1 /**
2   ******************************************************************************
3   * @file    stm32f0xx_hal_uart_ex.c
4   * @author  MCD Application Team
5   * @brief   Extended UART HAL module driver.
6   *          This file provides firmware functions to manage the following extended
7   *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8   *           + Initialization and de-initialization functions
9   *           + Peripheral Control functions
10   *
11   *
12   ******************************************************************************
13   * @attention
14   *
15   * Copyright (c) 2016 STMicroelectronics.
16   * All rights reserved.
17   *
18   * This software is licensed under terms that can be found in the LICENSE file
19   * in the root directory of this software component.
20   * If no LICENSE file comes with this software, it is provided AS-IS.
21   *
22   ******************************************************************************
23   @verbatim
24   ==============================================================================
25                ##### UART peripheral extended features  #####
26   ==============================================================================
27 
28     (#) Declare a UART_HandleTypeDef handle structure.
29 
30     (#) For the UART RS485 Driver Enable mode, initialize the UART registers
31         by calling the HAL_RS485Ex_Init() API.
32 
33   @endverbatim
34   ******************************************************************************
35   */
36 
37 /* Includes ------------------------------------------------------------------*/
38 #include "stm32f0xx_hal.h"
39 
40 /** @addtogroup STM32F0xx_HAL_Driver
41   * @{
42   */
43 
44 /** @defgroup UARTEx UARTEx
45   * @brief UART Extended HAL module driver
46   * @{
47   */
48 
49 #ifdef HAL_UART_MODULE_ENABLED
50 
51 /* Private typedef -----------------------------------------------------------*/
52 /* Private define ------------------------------------------------------------*/
53 
54 /* Private macros ------------------------------------------------------------*/
55 /* Private variables ---------------------------------------------------------*/
56 /* Private function prototypes -----------------------------------------------*/
57 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
58   * @{
59   */
60 #if defined(USART_CR1_UESM)
61 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
62 #endif /* USART_CR1_UESM */
63 /**
64   * @}
65   */
66 
67 /* Exported functions --------------------------------------------------------*/
68 
69 /** @defgroup UARTEx_Exported_Functions  UARTEx Exported Functions
70   * @{
71   */
72 
73 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
74   * @brief    Extended Initialization and Configuration Functions
75   *
76 @verbatim
77 ===============================================================================
78             ##### Initialization and Configuration functions #####
79  ===============================================================================
80     [..]
81     This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
82     in asynchronous mode.
83       (+) For the asynchronous mode the parameters below can be configured:
84         (++) Baud Rate
85         (++) Word Length
86         (++) Stop Bit
87         (++) Parity: If the parity is enabled, then the MSB bit of the data written
88              in the data register is transmitted but is changed by the parity bit.
89         (++) Hardware flow control
90         (++) Receiver/transmitter modes
91         (++) Over Sampling Method
92         (++) One-Bit Sampling Method
93       (+) For the asynchronous mode, the following advanced features can be configured as well:
94         (++) TX and/or RX pin level inversion
95         (++) data logical level inversion
96         (++) RX and TX pins swap
97         (++) RX overrun detection disabling
98         (++) DMA disabling on RX error
99         (++) MSB first on communication line
100         (++) auto Baud rate detection
101     [..]
102     The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
103      procedures (details for the procedures are available in reference manual).
104 
105 @endverbatim
106 
107   Depending on the frame length defined by the M1 and M0 bits (7-bit,
108   8-bit or 9-bit), the possible UART formats are listed in the
109   following table.
110 
111     Table 1. UART frame format.
112     +-----------------------------------------------------------------------+
113     |  M1 bit |  M0 bit |  PCE bit  |             UART frame                |
114     |---------|---------|-----------|---------------------------------------|
115     |    0    |    0    |    0      |    | SB |    8 bit data   | STB |     |
116     |---------|---------|-----------|---------------------------------------|
117     |    0    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
118     |---------|---------|-----------|---------------------------------------|
119     |    0    |    1    |    0      |    | SB |    9 bit data   | STB |     |
120     |---------|---------|-----------|---------------------------------------|
121     |    0    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
122     |---------|---------|-----------|---------------------------------------|
123     |    1    |    0    |    0      |    | SB |    7 bit data   | STB |     |
124     |---------|---------|-----------|---------------------------------------|
125     |    1    |    0    |    1      |    | SB | 6 bit data | PB | STB |     |
126     +-----------------------------------------------------------------------+
127 
128   * @{
129   */
130 
131 /**
132   * @brief Initialize the RS485 Driver enable feature according to the specified
133   *         parameters in the UART_InitTypeDef and creates the associated handle.
134   * @param huart            UART handle.
135   * @param Polarity         Select the driver enable polarity.
136   *          This parameter can be one of the following values:
137   *          @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
138   *          @arg @ref UART_DE_POLARITY_LOW  DE signal is active low
139   * @param AssertionTime    Driver Enable assertion time:
140   *       5-bit value defining the time between the activation of the DE (Driver Enable)
141   *       signal and the beginning of the start bit. It is expressed in sample time
142   *       units (1/8 or 1/16 bit time, depending on the oversampling rate)
143   * @param DeassertionTime  Driver Enable deassertion time:
144   *       5-bit value defining the time between the end of the last stop bit, in a
145   *       transmitted message, and the de-activation of the DE (Driver Enable) signal.
146   *       It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
147   *       oversampling rate).
148   * @retval HAL status
149   */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)150 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
151                                    uint32_t DeassertionTime)
152 {
153   uint32_t temp;
154 
155   /* Check the UART handle allocation */
156   if (huart == NULL)
157   {
158     return HAL_ERROR;
159   }
160   /* Check the Driver Enable UART instance */
161   assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
162 
163   /* Check the Driver Enable polarity */
164   assert_param(IS_UART_DE_POLARITY(Polarity));
165 
166   /* Check the Driver Enable assertion time */
167   assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
168 
169   /* Check the Driver Enable deassertion time */
170   assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
171 
172   if (huart->gState == HAL_UART_STATE_RESET)
173   {
174     /* Allocate lock resource and initialize it */
175     huart->Lock = HAL_UNLOCKED;
176 
177 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
178     UART_InitCallbacksToDefault(huart);
179 
180     if (huart->MspInitCallback == NULL)
181     {
182       huart->MspInitCallback = HAL_UART_MspInit;
183     }
184 
185     /* Init the low level hardware */
186     huart->MspInitCallback(huart);
187 #else
188     /* Init the low level hardware : GPIO, CLOCK, CORTEX */
189     HAL_UART_MspInit(huart);
190 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
191   }
192 
193   huart->gState = HAL_UART_STATE_BUSY;
194 
195   /* Disable the Peripheral */
196   __HAL_UART_DISABLE(huart);
197 
198   /* Set the UART Communication parameters */
199   if (UART_SetConfig(huart) == HAL_ERROR)
200   {
201     return HAL_ERROR;
202   }
203 
204   if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
205   {
206     UART_AdvFeatureConfig(huart);
207   }
208 
209   /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
210   SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
211 
212   /* Set the Driver Enable polarity */
213   MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
214 
215   /* Set the Driver Enable assertion and deassertion times */
216   temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
217   temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
218   MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
219 
220   /* Enable the Peripheral */
221   __HAL_UART_ENABLE(huart);
222 
223   /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
224   return (UART_CheckIdleState(huart));
225 }
226 
227 /**
228   * @}
229   */
230 
231 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
232   *  @brief Extended functions
233   *
234 @verbatim
235  ===============================================================================
236                       ##### IO operation functions #####
237  ===============================================================================
238     This subsection provides a set of Wakeup and FIFO mode related callback functions.
239 
240 #if defined(USART_CR1_UESM)
241 #if defined(USART_CR3_WUFIE)
242     (#) Wakeup from Stop mode Callback:
243         (+) HAL_UARTEx_WakeupCallback()
244 
245 #endif
246 #endif
247 @endverbatim
248   * @{
249   */
250 
251 #if defined(USART_CR1_UESM)
252 #if defined(USART_CR3_WUFIE)
253 /**
254   * @brief UART wakeup from Stop mode callback.
255   * @param huart UART handle.
256   * @retval None
257   */
HAL_UARTEx_WakeupCallback(UART_HandleTypeDef * huart)258 __weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
259 {
260   /* Prevent unused argument(s) compilation warning */
261   UNUSED(huart);
262 
263   /* NOTE : This function should not be modified, when the callback is needed,
264             the HAL_UARTEx_WakeupCallback can be implemented in the user file.
265    */
266 }
267 
268 #endif /* USART_CR3_WUFIE */
269 #endif /* USART_CR1_UESM */
270 
271 /**
272   * @}
273   */
274 
275 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
276   * @brief    Extended Peripheral Control functions
277   *
278 @verbatim
279  ===============================================================================
280                       ##### Peripheral Control functions #####
281  ===============================================================================
282     [..] This section provides the following functions:
283      (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
284          detection length to more than 4 bits for multiprocessor address mark wake up.
285 #if defined(USART_CR1_UESM)
286      (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
287          trigger: address match, Start Bit detection or RXNE bit status.
288      (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
289      (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
290 #endif
291 
292     [..] This subsection also provides a set of additional functions providing enhanced reception
293     services to user. (For example, these functions allow application to handle use cases
294     where number of data to be received is unknown).
295 
296     (#) Compared to standard reception services which only consider number of received
297         data elements as reception completion criteria, these functions also consider additional events
298         as triggers for updating reception status to caller :
299        (+) Detection of inactivity period (RX line has not been active for a given period).
300           (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
301                for 1 frame time, after last received byte.
302           (++) RX inactivity detected by RTO, i.e. line has been in idle state
303                for a programmable time, after last received byte.
304        (+) Detection that a specific character has been received.
305 
306     (#) There are two mode of transfer:
307        (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
308            or till IDLE event occurs. Reception is handled only during function execution.
309            When function exits, no data reception could occur. HAL status and number of actually received data elements,
310            are returned by function after finishing transfer.
311        (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
312            These API's return the HAL status.
313            The end of the data processing will be indicated through the
314            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
315            The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
316            The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
317 
318     (#) Blocking mode API:
319         (+) HAL_UARTEx_ReceiveToIdle()
320 
321     (#) Non-Blocking mode API with Interrupt:
322         (+) HAL_UARTEx_ReceiveToIdle_IT()
323 
324     (#) Non-Blocking mode API with DMA:
325         (+) HAL_UARTEx_ReceiveToIdle_DMA()
326 
327 @endverbatim
328   * @{
329   */
330 
331 /**
332   * @brief By default in multiprocessor mode, when the wake up method is set
333   *        to address mark, the UART handles only 4-bit long addresses detection;
334   *        this API allows to enable longer addresses detection (6-, 7- or 8-bit
335   *        long).
336   * @note  Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
337   *        7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
338   * @param huart         UART handle.
339   * @param AddressLength This parameter can be one of the following values:
340   *          @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
341   *          @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
342   * @retval HAL status
343   */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)344 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
345 {
346   /* Check the UART handle allocation */
347   if (huart == NULL)
348   {
349     return HAL_ERROR;
350   }
351 
352   /* Check the address length parameter */
353   assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
354 
355   huart->gState = HAL_UART_STATE_BUSY;
356 
357   /* Disable the Peripheral */
358   __HAL_UART_DISABLE(huart);
359 
360   /* Set the address length */
361   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
362 
363   /* Enable the Peripheral */
364   __HAL_UART_ENABLE(huart);
365 
366   /* TEACK and/or REACK to check before moving huart->gState to Ready */
367   return (UART_CheckIdleState(huart));
368 }
369 
370 #if defined(USART_CR1_UESM)
371 /**
372   * @brief Set Wakeup from Stop mode interrupt flag selection.
373   * @note It is the application responsibility to enable the interrupt used as
374   *       usart_wkup interrupt source before entering low-power mode.
375   * @param huart           UART handle.
376   * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
377   *          This parameter can be one of the following values:
378   *          @arg @ref UART_WAKEUP_ON_ADDRESS
379   *          @arg @ref UART_WAKEUP_ON_STARTBIT
380   *          @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
381   * @retval HAL status
382   */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)383 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
384 {
385   HAL_StatusTypeDef status = HAL_OK;
386   uint32_t tickstart;
387 
388   /* check the wake-up from stop mode UART instance */
389   assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
390   /* check the wake-up selection parameter */
391   assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
392 
393   /* Process Locked */
394   __HAL_LOCK(huart);
395 
396   huart->gState = HAL_UART_STATE_BUSY;
397 
398   /* Disable the Peripheral */
399   __HAL_UART_DISABLE(huart);
400 
401 #if defined(USART_CR3_WUS)
402   /* Set the wake-up selection scheme */
403   MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
404 #endif /* USART_CR3_WUS */
405 
406   if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
407   {
408     UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
409   }
410 
411   /* Enable the Peripheral */
412   __HAL_UART_ENABLE(huart);
413 
414   /* Init tickstart for timeout management */
415   tickstart = HAL_GetTick();
416 
417   /* Wait until REACK flag is set */
418   if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
419   {
420     status = HAL_TIMEOUT;
421   }
422   else
423   {
424     /* Initialize the UART State */
425     huart->gState = HAL_UART_STATE_READY;
426   }
427 
428   /* Process Unlocked */
429   __HAL_UNLOCK(huart);
430 
431   return status;
432 }
433 
434 /**
435   * @brief Enable UART Stop Mode.
436   * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
437   * @param huart UART handle.
438   * @retval HAL status
439   */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)440 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
441 {
442   /* Process Locked */
443   __HAL_LOCK(huart);
444 
445   /* Set UESM bit */
446   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
447 
448   /* Process Unlocked */
449   __HAL_UNLOCK(huart);
450 
451   return HAL_OK;
452 }
453 
454 /**
455   * @brief Disable UART Stop Mode.
456   * @param huart UART handle.
457   * @retval HAL status
458   */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)459 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
460 {
461   /* Process Locked */
462   __HAL_LOCK(huart);
463 
464   /* Clear UESM bit */
465   ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
466 
467   /* Process Unlocked */
468   __HAL_UNLOCK(huart);
469 
470   return HAL_OK;
471 }
472 
473 #endif /* USART_CR1_UESM */
474 /**
475   * @brief Receive an amount of data in blocking mode till either the expected number of data
476   *        is received or an IDLE event occurs.
477   * @note  HAL_OK is returned if reception is completed (expected number of data has been received)
478   *        or if reception is stopped after IDLE event (less than the expected number of data has been received)
479   *        In this case, RxLen output parameter indicates number of data available in reception buffer.
480   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
481   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
482   *        of uint16_t available through pData.
483   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
484   *         address of user data buffer for storing data to be received, should be aligned on a half word frontier
485   *         (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
486   *         use of specific alignment compilation directives or pragmas might be required to ensure proper
487   *         alignment for pData.
488   * @param huart   UART handle.
489   * @param pData   Pointer to data buffer (uint8_t or uint16_t data elements).
490   * @param Size    Amount of data elements (uint8_t or uint16_t) to be received.
491   * @param RxLen   Number of data elements finally received
492   *                (could be lower than Size, in case reception ends on IDLE event)
493   * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
494   * @retval HAL status
495   */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)496 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
497                                            uint32_t Timeout)
498 {
499   uint8_t  *pdata8bits;
500   uint16_t *pdata16bits;
501   uint16_t uhMask;
502   uint32_t tickstart;
503 
504   /* Check that a Rx process is not already ongoing */
505   if (huart->RxState == HAL_UART_STATE_READY)
506   {
507     if ((pData == NULL) || (Size == 0U))
508     {
509       return  HAL_ERROR;
510     }
511 
512     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
513        should be aligned on a uint16_t frontier, as data to be received from RDR will be
514        handled through a uint16_t cast. */
515     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
516     {
517       if ((((uint32_t)pData) & 1U) != 0U)
518       {
519         return  HAL_ERROR;
520       }
521     }
522 
523     huart->ErrorCode = HAL_UART_ERROR_NONE;
524     huart->RxState = HAL_UART_STATE_BUSY_RX;
525     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
526     huart->RxEventType = HAL_UART_RXEVENT_TC;
527 
528     /* Init tickstart for timeout management */
529     tickstart = HAL_GetTick();
530 
531     huart->RxXferSize  = Size;
532     huart->RxXferCount = Size;
533 
534     /* Computation of UART mask to apply to RDR register */
535     UART_MASK_COMPUTATION(huart);
536     uhMask = huart->Mask;
537 
538     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
539     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
540     {
541       pdata8bits  = NULL;
542       pdata16bits = (uint16_t *) pData;
543     }
544     else
545     {
546       pdata8bits  = pData;
547       pdata16bits = NULL;
548     }
549 
550     /* Initialize output number of received elements */
551     *RxLen = 0U;
552 
553     /* as long as data have to be received */
554     while (huart->RxXferCount > 0U)
555     {
556       /* Check if IDLE flag is set */
557       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
558       {
559         /* Clear IDLE flag in ISR */
560         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
561 
562         /* If Set, but no data ever received, clear flag without exiting loop */
563         /* If Set, and data has already been received, this means Idle Event is valid : End reception */
564         if (*RxLen > 0U)
565         {
566           huart->RxEventType = HAL_UART_RXEVENT_IDLE;
567           huart->RxState = HAL_UART_STATE_READY;
568 
569           return HAL_OK;
570         }
571       }
572 
573       /* Check if RXNE flag is set */
574       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
575       {
576         if (pdata8bits == NULL)
577         {
578           *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
579           pdata16bits++;
580         }
581         else
582         {
583           *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
584           pdata8bits++;
585         }
586         /* Increment number of received elements */
587         *RxLen += 1U;
588         huart->RxXferCount--;
589       }
590 
591       /* Check for the Timeout */
592       if (Timeout != HAL_MAX_DELAY)
593       {
594         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
595         {
596           huart->RxState = HAL_UART_STATE_READY;
597 
598           return HAL_TIMEOUT;
599         }
600       }
601     }
602 
603     /* Set number of received elements in output parameter : RxLen */
604     *RxLen = huart->RxXferSize - huart->RxXferCount;
605     /* At end of Rx process, restore huart->RxState to Ready */
606     huart->RxState = HAL_UART_STATE_READY;
607 
608     return HAL_OK;
609   }
610   else
611   {
612     return HAL_BUSY;
613   }
614 }
615 
616 /**
617   * @brief Receive an amount of data in interrupt mode till either the expected number of data
618   *        is received or an IDLE event occurs.
619   * @note  Reception is initiated by this function call. Further progress of reception is achieved thanks
620   *        to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
621   *        number of received data elements.
622   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
623   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
624   *        of uint16_t available through pData.
625   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
626   *        address of user data buffer for storing data to be received, should be aligned on a half word frontier
627   *        (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
628   *        use of specific alignment compilation directives or pragmas might be required
629   *        to ensure proper alignment for pData.
630   * @param huart UART handle.
631   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
632   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
633   * @retval HAL status
634   */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)635 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
636 {
637   HAL_StatusTypeDef status;
638 
639   /* Check that a Rx process is not already ongoing */
640   if (huart->RxState == HAL_UART_STATE_READY)
641   {
642     if ((pData == NULL) || (Size == 0U))
643     {
644       return HAL_ERROR;
645     }
646 
647     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
648        should be aligned on a uint16_t frontier, as data to be received from RDR will be
649        handled through a uint16_t cast. */
650     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
651     {
652       if ((((uint32_t)pData) & 1U) != 0U)
653       {
654         return  HAL_ERROR;
655       }
656     }
657 
658     /* Set Reception type to reception till IDLE Event*/
659     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
660     huart->RxEventType = HAL_UART_RXEVENT_TC;
661 
662     status =  UART_Start_Receive_IT(huart, pData, Size);
663 
664     /* Check Rx process has been successfully started */
665     if (status == HAL_OK)
666     {
667       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
668       {
669         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
670         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
671       }
672       else
673       {
674         /* In case of errors already pending when reception is started,
675            Interrupts may have already been raised and lead to reception abortion.
676            (Overrun error for instance).
677            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
678         status = HAL_ERROR;
679       }
680     }
681 
682     return status;
683   }
684   else
685   {
686     return HAL_BUSY;
687   }
688 }
689 
690 /**
691   * @brief Receive an amount of data in DMA mode till either the expected number
692   *        of data is received or an IDLE event occurs.
693   * @note  Reception is initiated by this function call. Further progress of reception is achieved thanks
694   *        to DMA services, transferring automatically received data elements in user reception buffer and
695   *        calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
696   *        reception phase as ended. In all cases, callback execution will indicate number of received data elements.
697   * @note  When the UART parity is enabled (PCE = 1), the received data contain
698   *        the parity bit (MSB position).
699   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
700   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
701   *        of uint16_t available through pData.
702   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
703   *        address of user data buffer for storing data to be received, should be aligned on a half word frontier
704   *        (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
705   *        use of specific alignment compilation directives or pragmas might be required
706   *        to ensure proper alignment for pData.
707   * @param huart UART handle.
708   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
709   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
710   * @retval HAL status
711   */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)712 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
713 {
714   HAL_StatusTypeDef status;
715 
716   /* Check that a Rx process is not already ongoing */
717   if (huart->RxState == HAL_UART_STATE_READY)
718   {
719     if ((pData == NULL) || (Size == 0U))
720     {
721       return HAL_ERROR;
722     }
723 
724     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
725        should be aligned on a uint16_t frontier, as data copy from RDR will be
726        handled by DMA from a uint16_t frontier. */
727     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
728     {
729       if ((((uint32_t)pData) & 1U) != 0U)
730       {
731         return  HAL_ERROR;
732       }
733     }
734 
735     /* Set Reception type to reception till IDLE Event*/
736     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
737     huart->RxEventType = HAL_UART_RXEVENT_TC;
738 
739     status =  UART_Start_Receive_DMA(huart, pData, Size);
740 
741     /* Check Rx process has been successfully started */
742     if (status == HAL_OK)
743     {
744       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
745       {
746         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
747         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
748       }
749       else
750       {
751         /* In case of errors already pending when reception is started,
752            Interrupts may have already been raised and lead to reception abortion.
753            (Overrun error for instance).
754            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
755         status = HAL_ERROR;
756       }
757     }
758 
759     return status;
760   }
761   else
762   {
763     return HAL_BUSY;
764   }
765 }
766 
767 /**
768   * @brief Provide Rx Event type that has lead to RxEvent callback execution.
769   * @note  When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
770   *        of reception process is provided to application through calls of Rx Event callback (either default one
771   *        HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
772   *        Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
773   *        to Rx Event callback execution.
774   * @note  This function is expected to be called within the user implementation of Rx Event Callback,
775   *        in order to provide the accurate value :
776   *        In Interrupt Mode :
777   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
778   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
779   *             received data is lower than expected one)
780   *        In DMA Mode :
781   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
782   *           - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
783   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
784   *             received data is lower than expected one).
785   *        In DMA mode, RxEvent callback could be called several times;
786   *        When DMA is configured in Normal Mode, HT event does not stop Reception process;
787   *        When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
788   * @param  huart UART handle.
789   * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
790   */
HAL_UARTEx_GetRxEventType(UART_HandleTypeDef * huart)791 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
792 {
793   /* Return Rx Event type value, as stored in UART handle */
794   return (huart->RxEventType);
795 }
796 
797 /**
798   * @}
799   */
800 
801 /**
802   * @}
803   */
804 
805 /** @addtogroup UARTEx_Private_Functions
806   * @{
807   */
808 #if defined(USART_CR1_UESM)
809 
810 /**
811   * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
812   * @param huart           UART handle.
813   * @param WakeUpSelection UART wake up from stop mode parameters.
814   * @retval None
815   */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)816 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
817 {
818   assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
819 
820   /* Set the USART address length */
821   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
822 
823   /* Set the USART address node */
824   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
825 }
826 #endif /* USART_CR1_UESM */
827 
828 /**
829   * @}
830   */
831 
832 #endif /* HAL_UART_MODULE_ENABLED */
833 
834 /**
835   * @}
836   */
837 
838 /**
839   * @}
840   */
841 
842