1 /**
2   ******************************************************************************
3   * @file    stm32f0xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32f0xx_ll_tim.h"
22 #include "stm32f0xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32F0xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
65 
66 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
67                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
68 
69 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
70                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
71 
72 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
73                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
74 
75 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
76                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
77                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
78 
79 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
80                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
81                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
82                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
83 
84 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
85                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
86                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
87                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
88                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
89                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
90                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
100 
101 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
102                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
103                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
104 
105 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
106                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
107                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
108 
109 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
110                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
111 
112 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
113                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
114 
115 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
116                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
117 
118 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
119                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
120                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
121                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
122 
123 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
124                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
125 
126 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
127                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
128 
129 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
130                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
131 /**
132   * @}
133   */
134 
135 
136 /* Private function prototypes -----------------------------------------------*/
137 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
138   * @{
139   */
140 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
141 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
142 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
143 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
144 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
145 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
146 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
147 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
148 /**
149   * @}
150   */
151 
152 /* Exported functions --------------------------------------------------------*/
153 /** @addtogroup TIM_LL_Exported_Functions
154   * @{
155   */
156 
157 /** @addtogroup TIM_LL_EF_Init
158   * @{
159   */
160 
161 /**
162   * @brief  Set TIMx registers to their reset values.
163   * @param  TIMx Timer instance
164   * @retval An ErrorStatus enumeration value:
165   *          - SUCCESS: TIMx registers are de-initialized
166   *          - ERROR: invalid TIMx instance
167   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)168 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
169 {
170   ErrorStatus result = SUCCESS;
171 
172   /* Check the parameters */
173   assert_param(IS_TIM_INSTANCE(TIMx));
174 
175   if (TIMx == TIM1)
176   {
177     LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM1);
178     LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM1);
179   }
180 #if defined (TIM2)
181   else if (TIMx == TIM2)
182   {
183     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
184     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
185   }
186 #endif /* TIM2 */
187 #if defined(TIM3)
188   else if (TIMx == TIM3)
189   {
190     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
191     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
192   }
193 #endif /* TIM3 */
194 #if defined(TIM5)
195   else if (TIMx == TIM5)
196   {
197     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
198     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
199   }
200 #endif /* TIM5 */
201 #if defined (TIM6)
202   else if (TIMx == TIM6)
203   {
204     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
205     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
206   }
207 #endif /* TIM6 */
208 #if defined (TIM7)
209   else if (TIMx == TIM7)
210   {
211     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
212     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
213   }
214 #endif /* TIM7 */
215 #if defined(TIM8)
216   else if (TIMx == TIM8)
217   {
218     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
219     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
220   }
221 #endif /* TIM8 */
222 #if defined (TIM14)
223   else if (TIMx == TIM14)
224   {
225     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
226     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
227   }
228 #endif /* TIM14 */
229 #if defined (TIM15)
230   else if (TIMx == TIM15)
231   {
232     LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM15);
233     LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM15);
234   }
235 #endif /* TIM15 */
236 #if defined (TIM16)
237   else if (TIMx == TIM16)
238   {
239     LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM16);
240     LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM16);
241   }
242 #endif /* TIM16 */
243 #if defined(TIM17)
244   else if (TIMx == TIM17)
245   {
246     LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM17);
247     LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM17);
248   }
249 #endif /* TIM17 */
250   else
251   {
252     result = ERROR;
253   }
254 
255   return result;
256 }
257 
258 /**
259   * @brief  Set the fields of the time base unit configuration data structure
260   *         to their default values.
261   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
262   * @retval None
263   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)264 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
265 {
266   /* Set the default configuration */
267   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
268   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
269   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
270   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
271   TIM_InitStruct->RepetitionCounter = 0x00000000U;
272 }
273 
274 /**
275   * @brief  Configure the TIMx time base unit.
276   * @param  TIMx Timer Instance
277   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
278   *         (TIMx time base unit configuration data structure)
279   * @retval An ErrorStatus enumeration value:
280   *          - SUCCESS: TIMx registers are de-initialized
281   *          - ERROR: not applicable
282   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)283 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
284 {
285   uint32_t tmpcr1;
286 
287   /* Check the parameters */
288   assert_param(IS_TIM_INSTANCE(TIMx));
289   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
290   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
291 
292   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
293 
294   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
295   {
296     /* Select the Counter Mode */
297     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
298   }
299 
300   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
301   {
302     /* Set the clock division */
303     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
304   }
305 
306   /* Write to TIMx CR1 */
307   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
308 
309   /* Set the Autoreload value */
310   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
311 
312   /* Set the Prescaler value */
313   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
314 
315   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
316   {
317     /* Set the Repetition Counter value */
318     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
319   }
320 
321   /* Generate an update event to reload the Prescaler
322      and the repetition counter value (if applicable) immediately */
323   LL_TIM_GenerateEvent_UPDATE(TIMx);
324 
325   return SUCCESS;
326 }
327 
328 /**
329   * @brief  Set the fields of the TIMx output channel configuration data
330   *         structure to their default values.
331   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
332   *         (the output channel configuration data structure)
333   * @retval None
334   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)335 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
336 {
337   /* Set the default configuration */
338   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
339   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
340   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
341   TIM_OC_InitStruct->CompareValue = 0x00000000U;
342   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
343   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
344   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
345   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
346 }
347 
348 /**
349   * @brief  Configure the TIMx output channel.
350   * @param  TIMx Timer Instance
351   * @param  Channel This parameter can be one of the following values:
352   *         @arg @ref LL_TIM_CHANNEL_CH1
353   *         @arg @ref LL_TIM_CHANNEL_CH2
354   *         @arg @ref LL_TIM_CHANNEL_CH3
355   *         @arg @ref LL_TIM_CHANNEL_CH4
356   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
357   *         data structure)
358   * @retval An ErrorStatus enumeration value:
359   *          - SUCCESS: TIMx output channel is initialized
360   *          - ERROR: TIMx output channel is not initialized
361   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)362 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
363 {
364   ErrorStatus result = ERROR;
365 
366   switch (Channel)
367   {
368     case LL_TIM_CHANNEL_CH1:
369       result = OC1Config(TIMx, TIM_OC_InitStruct);
370       break;
371     case LL_TIM_CHANNEL_CH2:
372       result = OC2Config(TIMx, TIM_OC_InitStruct);
373       break;
374     case LL_TIM_CHANNEL_CH3:
375       result = OC3Config(TIMx, TIM_OC_InitStruct);
376       break;
377     case LL_TIM_CHANNEL_CH4:
378       result = OC4Config(TIMx, TIM_OC_InitStruct);
379       break;
380     default:
381       break;
382   }
383 
384   return result;
385 }
386 
387 /**
388   * @brief  Set the fields of the TIMx input channel configuration data
389   *         structure to their default values.
390   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
391   *         data structure)
392   * @retval None
393   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)394 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
395 {
396   /* Set the default configuration */
397   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
398   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
399   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
400   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
401 }
402 
403 /**
404   * @brief  Configure the TIMx input channel.
405   * @param  TIMx Timer Instance
406   * @param  Channel This parameter can be one of the following values:
407   *         @arg @ref LL_TIM_CHANNEL_CH1
408   *         @arg @ref LL_TIM_CHANNEL_CH2
409   *         @arg @ref LL_TIM_CHANNEL_CH3
410   *         @arg @ref LL_TIM_CHANNEL_CH4
411   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
412   *         structure)
413   * @retval An ErrorStatus enumeration value:
414   *          - SUCCESS: TIMx output channel is initialized
415   *          - ERROR: TIMx output channel is not initialized
416   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)417 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
418 {
419   ErrorStatus result = ERROR;
420 
421   switch (Channel)
422   {
423     case LL_TIM_CHANNEL_CH1:
424       result = IC1Config(TIMx, TIM_IC_InitStruct);
425       break;
426     case LL_TIM_CHANNEL_CH2:
427       result = IC2Config(TIMx, TIM_IC_InitStruct);
428       break;
429     case LL_TIM_CHANNEL_CH3:
430       result = IC3Config(TIMx, TIM_IC_InitStruct);
431       break;
432     case LL_TIM_CHANNEL_CH4:
433       result = IC4Config(TIMx, TIM_IC_InitStruct);
434       break;
435     default:
436       break;
437   }
438 
439   return result;
440 }
441 
442 /**
443   * @brief  Fills each TIM_EncoderInitStruct field with its default value
444   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
445   *         configuration data structure)
446   * @retval None
447   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)448 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
449 {
450   /* Set the default configuration */
451   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
452   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
453   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
454   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
455   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
456   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
457   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
458   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
459   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
460 }
461 
462 /**
463   * @brief  Configure the encoder interface of the timer instance.
464   * @param  TIMx Timer Instance
465   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
466   *         configuration data structure)
467   * @retval An ErrorStatus enumeration value:
468   *          - SUCCESS: TIMx registers are de-initialized
469   *          - ERROR: not applicable
470   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)471 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
472 {
473   uint32_t tmpccmr1;
474   uint32_t tmpccer;
475 
476   /* Check the parameters */
477   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
478   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
479   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
480   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
481   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
482   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
483   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
484   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
485   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
486   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
487 
488   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
489   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
490 
491   /* Get the TIMx CCMR1 register value */
492   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
493 
494   /* Get the TIMx CCER register value */
495   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
496 
497   /* Configure TI1 */
498   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
499   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
500   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
501   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
502 
503   /* Configure TI2 */
504   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
505   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
506   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
507   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
508 
509   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
510   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
511   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
512   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
513   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
514 
515   /* Set encoder mode */
516   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
517 
518   /* Write to TIMx CCMR1 */
519   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
520 
521   /* Write to TIMx CCER */
522   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
523 
524   return SUCCESS;
525 }
526 
527 /**
528   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
529   *         structure to their default values.
530   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
531   *         configuration data structure)
532   * @retval None
533   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)534 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
535 {
536   /* Set the default configuration */
537   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
538   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
539   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
540   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
541 }
542 
543 /**
544   * @brief  Configure the Hall sensor interface of the timer instance.
545   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
546   *       to the TI1 input channel
547   * @note TIMx slave mode controller is configured in reset mode.
548           Selected internal trigger is TI1F_ED.
549   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
550   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
551   *       between 2 changes on the inputs. It gives information about motor speed.
552   * @note Channel 2 is configured in output PWM 2 mode.
553   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
554   * @note OC2REF is selected as trigger output on TRGO.
555   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
556   *       when TIMx operates in Hall sensor interface mode.
557   * @param  TIMx Timer Instance
558   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
559   *         interface configuration data structure)
560   * @retval An ErrorStatus enumeration value:
561   *          - SUCCESS: TIMx registers are de-initialized
562   *          - ERROR: not applicable
563   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)564 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
565 {
566   uint32_t tmpcr2;
567   uint32_t tmpccmr1;
568   uint32_t tmpccer;
569   uint32_t tmpsmcr;
570 
571   /* Check the parameters */
572   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
573   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
574   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
575   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
576 
577   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
578   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
579 
580   /* Get the TIMx CR2 register value */
581   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
582 
583   /* Get the TIMx CCMR1 register value */
584   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
585 
586   /* Get the TIMx CCER register value */
587   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
588 
589   /* Get the TIMx SMCR register value */
590   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
591 
592   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
593   tmpcr2 |= TIM_CR2_TI1S;
594 
595   /* OC2REF signal is used as trigger output (TRGO) */
596   tmpcr2 |= LL_TIM_TRGO_OC2REF;
597 
598   /* Configure the slave mode controller */
599   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
600   tmpsmcr |= LL_TIM_TS_TI1F_ED;
601   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
602 
603   /* Configure input channel 1 */
604   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
605   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
606   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
607   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
608 
609   /* Configure input channel 2 */
610   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
611   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
612 
613   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
614   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
615   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
616   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
617 
618   /* Write to TIMx CR2 */
619   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
620 
621   /* Write to TIMx SMCR */
622   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
623 
624   /* Write to TIMx CCMR1 */
625   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
626 
627   /* Write to TIMx CCER */
628   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
629 
630   /* Write to TIMx CCR2 */
631   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
632 
633   return SUCCESS;
634 }
635 
636 /**
637   * @brief  Set the fields of the Break and Dead Time configuration data structure
638   *         to their default values.
639   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
640   *         data structure)
641   * @retval None
642   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)643 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
644 {
645   /* Set the default configuration */
646   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
647   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
648   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
649   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
650   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
651   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
652   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
653 }
654 
655 /**
656   * @brief  Configure the Break and Dead Time feature of the timer instance.
657   * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
658   *  depending on the LOCK configuration, it can be necessary to configure all of
659   *  them during the first write access to the TIMx_BDTR register.
660   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
661   *       a timer instance provides a break input.
662   * @param  TIMx Timer Instance
663   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
664   *         data structure)
665   * @retval An ErrorStatus enumeration value:
666   *          - SUCCESS: Break and Dead Time is initialized
667   *          - ERROR: not applicable
668   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)669 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
670 {
671   uint32_t tmpbdtr = 0;
672 
673   /* Check the parameters */
674   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
675   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
676   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
677   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
678   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
679   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
680   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
681 
682   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
683   the OSSI State, the dead time value and the Automatic Output Enable Bit */
684 
685   /* Set the BDTR bits */
686   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
687   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
688   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
689   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
690   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
691   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
692   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
693   MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
694 
695   /* Set TIMx_BDTR */
696   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
697 
698   return SUCCESS;
699 }
700 /**
701   * @}
702   */
703 
704 /**
705   * @}
706   */
707 
708 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
709   *  @brief   Private functions
710   * @{
711   */
712 /**
713   * @brief  Configure the TIMx output channel 1.
714   * @param  TIMx Timer Instance
715   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
716   * @retval An ErrorStatus enumeration value:
717   *          - SUCCESS: TIMx registers are de-initialized
718   *          - ERROR: not applicable
719   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)720 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
721 {
722   uint32_t tmpccmr1;
723   uint32_t tmpccer;
724   uint32_t tmpcr2;
725 
726   /* Check the parameters */
727   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
728   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
729   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
730   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
731   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
732   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
733 
734   /* Disable the Channel 1: Reset the CC1E Bit */
735   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
736 
737   /* Get the TIMx CCER register value */
738   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
739 
740   /* Get the TIMx CR2 register value */
741   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
742 
743   /* Get the TIMx CCMR1 register value */
744   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
745 
746   /* Reset Capture/Compare selection Bits */
747   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
748 
749   /* Set the Output Compare Mode */
750   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
751 
752   /* Set the Output Compare Polarity */
753   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
754 
755   /* Set the Output State */
756   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
757 
758   if (IS_TIM_BREAK_INSTANCE(TIMx))
759   {
760     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
761     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
762 
763     /* Set the complementary output Polarity */
764     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
765 
766     /* Set the complementary output State */
767     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
768 
769     /* Set the Output Idle state */
770     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
771 
772     /* Set the complementary output Idle state */
773     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
774   }
775 
776   /* Write to TIMx CR2 */
777   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
778 
779   /* Write to TIMx CCMR1 */
780   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
781 
782   /* Set the Capture Compare Register value */
783   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
784 
785   /* Write to TIMx CCER */
786   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
787 
788   return SUCCESS;
789 }
790 
791 /**
792   * @brief  Configure the TIMx output channel 2.
793   * @param  TIMx Timer Instance
794   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
795   * @retval An ErrorStatus enumeration value:
796   *          - SUCCESS: TIMx registers are de-initialized
797   *          - ERROR: not applicable
798   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)799 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
800 {
801   uint32_t tmpccmr1;
802   uint32_t tmpccer;
803   uint32_t tmpcr2;
804 
805   /* Check the parameters */
806   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
807   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
808   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
809   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
810   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
811   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
812 
813   /* Disable the Channel 2: Reset the CC2E Bit */
814   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
815 
816   /* Get the TIMx CCER register value */
817   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
818 
819   /* Get the TIMx CR2 register value */
820   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
821 
822   /* Get the TIMx CCMR1 register value */
823   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
824 
825   /* Reset Capture/Compare selection Bits */
826   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
827 
828   /* Select the Output Compare Mode */
829   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
830 
831   /* Set the Output Compare Polarity */
832   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
833 
834   /* Set the Output State */
835   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
836 
837   if (IS_TIM_BREAK_INSTANCE(TIMx))
838   {
839     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
840     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
841 
842     /* Set the complementary output Polarity */
843     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
844 
845     /* Set the complementary output State */
846     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
847 
848     /* Set the Output Idle state */
849     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
850 
851     /* Set the complementary output Idle state */
852     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
853   }
854 
855   /* Write to TIMx CR2 */
856   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
857 
858   /* Write to TIMx CCMR1 */
859   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
860 
861   /* Set the Capture Compare Register value */
862   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
863 
864   /* Write to TIMx CCER */
865   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
866 
867   return SUCCESS;
868 }
869 
870 /**
871   * @brief  Configure the TIMx output channel 3.
872   * @param  TIMx Timer Instance
873   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
874   * @retval An ErrorStatus enumeration value:
875   *          - SUCCESS: TIMx registers are de-initialized
876   *          - ERROR: not applicable
877   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)878 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
879 {
880   uint32_t tmpccmr2;
881   uint32_t tmpccer;
882   uint32_t tmpcr2;
883 
884   /* Check the parameters */
885   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
886   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
887   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
888   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
889   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
890   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
891 
892   /* Disable the Channel 3: Reset the CC3E Bit */
893   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
894 
895   /* Get the TIMx CCER register value */
896   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
897 
898   /* Get the TIMx CR2 register value */
899   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
900 
901   /* Get the TIMx CCMR2 register value */
902   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
903 
904   /* Reset Capture/Compare selection Bits */
905   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
906 
907   /* Select the Output Compare Mode */
908   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
909 
910   /* Set the Output Compare Polarity */
911   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
912 
913   /* Set the Output State */
914   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
915 
916   if (IS_TIM_BREAK_INSTANCE(TIMx))
917   {
918     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
919     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
920 
921     /* Set the complementary output Polarity */
922     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
923 
924     /* Set the complementary output State */
925     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
926 
927     /* Set the Output Idle state */
928     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
929 
930     /* Set the complementary output Idle state */
931     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
932   }
933 
934   /* Write to TIMx CR2 */
935   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
936 
937   /* Write to TIMx CCMR2 */
938   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
939 
940   /* Set the Capture Compare Register value */
941   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
942 
943   /* Write to TIMx CCER */
944   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
945 
946   return SUCCESS;
947 }
948 
949 /**
950   * @brief  Configure the TIMx output channel 4.
951   * @param  TIMx Timer Instance
952   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
953   * @retval An ErrorStatus enumeration value:
954   *          - SUCCESS: TIMx registers are de-initialized
955   *          - ERROR: not applicable
956   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)957 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
958 {
959   uint32_t tmpccmr2;
960   uint32_t tmpccer;
961   uint32_t tmpcr2;
962 
963   /* Check the parameters */
964   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
965   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
966   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
967   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
968   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
969   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
970 
971   /* Disable the Channel 4: Reset the CC4E Bit */
972   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
973 
974   /* Get the TIMx CCER register value */
975   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
976 
977   /* Get the TIMx CR2 register value */
978   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
979 
980   /* Get the TIMx CCMR2 register value */
981   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
982 
983   /* Reset Capture/Compare selection Bits */
984   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
985 
986   /* Select the Output Compare Mode */
987   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
988 
989   /* Set the Output Compare Polarity */
990   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
991 
992   /* Set the Output State */
993   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
994 
995   if (IS_TIM_BREAK_INSTANCE(TIMx))
996   {
997     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
998     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
999 
1000     /* Set the Output Idle state */
1001     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1002   }
1003 
1004   /* Write to TIMx CR2 */
1005   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1006 
1007   /* Write to TIMx CCMR2 */
1008   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1009 
1010   /* Set the Capture Compare Register value */
1011   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1012 
1013   /* Write to TIMx CCER */
1014   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1015 
1016   return SUCCESS;
1017 }
1018 
1019 
1020 /**
1021   * @brief  Configure the TIMx input channel 1.
1022   * @param  TIMx Timer Instance
1023   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1024   * @retval An ErrorStatus enumeration value:
1025   *          - SUCCESS: TIMx registers are de-initialized
1026   *          - ERROR: not applicable
1027   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1028 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1029 {
1030   /* Check the parameters */
1031   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1032   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1033   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1034   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1035   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1036 
1037   /* Disable the Channel 1: Reset the CC1E Bit */
1038   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1039 
1040   /* Select the Input and set the filter and the prescaler value */
1041   MODIFY_REG(TIMx->CCMR1,
1042              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1043              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1044 
1045   /* Select the Polarity and set the CC1E Bit */
1046   MODIFY_REG(TIMx->CCER,
1047              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1048              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1049 
1050   return SUCCESS;
1051 }
1052 
1053 /**
1054   * @brief  Configure the TIMx input channel 2.
1055   * @param  TIMx Timer Instance
1056   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1057   * @retval An ErrorStatus enumeration value:
1058   *          - SUCCESS: TIMx registers are de-initialized
1059   *          - ERROR: not applicable
1060   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1061 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1062 {
1063   /* Check the parameters */
1064   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1065   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1066   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1067   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1068   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1069 
1070   /* Disable the Channel 2: Reset the CC2E Bit */
1071   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1072 
1073   /* Select the Input and set the filter and the prescaler value */
1074   MODIFY_REG(TIMx->CCMR1,
1075              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1076              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1077 
1078   /* Select the Polarity and set the CC2E Bit */
1079   MODIFY_REG(TIMx->CCER,
1080              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1081              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1082 
1083   return SUCCESS;
1084 }
1085 
1086 /**
1087   * @brief  Configure the TIMx input channel 3.
1088   * @param  TIMx Timer Instance
1089   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1090   * @retval An ErrorStatus enumeration value:
1091   *          - SUCCESS: TIMx registers are de-initialized
1092   *          - ERROR: not applicable
1093   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1094 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1095 {
1096   /* Check the parameters */
1097   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1098   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1099   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1100   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1101   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1102 
1103   /* Disable the Channel 3: Reset the CC3E Bit */
1104   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1105 
1106   /* Select the Input and set the filter and the prescaler value */
1107   MODIFY_REG(TIMx->CCMR2,
1108              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1109              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1110 
1111   /* Select the Polarity and set the CC3E Bit */
1112   MODIFY_REG(TIMx->CCER,
1113              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1114              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1115 
1116   return SUCCESS;
1117 }
1118 
1119 /**
1120   * @brief  Configure the TIMx input channel 4.
1121   * @param  TIMx Timer Instance
1122   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1123   * @retval An ErrorStatus enumeration value:
1124   *          - SUCCESS: TIMx registers are de-initialized
1125   *          - ERROR: not applicable
1126   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1127 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1128 {
1129   /* Check the parameters */
1130   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1131   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1132   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1133   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1134   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1135 
1136   /* Disable the Channel 4: Reset the CC4E Bit */
1137   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1138 
1139   /* Select the Input and set the filter and the prescaler value */
1140   MODIFY_REG(TIMx->CCMR2,
1141              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1142              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1143 
1144   /* Select the Polarity and set the CC2E Bit */
1145   MODIFY_REG(TIMx->CCER,
1146              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1147              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1148 
1149   return SUCCESS;
1150 }
1151 
1152 
1153 /**
1154   * @}
1155   */
1156 
1157 /**
1158   * @}
1159   */
1160 
1161 #endif /* TIM1 || TIM2 || TIM3  || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
1162 
1163 /**
1164   * @}
1165   */
1166 
1167 #endif /* USE_FULL_LL_DRIVER */
1168 
1169