1 /**
2 ******************************************************************************
3 * @file stm32f1xx_ll_usart.h
4 * @author MCD Application Team
5 * @brief Header file of USART LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * <h2><center>© Copyright (c) 2016 STMicroelectronics.
10 * All rights reserved.</center></h2>
11 *
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
16 *
17 ******************************************************************************
18 */
19
20 /* Define to prevent recursive inclusion -------------------------------------*/
21 #ifndef __STM32F1xx_LL_USART_H
22 #define __STM32F1xx_LL_USART_H
23
24 #ifdef __cplusplus
25 extern "C" {
26 #endif
27
28 /* Includes ------------------------------------------------------------------*/
29 #include "stm32f1xx.h"
30
31 /** @addtogroup STM32F1xx_LL_Driver
32 * @{
33 */
34
35 #if defined (USART1) || defined (USART2) || defined (USART3) || defined (UART4) || defined (UART5)
36
37 /** @defgroup USART_LL USART
38 * @{
39 */
40
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43
44 /* Private constants ---------------------------------------------------------*/
45 /** @defgroup USART_LL_Private_Constants USART Private Constants
46 * @{
47 */
48
49 /* Defines used for the bit position in the register and perform offsets*/
50 #define USART_POSITION_GTPR_GT USART_GTPR_GT_Pos
51 /**
52 * @}
53 */
54
55 /* Private macros ------------------------------------------------------------*/
56 #if defined(USE_FULL_LL_DRIVER)
57 /** @defgroup USART_LL_Private_Macros USART Private Macros
58 * @{
59 */
60 /**
61 * @}
62 */
63 #endif /*USE_FULL_LL_DRIVER*/
64
65 /* Exported types ------------------------------------------------------------*/
66 #if defined(USE_FULL_LL_DRIVER)
67 /** @defgroup USART_LL_ES_INIT USART Exported Init structures
68 * @{
69 */
70
71 /**
72 * @brief LL USART Init Structure definition
73 */
74 typedef struct
75 {
76 uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate.
77
78 This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/
79
80 uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame.
81 This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
82
83 This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/
84
85 uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
86 This parameter can be a value of @ref USART_LL_EC_STOPBITS.
87
88 This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/
89
90 uint32_t Parity; /*!< Specifies the parity mode.
91 This parameter can be a value of @ref USART_LL_EC_PARITY.
92
93 This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/
94
95 uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
96 This parameter can be a value of @ref USART_LL_EC_DIRECTION.
97
98 This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/
99
100 uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
101 This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
102
103 This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/
104
105 uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8.
106 This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
107
108 This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/
109
110 } LL_USART_InitTypeDef;
111
112 /**
113 * @brief LL USART Clock Init Structure definition
114 */
115 typedef struct
116 {
117 uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled.
118 This parameter can be a value of @ref USART_LL_EC_CLOCK.
119
120 USART HW configuration can be modified afterwards using unitary functions
121 @ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
122 For more details, refer to description of this function. */
123
124 uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock.
125 This parameter can be a value of @ref USART_LL_EC_POLARITY.
126
127 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity().
128 For more details, refer to description of this function. */
129
130 uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made.
131 This parameter can be a value of @ref USART_LL_EC_PHASE.
132
133 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase().
134 For more details, refer to description of this function. */
135
136 uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted
137 data bit (MSB) has to be output on the SCLK pin in synchronous mode.
138 This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
139
140 USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput().
141 For more details, refer to description of this function. */
142
143 } LL_USART_ClockInitTypeDef;
144
145 /**
146 * @}
147 */
148 #endif /* USE_FULL_LL_DRIVER */
149
150 /* Exported constants --------------------------------------------------------*/
151 /** @defgroup USART_LL_Exported_Constants USART Exported Constants
152 * @{
153 */
154
155 /** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
156 * @brief Flags defines which can be used with LL_USART_ReadReg function
157 * @{
158 */
159 #define LL_USART_SR_PE USART_SR_PE /*!< Parity error flag */
160 #define LL_USART_SR_FE USART_SR_FE /*!< Framing error flag */
161 #define LL_USART_SR_NE USART_SR_NE /*!< Noise detected flag */
162 #define LL_USART_SR_ORE USART_SR_ORE /*!< Overrun error flag */
163 #define LL_USART_SR_IDLE USART_SR_IDLE /*!< Idle line detected flag */
164 #define LL_USART_SR_RXNE USART_SR_RXNE /*!< Read data register not empty flag */
165 #define LL_USART_SR_TC USART_SR_TC /*!< Transmission complete flag */
166 #define LL_USART_SR_TXE USART_SR_TXE /*!< Transmit data register empty flag */
167 #define LL_USART_SR_LBD USART_SR_LBD /*!< LIN break detection flag */
168 #define LL_USART_SR_CTS USART_SR_CTS /*!< CTS flag */
169 /**
170 * @}
171 */
172
173 /** @defgroup USART_LL_EC_IT IT Defines
174 * @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions
175 * @{
176 */
177 #define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */
178 #define LL_USART_CR1_RXNEIE USART_CR1_RXNEIE /*!< Read data register not empty interrupt enable */
179 #define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */
180 #define LL_USART_CR1_TXEIE USART_CR1_TXEIE /*!< Transmit data register empty interrupt enable */
181 #define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */
182 #define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */
183 #define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */
184 #define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */
185 /**
186 * @}
187 */
188
189 /** @defgroup USART_LL_EC_DIRECTION Communication Direction
190 * @{
191 */
192 #define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */
193 #define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */
194 #define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */
195 #define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */
196 /**
197 * @}
198 */
199
200 /** @defgroup USART_LL_EC_PARITY Parity Control
201 * @{
202 */
203 #define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */
204 #define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */
205 #define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */
206 /**
207 * @}
208 */
209
210 /** @defgroup USART_LL_EC_WAKEUP Wakeup
211 * @{
212 */
213 #define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */
214 #define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */
215 /**
216 * @}
217 */
218
219 /** @defgroup USART_LL_EC_DATAWIDTH Datawidth
220 * @{
221 */
222 #define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
223 #define LL_USART_DATAWIDTH_9B USART_CR1_M /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
224 /**
225 * @}
226 */
227
228 /** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
229 * @{
230 */
231 #define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */
232 #if defined(USART_CR1_OVER8)
233 #define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */
234 #endif /* USART_OverSampling_Feature */
235 /**
236 * @}
237 */
238
239 #if defined(USE_FULL_LL_DRIVER)
240 /** @defgroup USART_LL_EC_CLOCK Clock Signal
241 * @{
242 */
243
244 #define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */
245 #define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */
246 /**
247 * @}
248 */
249 #endif /*USE_FULL_LL_DRIVER*/
250
251 /** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
252 * @{
253 */
254 #define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */
255 #define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */
256 /**
257 * @}
258 */
259
260 /** @defgroup USART_LL_EC_PHASE Clock Phase
261 * @{
262 */
263 #define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */
264 #define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */
265 /**
266 * @}
267 */
268
269 /** @defgroup USART_LL_EC_POLARITY Clock Polarity
270 * @{
271 */
272 #define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/
273 #define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */
274 /**
275 * @}
276 */
277
278 /** @defgroup USART_LL_EC_STOPBITS Stop Bits
279 * @{
280 */
281 #define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */
282 #define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */
283 #define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */
284 #define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */
285 /**
286 * @}
287 */
288
289 /** @defgroup USART_LL_EC_HWCONTROL Hardware Control
290 * @{
291 */
292 #define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */
293 #define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
294 #define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
295 #define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */
296 /**
297 * @}
298 */
299
300 /** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
301 * @{
302 */
303 #define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */
304 #define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */
305 /**
306 * @}
307 */
308
309 /** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
310 * @{
311 */
312 #define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */
313 #define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */
314 /**
315 * @}
316 */
317
318 /**
319 * @}
320 */
321
322 /* Exported macro ------------------------------------------------------------*/
323 /** @defgroup USART_LL_Exported_Macros USART Exported Macros
324 * @{
325 */
326
327 /** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
328 * @{
329 */
330
331 /**
332 * @brief Write a value in USART register
333 * @param __INSTANCE__ USART Instance
334 * @param __REG__ Register to be written
335 * @param __VALUE__ Value to be written in the register
336 * @retval None
337 */
338 #define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
339
340 /**
341 * @brief Read a value in USART register
342 * @param __INSTANCE__ USART Instance
343 * @param __REG__ Register to be read
344 * @retval Register value
345 */
346 #define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
347 /**
348 * @}
349 */
350
351 /** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
352 * @{
353 */
354
355 /**
356 * @brief Compute USARTDIV value according to Peripheral Clock and
357 * expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
358 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
359 * @param __BAUDRATE__ Baud rate value to achieve
360 * @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
361 */
362 #define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__)))
363 #define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100)
364 #define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100)
365 /* UART BRR = mantissa + overflow + fraction
366 = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */
367 #define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
368 ((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \
369 (__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07))
370
371 /**
372 * @brief Compute USARTDIV value according to Peripheral Clock and
373 * expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
374 * @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
375 * @param __BAUDRATE__ Baud rate value to achieve
376 * @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
377 */
378 #define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__)))
379 #define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100)
380 #define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) ((((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16) + 50) / 100)
381 /* USART BRR = mantissa + overflow + fraction
382 = (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */
383 #define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
384 (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \
385 (__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F))
386
387 /**
388 * @}
389 */
390
391 /**
392 * @}
393 */
394
395 /* Exported functions --------------------------------------------------------*/
396
397 /** @defgroup USART_LL_Exported_Functions USART Exported Functions
398 * @{
399 */
400
401 /** @defgroup USART_LL_EF_Configuration Configuration functions
402 * @{
403 */
404
405 /**
406 * @brief USART Enable
407 * @rmtoll CR1 UE LL_USART_Enable
408 * @param USARTx USART Instance
409 * @retval None
410 */
LL_USART_Enable(USART_TypeDef * USARTx)411 __STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
412 {
413 SET_BIT(USARTx->CR1, USART_CR1_UE);
414 }
415
416 /**
417 * @brief USART Disable (all USART prescalers and outputs are disabled)
418 * @note When USART is disabled, USART prescalers and outputs are stopped immediately,
419 * and current operations are discarded. The configuration of the USART is kept, but all the status
420 * flags, in the USARTx_SR are set to their default values.
421 * @rmtoll CR1 UE LL_USART_Disable
422 * @param USARTx USART Instance
423 * @retval None
424 */
LL_USART_Disable(USART_TypeDef * USARTx)425 __STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
426 {
427 CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
428 }
429
430 /**
431 * @brief Indicate if USART is enabled
432 * @rmtoll CR1 UE LL_USART_IsEnabled
433 * @param USARTx USART Instance
434 * @retval State of bit (1 or 0).
435 */
LL_USART_IsEnabled(USART_TypeDef * USARTx)436 __STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx)
437 {
438 return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE));
439 }
440
441 /**
442 * @brief Receiver Enable (Receiver is enabled and begins searching for a start bit)
443 * @rmtoll CR1 RE LL_USART_EnableDirectionRx
444 * @param USARTx USART Instance
445 * @retval None
446 */
LL_USART_EnableDirectionRx(USART_TypeDef * USARTx)447 __STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
448 {
449 SET_BIT(USARTx->CR1, USART_CR1_RE);
450 }
451
452 /**
453 * @brief Receiver Disable
454 * @rmtoll CR1 RE LL_USART_DisableDirectionRx
455 * @param USARTx USART Instance
456 * @retval None
457 */
LL_USART_DisableDirectionRx(USART_TypeDef * USARTx)458 __STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
459 {
460 CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
461 }
462
463 /**
464 * @brief Transmitter Enable
465 * @rmtoll CR1 TE LL_USART_EnableDirectionTx
466 * @param USARTx USART Instance
467 * @retval None
468 */
LL_USART_EnableDirectionTx(USART_TypeDef * USARTx)469 __STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
470 {
471 SET_BIT(USARTx->CR1, USART_CR1_TE);
472 }
473
474 /**
475 * @brief Transmitter Disable
476 * @rmtoll CR1 TE LL_USART_DisableDirectionTx
477 * @param USARTx USART Instance
478 * @retval None
479 */
LL_USART_DisableDirectionTx(USART_TypeDef * USARTx)480 __STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
481 {
482 CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
483 }
484
485 /**
486 * @brief Configure simultaneously enabled/disabled states
487 * of Transmitter and Receiver
488 * @rmtoll CR1 RE LL_USART_SetTransferDirection\n
489 * CR1 TE LL_USART_SetTransferDirection
490 * @param USARTx USART Instance
491 * @param TransferDirection This parameter can be one of the following values:
492 * @arg @ref LL_USART_DIRECTION_NONE
493 * @arg @ref LL_USART_DIRECTION_RX
494 * @arg @ref LL_USART_DIRECTION_TX
495 * @arg @ref LL_USART_DIRECTION_TX_RX
496 * @retval None
497 */
LL_USART_SetTransferDirection(USART_TypeDef * USARTx,uint32_t TransferDirection)498 __STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
499 {
500 MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
501 }
502
503 /**
504 * @brief Return enabled/disabled states of Transmitter and Receiver
505 * @rmtoll CR1 RE LL_USART_GetTransferDirection\n
506 * CR1 TE LL_USART_GetTransferDirection
507 * @param USARTx USART Instance
508 * @retval Returned value can be one of the following values:
509 * @arg @ref LL_USART_DIRECTION_NONE
510 * @arg @ref LL_USART_DIRECTION_RX
511 * @arg @ref LL_USART_DIRECTION_TX
512 * @arg @ref LL_USART_DIRECTION_TX_RX
513 */
LL_USART_GetTransferDirection(USART_TypeDef * USARTx)514 __STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx)
515 {
516 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
517 }
518
519 /**
520 * @brief Configure Parity (enabled/disabled and parity mode if enabled).
521 * @note This function selects if hardware parity control (generation and detection) is enabled or disabled.
522 * When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
523 * (9th or 8th bit depending on data width) and parity is checked on the received data.
524 * @rmtoll CR1 PS LL_USART_SetParity\n
525 * CR1 PCE LL_USART_SetParity
526 * @param USARTx USART Instance
527 * @param Parity This parameter can be one of the following values:
528 * @arg @ref LL_USART_PARITY_NONE
529 * @arg @ref LL_USART_PARITY_EVEN
530 * @arg @ref LL_USART_PARITY_ODD
531 * @retval None
532 */
LL_USART_SetParity(USART_TypeDef * USARTx,uint32_t Parity)533 __STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
534 {
535 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
536 }
537
538 /**
539 * @brief Return Parity configuration (enabled/disabled and parity mode if enabled)
540 * @rmtoll CR1 PS LL_USART_GetParity\n
541 * CR1 PCE LL_USART_GetParity
542 * @param USARTx USART Instance
543 * @retval Returned value can be one of the following values:
544 * @arg @ref LL_USART_PARITY_NONE
545 * @arg @ref LL_USART_PARITY_EVEN
546 * @arg @ref LL_USART_PARITY_ODD
547 */
LL_USART_GetParity(USART_TypeDef * USARTx)548 __STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx)
549 {
550 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
551 }
552
553 /**
554 * @brief Set Receiver Wake Up method from Mute mode.
555 * @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod
556 * @param USARTx USART Instance
557 * @param Method This parameter can be one of the following values:
558 * @arg @ref LL_USART_WAKEUP_IDLELINE
559 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
560 * @retval None
561 */
LL_USART_SetWakeUpMethod(USART_TypeDef * USARTx,uint32_t Method)562 __STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
563 {
564 MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
565 }
566
567 /**
568 * @brief Return Receiver Wake Up method from Mute mode
569 * @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod
570 * @param USARTx USART Instance
571 * @retval Returned value can be one of the following values:
572 * @arg @ref LL_USART_WAKEUP_IDLELINE
573 * @arg @ref LL_USART_WAKEUP_ADDRESSMARK
574 */
LL_USART_GetWakeUpMethod(USART_TypeDef * USARTx)575 __STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx)
576 {
577 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
578 }
579
580 /**
581 * @brief Set Word length (i.e. nb of data bits, excluding start and stop bits)
582 * @rmtoll CR1 M LL_USART_SetDataWidth
583 * @param USARTx USART Instance
584 * @param DataWidth This parameter can be one of the following values:
585 * @arg @ref LL_USART_DATAWIDTH_8B
586 * @arg @ref LL_USART_DATAWIDTH_9B
587 * @retval None
588 */
LL_USART_SetDataWidth(USART_TypeDef * USARTx,uint32_t DataWidth)589 __STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
590 {
591 MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
592 }
593
594 /**
595 * @brief Return Word length (i.e. nb of data bits, excluding start and stop bits)
596 * @rmtoll CR1 M LL_USART_GetDataWidth
597 * @param USARTx USART Instance
598 * @retval Returned value can be one of the following values:
599 * @arg @ref LL_USART_DATAWIDTH_8B
600 * @arg @ref LL_USART_DATAWIDTH_9B
601 */
LL_USART_GetDataWidth(USART_TypeDef * USARTx)602 __STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx)
603 {
604 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
605 }
606
607 #if defined(USART_CR1_OVER8)
608 /**
609 * @brief Set Oversampling to 8-bit or 16-bit mode
610 * @rmtoll CR1 OVER8 LL_USART_SetOverSampling
611 * @param USARTx USART Instance
612 * @param OverSampling This parameter can be one of the following values:
613 * @arg @ref LL_USART_OVERSAMPLING_16
614 * @arg @ref LL_USART_OVERSAMPLING_8
615 * @retval None
616 */
LL_USART_SetOverSampling(USART_TypeDef * USARTx,uint32_t OverSampling)617 __STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
618 {
619 MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
620 }
621
622 /**
623 * @brief Return Oversampling mode
624 * @rmtoll CR1 OVER8 LL_USART_GetOverSampling
625 * @param USARTx USART Instance
626 * @retval Returned value can be one of the following values:
627 * @arg @ref LL_USART_OVERSAMPLING_16
628 * @arg @ref LL_USART_OVERSAMPLING_8
629 */
LL_USART_GetOverSampling(USART_TypeDef * USARTx)630 __STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx)
631 {
632 return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
633 }
634
635 #endif /* USART_OverSampling_Feature */
636 /**
637 * @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not
638 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
639 * Synchronous mode is supported by the USARTx instance.
640 * @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput
641 * @param USARTx USART Instance
642 * @param LastBitClockPulse This parameter can be one of the following values:
643 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
644 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
645 * @retval None
646 */
LL_USART_SetLastClkPulseOutput(USART_TypeDef * USARTx,uint32_t LastBitClockPulse)647 __STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
648 {
649 MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
650 }
651
652 /**
653 * @brief Retrieve Clock pulse of the last data bit output configuration
654 * (Last bit Clock pulse output to the SCLK pin or not)
655 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
656 * Synchronous mode is supported by the USARTx instance.
657 * @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput
658 * @param USARTx USART Instance
659 * @retval Returned value can be one of the following values:
660 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
661 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
662 */
LL_USART_GetLastClkPulseOutput(USART_TypeDef * USARTx)663 __STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx)
664 {
665 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
666 }
667
668 /**
669 * @brief Select the phase of the clock output on the SCLK pin in synchronous mode
670 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
671 * Synchronous mode is supported by the USARTx instance.
672 * @rmtoll CR2 CPHA LL_USART_SetClockPhase
673 * @param USARTx USART Instance
674 * @param ClockPhase This parameter can be one of the following values:
675 * @arg @ref LL_USART_PHASE_1EDGE
676 * @arg @ref LL_USART_PHASE_2EDGE
677 * @retval None
678 */
LL_USART_SetClockPhase(USART_TypeDef * USARTx,uint32_t ClockPhase)679 __STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
680 {
681 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
682 }
683
684 /**
685 * @brief Return phase of the clock output on the SCLK pin in synchronous mode
686 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
687 * Synchronous mode is supported by the USARTx instance.
688 * @rmtoll CR2 CPHA LL_USART_GetClockPhase
689 * @param USARTx USART Instance
690 * @retval Returned value can be one of the following values:
691 * @arg @ref LL_USART_PHASE_1EDGE
692 * @arg @ref LL_USART_PHASE_2EDGE
693 */
LL_USART_GetClockPhase(USART_TypeDef * USARTx)694 __STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx)
695 {
696 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
697 }
698
699 /**
700 * @brief Select the polarity of the clock output on the SCLK pin in synchronous mode
701 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
702 * Synchronous mode is supported by the USARTx instance.
703 * @rmtoll CR2 CPOL LL_USART_SetClockPolarity
704 * @param USARTx USART Instance
705 * @param ClockPolarity This parameter can be one of the following values:
706 * @arg @ref LL_USART_POLARITY_LOW
707 * @arg @ref LL_USART_POLARITY_HIGH
708 * @retval None
709 */
LL_USART_SetClockPolarity(USART_TypeDef * USARTx,uint32_t ClockPolarity)710 __STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
711 {
712 MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
713 }
714
715 /**
716 * @brief Return polarity of the clock output on the SCLK pin in synchronous mode
717 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
718 * Synchronous mode is supported by the USARTx instance.
719 * @rmtoll CR2 CPOL LL_USART_GetClockPolarity
720 * @param USARTx USART Instance
721 * @retval Returned value can be one of the following values:
722 * @arg @ref LL_USART_POLARITY_LOW
723 * @arg @ref LL_USART_POLARITY_HIGH
724 */
LL_USART_GetClockPolarity(USART_TypeDef * USARTx)725 __STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx)
726 {
727 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
728 }
729
730 /**
731 * @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
732 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
733 * Synchronous mode is supported by the USARTx instance.
734 * @note Call of this function is equivalent to following function call sequence :
735 * - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
736 * - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
737 * - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
738 * @rmtoll CR2 CPHA LL_USART_ConfigClock\n
739 * CR2 CPOL LL_USART_ConfigClock\n
740 * CR2 LBCL LL_USART_ConfigClock
741 * @param USARTx USART Instance
742 * @param Phase This parameter can be one of the following values:
743 * @arg @ref LL_USART_PHASE_1EDGE
744 * @arg @ref LL_USART_PHASE_2EDGE
745 * @param Polarity This parameter can be one of the following values:
746 * @arg @ref LL_USART_POLARITY_LOW
747 * @arg @ref LL_USART_POLARITY_HIGH
748 * @param LBCPOutput This parameter can be one of the following values:
749 * @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
750 * @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
751 * @retval None
752 */
LL_USART_ConfigClock(USART_TypeDef * USARTx,uint32_t Phase,uint32_t Polarity,uint32_t LBCPOutput)753 __STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
754 {
755 MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
756 }
757
758 /**
759 * @brief Enable Clock output on SCLK pin
760 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
761 * Synchronous mode is supported by the USARTx instance.
762 * @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput
763 * @param USARTx USART Instance
764 * @retval None
765 */
LL_USART_EnableSCLKOutput(USART_TypeDef * USARTx)766 __STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
767 {
768 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
769 }
770
771 /**
772 * @brief Disable Clock output on SCLK pin
773 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
774 * Synchronous mode is supported by the USARTx instance.
775 * @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput
776 * @param USARTx USART Instance
777 * @retval None
778 */
LL_USART_DisableSCLKOutput(USART_TypeDef * USARTx)779 __STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
780 {
781 CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
782 }
783
784 /**
785 * @brief Indicate if Clock output on SCLK pin is enabled
786 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
787 * Synchronous mode is supported by the USARTx instance.
788 * @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput
789 * @param USARTx USART Instance
790 * @retval State of bit (1 or 0).
791 */
LL_USART_IsEnabledSCLKOutput(USART_TypeDef * USARTx)792 __STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx)
793 {
794 return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN));
795 }
796
797 /**
798 * @brief Set the length of the stop bits
799 * @rmtoll CR2 STOP LL_USART_SetStopBitsLength
800 * @param USARTx USART Instance
801 * @param StopBits This parameter can be one of the following values:
802 * @arg @ref LL_USART_STOPBITS_0_5
803 * @arg @ref LL_USART_STOPBITS_1
804 * @arg @ref LL_USART_STOPBITS_1_5
805 * @arg @ref LL_USART_STOPBITS_2
806 * @retval None
807 */
LL_USART_SetStopBitsLength(USART_TypeDef * USARTx,uint32_t StopBits)808 __STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
809 {
810 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
811 }
812
813 /**
814 * @brief Retrieve the length of the stop bits
815 * @rmtoll CR2 STOP LL_USART_GetStopBitsLength
816 * @param USARTx USART Instance
817 * @retval Returned value can be one of the following values:
818 * @arg @ref LL_USART_STOPBITS_0_5
819 * @arg @ref LL_USART_STOPBITS_1
820 * @arg @ref LL_USART_STOPBITS_1_5
821 * @arg @ref LL_USART_STOPBITS_2
822 */
LL_USART_GetStopBitsLength(USART_TypeDef * USARTx)823 __STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx)
824 {
825 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
826 }
827
828 /**
829 * @brief Configure Character frame format (Datawidth, Parity control, Stop Bits)
830 * @note Call of this function is equivalent to following function call sequence :
831 * - Data Width configuration using @ref LL_USART_SetDataWidth() function
832 * - Parity Control and mode configuration using @ref LL_USART_SetParity() function
833 * - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
834 * @rmtoll CR1 PS LL_USART_ConfigCharacter\n
835 * CR1 PCE LL_USART_ConfigCharacter\n
836 * CR1 M LL_USART_ConfigCharacter\n
837 * CR2 STOP LL_USART_ConfigCharacter
838 * @param USARTx USART Instance
839 * @param DataWidth This parameter can be one of the following values:
840 * @arg @ref LL_USART_DATAWIDTH_8B
841 * @arg @ref LL_USART_DATAWIDTH_9B
842 * @param Parity This parameter can be one of the following values:
843 * @arg @ref LL_USART_PARITY_NONE
844 * @arg @ref LL_USART_PARITY_EVEN
845 * @arg @ref LL_USART_PARITY_ODD
846 * @param StopBits This parameter can be one of the following values:
847 * @arg @ref LL_USART_STOPBITS_0_5
848 * @arg @ref LL_USART_STOPBITS_1
849 * @arg @ref LL_USART_STOPBITS_1_5
850 * @arg @ref LL_USART_STOPBITS_2
851 * @retval None
852 */
LL_USART_ConfigCharacter(USART_TypeDef * USARTx,uint32_t DataWidth,uint32_t Parity,uint32_t StopBits)853 __STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
854 uint32_t StopBits)
855 {
856 MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
857 MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
858 }
859
860 /**
861 * @brief Set Address of the USART node.
862 * @note This is used in multiprocessor communication during Mute mode or Stop mode,
863 * for wake up with address mark detection.
864 * @rmtoll CR2 ADD LL_USART_SetNodeAddress
865 * @param USARTx USART Instance
866 * @param NodeAddress 4 bit Address of the USART node.
867 * @retval None
868 */
LL_USART_SetNodeAddress(USART_TypeDef * USARTx,uint32_t NodeAddress)869 __STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress)
870 {
871 MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD));
872 }
873
874 /**
875 * @brief Return 4 bit Address of the USART node as set in ADD field of CR2.
876 * @note only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
877 * @rmtoll CR2 ADD LL_USART_GetNodeAddress
878 * @param USARTx USART Instance
879 * @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
880 */
LL_USART_GetNodeAddress(USART_TypeDef * USARTx)881 __STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx)
882 {
883 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD));
884 }
885
886 /**
887 * @brief Enable RTS HW Flow Control
888 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
889 * Hardware Flow control feature is supported by the USARTx instance.
890 * @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl
891 * @param USARTx USART Instance
892 * @retval None
893 */
LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef * USARTx)894 __STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
895 {
896 SET_BIT(USARTx->CR3, USART_CR3_RTSE);
897 }
898
899 /**
900 * @brief Disable RTS HW Flow Control
901 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
902 * Hardware Flow control feature is supported by the USARTx instance.
903 * @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl
904 * @param USARTx USART Instance
905 * @retval None
906 */
LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef * USARTx)907 __STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
908 {
909 CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
910 }
911
912 /**
913 * @brief Enable CTS HW Flow Control
914 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
915 * Hardware Flow control feature is supported by the USARTx instance.
916 * @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl
917 * @param USARTx USART Instance
918 * @retval None
919 */
LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef * USARTx)920 __STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
921 {
922 SET_BIT(USARTx->CR3, USART_CR3_CTSE);
923 }
924
925 /**
926 * @brief Disable CTS HW Flow Control
927 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
928 * Hardware Flow control feature is supported by the USARTx instance.
929 * @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl
930 * @param USARTx USART Instance
931 * @retval None
932 */
LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef * USARTx)933 __STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
934 {
935 CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
936 }
937
938 /**
939 * @brief Configure HW Flow Control mode (both CTS and RTS)
940 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
941 * Hardware Flow control feature is supported by the USARTx instance.
942 * @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n
943 * CR3 CTSE LL_USART_SetHWFlowCtrl
944 * @param USARTx USART Instance
945 * @param HardwareFlowControl This parameter can be one of the following values:
946 * @arg @ref LL_USART_HWCONTROL_NONE
947 * @arg @ref LL_USART_HWCONTROL_RTS
948 * @arg @ref LL_USART_HWCONTROL_CTS
949 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
950 * @retval None
951 */
LL_USART_SetHWFlowCtrl(USART_TypeDef * USARTx,uint32_t HardwareFlowControl)952 __STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
953 {
954 MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
955 }
956
957 /**
958 * @brief Return HW Flow Control configuration (both CTS and RTS)
959 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
960 * Hardware Flow control feature is supported by the USARTx instance.
961 * @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n
962 * CR3 CTSE LL_USART_GetHWFlowCtrl
963 * @param USARTx USART Instance
964 * @retval Returned value can be one of the following values:
965 * @arg @ref LL_USART_HWCONTROL_NONE
966 * @arg @ref LL_USART_HWCONTROL_RTS
967 * @arg @ref LL_USART_HWCONTROL_CTS
968 * @arg @ref LL_USART_HWCONTROL_RTS_CTS
969 */
LL_USART_GetHWFlowCtrl(USART_TypeDef * USARTx)970 __STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx)
971 {
972 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
973 }
974
975 #if defined(USART_CR3_ONEBIT)
976 /**
977 * @brief Enable One bit sampling method
978 * @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp
979 * @param USARTx USART Instance
980 * @retval None
981 */
LL_USART_EnableOneBitSamp(USART_TypeDef * USARTx)982 __STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
983 {
984 SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
985 }
986
987 /**
988 * @brief Disable One bit sampling method
989 * @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp
990 * @param USARTx USART Instance
991 * @retval None
992 */
LL_USART_DisableOneBitSamp(USART_TypeDef * USARTx)993 __STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
994 {
995 CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
996 }
997
998 /**
999 * @brief Indicate if One bit sampling method is enabled
1000 * @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp
1001 * @param USARTx USART Instance
1002 * @retval State of bit (1 or 0).
1003 */
LL_USART_IsEnabledOneBitSamp(USART_TypeDef * USARTx)1004 __STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx)
1005 {
1006 return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT));
1007 }
1008 #endif /* USART_OneBitSampling_Feature */
1009
1010 #if defined(USART_CR1_OVER8)
1011 /**
1012 * @brief Configure USART BRR register for achieving expected Baud Rate value.
1013 * @note Compute and set USARTDIV value in BRR Register (full BRR content)
1014 * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1015 * @note Peripheral clock and Baud rate values provided as function parameters should be valid
1016 * (Baud rate value != 0)
1017 * @rmtoll BRR BRR LL_USART_SetBaudRate
1018 * @param USARTx USART Instance
1019 * @param PeriphClk Peripheral Clock
1020 * @param OverSampling This parameter can be one of the following values:
1021 * @arg @ref LL_USART_OVERSAMPLING_16
1022 * @arg @ref LL_USART_OVERSAMPLING_8
1023 * @param BaudRate Baud Rate
1024 * @retval None
1025 */
LL_USART_SetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t OverSampling,uint32_t BaudRate)1026 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling,
1027 uint32_t BaudRate)
1028 {
1029 if (OverSampling == LL_USART_OVERSAMPLING_8)
1030 {
1031 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate));
1032 }
1033 else
1034 {
1035 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
1036 }
1037 }
1038
1039 /**
1040 * @brief Return current Baud Rate value, according to USARTDIV present in BRR register
1041 * (full BRR content), and to used Peripheral Clock and Oversampling mode values
1042 * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1043 * @rmtoll BRR BRR LL_USART_GetBaudRate
1044 * @param USARTx USART Instance
1045 * @param PeriphClk Peripheral Clock
1046 * @param OverSampling This parameter can be one of the following values:
1047 * @arg @ref LL_USART_OVERSAMPLING_16
1048 * @arg @ref LL_USART_OVERSAMPLING_8
1049 * @retval Baud Rate
1050 */
LL_USART_GetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t OverSampling)1051 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling)
1052 {
1053 uint32_t usartdiv = 0x0U;
1054 uint32_t brrresult = 0x0U;
1055
1056 usartdiv = USARTx->BRR;
1057
1058 if (OverSampling == LL_USART_OVERSAMPLING_8)
1059 {
1060 if ((usartdiv & 0xFFF7U) != 0U)
1061 {
1062 usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
1063 brrresult = (PeriphClk * 2U) / usartdiv;
1064 }
1065 }
1066 else
1067 {
1068 if ((usartdiv & 0xFFFFU) != 0U)
1069 {
1070 brrresult = PeriphClk / usartdiv;
1071 }
1072 }
1073 return (brrresult);
1074 }
1075 #else
1076 /**
1077 * @brief Configure USART BRR register for achieving expected Baud Rate value.
1078 * @note Compute and set USARTDIV value in BRR Register (full BRR content)
1079 * according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
1080 * @note Peripheral clock and Baud rate values provided as function parameters should be valid
1081 * (Baud rate value != 0)
1082 * @rmtoll BRR BRR LL_USART_SetBaudRate
1083 * @param USARTx USART Instance
1084 * @param PeriphClk Peripheral Clock
1085 * @param BaudRate Baud Rate
1086 * @retval None
1087 */
LL_USART_SetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk,uint32_t BaudRate)1088 __STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t BaudRate)
1089 {
1090 USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
1091 }
1092
1093 /**
1094 * @brief Return current Baud Rate value, according to USARTDIV present in BRR register
1095 * (full BRR content), and to used Peripheral Clock and Oversampling mode values
1096 * @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
1097 * @rmtoll BRR BRR LL_USART_GetBaudRate
1098 * @param USARTx USART Instance
1099 * @param PeriphClk Peripheral Clock
1100 * @retval Baud Rate
1101 */
LL_USART_GetBaudRate(USART_TypeDef * USARTx,uint32_t PeriphClk)1102 __STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk)
1103 {
1104 uint32_t usartdiv = 0x0U;
1105 uint32_t brrresult = 0x0U;
1106
1107 usartdiv = USARTx->BRR;
1108
1109 if ((usartdiv & 0xFFFFU) != 0U)
1110 {
1111 brrresult = PeriphClk / usartdiv;
1112 }
1113 return (brrresult);
1114 }
1115 #endif /* USART_OverSampling_Feature */
1116
1117 /**
1118 * @}
1119 */
1120
1121 /** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
1122 * @{
1123 */
1124
1125 /**
1126 * @brief Enable IrDA mode
1127 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1128 * IrDA feature is supported by the USARTx instance.
1129 * @rmtoll CR3 IREN LL_USART_EnableIrda
1130 * @param USARTx USART Instance
1131 * @retval None
1132 */
LL_USART_EnableIrda(USART_TypeDef * USARTx)1133 __STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
1134 {
1135 SET_BIT(USARTx->CR3, USART_CR3_IREN);
1136 }
1137
1138 /**
1139 * @brief Disable IrDA mode
1140 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1141 * IrDA feature is supported by the USARTx instance.
1142 * @rmtoll CR3 IREN LL_USART_DisableIrda
1143 * @param USARTx USART Instance
1144 * @retval None
1145 */
LL_USART_DisableIrda(USART_TypeDef * USARTx)1146 __STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
1147 {
1148 CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
1149 }
1150
1151 /**
1152 * @brief Indicate if IrDA mode is enabled
1153 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1154 * IrDA feature is supported by the USARTx instance.
1155 * @rmtoll CR3 IREN LL_USART_IsEnabledIrda
1156 * @param USARTx USART Instance
1157 * @retval State of bit (1 or 0).
1158 */
LL_USART_IsEnabledIrda(USART_TypeDef * USARTx)1159 __STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx)
1160 {
1161 return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN));
1162 }
1163
1164 /**
1165 * @brief Configure IrDA Power Mode (Normal or Low Power)
1166 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1167 * IrDA feature is supported by the USARTx instance.
1168 * @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode
1169 * @param USARTx USART Instance
1170 * @param PowerMode This parameter can be one of the following values:
1171 * @arg @ref LL_USART_IRDA_POWER_NORMAL
1172 * @arg @ref LL_USART_IRDA_POWER_LOW
1173 * @retval None
1174 */
LL_USART_SetIrdaPowerMode(USART_TypeDef * USARTx,uint32_t PowerMode)1175 __STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
1176 {
1177 MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
1178 }
1179
1180 /**
1181 * @brief Retrieve IrDA Power Mode configuration (Normal or Low Power)
1182 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1183 * IrDA feature is supported by the USARTx instance.
1184 * @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode
1185 * @param USARTx USART Instance
1186 * @retval Returned value can be one of the following values:
1187 * @arg @ref LL_USART_IRDA_POWER_NORMAL
1188 * @arg @ref LL_USART_PHASE_2EDGE
1189 */
LL_USART_GetIrdaPowerMode(USART_TypeDef * USARTx)1190 __STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx)
1191 {
1192 return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
1193 }
1194
1195 /**
1196 * @brief Set Irda prescaler value, used for dividing the USART clock source
1197 * to achieve the Irda Low Power frequency (8 bits value)
1198 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1199 * IrDA feature is supported by the USARTx instance.
1200 * @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler
1201 * @param USARTx USART Instance
1202 * @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
1203 * @retval None
1204 */
LL_USART_SetIrdaPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)1205 __STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1206 {
1207 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1208 }
1209
1210 /**
1211 * @brief Return Irda prescaler value, used for dividing the USART clock source
1212 * to achieve the Irda Low Power frequency (8 bits value)
1213 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1214 * IrDA feature is supported by the USARTx instance.
1215 * @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler
1216 * @param USARTx USART Instance
1217 * @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
1218 */
LL_USART_GetIrdaPrescaler(USART_TypeDef * USARTx)1219 __STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx)
1220 {
1221 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1222 }
1223
1224 /**
1225 * @}
1226 */
1227
1228 /** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
1229 * @{
1230 */
1231
1232 /**
1233 * @brief Enable Smartcard NACK transmission
1234 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1235 * Smartcard feature is supported by the USARTx instance.
1236 * @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK
1237 * @param USARTx USART Instance
1238 * @retval None
1239 */
LL_USART_EnableSmartcardNACK(USART_TypeDef * USARTx)1240 __STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
1241 {
1242 SET_BIT(USARTx->CR3, USART_CR3_NACK);
1243 }
1244
1245 /**
1246 * @brief Disable Smartcard NACK transmission
1247 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1248 * Smartcard feature is supported by the USARTx instance.
1249 * @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK
1250 * @param USARTx USART Instance
1251 * @retval None
1252 */
LL_USART_DisableSmartcardNACK(USART_TypeDef * USARTx)1253 __STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
1254 {
1255 CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
1256 }
1257
1258 /**
1259 * @brief Indicate if Smartcard NACK transmission is enabled
1260 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1261 * Smartcard feature is supported by the USARTx instance.
1262 * @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK
1263 * @param USARTx USART Instance
1264 * @retval State of bit (1 or 0).
1265 */
LL_USART_IsEnabledSmartcardNACK(USART_TypeDef * USARTx)1266 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx)
1267 {
1268 return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK));
1269 }
1270
1271 /**
1272 * @brief Enable Smartcard mode
1273 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1274 * Smartcard feature is supported by the USARTx instance.
1275 * @rmtoll CR3 SCEN LL_USART_EnableSmartcard
1276 * @param USARTx USART Instance
1277 * @retval None
1278 */
LL_USART_EnableSmartcard(USART_TypeDef * USARTx)1279 __STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
1280 {
1281 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1282 }
1283
1284 /**
1285 * @brief Disable Smartcard mode
1286 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1287 * Smartcard feature is supported by the USARTx instance.
1288 * @rmtoll CR3 SCEN LL_USART_DisableSmartcard
1289 * @param USARTx USART Instance
1290 * @retval None
1291 */
LL_USART_DisableSmartcard(USART_TypeDef * USARTx)1292 __STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
1293 {
1294 CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
1295 }
1296
1297 /**
1298 * @brief Indicate if Smartcard mode is enabled
1299 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1300 * Smartcard feature is supported by the USARTx instance.
1301 * @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard
1302 * @param USARTx USART Instance
1303 * @retval State of bit (1 or 0).
1304 */
LL_USART_IsEnabledSmartcard(USART_TypeDef * USARTx)1305 __STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx)
1306 {
1307 return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN));
1308 }
1309
1310 /**
1311 * @brief Set Smartcard prescaler value, used for dividing the USART clock
1312 * source to provide the SMARTCARD Clock (5 bits value)
1313 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1314 * Smartcard feature is supported by the USARTx instance.
1315 * @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler
1316 * @param USARTx USART Instance
1317 * @param PrescalerValue Value between Min_Data=0 and Max_Data=31
1318 * @retval None
1319 */
LL_USART_SetSmartcardPrescaler(USART_TypeDef * USARTx,uint32_t PrescalerValue)1320 __STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
1321 {
1322 MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
1323 }
1324
1325 /**
1326 * @brief Return Smartcard prescaler value, used for dividing the USART clock
1327 * source to provide the SMARTCARD Clock (5 bits value)
1328 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1329 * Smartcard feature is supported by the USARTx instance.
1330 * @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler
1331 * @param USARTx USART Instance
1332 * @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
1333 */
LL_USART_GetSmartcardPrescaler(USART_TypeDef * USARTx)1334 __STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx)
1335 {
1336 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
1337 }
1338
1339 /**
1340 * @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods
1341 * (GT[7:0] bits : Guard time value)
1342 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1343 * Smartcard feature is supported by the USARTx instance.
1344 * @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime
1345 * @param USARTx USART Instance
1346 * @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
1347 * @retval None
1348 */
LL_USART_SetSmartcardGuardTime(USART_TypeDef * USARTx,uint32_t GuardTime)1349 __STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
1350 {
1351 MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT);
1352 }
1353
1354 /**
1355 * @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods
1356 * (GT[7:0] bits : Guard time value)
1357 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1358 * Smartcard feature is supported by the USARTx instance.
1359 * @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime
1360 * @param USARTx USART Instance
1361 * @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
1362 */
LL_USART_GetSmartcardGuardTime(USART_TypeDef * USARTx)1363 __STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx)
1364 {
1365 return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT);
1366 }
1367
1368 /**
1369 * @}
1370 */
1371
1372 /** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
1373 * @{
1374 */
1375
1376 /**
1377 * @brief Enable Single Wire Half-Duplex mode
1378 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1379 * Half-Duplex mode is supported by the USARTx instance.
1380 * @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex
1381 * @param USARTx USART Instance
1382 * @retval None
1383 */
LL_USART_EnableHalfDuplex(USART_TypeDef * USARTx)1384 __STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
1385 {
1386 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1387 }
1388
1389 /**
1390 * @brief Disable Single Wire Half-Duplex mode
1391 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1392 * Half-Duplex mode is supported by the USARTx instance.
1393 * @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex
1394 * @param USARTx USART Instance
1395 * @retval None
1396 */
LL_USART_DisableHalfDuplex(USART_TypeDef * USARTx)1397 __STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
1398 {
1399 CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
1400 }
1401
1402 /**
1403 * @brief Indicate if Single Wire Half-Duplex mode is enabled
1404 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1405 * Half-Duplex mode is supported by the USARTx instance.
1406 * @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex
1407 * @param USARTx USART Instance
1408 * @retval State of bit (1 or 0).
1409 */
LL_USART_IsEnabledHalfDuplex(USART_TypeDef * USARTx)1410 __STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx)
1411 {
1412 return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL));
1413 }
1414
1415 /**
1416 * @}
1417 */
1418
1419 /** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
1420 * @{
1421 */
1422
1423 /**
1424 * @brief Set LIN Break Detection Length
1425 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1426 * LIN feature is supported by the USARTx instance.
1427 * @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen
1428 * @param USARTx USART Instance
1429 * @param LINBDLength This parameter can be one of the following values:
1430 * @arg @ref LL_USART_LINBREAK_DETECT_10B
1431 * @arg @ref LL_USART_LINBREAK_DETECT_11B
1432 * @retval None
1433 */
LL_USART_SetLINBrkDetectionLen(USART_TypeDef * USARTx,uint32_t LINBDLength)1434 __STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
1435 {
1436 MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
1437 }
1438
1439 /**
1440 * @brief Return LIN Break Detection Length
1441 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1442 * LIN feature is supported by the USARTx instance.
1443 * @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen
1444 * @param USARTx USART Instance
1445 * @retval Returned value can be one of the following values:
1446 * @arg @ref LL_USART_LINBREAK_DETECT_10B
1447 * @arg @ref LL_USART_LINBREAK_DETECT_11B
1448 */
LL_USART_GetLINBrkDetectionLen(USART_TypeDef * USARTx)1449 __STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx)
1450 {
1451 return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
1452 }
1453
1454 /**
1455 * @brief Enable LIN mode
1456 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1457 * LIN feature is supported by the USARTx instance.
1458 * @rmtoll CR2 LINEN LL_USART_EnableLIN
1459 * @param USARTx USART Instance
1460 * @retval None
1461 */
LL_USART_EnableLIN(USART_TypeDef * USARTx)1462 __STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
1463 {
1464 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1465 }
1466
1467 /**
1468 * @brief Disable LIN mode
1469 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1470 * LIN feature is supported by the USARTx instance.
1471 * @rmtoll CR2 LINEN LL_USART_DisableLIN
1472 * @param USARTx USART Instance
1473 * @retval None
1474 */
LL_USART_DisableLIN(USART_TypeDef * USARTx)1475 __STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
1476 {
1477 CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
1478 }
1479
1480 /**
1481 * @brief Indicate if LIN mode is enabled
1482 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1483 * LIN feature is supported by the USARTx instance.
1484 * @rmtoll CR2 LINEN LL_USART_IsEnabledLIN
1485 * @param USARTx USART Instance
1486 * @retval State of bit (1 or 0).
1487 */
LL_USART_IsEnabledLIN(USART_TypeDef * USARTx)1488 __STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx)
1489 {
1490 return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN));
1491 }
1492
1493 /**
1494 * @}
1495 */
1496
1497 /** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
1498 * @{
1499 */
1500
1501 /**
1502 * @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
1503 * @note In UART mode, the following bits must be kept cleared:
1504 * - LINEN bit in the USART_CR2 register,
1505 * - CLKEN bit in the USART_CR2 register,
1506 * - SCEN bit in the USART_CR3 register,
1507 * - IREN bit in the USART_CR3 register,
1508 * - HDSEL bit in the USART_CR3 register.
1509 * @note Call of this function is equivalent to following function call sequence :
1510 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1511 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1512 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1513 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1514 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1515 * @note Other remaining configurations items related to Asynchronous Mode
1516 * (as Baud Rate, Word length, Parity, ...) should be set using
1517 * dedicated functions
1518 * @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n
1519 * CR2 CLKEN LL_USART_ConfigAsyncMode\n
1520 * CR3 SCEN LL_USART_ConfigAsyncMode\n
1521 * CR3 IREN LL_USART_ConfigAsyncMode\n
1522 * CR3 HDSEL LL_USART_ConfigAsyncMode
1523 * @param USARTx USART Instance
1524 * @retval None
1525 */
LL_USART_ConfigAsyncMode(USART_TypeDef * USARTx)1526 __STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
1527 {
1528 /* In Asynchronous mode, the following bits must be kept cleared:
1529 - LINEN, CLKEN bits in the USART_CR2 register,
1530 - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1531 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1532 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1533 }
1534
1535 /**
1536 * @brief Perform basic configuration of USART for enabling use in Synchronous Mode
1537 * @note In Synchronous mode, the following bits must be kept cleared:
1538 * - LINEN bit in the USART_CR2 register,
1539 * - SCEN bit in the USART_CR3 register,
1540 * - IREN bit in the USART_CR3 register,
1541 * - HDSEL bit in the USART_CR3 register.
1542 * This function also sets the USART in Synchronous mode.
1543 * @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
1544 * Synchronous mode is supported by the USARTx instance.
1545 * @note Call of this function is equivalent to following function call sequence :
1546 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1547 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1548 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1549 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1550 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1551 * @note Other remaining configurations items related to Synchronous Mode
1552 * (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
1553 * dedicated functions
1554 * @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n
1555 * CR2 CLKEN LL_USART_ConfigSyncMode\n
1556 * CR3 SCEN LL_USART_ConfigSyncMode\n
1557 * CR3 IREN LL_USART_ConfigSyncMode\n
1558 * CR3 HDSEL LL_USART_ConfigSyncMode
1559 * @param USARTx USART Instance
1560 * @retval None
1561 */
LL_USART_ConfigSyncMode(USART_TypeDef * USARTx)1562 __STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
1563 {
1564 /* In Synchronous mode, the following bits must be kept cleared:
1565 - LINEN bit in the USART_CR2 register,
1566 - SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
1567 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1568 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
1569 /* set the UART/USART in Synchronous mode */
1570 SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
1571 }
1572
1573 /**
1574 * @brief Perform basic configuration of USART for enabling use in LIN Mode
1575 * @note In LIN mode, the following bits must be kept cleared:
1576 * - STOP and CLKEN bits in the USART_CR2 register,
1577 * - SCEN bit in the USART_CR3 register,
1578 * - IREN bit in the USART_CR3 register,
1579 * - HDSEL bit in the USART_CR3 register.
1580 * This function also set the UART/USART in LIN mode.
1581 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1582 * LIN feature is supported by the USARTx instance.
1583 * @note Call of this function is equivalent to following function call sequence :
1584 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1585 * - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1586 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1587 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1588 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1589 * - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
1590 * @note Other remaining configurations items related to LIN Mode
1591 * (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
1592 * dedicated functions
1593 * @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n
1594 * CR2 STOP LL_USART_ConfigLINMode\n
1595 * CR2 LINEN LL_USART_ConfigLINMode\n
1596 * CR3 IREN LL_USART_ConfigLINMode\n
1597 * CR3 SCEN LL_USART_ConfigLINMode\n
1598 * CR3 HDSEL LL_USART_ConfigLINMode
1599 * @param USARTx USART Instance
1600 * @retval None
1601 */
LL_USART_ConfigLINMode(USART_TypeDef * USARTx)1602 __STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
1603 {
1604 /* In LIN mode, the following bits must be kept cleared:
1605 - STOP and CLKEN bits in the USART_CR2 register,
1606 - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1607 CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
1608 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
1609 /* Set the UART/USART in LIN mode */
1610 SET_BIT(USARTx->CR2, USART_CR2_LINEN);
1611 }
1612
1613 /**
1614 * @brief Perform basic configuration of USART for enabling use in Half Duplex Mode
1615 * @note In Half Duplex mode, the following bits must be kept cleared:
1616 * - LINEN bit in the USART_CR2 register,
1617 * - CLKEN bit in the USART_CR2 register,
1618 * - SCEN bit in the USART_CR3 register,
1619 * - IREN bit in the USART_CR3 register,
1620 * This function also sets the UART/USART in Half Duplex mode.
1621 * @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
1622 * Half-Duplex mode is supported by the USARTx instance.
1623 * @note Call of this function is equivalent to following function call sequence :
1624 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1625 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1626 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1627 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1628 * - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
1629 * @note Other remaining configurations items related to Half Duplex Mode
1630 * (as Baud Rate, Word length, Parity, ...) should be set using
1631 * dedicated functions
1632 * @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n
1633 * CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n
1634 * CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n
1635 * CR3 SCEN LL_USART_ConfigHalfDuplexMode\n
1636 * CR3 IREN LL_USART_ConfigHalfDuplexMode
1637 * @param USARTx USART Instance
1638 * @retval None
1639 */
LL_USART_ConfigHalfDuplexMode(USART_TypeDef * USARTx)1640 __STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
1641 {
1642 /* In Half Duplex mode, the following bits must be kept cleared:
1643 - LINEN and CLKEN bits in the USART_CR2 register,
1644 - SCEN and IREN bits in the USART_CR3 register.*/
1645 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1646 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
1647 /* set the UART/USART in Half Duplex mode */
1648 SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
1649 }
1650
1651 /**
1652 * @brief Perform basic configuration of USART for enabling use in Smartcard Mode
1653 * @note In Smartcard mode, the following bits must be kept cleared:
1654 * - LINEN bit in the USART_CR2 register,
1655 * - IREN bit in the USART_CR3 register,
1656 * - HDSEL bit in the USART_CR3 register.
1657 * This function also configures Stop bits to 1.5 bits and
1658 * sets the USART in Smartcard mode (SCEN bit).
1659 * Clock Output is also enabled (CLKEN).
1660 * @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
1661 * Smartcard feature is supported by the USARTx instance.
1662 * @note Call of this function is equivalent to following function call sequence :
1663 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1664 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1665 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1666 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1667 * - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
1668 * - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
1669 * @note Other remaining configurations items related to Smartcard Mode
1670 * (as Baud Rate, Word length, Parity, ...) should be set using
1671 * dedicated functions
1672 * @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n
1673 * CR2 STOP LL_USART_ConfigSmartcardMode\n
1674 * CR2 CLKEN LL_USART_ConfigSmartcardMode\n
1675 * CR3 HDSEL LL_USART_ConfigSmartcardMode\n
1676 * CR3 SCEN LL_USART_ConfigSmartcardMode
1677 * @param USARTx USART Instance
1678 * @retval None
1679 */
LL_USART_ConfigSmartcardMode(USART_TypeDef * USARTx)1680 __STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
1681 {
1682 /* In Smartcard mode, the following bits must be kept cleared:
1683 - LINEN bit in the USART_CR2 register,
1684 - IREN and HDSEL bits in the USART_CR3 register.*/
1685 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
1686 CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
1687 /* Configure Stop bits to 1.5 bits */
1688 /* Synchronous mode is activated by default */
1689 SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
1690 /* set the UART/USART in Smartcard mode */
1691 SET_BIT(USARTx->CR3, USART_CR3_SCEN);
1692 }
1693
1694 /**
1695 * @brief Perform basic configuration of USART for enabling use in Irda Mode
1696 * @note In IRDA mode, the following bits must be kept cleared:
1697 * - LINEN bit in the USART_CR2 register,
1698 * - STOP and CLKEN bits in the USART_CR2 register,
1699 * - SCEN bit in the USART_CR3 register,
1700 * - HDSEL bit in the USART_CR3 register.
1701 * This function also sets the UART/USART in IRDA mode (IREN bit).
1702 * @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
1703 * IrDA feature is supported by the USARTx instance.
1704 * @note Call of this function is equivalent to following function call sequence :
1705 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1706 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1707 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1708 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1709 * - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
1710 * - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
1711 * @note Other remaining configurations items related to Irda Mode
1712 * (as Baud Rate, Word length, Power mode, ...) should be set using
1713 * dedicated functions
1714 * @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n
1715 * CR2 CLKEN LL_USART_ConfigIrdaMode\n
1716 * CR2 STOP LL_USART_ConfigIrdaMode\n
1717 * CR3 SCEN LL_USART_ConfigIrdaMode\n
1718 * CR3 HDSEL LL_USART_ConfigIrdaMode\n
1719 * CR3 IREN LL_USART_ConfigIrdaMode
1720 * @param USARTx USART Instance
1721 * @retval None
1722 */
LL_USART_ConfigIrdaMode(USART_TypeDef * USARTx)1723 __STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
1724 {
1725 /* In IRDA mode, the following bits must be kept cleared:
1726 - LINEN, STOP and CLKEN bits in the USART_CR2 register,
1727 - SCEN and HDSEL bits in the USART_CR3 register.*/
1728 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
1729 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
1730 /* set the UART/USART in IRDA mode */
1731 SET_BIT(USARTx->CR3, USART_CR3_IREN);
1732 }
1733
1734 /**
1735 * @brief Perform basic configuration of USART for enabling use in Multi processor Mode
1736 * (several USARTs connected in a network, one of the USARTs can be the master,
1737 * its TX output connected to the RX inputs of the other slaves USARTs).
1738 * @note In MultiProcessor mode, the following bits must be kept cleared:
1739 * - LINEN bit in the USART_CR2 register,
1740 * - CLKEN bit in the USART_CR2 register,
1741 * - SCEN bit in the USART_CR3 register,
1742 * - IREN bit in the USART_CR3 register,
1743 * - HDSEL bit in the USART_CR3 register.
1744 * @note Call of this function is equivalent to following function call sequence :
1745 * - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
1746 * - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
1747 * - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
1748 * - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
1749 * - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
1750 * @note Other remaining configurations items related to Multi processor Mode
1751 * (as Baud Rate, Wake Up Method, Node address, ...) should be set using
1752 * dedicated functions
1753 * @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n
1754 * CR2 CLKEN LL_USART_ConfigMultiProcessMode\n
1755 * CR3 SCEN LL_USART_ConfigMultiProcessMode\n
1756 * CR3 HDSEL LL_USART_ConfigMultiProcessMode\n
1757 * CR3 IREN LL_USART_ConfigMultiProcessMode
1758 * @param USARTx USART Instance
1759 * @retval None
1760 */
LL_USART_ConfigMultiProcessMode(USART_TypeDef * USARTx)1761 __STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
1762 {
1763 /* In Multi Processor mode, the following bits must be kept cleared:
1764 - LINEN and CLKEN bits in the USART_CR2 register,
1765 - IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
1766 CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
1767 CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
1768 }
1769
1770 /**
1771 * @}
1772 */
1773
1774 /** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
1775 * @{
1776 */
1777
1778 /**
1779 * @brief Check if the USART Parity Error Flag is set or not
1780 * @rmtoll SR PE LL_USART_IsActiveFlag_PE
1781 * @param USARTx USART Instance
1782 * @retval State of bit (1 or 0).
1783 */
LL_USART_IsActiveFlag_PE(USART_TypeDef * USARTx)1784 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx)
1785 {
1786 return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE));
1787 }
1788
1789 /**
1790 * @brief Check if the USART Framing Error Flag is set or not
1791 * @rmtoll SR FE LL_USART_IsActiveFlag_FE
1792 * @param USARTx USART Instance
1793 * @retval State of bit (1 or 0).
1794 */
LL_USART_IsActiveFlag_FE(USART_TypeDef * USARTx)1795 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx)
1796 {
1797 return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE));
1798 }
1799
1800 /**
1801 * @brief Check if the USART Noise error detected Flag is set or not
1802 * @rmtoll SR NF LL_USART_IsActiveFlag_NE
1803 * @param USARTx USART Instance
1804 * @retval State of bit (1 or 0).
1805 */
LL_USART_IsActiveFlag_NE(USART_TypeDef * USARTx)1806 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx)
1807 {
1808 return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE));
1809 }
1810
1811 /**
1812 * @brief Check if the USART OverRun Error Flag is set or not
1813 * @rmtoll SR ORE LL_USART_IsActiveFlag_ORE
1814 * @param USARTx USART Instance
1815 * @retval State of bit (1 or 0).
1816 */
LL_USART_IsActiveFlag_ORE(USART_TypeDef * USARTx)1817 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx)
1818 {
1819 return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE));
1820 }
1821
1822 /**
1823 * @brief Check if the USART IDLE line detected Flag is set or not
1824 * @rmtoll SR IDLE LL_USART_IsActiveFlag_IDLE
1825 * @param USARTx USART Instance
1826 * @retval State of bit (1 or 0).
1827 */
LL_USART_IsActiveFlag_IDLE(USART_TypeDef * USARTx)1828 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx)
1829 {
1830 return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE));
1831 }
1832
1833 /**
1834 * @brief Check if the USART Read Data Register Not Empty Flag is set or not
1835 * @rmtoll SR RXNE LL_USART_IsActiveFlag_RXNE
1836 * @param USARTx USART Instance
1837 * @retval State of bit (1 or 0).
1838 */
LL_USART_IsActiveFlag_RXNE(USART_TypeDef * USARTx)1839 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx)
1840 {
1841 return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE));
1842 }
1843
1844 /**
1845 * @brief Check if the USART Transmission Complete Flag is set or not
1846 * @rmtoll SR TC LL_USART_IsActiveFlag_TC
1847 * @param USARTx USART Instance
1848 * @retval State of bit (1 or 0).
1849 */
LL_USART_IsActiveFlag_TC(USART_TypeDef * USARTx)1850 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx)
1851 {
1852 return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC));
1853 }
1854
1855 /**
1856 * @brief Check if the USART Transmit Data Register Empty Flag is set or not
1857 * @rmtoll SR TXE LL_USART_IsActiveFlag_TXE
1858 * @param USARTx USART Instance
1859 * @retval State of bit (1 or 0).
1860 */
LL_USART_IsActiveFlag_TXE(USART_TypeDef * USARTx)1861 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx)
1862 {
1863 return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE));
1864 }
1865
1866 /**
1867 * @brief Check if the USART LIN Break Detection Flag is set or not
1868 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
1869 * LIN feature is supported by the USARTx instance.
1870 * @rmtoll SR LBD LL_USART_IsActiveFlag_LBD
1871 * @param USARTx USART Instance
1872 * @retval State of bit (1 or 0).
1873 */
LL_USART_IsActiveFlag_LBD(USART_TypeDef * USARTx)1874 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx)
1875 {
1876 return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD));
1877 }
1878
1879 /**
1880 * @brief Check if the USART CTS Flag is set or not
1881 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
1882 * Hardware Flow control feature is supported by the USARTx instance.
1883 * @rmtoll SR CTS LL_USART_IsActiveFlag_nCTS
1884 * @param USARTx USART Instance
1885 * @retval State of bit (1 or 0).
1886 */
LL_USART_IsActiveFlag_nCTS(USART_TypeDef * USARTx)1887 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx)
1888 {
1889 return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS));
1890 }
1891
1892 /**
1893 * @brief Check if the USART Send Break Flag is set or not
1894 * @rmtoll CR1 SBK LL_USART_IsActiveFlag_SBK
1895 * @param USARTx USART Instance
1896 * @retval State of bit (1 or 0).
1897 */
LL_USART_IsActiveFlag_SBK(USART_TypeDef * USARTx)1898 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx)
1899 {
1900 return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK));
1901 }
1902
1903 /**
1904 * @brief Check if the USART Receive Wake Up from mute mode Flag is set or not
1905 * @rmtoll CR1 RWU LL_USART_IsActiveFlag_RWU
1906 * @param USARTx USART Instance
1907 * @retval State of bit (1 or 0).
1908 */
LL_USART_IsActiveFlag_RWU(USART_TypeDef * USARTx)1909 __STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx)
1910 {
1911 return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU));
1912 }
1913
1914 /**
1915 * @brief Clear Parity Error Flag
1916 * @note Clearing this flag is done by a read access to the USARTx_SR
1917 * register followed by a read access to the USARTx_DR register.
1918 * @note Please also consider that when clearing this flag, other flags as
1919 * NE, FE, ORE, IDLE would also be cleared.
1920 * @rmtoll SR PE LL_USART_ClearFlag_PE
1921 * @param USARTx USART Instance
1922 * @retval None
1923 */
LL_USART_ClearFlag_PE(USART_TypeDef * USARTx)1924 __STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
1925 {
1926 __IO uint32_t tmpreg;
1927 tmpreg = USARTx->SR;
1928 (void) tmpreg;
1929 tmpreg = USARTx->DR;
1930 (void) tmpreg;
1931 }
1932
1933 /**
1934 * @brief Clear Framing Error Flag
1935 * @note Clearing this flag is done by a read access to the USARTx_SR
1936 * register followed by a read access to the USARTx_DR register.
1937 * @note Please also consider that when clearing this flag, other flags as
1938 * PE, NE, ORE, IDLE would also be cleared.
1939 * @rmtoll SR FE LL_USART_ClearFlag_FE
1940 * @param USARTx USART Instance
1941 * @retval None
1942 */
LL_USART_ClearFlag_FE(USART_TypeDef * USARTx)1943 __STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
1944 {
1945 __IO uint32_t tmpreg;
1946 tmpreg = USARTx->SR;
1947 (void) tmpreg;
1948 tmpreg = USARTx->DR;
1949 (void) tmpreg;
1950 }
1951
1952 /**
1953 * @brief Clear Noise detected Flag
1954 * @note Clearing this flag is done by a read access to the USARTx_SR
1955 * register followed by a read access to the USARTx_DR register.
1956 * @note Please also consider that when clearing this flag, other flags as
1957 * PE, FE, ORE, IDLE would also be cleared.
1958 * @rmtoll SR NF LL_USART_ClearFlag_NE
1959 * @param USARTx USART Instance
1960 * @retval None
1961 */
LL_USART_ClearFlag_NE(USART_TypeDef * USARTx)1962 __STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
1963 {
1964 __IO uint32_t tmpreg;
1965 tmpreg = USARTx->SR;
1966 (void) tmpreg;
1967 tmpreg = USARTx->DR;
1968 (void) tmpreg;
1969 }
1970
1971 /**
1972 * @brief Clear OverRun Error Flag
1973 * @note Clearing this flag is done by a read access to the USARTx_SR
1974 * register followed by a read access to the USARTx_DR register.
1975 * @note Please also consider that when clearing this flag, other flags as
1976 * PE, NE, FE, IDLE would also be cleared.
1977 * @rmtoll SR ORE LL_USART_ClearFlag_ORE
1978 * @param USARTx USART Instance
1979 * @retval None
1980 */
LL_USART_ClearFlag_ORE(USART_TypeDef * USARTx)1981 __STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
1982 {
1983 __IO uint32_t tmpreg;
1984 tmpreg = USARTx->SR;
1985 (void) tmpreg;
1986 tmpreg = USARTx->DR;
1987 (void) tmpreg;
1988 }
1989
1990 /**
1991 * @brief Clear IDLE line detected Flag
1992 * @note Clearing this flag is done by a read access to the USARTx_SR
1993 * register followed by a read access to the USARTx_DR register.
1994 * @note Please also consider that when clearing this flag, other flags as
1995 * PE, NE, FE, ORE would also be cleared.
1996 * @rmtoll SR IDLE LL_USART_ClearFlag_IDLE
1997 * @param USARTx USART Instance
1998 * @retval None
1999 */
LL_USART_ClearFlag_IDLE(USART_TypeDef * USARTx)2000 __STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
2001 {
2002 __IO uint32_t tmpreg;
2003 tmpreg = USARTx->SR;
2004 (void) tmpreg;
2005 tmpreg = USARTx->DR;
2006 (void) tmpreg;
2007 }
2008
2009 /**
2010 * @brief Clear Transmission Complete Flag
2011 * @rmtoll SR TC LL_USART_ClearFlag_TC
2012 * @param USARTx USART Instance
2013 * @retval None
2014 */
LL_USART_ClearFlag_TC(USART_TypeDef * USARTx)2015 __STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
2016 {
2017 WRITE_REG(USARTx->SR, ~(USART_SR_TC));
2018 }
2019
2020 /**
2021 * @brief Clear RX Not Empty Flag
2022 * @rmtoll SR RXNE LL_USART_ClearFlag_RXNE
2023 * @param USARTx USART Instance
2024 * @retval None
2025 */
LL_USART_ClearFlag_RXNE(USART_TypeDef * USARTx)2026 __STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx)
2027 {
2028 WRITE_REG(USARTx->SR, ~(USART_SR_RXNE));
2029 }
2030
2031 /**
2032 * @brief Clear LIN Break Detection Flag
2033 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2034 * LIN feature is supported by the USARTx instance.
2035 * @rmtoll SR LBD LL_USART_ClearFlag_LBD
2036 * @param USARTx USART Instance
2037 * @retval None
2038 */
LL_USART_ClearFlag_LBD(USART_TypeDef * USARTx)2039 __STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
2040 {
2041 WRITE_REG(USARTx->SR, ~(USART_SR_LBD));
2042 }
2043
2044 /**
2045 * @brief Clear CTS Interrupt Flag
2046 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2047 * Hardware Flow control feature is supported by the USARTx instance.
2048 * @rmtoll SR CTS LL_USART_ClearFlag_nCTS
2049 * @param USARTx USART Instance
2050 * @retval None
2051 */
LL_USART_ClearFlag_nCTS(USART_TypeDef * USARTx)2052 __STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
2053 {
2054 WRITE_REG(USARTx->SR, ~(USART_SR_CTS));
2055 }
2056
2057 /**
2058 * @}
2059 */
2060
2061 /** @defgroup USART_LL_EF_IT_Management IT_Management
2062 * @{
2063 */
2064
2065 /**
2066 * @brief Enable IDLE Interrupt
2067 * @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE
2068 * @param USARTx USART Instance
2069 * @retval None
2070 */
LL_USART_EnableIT_IDLE(USART_TypeDef * USARTx)2071 __STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
2072 {
2073 SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2074 }
2075
2076 /**
2077 * @brief Enable RX Not Empty Interrupt
2078 * @rmtoll CR1 RXNEIE LL_USART_EnableIT_RXNE
2079 * @param USARTx USART Instance
2080 * @retval None
2081 */
LL_USART_EnableIT_RXNE(USART_TypeDef * USARTx)2082 __STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx)
2083 {
2084 SET_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2085 }
2086
2087 /**
2088 * @brief Enable Transmission Complete Interrupt
2089 * @rmtoll CR1 TCIE LL_USART_EnableIT_TC
2090 * @param USARTx USART Instance
2091 * @retval None
2092 */
LL_USART_EnableIT_TC(USART_TypeDef * USARTx)2093 __STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
2094 {
2095 SET_BIT(USARTx->CR1, USART_CR1_TCIE);
2096 }
2097
2098 /**
2099 * @brief Enable TX Empty Interrupt
2100 * @rmtoll CR1 TXEIE LL_USART_EnableIT_TXE
2101 * @param USARTx USART Instance
2102 * @retval None
2103 */
LL_USART_EnableIT_TXE(USART_TypeDef * USARTx)2104 __STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx)
2105 {
2106 SET_BIT(USARTx->CR1, USART_CR1_TXEIE);
2107 }
2108
2109 /**
2110 * @brief Enable Parity Error Interrupt
2111 * @rmtoll CR1 PEIE LL_USART_EnableIT_PE
2112 * @param USARTx USART Instance
2113 * @retval None
2114 */
LL_USART_EnableIT_PE(USART_TypeDef * USARTx)2115 __STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
2116 {
2117 SET_BIT(USARTx->CR1, USART_CR1_PEIE);
2118 }
2119
2120 /**
2121 * @brief Enable LIN Break Detection Interrupt
2122 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2123 * LIN feature is supported by the USARTx instance.
2124 * @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD
2125 * @param USARTx USART Instance
2126 * @retval None
2127 */
LL_USART_EnableIT_LBD(USART_TypeDef * USARTx)2128 __STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
2129 {
2130 SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
2131 }
2132
2133 /**
2134 * @brief Enable Error Interrupt
2135 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2136 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2137 * 0: Interrupt is inhibited
2138 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2139 * @rmtoll CR3 EIE LL_USART_EnableIT_ERROR
2140 * @param USARTx USART Instance
2141 * @retval None
2142 */
LL_USART_EnableIT_ERROR(USART_TypeDef * USARTx)2143 __STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
2144 {
2145 SET_BIT(USARTx->CR3, USART_CR3_EIE);
2146 }
2147
2148 /**
2149 * @brief Enable CTS Interrupt
2150 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2151 * Hardware Flow control feature is supported by the USARTx instance.
2152 * @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS
2153 * @param USARTx USART Instance
2154 * @retval None
2155 */
LL_USART_EnableIT_CTS(USART_TypeDef * USARTx)2156 __STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
2157 {
2158 SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
2159 }
2160
2161 /**
2162 * @brief Disable IDLE Interrupt
2163 * @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE
2164 * @param USARTx USART Instance
2165 * @retval None
2166 */
LL_USART_DisableIT_IDLE(USART_TypeDef * USARTx)2167 __STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
2168 {
2169 CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
2170 }
2171
2172 /**
2173 * @brief Disable RX Not Empty Interrupt
2174 * @rmtoll CR1 RXNEIE LL_USART_DisableIT_RXNE
2175 * @param USARTx USART Instance
2176 * @retval None
2177 */
LL_USART_DisableIT_RXNE(USART_TypeDef * USARTx)2178 __STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx)
2179 {
2180 CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE);
2181 }
2182
2183 /**
2184 * @brief Disable Transmission Complete Interrupt
2185 * @rmtoll CR1 TCIE LL_USART_DisableIT_TC
2186 * @param USARTx USART Instance
2187 * @retval None
2188 */
LL_USART_DisableIT_TC(USART_TypeDef * USARTx)2189 __STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
2190 {
2191 CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
2192 }
2193
2194 /**
2195 * @brief Disable TX Empty Interrupt
2196 * @rmtoll CR1 TXEIE LL_USART_DisableIT_TXE
2197 * @param USARTx USART Instance
2198 * @retval None
2199 */
LL_USART_DisableIT_TXE(USART_TypeDef * USARTx)2200 __STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx)
2201 {
2202 CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE);
2203 }
2204
2205 /**
2206 * @brief Disable Parity Error Interrupt
2207 * @rmtoll CR1 PEIE LL_USART_DisableIT_PE
2208 * @param USARTx USART Instance
2209 * @retval None
2210 */
LL_USART_DisableIT_PE(USART_TypeDef * USARTx)2211 __STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
2212 {
2213 CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
2214 }
2215
2216 /**
2217 * @brief Disable LIN Break Detection Interrupt
2218 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2219 * LIN feature is supported by the USARTx instance.
2220 * @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD
2221 * @param USARTx USART Instance
2222 * @retval None
2223 */
LL_USART_DisableIT_LBD(USART_TypeDef * USARTx)2224 __STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
2225 {
2226 CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
2227 }
2228
2229 /**
2230 * @brief Disable Error Interrupt
2231 * @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
2232 * error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
2233 * 0: Interrupt is inhibited
2234 * 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
2235 * @rmtoll CR3 EIE LL_USART_DisableIT_ERROR
2236 * @param USARTx USART Instance
2237 * @retval None
2238 */
LL_USART_DisableIT_ERROR(USART_TypeDef * USARTx)2239 __STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
2240 {
2241 CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
2242 }
2243
2244 /**
2245 * @brief Disable CTS Interrupt
2246 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2247 * Hardware Flow control feature is supported by the USARTx instance.
2248 * @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS
2249 * @param USARTx USART Instance
2250 * @retval None
2251 */
LL_USART_DisableIT_CTS(USART_TypeDef * USARTx)2252 __STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
2253 {
2254 CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
2255 }
2256
2257 /**
2258 * @brief Check if the USART IDLE Interrupt source is enabled or disabled.
2259 * @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE
2260 * @param USARTx USART Instance
2261 * @retval State of bit (1 or 0).
2262 */
LL_USART_IsEnabledIT_IDLE(USART_TypeDef * USARTx)2263 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx)
2264 {
2265 return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE));
2266 }
2267
2268 /**
2269 * @brief Check if the USART RX Not Empty Interrupt is enabled or disabled.
2270 * @rmtoll CR1 RXNEIE LL_USART_IsEnabledIT_RXNE
2271 * @param USARTx USART Instance
2272 * @retval State of bit (1 or 0).
2273 */
LL_USART_IsEnabledIT_RXNE(USART_TypeDef * USARTx)2274 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx)
2275 {
2276 return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE));
2277 }
2278
2279 /**
2280 * @brief Check if the USART Transmission Complete Interrupt is enabled or disabled.
2281 * @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC
2282 * @param USARTx USART Instance
2283 * @retval State of bit (1 or 0).
2284 */
LL_USART_IsEnabledIT_TC(USART_TypeDef * USARTx)2285 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx)
2286 {
2287 return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE));
2288 }
2289
2290 /**
2291 * @brief Check if the USART TX Empty Interrupt is enabled or disabled.
2292 * @rmtoll CR1 TXEIE LL_USART_IsEnabledIT_TXE
2293 * @param USARTx USART Instance
2294 * @retval State of bit (1 or 0).
2295 */
LL_USART_IsEnabledIT_TXE(USART_TypeDef * USARTx)2296 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx)
2297 {
2298 return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE));
2299 }
2300
2301 /**
2302 * @brief Check if the USART Parity Error Interrupt is enabled or disabled.
2303 * @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE
2304 * @param USARTx USART Instance
2305 * @retval State of bit (1 or 0).
2306 */
LL_USART_IsEnabledIT_PE(USART_TypeDef * USARTx)2307 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx)
2308 {
2309 return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE));
2310 }
2311
2312 /**
2313 * @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled.
2314 * @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
2315 * LIN feature is supported by the USARTx instance.
2316 * @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD
2317 * @param USARTx USART Instance
2318 * @retval State of bit (1 or 0).
2319 */
LL_USART_IsEnabledIT_LBD(USART_TypeDef * USARTx)2320 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx)
2321 {
2322 return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE));
2323 }
2324
2325 /**
2326 * @brief Check if the USART Error Interrupt is enabled or disabled.
2327 * @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR
2328 * @param USARTx USART Instance
2329 * @retval State of bit (1 or 0).
2330 */
LL_USART_IsEnabledIT_ERROR(USART_TypeDef * USARTx)2331 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx)
2332 {
2333 return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE));
2334 }
2335
2336 /**
2337 * @brief Check if the USART CTS Interrupt is enabled or disabled.
2338 * @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
2339 * Hardware Flow control feature is supported by the USARTx instance.
2340 * @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS
2341 * @param USARTx USART Instance
2342 * @retval State of bit (1 or 0).
2343 */
LL_USART_IsEnabledIT_CTS(USART_TypeDef * USARTx)2344 __STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx)
2345 {
2346 return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE));
2347 }
2348
2349 /**
2350 * @}
2351 */
2352
2353 /** @defgroup USART_LL_EF_DMA_Management DMA_Management
2354 * @{
2355 */
2356
2357 /**
2358 * @brief Enable DMA Mode for reception
2359 * @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX
2360 * @param USARTx USART Instance
2361 * @retval None
2362 */
LL_USART_EnableDMAReq_RX(USART_TypeDef * USARTx)2363 __STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
2364 {
2365 SET_BIT(USARTx->CR3, USART_CR3_DMAR);
2366 }
2367
2368 /**
2369 * @brief Disable DMA Mode for reception
2370 * @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX
2371 * @param USARTx USART Instance
2372 * @retval None
2373 */
LL_USART_DisableDMAReq_RX(USART_TypeDef * USARTx)2374 __STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
2375 {
2376 CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
2377 }
2378
2379 /**
2380 * @brief Check if DMA Mode is enabled for reception
2381 * @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX
2382 * @param USARTx USART Instance
2383 * @retval State of bit (1 or 0).
2384 */
LL_USART_IsEnabledDMAReq_RX(USART_TypeDef * USARTx)2385 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx)
2386 {
2387 return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR));
2388 }
2389
2390 /**
2391 * @brief Enable DMA Mode for transmission
2392 * @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX
2393 * @param USARTx USART Instance
2394 * @retval None
2395 */
LL_USART_EnableDMAReq_TX(USART_TypeDef * USARTx)2396 __STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
2397 {
2398 SET_BIT(USARTx->CR3, USART_CR3_DMAT);
2399 }
2400
2401 /**
2402 * @brief Disable DMA Mode for transmission
2403 * @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX
2404 * @param USARTx USART Instance
2405 * @retval None
2406 */
LL_USART_DisableDMAReq_TX(USART_TypeDef * USARTx)2407 __STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
2408 {
2409 CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
2410 }
2411
2412 /**
2413 * @brief Check if DMA Mode is enabled for transmission
2414 * @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX
2415 * @param USARTx USART Instance
2416 * @retval State of bit (1 or 0).
2417 */
LL_USART_IsEnabledDMAReq_TX(USART_TypeDef * USARTx)2418 __STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx)
2419 {
2420 return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT));
2421 }
2422
2423 /**
2424 * @brief Get the data register address used for DMA transfer
2425 * @rmtoll DR DR LL_USART_DMA_GetRegAddr
2426 * @note Address of Data Register is valid for both Transmit and Receive transfers.
2427 * @param USARTx USART Instance
2428 * @retval Address of data register
2429 */
LL_USART_DMA_GetRegAddr(USART_TypeDef * USARTx)2430 __STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx)
2431 {
2432 /* return address of DR register */
2433 return ((uint32_t) & (USARTx->DR));
2434 }
2435
2436 /**
2437 * @}
2438 */
2439
2440 /** @defgroup USART_LL_EF_Data_Management Data_Management
2441 * @{
2442 */
2443
2444 /**
2445 * @brief Read Receiver Data register (Receive Data value, 8 bits)
2446 * @rmtoll DR DR LL_USART_ReceiveData8
2447 * @param USARTx USART Instance
2448 * @retval Value between Min_Data=0x00 and Max_Data=0xFF
2449 */
LL_USART_ReceiveData8(USART_TypeDef * USARTx)2450 __STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx)
2451 {
2452 return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2453 }
2454
2455 /**
2456 * @brief Read Receiver Data register (Receive Data value, 9 bits)
2457 * @rmtoll DR DR LL_USART_ReceiveData9
2458 * @param USARTx USART Instance
2459 * @retval Value between Min_Data=0x00 and Max_Data=0x1FF
2460 */
LL_USART_ReceiveData9(USART_TypeDef * USARTx)2461 __STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx)
2462 {
2463 return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR));
2464 }
2465
2466 /**
2467 * @brief Write in Transmitter Data Register (Transmit Data value, 8 bits)
2468 * @rmtoll DR DR LL_USART_TransmitData8
2469 * @param USARTx USART Instance
2470 * @param Value between Min_Data=0x00 and Max_Data=0xFF
2471 * @retval None
2472 */
LL_USART_TransmitData8(USART_TypeDef * USARTx,uint8_t Value)2473 __STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
2474 {
2475 USARTx->DR = Value;
2476 }
2477
2478 /**
2479 * @brief Write in Transmitter Data Register (Transmit Data value, 9 bits)
2480 * @rmtoll DR DR LL_USART_TransmitData9
2481 * @param USARTx USART Instance
2482 * @param Value between Min_Data=0x00 and Max_Data=0x1FF
2483 * @retval None
2484 */
LL_USART_TransmitData9(USART_TypeDef * USARTx,uint16_t Value)2485 __STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
2486 {
2487 USARTx->DR = Value & 0x1FFU;
2488 }
2489
2490 /**
2491 * @}
2492 */
2493
2494 /** @defgroup USART_LL_EF_Execution Execution
2495 * @{
2496 */
2497
2498 /**
2499 * @brief Request Break sending
2500 * @rmtoll CR1 SBK LL_USART_RequestBreakSending
2501 * @param USARTx USART Instance
2502 * @retval None
2503 */
LL_USART_RequestBreakSending(USART_TypeDef * USARTx)2504 __STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
2505 {
2506 SET_BIT(USARTx->CR1, USART_CR1_SBK);
2507 }
2508
2509 /**
2510 * @brief Put USART in Mute mode
2511 * @rmtoll CR1 RWU LL_USART_RequestEnterMuteMode
2512 * @param USARTx USART Instance
2513 * @retval None
2514 */
LL_USART_RequestEnterMuteMode(USART_TypeDef * USARTx)2515 __STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
2516 {
2517 SET_BIT(USARTx->CR1, USART_CR1_RWU);
2518 }
2519
2520 /**
2521 * @brief Put USART in Active mode
2522 * @rmtoll CR1 RWU LL_USART_RequestExitMuteMode
2523 * @param USARTx USART Instance
2524 * @retval None
2525 */
LL_USART_RequestExitMuteMode(USART_TypeDef * USARTx)2526 __STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx)
2527 {
2528 CLEAR_BIT(USARTx->CR1, USART_CR1_RWU);
2529 }
2530
2531 /**
2532 * @}
2533 */
2534
2535 #if defined(USE_FULL_LL_DRIVER)
2536 /** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
2537 * @{
2538 */
2539 ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx);
2540 ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct);
2541 void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
2542 ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2543 void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
2544 /**
2545 * @}
2546 */
2547 #endif /* USE_FULL_LL_DRIVER */
2548
2549 /**
2550 * @}
2551 */
2552
2553 /**
2554 * @}
2555 */
2556
2557 #endif /* USART1 || USART2 || USART3 || UART4 || UART5 */
2558
2559 /**
2560 * @}
2561 */
2562
2563 #ifdef __cplusplus
2564 }
2565 #endif
2566
2567 #endif /* __STM32F1xx_LL_USART_H */
2568
2569 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2570