636   *         CR3          IREN          LL_USART_ConfigHalfDuplexMode
1637   * @param  USARTx USART Instance
1638   * @retval None
1639   */
LL_USART_ConfigHalfDuplexMode(USART_TypeDef * USARTx)1640 __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
1641 {
1642   /* In Half Duplex mode, the following bits must be kept cleared:
1643   - LINEN and CLKEN bits in the USART_CR2 register,
1644   - SCEN and IREN bits in the USART_CR3 register.*/
1645   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1646   CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
1647   /* set the UART/USART in Half Duplex mode */
1648   SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1649 }
1650 
1651 /**
1652   * @brief  Perform basic configuration of USART for enabling use in Smartcard Mode
1653   * @note   In Smartcard mode, the following bits must be kept cleared:
1654   *           - LINEN bit in the USART_CR2 register,
1655   *           - IREN bit in the USART_CR3 register,
1656   *           - HDSEL bit in the USART_CR3 register.
1657   *         This function also configures Stop bits to 1.5 bits and
1658   *         sets the USART in Smartcard mode (SCEN bit).
1659   *         Clock Output is also enabled (CLKEN).
1660   * @note   Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1661   *         Smartcard feature is supported by the USARTx instance.
1662   * @note   Call of this function is equivalent to following function call sequence :
1663   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1664   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1665   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1666   *         - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1667   *         - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1668   *         - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
1669   * @note   Other remaining configurations items related to Smartcard Mode
1670   *         (as Baud Rate, Word length, Parity, ...) should be set using
1671   *         dedicated functions
1672   * @rmtoll CR2          LINEN         LL_USART_ConfigSmartcardMode\n
1673   *         CR2          STOP          LL_USART_ConfigSmartcardMode\n
1674   *         CR2          CLKEN         LL_USART_ConfigSmartcardMode\n
1675   *         CR3          HDSEL         LL_USART_ConfigSmartcardMode\n
1676   *         CR3          SCEN          LL_USART_ConfigSmartcardMode
1677   * @param  USARTx USART Instance
1678   * @retval None
1679   */
LL_USART_ConfigSmartcardMode(USART_TypeDef * USARTx)1680 __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
1681 {
1682   /* In Smartcard mode, the following bits must be kept cleared:
1683   - LINEN bit in the USART_CR2 register,
1684   - IREN and HDSEL bits in the USART_CR3 register.*/
1685   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1686   CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
1687   /* Configure Stop bits to 1.5 bits */
1688   /* Synchronous mode is activated by default */
1689   SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
1690   /* set the UART/USART in Smartcard mode */
1691   SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1692 }
1693 
1694 /**
1695   * @brief  Perform basic configuration of USART for enabling use in Irda Mode
1696   * @note   In IRDA mode, the following bits must be kept cleared:
1697   *           - LINEN bit in the USART_CR2 register,
1698   *           - STOP and CLKEN bits in the USART_CR2 register,
1699   *           - SCEN bit in the USART_CR3 register,
1700   *           - HDSEL bit in the USART_CR3 register.
1701   *         This function also sets the UART/USART in IRDA mode (IREN bit).
1702   * @note   Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1703   *         IrDA feature is supported by the USARTx instance.
1704   * @note   Call of this function is equivalent to following function call sequence :
1705   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1706   *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1707   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1708   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1709   *         - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1710   *         - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
1711   * @note   Other remaining configurations items related to Irda Mode
1712   *         (as Baud Rate, Word length, Power mode, ...) should be set using
1713   *         dedicated functions
1714   * @rmtoll CR2          LINEN         LL_USART_ConfigIrdaMode\n
1715   *         CR2          CLKEN         LL_USART_ConfigIrdaMode\n
1716   *         CR2          STOP          LL_USART_ConfigIrdaMode\n
1717   *         CR3          SCEN          LL_USART_ConfigIrdaMode\n
1718   *         CR3          HDSEL         LL_USART_ConfigIrdaMode\n
1719   *         CR3          IREN          LL_USART_ConfigIrdaMode
1720   * @param  USARTx USART Instance
1721   * @retval None
1722   */
LL_USART_ConfigIrdaMode(USART_TypeDef * USARTx)1723 __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
1724 {
1725   /* In IRDA mode, the following bits must be kept cleared:
1726   - LINEN, STOP and CLKEN bits in the USART_CR2 register,
1727   - SCEN and HDSEL bits in the USART_CR3 register.*/
1728   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
1729   CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
1730   /* set the UART/USART in IRDA mode */
1731   SET_BIT(USARTx->CR3, USART_CR3_IREN);
1732 }
1733 
1734 /**
1735   * @brief  Perform basic configuration of USART for enabling use in Multi processor Mode
1736   *         (several USARTs connected in a network, one of the USARTs can be the master,
1737   *         its TX output connected to the RX inputs of the other slaves USARTs).
1738   * @note   In MultiProcessor mode, the following bits must be kept cleared:
1739   *           - LINEN bit in the USART_CR2 register,
1740   *           - CLKEN bit in the USART_CR2 register,
1741   *           - SCEN bit in the USART_CR3 register,
1742   *           - IREN bit in the USART_CR3 register,
1743   *           - HDSEL bit in the USART_CR3 register.
1744   * @note   Call of this function is equivalent to following function call sequence :
1745   *         - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1746   *         - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1747   *         - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1748   *         - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1749   *         - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1750   * @note   Other remaining configurations items related to Multi processor Mode
1751   *         (as Baud Rate, Wake Up Method, Node address, ...) should be set using
1752   *         dedicated functions
1753   * @rmtoll CR2          LINEN         LL_USART_ConfigMultiProcessMode\n
1754   *         CR2          CLKEN         LL_USART_ConfigMultiProcessMode\n
1755   *         CR3          SCEN          LL_USART_ConfigMultiProcessMode\n
1756   *         CR3          HDSEL         LL_USART_ConfigMultiProcessMode\n
1757   *         CR3          IREN          LL_USART_ConfigMultiProcessMode
1758   * @param  USARTx USART Instance
1759   * @retval None
1760   */
LL_USART_ConfigMultiProcessMode(USART_TypeDef * USARTx)1761 __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
1762 {
1763   /* In Multi Processor mode, the following bits must be kept cleared:
1764   - LINEN and CLKEN bits in the USART_CR2 register,
1765   - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1766   CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1767   CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
1768 }
1769 
1770 /**
1771   * @}
1772   */
1773 
1774 /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
1775   * @{
1776   */
1777 
1778 /**
1779   * @brief  Check if the USART Parity Error Flag is set or not
1780   * @rmtoll SR           PE            LL_USART_IsActiveFlag_PE
1781   * @param  USARTx USART Instance
1782   * @retval State of bit (1 or 0).
1783   */
LL_USART_IsActiveFlag_PE(USART_TypeDef * USARTx)1784 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx)
1785 {
1786   return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE));
1787 }
1788 
1789 /**
1790   * @brief  Check if the USART Framing Error Flag is set or not
1791   * @rmtoll SR           FE            LL_USART_IsActiveFlag_FE
1792   * @param  USARTx USART Instance
1793   * @retval State of bit (1 or 0).
1794   */
LL_USART_IsActiveFlag_FE(USART_TypeDef * USARTx)1795 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx)
1796 {
1797   return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE));
1798 }
1799 
1800 /**
1801   * @brief  Check if the USART Noise error detected Flag is set or not
1802   * @rmtoll SR           NF            LL_USART_IsActiveFlag_NE
1803   * @param  USARTx USART Instance
1804   * @retval State of bit (1 or 0).
1805   */
LL_USART_IsActiveFlag_NE(USART_TypeDef * USARTx)1806 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx)
1807 {
1808   return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE));
1809 }
1810 
1811 /**
1812   * @brief  Check if the USART OverRun Error Flag is set or not
1813   * @rmtoll SR           ORE           LL_USART_IsActiveFlag_ORE
1814   * @param  USARTx USART Instance
1815   * @retval State of bit (1 or 0).
1816   */
LL_USART_IsActiveFlag_ORE(USART_TypeDef * USARTx)1817 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx)
1818 {
1819   return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE));
1820 }
1821 
1822 /**
1823   * @brief  Check if the USART IDLE line detected Flag is set or not
1824   * @rmtoll SR           IDLE          LL_USART_IsActiveFlag_IDLE
1825   * @param  USARTx USART Instance
1826   * @retval State of bit (1 or 0).
1827   */
LL_USART_IsActiveFlag_IDLE(USART_TypeDef * USARTx)1828 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx)
1829 {
1830   return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE));
1831 }
1832 
1833 /**
1834   * @brief  Check if the USART Read Data Register Not Empty Flag is set or not
1835   * @rmtoll SR           RXNE          LL_USART_IsActiveFlag_RXNE
1836   * @param  USARTx USART Instance
1837   * @retval State of bit (1 or 0).
1838   */
LL_USART_IsActiveFlag_RXNE(USART_TypeDef * USARTx)1839 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx)
1840 {
1841   return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE));
1842 }
1843 
1844 /**
1845   * @brief  Check if the USART Transmission Complete Flag is set or not
1846   * @rmtoll SR           TC            LL_USART_IsActiveFlag_TC
1847   * @param  USARTx USART Instance
1848   * @retval State of bit (1 or 0).
1849   */
LL_USART_IsActiveFlag_TC(USART_TypeDef * USARTx)1850 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx)
1851 {
1852   return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC));
1853 }
1854 
1855 /**
1856   * @brief  Check if the USART Transmit Data Register Empty Flag is set or not
1857   * @rmtoll SR           TXE           LL_USART_IsActiveFlag_TXE
1858   * @param  USARTx USART Instance
1859   * @retval State of bit (1 or 0).
1860   */
LL_USART_IsActiveFlag_TXE(USART_TypeDef * USARTx)1861 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx)
1862 {
1863   return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE));
1864 }
1865 
1866 /**
1867   * @brief  Check if the USART LIN Break Detection Flag is set or not
1868   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1869   *         LIN feature is supported by the USARTx instance.
1870   * @rmtoll SR           LBD           LL_USART_IsActiveFlag_LBD
1871   * @param  USARTx USART Instance
1872   * @retval State of bit (1 or 0).
1873   */
LL_USART_IsActiveFlag_LBD(USART_TypeDef * USARTx)1874 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx)
1875 {
1876   return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD));
1877 }
1878 
1879 /**
1880   * @brief  Check if the USART CTS Flag is set or not
1881   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1882   *         Hardware Flow control feature is supported by the USARTx instance.
1883   * @rmtoll SR           CTS           LL_USART_IsActiveFlag_nCTS
1884   * @param  USARTx USART Instance
1885   * @retval State of bit (1 or 0).
1886   */
LL_USART_IsActiveFlag_nCTS(USART_TypeDef * USARTx)1887 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx)
1888 {
1889   return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS));
1890 }
1891 
1892 /**
1893   * @brief  Check if the USART Send Break Flag is set or not
1894   * @rmtoll CR1          SBK           LL_USART_IsActiveFlag_SBK
1895   * @param  USARTx USART Instance
1896   * @retval State of bit (1 or 0).
1897   */
LL_USART_IsActiveFlag_SBK(USART_TypeDef * USARTx)1898 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx)
1899 {
1900   return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK));
1901 }
1902 
1903 /**
1904   * @brief  Check if the USART Receive Wake Up from mute mode Flag is set or not
1905   * @rmtoll CR1          RWU           LL_USART_IsActiveFlag_RWU
1906   * @param  USARTx USART Instance
1907   * @retval State of bit (1 or 0).
1908   */
LL_USART_IsActiveFlag_RWU(USART_TypeDef * USARTx)1909 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx)
1910 {
1911   return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU));
1912 }
1913 
1914 /**
1915   * @brief  Clear Parity Error Flag
1916   * @note   Clearing this flag is done by a read access to the USARTx_SR
1917   *         register followed by a read access to the USARTx_DR register.
1918   * @note   Please also consider that when clearing this flag, other flags as
1919   *         NE, FE, ORE, IDLE would also be cleared.
1920   * @rmtoll SR           PE            LL_USART_ClearFlag_PE
1921   * @param  USARTx USART Instance
1922   * @retval None
1923   */
LL_USART_ClearFlag_PE(USART_TypeDef * USARTx)1924 __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
1925 {
1926   __IO uint32_t tmpreg;
1927   tmpreg = USARTx->SR;
1928   (void) tmpreg;
1929   tmpreg = USARTx->DR;
1930   (void) tmpreg;
1931 }
1932 
1933 /**
1934   * @brief  Clear Framing Error Flag
1935   * @note   Clearing this flag is done by a read access to the USARTx_SR
1936   *         register followed by a read access to the USARTx_DR register.
1937   * @note   Please also consider that when clearing this flag, other flags as
1938   *         PE, NE, ORE, IDLE would also be cleared.
1939   * @rmtoll SR           FE            LL_USART_ClearFlag_FE
1940   * @param  USARTx USART Instance
1941   * @retval None
1942   */
LL_USART_ClearFlag_FE(USART_TypeDef * USARTx)1943 __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
1944 {
1945   __IO uint32_t tmpreg;
1946   tmpreg = USARTx->SR;
1947   (void) tmpreg;
1948   tmpreg = USARTx->DR;
1949   (void) tmpreg;
1950 }
1951 
1952 /**
1953   * @brief  Clear Noise detected Flag
1954   * @note   Clearing this flag is done by a read access to the USARTx_SR
1955   *         register followed by a read access to the USARTx_DR register.
1956   * @note   Please also consider that when clearing this flag, other flags as
1957   *         PE, FE, ORE, IDLE would also be cleared.
1958   * @rmtoll SR           NF            LL_USART_ClearFlag_NE
1959   * @param  USARTx USART Instance
1960   * @retval None
1961   */
LL_USART_ClearFlag_NE(USART_TypeDef * USARTx)1962 __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
1963 {
1964   __IO uint32_t tmpreg;
1965   tmpreg = USARTx->SR;
1966   (void) tmpreg;
1967   tmpreg = USARTx->DR;
1968   (void) tmpreg;
1969 }
1970 
1971 /**
1972   * @brief  Clear OverRun Error Flag
1973   * @note   Clearing this flag is done by a read access to the USARTx_SR
1974   *         register followed by a read access to the USARTx_DR register.
1975   * @note   Please also consider that when clearing this flag, other flags as
1976   *         PE, NE, FE, IDLE would also be cleared.
1977   * @rmtoll SR           ORE           LL_USART_ClearFlag_ORE
1978   * @param  USARTx USART Instance
1979   * @retval None
1980   */
LL_USART_ClearFlag_ORE(USART_TypeDef * USARTx)1981 __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
1982 {
1983   __IO uint32_t tmpreg;
1984   tmpreg = USARTx->SR;
1985   (void) tmpreg;
1986   tmpreg = USARTx->DR;
1987   (void) tmpreg;
1988 }
1989 
1990 /**
1991   * @brief  Clear IDLE line detected Flag
1992   * @note   Clearing this flag is done by a read access to the USARTx_SR
1993   *         register followed by a read access to the USARTx_DR register.
1994   * @note   Please also consider that when clearing this flag, other flags as
1995   *         PE, NE, FE, ORE would also be cleared.
1996   * @rmtoll SR           IDLE          LL_USART_ClearFlag_IDLE
1997   * @param  USARTx USART Instance
1998   * @retval None
1999   */
LL_USART_ClearFlag_IDLE(USART_TypeDef * USARTx)2000 __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
2001 {
2002   __IO uint32_t tmpreg;
2003   tmpreg = USARTx->SR;
2004   (void) tmpreg;
2005   tmpreg = USARTx->DR;
2006   (void) tmpreg;
2007 }
2008 
2009 /**
2010   * @brief  Clear Transmission Complete Flag
2011   * @rmtoll SR           TC            LL_USART_ClearFlag_TC
2012   * @param  USARTx USART Instance
2013   * @retval None
2014   */
LL_USART_ClearFlag_TC(USART_TypeDef * USARTx)2015 __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
2016 {
2017   WRITE_REG(USARTx->SR, ~(USART_SR_TC));
2018 }
2019 
2020 /**
2021   * @brief  Clear RX Not Empty Flag
2022   * @rmtoll SR           RXNE          LL_USART_ClearFlag_RXNE
2023   * @param  USARTx USART Instance
2024   * @retval None
2025   */
LL_USART_ClearFlag_RXNE(USART_TypeDef * USARTx)2026 __STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx)
2027 {
2028   WRITE_REG(USARTx->SR, ~(USART_SR_RXNE));
2029 }
2030 
2031 /**
2032   * @brief  Clear LIN Break Detection Flag
2033   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2034   *         LIN feature is supported by the USARTx instance.
2035   * @rmtoll SR           LBD           LL_USART_ClearFlag_LBD
2036   * @param  USARTx USART Instance
2037   * @retval None
2038   */
LL_USART_ClearFlag_LBD(USART_TypeDef * USARTx)2039 __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
2040 {
2041   WRITE_REG(USARTx->SR, ~(USART_SR_LBD));
2042 }
2043 
2044 /**
2045   * @brief  Clear CTS Interrupt Flag
2046   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2047   *         Hardware Flow control feature is supported by the USARTx instance.
2048   * @rmtoll SR           CTS           LL_USART_ClearFlag_nCTS
2049   * @param  USARTx USART Instance
2050   * @retval None
2051   */
LL_USART_ClearFlag_nCTS(USART_TypeDef * USARTx)2052 __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
2053 {
2054   WRITE_REG(USARTx->SR, ~(USART_SR_CTS));
2055 }
2056 
2057 /**
2058   * @}
2059   */
2060 
2061 /** @defgroup USART_LL_EF_IT_Management IT_Management
2062   * @{
2063   */
2064 
2065 /**
2066   * @brief  Enable IDLE Interrupt
2067   * @rmtoll CR1          IDLEIE        LL_USART_EnableIT_IDLE
2068   * @param  USARTx USART Instance
2069   * @retval None
2070   */
LL_USART_EnableIT_IDLE(USART_TypeDef * USARTx)2071 __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
2072 {
2073   SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2074 }
2075 
2076 /**
2077   * @brief  Enable RX Not Empty Interrupt
2078   * @rmtoll CR1          RXNEIE        LL_USART_EnableIT_RXNE
2079   * @param  USARTx USART Instance
2080   * @retval None
2081   */
LL_USART_EnableIT_RXNE(USART_TypeDef * USARTx)2082 __STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx)
2083 {
2084   SET_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2085 }
2086 
2087 /**
2088   * @brief  Enable Transmission Complete Interrupt
2089   * @rmtoll CR1          TCIE          LL_USART_EnableIT_TC
2090   * @param  USARTx USART Instance
2091   * @retval None
2092   */
LL_USART_EnableIT_TC(USART_TypeDef * USARTx)2093 __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
2094 {
2095   SET_BIT(USARTx->CR1, USART_CR1_TCIE);
2096 }
2097 
2098 /**
2099   * @brief  Enable TX Empty Interrupt
2100   * @rmtoll CR1          TXEIE         LL_USART_EnableIT_TXE
2101   * @param  USARTx USART Instance
2102   * @retval None
2103   */
LL_USART_EnableIT_TXE(USART_TypeDef * USARTx)2104 __STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx)
2105 {
2106   SET_BIT(USARTx->CR1, USART_CR1_TXEIE);
2107 }
2108 
2109 /**
2110   * @brief  Enable Parity Error Interrupt
2111   * @rmtoll CR1          PEIE          LL_USART_EnableIT_PE
2112   * @param  USARTx USART Instance
2113   * @retval None
2114   */
LL_USART_EnableIT_PE(USART_TypeDef * USARTx)2115 __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
2116 {
2117   SET_BIT(USARTx->CR1, USART_CR1_PEIE);
2118 }
2119 
2120 /**
2121   * @brief  Enable LIN Break Detection Interrupt
2122   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2123   *         LIN feature is supported by the USARTx instance.
2124   * @rmtoll CR2          LBDIE         LL_USART_EnableIT_LBD
2125   * @param  USARTx USART Instance
2126   * @retval None
2127   */
LL_USART_EnableIT_LBD(USART_TypeDef * USARTx)2128 __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
2129 {
2130   SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
2131 }
2132 
2133 /**
2134   * @brief  Enable Error Interrupt
2135   * @note   When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2136   *         error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2137   *           0: Interrupt is inhibited
2138   *           1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2139   * @rmtoll CR3          EIE           LL_USART_EnableIT_ERROR
2140   * @param  USARTx USART Instance
2141   * @retval None
2142   */
LL_USART_EnableIT_ERROR(USART_TypeDef * USARTx)2143 __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
2144 {
2145   SET_BIT(USARTx->CR3, USART_CR3_EIE);
2146 }
2147 
2148 /**
2149   * @brief  Enable CTS Interrupt
2150   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2151   *         Hardware Flow control feature is supported by the USARTx instance.
2152   * @rmtoll CR3          CTSIE         LL_USART_EnableIT_CTS
2153   * @param  USARTx USART Instance
2154   * @retval None
2155   */
LL_USART_EnableIT_CTS(USART_TypeDef * USARTx)2156 __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
2157 {
2158   SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
2159 }
2160 
2161 /**
2162   * @brief  Disable IDLE Interrupt
2163   * @rmtoll CR1          IDLEIE        LL_USART_DisableIT_IDLE
2164   * @param  USARTx USART Instance
2165   * @retval None
2166   */
LL_USART_DisableIT_IDLE(USART_TypeDef * USARTx)2167 __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
2168 {
2169   CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2170 }
2171 
2172 /**
2173   * @brief  Disable RX Not Empty Interrupt
2174   * @rmtoll CR1          RXNEIE        LL_USART_DisableIT_RXNE
2175   * @param  USARTx USART Instance
2176   * @retval None
2177   */
LL_USART_DisableIT_RXNE(USART_TypeDef * USARTx)2178 __STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx)
2179 {
2180   CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2181 }
2182 
2183 /**
2184   * @brief  Disable Transmission Complete Interrupt
2185   * @rmtoll CR1          TCIE          LL_USART_DisableIT_TC
2186   * @param  USARTx USART Instance
2187   * @retval None
2188   */
LL_USART_DisableIT_TC(USART_TypeDef * USARTx)2189 __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
2190 {
2191   CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
2192 }
2193 
2194 /**
2195   * @brief  Disable TX Empty Interrupt
2196   * @rmtoll CR1          TXEIE         LL_USART_DisableIT_TXE
2197   * @param  USARTx USART Instance
2198   * @retval None
2199   */
LL_USART_DisableIT_TXE(USART_TypeDef * USARTx)2200 __STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx)
2201 {
2202   CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE);
2203 }
2204 
2205 /**
2206   * @brief  Disable Parity Error Interrupt
2207   * @rmtoll CR1          PEIE          LL_USART_DisableIT_PE
2208   * @param  USARTx USART Instance
2209   * @retval None
2210   */
LL_USART_DisableIT_PE(USART_TypeDef * USARTx)2211 __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
2212 {
2213   CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
2214 }
2215 
2216 /**
2217   * @brief  Disable LIN Break Detection Interrupt
2218   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2219   *         LIN feature is supported by the USARTx instance.
2220   * @rmtoll CR2          LBDIE         LL_USART_DisableIT_LBD
2221   * @param  USARTx USART Instance
2222   * @retval None
2223   */
LL_USART_DisableIT_LBD(USART_TypeDef * USARTx)2224 __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
2225 {
2226   CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
2227 }
2228 
2229 /**
2230   * @brief  Disable Error Interrupt
2231   * @note   When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2232   *         error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2233   *           0: Interrupt is inhibited
2234   *           1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2235   * @rmtoll CR3          EIE           LL_USART_DisableIT_ERROR
2236   * @param  USARTx USART Instance
2237   * @retval None
2238   */
LL_USART_DisableIT_ERROR(USART_TypeDef * USARTx)2239 __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
2240 {
2241   CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
2242 }
2243 
2244 /**
2245   * @brief  Disable CTS Interrupt
2246   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2247   *         Hardware Flow control feature is supported by the USARTx instance.
2248   * @rmtoll CR3          CTSIE         LL_USART_DisableIT_CTS
2249   * @param  USARTx USART Instance
2250   * @retval None
2251   */
LL_USART_DisableIT_CTS(USART_TypeDef * USARTx)2252 __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
2253 {
2254   CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
2255 }
2256 
2257 /**
2258   * @brief  Check if the USART IDLE Interrupt  source is enabled or disabled.
2259   * @rmtoll CR1          IDLEIE        LL_USART_IsEnabledIT_IDLE
2260   * @param  USARTx USART Instance
2261   * @retval State of bit (1 or 0).
2262   */
LL_USART_IsEnabledIT_IDLE(USART_TypeDef * USARTx)2263 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx)
2264 {
2265   return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE));
2266 }
2267 
2268 /**
2269   * @brief  Check if the USART RX Not Empty Interrupt is enabled or disabled.
2270   * @rmtoll CR1          RXNEIE        LL_USART_IsEnabledIT_RXNE
2271   * @param  USARTx USART Instance
2272   * @retval State of bit (1 or 0).
2273   */
LL_USART_IsEnabledIT_RXNE(USART_TypeDef * USARTx)2274 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx)
2275 {
2276   return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE));
2277 }
2278 
2279 /**
2280   * @brief  Check if the USART Transmission Complete Interrupt is enabled or disabled.
2281   * @rmtoll CR1          TCIE          LL_USART_IsEnabledIT_TC
2282   * @param  USARTx USART Instance
2283   * @retval State of bit (1 or 0).
2284   */
LL_USART_IsEnabledIT_TC(USART_TypeDef * USARTx)2285 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx)
2286 {
2287   return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE));
2288 }
2289 
2290 /**
2291   * @brief  Check if the USART TX Empty Interrupt is enabled or disabled.
2292   * @rmtoll CR1          TXEIE         LL_USART_IsEnabledIT_TXE
2293   * @param  USARTx USART Instance
2294   * @retval State of bit (1 or 0).
2295   */
LL_USART_IsEnabledIT_TXE(USART_TypeDef * USARTx)2296 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx)
2297 {
2298   return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE));
2299 }
2300 
2301 /**
2302   * @brief  Check if the USART Parity Error Interrupt is enabled or disabled.
2303   * @rmtoll CR1          PEIE          LL_USART_IsEnabledIT_PE
2304   * @param  USARTx USART Instance
2305   * @retval State of bit (1 or 0).
2306   */
LL_USART_IsEnabledIT_PE(USART_TypeDef * USARTx)2307 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx)
2308 {
2309   return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE));
2310 }
2311 
2312 /**
2313   * @brief  Check if the USART LIN Break Detection Interrupt is enabled or disabled.
2314   * @note   Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2315   *         LIN feature is supported by the USARTx instance.
2316   * @rmtoll CR2          LBDIE         LL_USART_IsEnabledIT_LBD
2317   * @param  USARTx USART Instance
2318   * @retval State of bit (1 or 0).
2319   */
LL_USART_IsEnabledIT_LBD(USART_TypeDef * USARTx)2320 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx)
2321 {
2322   return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE));
2323 }
2324 
2325 /**
2326   * @brief  Check if the USART Error Interrupt is enabled or disabled.
2327   * @rmtoll CR3          EIE           LL_USART_IsEnabledIT_ERROR
2328   * @param  USARTx USART Instance
2329   * @retval State of bit (1 or 0).
2330   */
LL_USART_IsEnabledIT_ERROR(USART_TypeDef * USARTx)2331 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx)
2332 {
2333   return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE));
2334 }
2335 
2336 /**
2337   * @brief  Check if the USART CTS Interrupt is enabled or disabled.
2338   * @note   Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2339   *         Hardware Flow control feature is supported by the USARTx instance.
2340   * @rmtoll CR3          CTSIE         LL_USART_IsEnabledIT_CTS
2341   * @param  USARTx USART Instance
2342   * @retval State of bit (1 or 0).
2343   */
LL_USART_IsEnabledIT_CTS(USART_TypeDef * USARTx)2344 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx)
2345 {
2346   return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE));
2347 }
2348 
2349 /**
2350   * @}
2351   */
2352 
2353 /** @defgroup USART_LL_EF_DMA_Management DMA_Management
2354   * @{
2355   */
2356 
2357 /**
2358   * @brief  Enable DMA Mode for reception
2359   * @rmtoll CR3          DMAR          LL_USART_EnableDMAReq_RX
2360   * @param  USARTx USART Instance
2361   * @retval None
2362   */
LL_USART_EnableDMAReq_RX(USART_TypeDef * USARTx)2363 __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
2364 {
2365   SET_BIT(USARTx->CR3, USART_CR3_DMAR);
2366 }
2367 
2368 /**
2369   * @brief  Disable DMA Mode for reception
2370   * @rmtoll CR3          DMAR          LL_USART_DisableDMAReq_RX
2371   * @param  USARTx USART Instance
2372   * @retval None
2373   */
LL_USART_DisableDMAReq_RX(USART_TypeDef * USARTx)2374 __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
2375 {
2376   CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
2377 }
2378 
2379 /**
2380   * @brief  Check if DMA Mode is enabled for reception
2381   * @rmtoll CR3          DMAR          LL_USART_IsEnabledDMAReq_RX
2382   * @param  USARTx USART Instance
2383   * @retval State of bit (1 or 0).
2384   */
LL_USART_IsEnabledDMAReq_RX(USART_TypeDef * USARTx)2385 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx)
2386 {
2387   return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR));
2388 }
2389 
2390 /**
2391   * @brief  Enable DMA Mode for transmission
2392   * @rmtoll CR3          DMAT          LL_USART_EnableDMAReq_TX
2393   * @param  USARTx USART Instance
2394   * @retval None
2395   */
LL_USART_EnableDMAReq_TX(USART_TypeDef * USARTx)2396 __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
2397 {
2398   SET_BIT(USARTx->CR3, USART_CR3_DMAT);
2399 }
2400 
2401 /**
2402   * @brief  Disable DMA Mode for transmission
2403   * @rmtoll CR3          DMAT          LL_USART_DisableDMAReq_TX
2404   * @param  USARTx USART Instance
2405   * @retval None
2406   */
LL_USART_DisableDMAReq_TX(USART_TypeDef * USARTx)2407 __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
2408 {
2409   CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
2410 }
2411 
2412 /**
2413   * @brief  Check if DMA Mode is enabled for transmission
2414   * @rmtoll CR3          DMAT          LL_USART_IsEnabledDMAReq_TX
2415   * @param  USARTx USART Instance
2416   * @retval State of bit (1 or 0).
2417   */
LL_USART_IsEnabledDMAReq_TX(USART_TypeDef * USARTx)2418 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx)
2419 {
2420   return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT));
2421 }
2422 
2423 /**
2424   * @brief  Get the data register address used for DMA transfer
2425   * @rmtoll DR           DR            LL_USART_DMA_GetRegAddr
2426   * @note   Address of Data Register is valid for both Transmit and Receive transfers.
2427   * @param  USARTx USART Instance
2428   * @retval Address of data register
2429   */
LL_USART_DMA_GetRegAddr(USART_TypeDef * USARTx)2430 __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx)
2431 {
2432   /* return address of DR register */
2433   return ((uint32_t) & (USARTx->DR));
2434 }
2435 
2436 /**
2437   * @}
2438   */
2439 
2440 /** @defgroup USART_LL_EF_Data_Management Data_Management
2441   * @{
2442   */
2443 
2444 /**
2445   * @brief  Read Receiver Data register (Receive Data value, 8 bits)
2446   * @rmtoll DR           DR            LL_USART_ReceiveData8
2447   * @param  USARTx USART Instance
2448   * @retval Value between Min_Data=0x00 and Max_Data=0xFF
2449   */
LL_USART_ReceiveData8(USART_TypeDef * USARTx)2450 __STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx)
2451 {
2452   return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2453 }
2454 
2455 /**
2456   * @brief  Read Receiver Data register (Receive Data value, 9 bits)
2457   * @rmtoll DR           DR            LL_USART_ReceiveData9
2458   * @param  USARTx USART Instance
2459   * @retval Value between Min_Data=0x00 and Max_Data=0x1FF
2460   */
LL_USART_ReceiveData9(USART_TypeDef * USARTx)2461 __STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx)
2462 {
2463   return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2464 }
2465 
2466 /**
2467   * @brief  Write in Transmitter Data Register (Transmit Data value, 8 bits)
2468   * @rmtoll DR           DR            LL_USART_TransmitData8
2469   * @param  USARTx USART Instance
2470   * @param  Value between Min_Data=0x00 and Max_Data=0xFF
2471   * @retval None
2472   */
LL_USART_TransmitData8(USART_TypeDef * USARTx,uint8_t Value)2473 __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
2474 {
2475   USARTx->DR = Value;
2476 }
2477 
2478 /**
2479   * @brief  Write in Transmitter Data Register (Transmit Data value, 9 bits)
2480   * @rmtoll DR           DR            LL_USART_TransmitData9
2481   * @param  USARTx USART Instance
2482   * @param  Value between Min_Data=0x00 and Max_Data=0x1FF
2483   * @retval None
2484   */
LL_USART_TransmitData9(USART_TypeDef * USARTx,uint16_t Value)2485 __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
2486 {
2487   USARTx->DR = Value & 0x1FFU;
2488 }
2489 
2490 /**
2491   * @}
2492   */
2493 
2494 /** @defgroup USART_LL_EF_Execution Execution
2495   * @{
2496   */
2497 
2498 /**
2499   * @brief  Request Break sending
2500   * @rmtoll CR1          SBK           LL_USART_RequestBreakSending
2501   * @param  USARTx USART Instance
2502   * @retval None
2503   */
LL_USART_RequestBreakSending(USART_TypeDef * USARTx)2504 __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
2505 {
2506   SET_BIT(USARTx->CR1, USART_CR1_SBK);
2507 }
2508 
2509 /**
2510   * @brief  Put USART in Mute mode
2511   * @rmtoll CR1          RWU           LL_USART_RequestEnterMuteMode
2512   * @param  USARTx USART Instance
2513   * @retval None
2514   */
LL_USART_RequestEnterMuteMode(USART_TypeDef * USARTx)2515 __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
2516 {
2517   SET_BIT(USARTx->CR1, USART_CR1_RWU);
2518 }
2519 
2520 /**
2521   * @brief  Put USART in Active mode
2522   * @rmtoll CR1          RWU           LL_USART_RequestExitMuteMode
2523   * @param  USARTx USART Instance
2524   * @retval None
2525   */
LL_USART_RequestExitMuteMode(USART_TypeDef * USARTx)2526 __STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx)
2527 {
2528   CLEAR_BIT(USARTx->CR1, USART_CR1_RWU);
2529 }
2530 
2531 /**
2532   * @}
2533   */
2534 
2535 #if defined(USE_FULL_LL_DRIVER)
2536 /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
2537   * @{
2538   */
2539 ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx);
2540 ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct);
2541 void        LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
2542 ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2543 void        LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2544 /**
2545   * @}
2546   */
2547 #endif /* USE_FULL_LL_DRIVER */
2548 
2549 /**
2550   * @}
2551   */
2552 
2553 /**
2554   * @}
2555   */
2556 
2557 #endif /* USART1 || USART2 || USART3 || UART4 || UART5 */
2558 
2559 /**
2560   * @}
2561   */
2562 
2563 #ifdef __cplusplus
2564 }
2565 #endif
2566 
2567 #endif /* __STM32F1xx_LL_USART_H */
2568 
2569 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2570