1 /**
2   ******************************************************************************
3   * @file    stm32c0xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2022 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32c0xx_ll_tim.h"
22 #include "stm32c0xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32C0xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM16) || defined (TIM17)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
71 
72 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
73                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
74 
75 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
76                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
77 
78 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
79                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
80 
81 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
82                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
83                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
84 
85 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
86                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
87                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
89 
90 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
106 
107 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
108                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
109                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
110 
111 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
112                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
113                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
114 
115 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
116                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
117 
118 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
119                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
120 
121 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
122                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
123 
124 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
125                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
126                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
127                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
128 
129 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
130                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
131 
132 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
133                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
134 
135 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
136                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
137                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
138                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
139                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
140                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
141                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
142                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
143                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
151 
152 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT)          \
153                                            || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
154 
155 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
156                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
157 
158 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
159                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
160 
161 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
162                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
163                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
164                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
165                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
166                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
167                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
168                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
169                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
177 
178 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT)       \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
180 
181 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
182                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
183 /**
184   * @}
185   */
186 
187 
188 /* Private function prototypes -----------------------------------------------*/
189 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
190   * @{
191   */
192 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
193 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
194 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
195 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
196 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
197 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
198 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
199 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
200 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
201 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
202 /**
203   * @}
204   */
205 
206 /* Exported functions --------------------------------------------------------*/
207 /** @addtogroup TIM_LL_Exported_Functions
208   * @{
209   */
210 
211 /** @addtogroup TIM_LL_EF_Init
212   * @{
213   */
214 
215 /**
216   * @brief  Set TIMx registers to their reset values.
217   * @param  TIMx Timer instance
218   * @retval An ErrorStatus enumeration value:
219   *          - SUCCESS: TIMx registers are de-initialized
220   *          - ERROR: invalid TIMx instance
221   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)222 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
223 {
224   ErrorStatus result = SUCCESS;
225 
226   /* Check the parameters */
227   assert_param(IS_TIM_INSTANCE(TIMx));
228 
229   if (TIMx == TIM1)
230   {
231     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
232     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
233   }
234 #if defined(TIM2)
235   else if (TIMx == TIM2)
236   {
237     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
238     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
239   }
240 #endif /* TIM2 */
241   else if (TIMx == TIM3)
242   {
243     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
244     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
245   }
246   else if (TIMx == TIM14)
247   {
248     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM14);
249     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM14);
250   }
251   else if (TIMx == TIM16)
252   {
253     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
254     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
255   }
256   else if (TIMx == TIM17)
257   {
258     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
259     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
260   }
261   else
262   {
263     result = ERROR;
264   }
265 
266   return result;
267 }
268 
269 /**
270   * @brief  Set the fields of the time base unit configuration data structure
271   *         to their default values.
272   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
273   * @retval None
274   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)275 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
276 {
277   /* Set the default configuration */
278   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
279   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
280   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
281   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
282   TIM_InitStruct->RepetitionCounter = 0x00000000U;
283 }
284 
285 /**
286   * @brief  Configure the TIMx time base unit.
287   * @param  TIMx Timer Instance
288   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
289   *         (TIMx time base unit configuration data structure)
290   * @retval An ErrorStatus enumeration value:
291   *          - SUCCESS: TIMx registers are de-initialized
292   *          - ERROR: not applicable
293   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)294 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
295 {
296   uint32_t tmpcr1;
297 
298   /* Check the parameters */
299   assert_param(IS_TIM_INSTANCE(TIMx));
300   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
301   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
302 
303   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
304 
305   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
306   {
307     /* Select the Counter Mode */
308     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
309   }
310 
311   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
312   {
313     /* Set the clock division */
314     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
315   }
316 
317   /* Write to TIMx CR1 */
318   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
319 
320   /* Set the Autoreload value */
321   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
322 
323   /* Set the Prescaler value */
324   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
325 
326   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
327   {
328     /* Set the Repetition Counter value */
329     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
330   }
331 
332   /* Generate an update event to reload the Prescaler
333      and the repetition counter value (if applicable) immediately */
334   LL_TIM_GenerateEvent_UPDATE(TIMx);
335 
336   return SUCCESS;
337 }
338 
339 /**
340   * @brief  Set the fields of the TIMx output channel configuration data
341   *         structure to their default values.
342   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
343   *         (the output channel configuration data structure)
344   * @retval None
345   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)346 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
347 {
348   /* Set the default configuration */
349   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
350   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
351   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
352   TIM_OC_InitStruct->CompareValue = 0x00000000U;
353   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
354   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
355   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
356   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
357 }
358 
359 /**
360   * @brief  Configure the TIMx output channel.
361   * @param  TIMx Timer Instance
362   * @param  Channel This parameter can be one of the following values:
363   *         @arg @ref LL_TIM_CHANNEL_CH1
364   *         @arg @ref LL_TIM_CHANNEL_CH2
365   *         @arg @ref LL_TIM_CHANNEL_CH3
366   *         @arg @ref LL_TIM_CHANNEL_CH4
367   *         @arg @ref LL_TIM_CHANNEL_CH5
368   *         @arg @ref LL_TIM_CHANNEL_CH6
369   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
370   *         data structure)
371   * @retval An ErrorStatus enumeration value:
372   *          - SUCCESS: TIMx output channel is initialized
373   *          - ERROR: TIMx output channel is not initialized
374   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)375 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
376 {
377   ErrorStatus result = ERROR;
378 
379   switch (Channel)
380   {
381     case LL_TIM_CHANNEL_CH1:
382       result = OC1Config(TIMx, TIM_OC_InitStruct);
383       break;
384     case LL_TIM_CHANNEL_CH2:
385       result = OC2Config(TIMx, TIM_OC_InitStruct);
386       break;
387     case LL_TIM_CHANNEL_CH3:
388       result = OC3Config(TIMx, TIM_OC_InitStruct);
389       break;
390     case LL_TIM_CHANNEL_CH4:
391       result = OC4Config(TIMx, TIM_OC_InitStruct);
392       break;
393     case LL_TIM_CHANNEL_CH5:
394       result = OC5Config(TIMx, TIM_OC_InitStruct);
395       break;
396     case LL_TIM_CHANNEL_CH6:
397       result = OC6Config(TIMx, TIM_OC_InitStruct);
398       break;
399     default:
400       break;
401   }
402 
403   return result;
404 }
405 
406 /**
407   * @brief  Set the fields of the TIMx input channel configuration data
408   *         structure to their default values.
409   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
410   *         data structure)
411   * @retval None
412   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)413 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
414 {
415   /* Set the default configuration */
416   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
417   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
418   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
419   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
420 }
421 
422 /**
423   * @brief  Configure the TIMx input channel.
424   * @param  TIMx Timer Instance
425   * @param  Channel This parameter can be one of the following values:
426   *         @arg @ref LL_TIM_CHANNEL_CH1
427   *         @arg @ref LL_TIM_CHANNEL_CH2
428   *         @arg @ref LL_TIM_CHANNEL_CH3
429   *         @arg @ref LL_TIM_CHANNEL_CH4
430   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
431   *         structure)
432   * @retval An ErrorStatus enumeration value:
433   *          - SUCCESS: TIMx output channel is initialized
434   *          - ERROR: TIMx output channel is not initialized
435   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)436 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
437 {
438   ErrorStatus result = ERROR;
439 
440   switch (Channel)
441   {
442     case LL_TIM_CHANNEL_CH1:
443       result = IC1Config(TIMx, TIM_IC_InitStruct);
444       break;
445     case LL_TIM_CHANNEL_CH2:
446       result = IC2Config(TIMx, TIM_IC_InitStruct);
447       break;
448     case LL_TIM_CHANNEL_CH3:
449       result = IC3Config(TIMx, TIM_IC_InitStruct);
450       break;
451     case LL_TIM_CHANNEL_CH4:
452       result = IC4Config(TIMx, TIM_IC_InitStruct);
453       break;
454     default:
455       break;
456   }
457 
458   return result;
459 }
460 
461 /**
462   * @brief  Fills each TIM_EncoderInitStruct field with its default value
463   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
464   *         configuration data structure)
465   * @retval None
466   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)467 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
468 {
469   /* Set the default configuration */
470   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
471   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
472   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
473   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
474   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
475   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
476   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
477   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
478   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
479 }
480 
481 /**
482   * @brief  Configure the encoder interface of the timer instance.
483   * @param  TIMx Timer Instance
484   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
485   *         configuration data structure)
486   * @retval An ErrorStatus enumeration value:
487   *          - SUCCESS: TIMx registers are de-initialized
488   *          - ERROR: not applicable
489   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)490 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
491 {
492   uint32_t tmpccmr1;
493   uint32_t tmpccer;
494 
495   /* Check the parameters */
496   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
497   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
498   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
499   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
500   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
501   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
502   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
503   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
504   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
505   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
506 
507   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
508   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
509 
510   /* Get the TIMx CCMR1 register value */
511   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
512 
513   /* Get the TIMx CCER register value */
514   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
515 
516   /* Configure TI1 */
517   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
518   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
519   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
520   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
521 
522   /* Configure TI2 */
523   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
524   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
525   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
526   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
527 
528   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
529   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
530   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
531   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
532   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
533 
534   /* Set encoder mode */
535   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
536 
537   /* Write to TIMx CCMR1 */
538   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
539 
540   /* Write to TIMx CCER */
541   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
542 
543   return SUCCESS;
544 }
545 
546 /**
547   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
548   *         structure to their default values.
549   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
550   *         configuration data structure)
551   * @retval None
552   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)553 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
554 {
555   /* Set the default configuration */
556   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
557   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
558   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
559   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
560 }
561 
562 /**
563   * @brief  Configure the Hall sensor interface of the timer instance.
564   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
565   *       to the TI1 input channel
566   * @note TIMx slave mode controller is configured in reset mode.
567           Selected internal trigger is TI1F_ED.
568   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
569   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
570   *       between 2 changes on the inputs. It gives information about motor speed.
571   * @note Channel 2 is configured in output PWM 2 mode.
572   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
573   * @note OC2REF is selected as trigger output on TRGO.
574   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
575   *       when TIMx operates in Hall sensor interface mode.
576   * @param  TIMx Timer Instance
577   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
578   *         interface configuration data structure)
579   * @retval An ErrorStatus enumeration value:
580   *          - SUCCESS: TIMx registers are de-initialized
581   *          - ERROR: not applicable
582   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)583 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
584 {
585   uint32_t tmpcr2;
586   uint32_t tmpccmr1;
587   uint32_t tmpccer;
588   uint32_t tmpsmcr;
589 
590   /* Check the parameters */
591   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
592   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
593   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
594   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
595 
596   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
597   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
598 
599   /* Get the TIMx CR2 register value */
600   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
601 
602   /* Get the TIMx CCMR1 register value */
603   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
604 
605   /* Get the TIMx CCER register value */
606   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
607 
608   /* Get the TIMx SMCR register value */
609   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
610 
611   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
612   tmpcr2 |= TIM_CR2_TI1S;
613 
614   /* OC2REF signal is used as trigger output (TRGO) */
615   tmpcr2 |= LL_TIM_TRGO_OC2REF;
616 
617   /* Configure the slave mode controller */
618   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
619   tmpsmcr |= LL_TIM_TS_TI1F_ED;
620   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
621 
622   /* Configure input channel 1 */
623   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
624   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
625   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
626   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
627 
628   /* Configure input channel 2 */
629   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
630   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
631 
632   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
633   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
634   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
635   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
636 
637   /* Write to TIMx CR2 */
638   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
639 
640   /* Write to TIMx SMCR */
641   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
642 
643   /* Write to TIMx CCMR1 */
644   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
645 
646   /* Write to TIMx CCER */
647   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
648 
649   /* Write to TIMx CCR2 */
650   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
651 
652   return SUCCESS;
653 }
654 
655 /**
656   * @brief  Set the fields of the Break and Dead Time configuration data structure
657   *         to their default values.
658   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
659   *         data structure)
660   * @retval None
661   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)662 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
663 {
664   /* Set the default configuration */
665   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
666   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
667   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
668   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
669   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
670   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
671   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
672   TIM_BDTRInitStruct->BreakAFMode     = LL_TIM_BREAK_AFMODE_INPUT;
673   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
674   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
675   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
676   TIM_BDTRInitStruct->Break2AFMode    = LL_TIM_BREAK2_AFMODE_INPUT;
677   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
678 }
679 
680 /**
681   * @brief  Configure the Break and Dead Time feature of the timer instance.
682   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
683   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
684   *  can be necessary to configure all of them during the first write access to
685   *  the TIMx_BDTR register.
686   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
687   *       a timer instance provides a break input.
688   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
689   *       a timer instance provides a second break input.
690   * @param  TIMx Timer Instance
691   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
692   *         data structure)
693   * @retval An ErrorStatus enumeration value:
694   *          - SUCCESS: Break and Dead Time is initialized
695   *          - ERROR: not applicable
696   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)697 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
698 {
699   uint32_t tmpbdtr = 0;
700 
701   /* Check the parameters */
702   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
703   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
704   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
705   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
706   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
707   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
708   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
709 
710   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
711   the OSSI State, the dead time value and the Automatic Output Enable Bit */
712 
713   /* Set the BDTR bits */
714   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
715   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
716   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
717   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
718   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
719   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
720   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
721   assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
722   assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
723   MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
724   MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
725 
726   if (IS_TIM_BKIN2_INSTANCE(TIMx))
727   {
728     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
729     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
730     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
731     assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
732 
733     /* Set the BREAK2 input related BDTR bit-fields */
734     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
735     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
736     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
737     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
738   }
739 
740   /* Set TIMx_BDTR */
741   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
742 
743   return SUCCESS;
744 }
745 /**
746   * @}
747   */
748 
749 /**
750   * @}
751   */
752 
753 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
754   *  @brief   Private functions
755   * @{
756   */
757 /**
758   * @brief  Configure the TIMx output channel 1.
759   * @param  TIMx Timer Instance
760   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
761   * @retval An ErrorStatus enumeration value:
762   *          - SUCCESS: TIMx registers are de-initialized
763   *          - ERROR: not applicable
764   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)765 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
766 {
767   uint32_t tmpccmr1;
768   uint32_t tmpccer;
769   uint32_t tmpcr2;
770 
771   /* Check the parameters */
772   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
773   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
774   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
775   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
776   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
777   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
778 
779   /* Disable the Channel 1: Reset the CC1E Bit */
780   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
781 
782   /* Get the TIMx CCER register value */
783   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
784 
785   /* Get the TIMx CR2 register value */
786   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
787 
788   /* Get the TIMx CCMR1 register value */
789   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
790 
791   /* Reset Capture/Compare selection Bits */
792   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
793 
794   /* Set the Output Compare Mode */
795   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
796 
797   /* Set the Output Compare Polarity */
798   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
799 
800   /* Set the Output State */
801   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
802 
803   if (IS_TIM_BREAK_INSTANCE(TIMx))
804   {
805     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
806     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
807 
808     /* Set the complementary output Polarity */
809     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
810 
811     /* Set the complementary output State */
812     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
813 
814     /* Set the Output Idle state */
815     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
816 
817     /* Set the complementary output Idle state */
818     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
819   }
820 
821   /* Write to TIMx CR2 */
822   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
823 
824   /* Write to TIMx CCMR1 */
825   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
826 
827   /* Set the Capture Compare Register value */
828   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
829 
830   /* Write to TIMx CCER */
831   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
832 
833   return SUCCESS;
834 }
835 
836 /**
837   * @brief  Configure the TIMx output channel 2.
838   * @param  TIMx Timer Instance
839   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
840   * @retval An ErrorStatus enumeration value:
841   *          - SUCCESS: TIMx registers are de-initialized
842   *          - ERROR: not applicable
843   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)844 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
845 {
846   uint32_t tmpccmr1;
847   uint32_t tmpccer;
848   uint32_t tmpcr2;
849 
850   /* Check the parameters */
851   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
852   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
853   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
854   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
855   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
856   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
857 
858   /* Disable the Channel 2: Reset the CC2E Bit */
859   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
860 
861   /* Get the TIMx CCER register value */
862   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
863 
864   /* Get the TIMx CR2 register value */
865   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
866 
867   /* Get the TIMx CCMR1 register value */
868   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
869 
870   /* Reset Capture/Compare selection Bits */
871   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
872 
873   /* Select the Output Compare Mode */
874   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
875 
876   /* Set the Output Compare Polarity */
877   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
878 
879   /* Set the Output State */
880   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
881 
882   if (IS_TIM_BREAK_INSTANCE(TIMx))
883   {
884     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
885     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
886 
887     /* Set the complementary output Polarity */
888     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
889 
890     /* Set the complementary output State */
891     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
892 
893     /* Set the Output Idle state */
894     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
895 
896     /* Set the complementary output Idle state */
897     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
898   }
899 
900   /* Write to TIMx CR2 */
901   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
902 
903   /* Write to TIMx CCMR1 */
904   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
905 
906   /* Set the Capture Compare Register value */
907   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
908 
909   /* Write to TIMx CCER */
910   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
911 
912   return SUCCESS;
913 }
914 
915 /**
916   * @brief  Configure the TIMx output channel 3.
917   * @param  TIMx Timer Instance
918   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
919   * @retval An ErrorStatus enumeration value:
920   *          - SUCCESS: TIMx registers are de-initialized
921   *          - ERROR: not applicable
922   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)923 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
924 {
925   uint32_t tmpccmr2;
926   uint32_t tmpccer;
927   uint32_t tmpcr2;
928 
929   /* Check the parameters */
930   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
931   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
932   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
933   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
934   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
935   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
936 
937   /* Disable the Channel 3: Reset the CC3E Bit */
938   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
939 
940   /* Get the TIMx CCER register value */
941   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
942 
943   /* Get the TIMx CR2 register value */
944   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
945 
946   /* Get the TIMx CCMR2 register value */
947   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
948 
949   /* Reset Capture/Compare selection Bits */
950   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
951 
952   /* Select the Output Compare Mode */
953   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
954 
955   /* Set the Output Compare Polarity */
956   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
957 
958   /* Set the Output State */
959   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
960 
961   if (IS_TIM_BREAK_INSTANCE(TIMx))
962   {
963     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
964     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
965 
966     /* Set the complementary output Polarity */
967     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
968 
969     /* Set the complementary output State */
970     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
971 
972     /* Set the Output Idle state */
973     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
974 
975     /* Set the complementary output Idle state */
976     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
977   }
978 
979   /* Write to TIMx CR2 */
980   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
981 
982   /* Write to TIMx CCMR2 */
983   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
984 
985   /* Set the Capture Compare Register value */
986   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
987 
988   /* Write to TIMx CCER */
989   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
990 
991   return SUCCESS;
992 }
993 
994 /**
995   * @brief  Configure the TIMx output channel 4.
996   * @param  TIMx Timer Instance
997   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
998   * @retval An ErrorStatus enumeration value:
999   *          - SUCCESS: TIMx registers are de-initialized
1000   *          - ERROR: not applicable
1001   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1002 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1003 {
1004   uint32_t tmpccmr2;
1005   uint32_t tmpccer;
1006   uint32_t tmpcr2;
1007 
1008   /* Check the parameters */
1009   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1010   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1011   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1012   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1013   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1014   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1015 
1016   /* Disable the Channel 4: Reset the CC4E Bit */
1017   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1018 
1019   /* Get the TIMx CCER register value */
1020   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1021 
1022   /* Get the TIMx CR2 register value */
1023   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1024 
1025   /* Get the TIMx CCMR2 register value */
1026   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1027 
1028   /* Reset Capture/Compare selection Bits */
1029   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1030 
1031   /* Select the Output Compare Mode */
1032   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1033 
1034   /* Set the Output Compare Polarity */
1035   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1036 
1037   /* Set the Output State */
1038   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1039 
1040   if (IS_TIM_BREAK_INSTANCE(TIMx))
1041   {
1042     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1043     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1044 
1045     /* Set the Output Idle state */
1046     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1047   }
1048 
1049   /* Write to TIMx CR2 */
1050   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1051 
1052   /* Write to TIMx CCMR2 */
1053   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1054 
1055   /* Set the Capture Compare Register value */
1056   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1057 
1058   /* Write to TIMx CCER */
1059   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1060 
1061   return SUCCESS;
1062 }
1063 
1064 /**
1065   * @brief  Configure the TIMx output channel 5.
1066   * @param  TIMx Timer Instance
1067   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1068   * @retval An ErrorStatus enumeration value:
1069   *          - SUCCESS: TIMx registers are de-initialized
1070   *          - ERROR: not applicable
1071   */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1072 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1073 {
1074   uint32_t tmpccmr3;
1075   uint32_t tmpccer;
1076 
1077   /* Check the parameters */
1078   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1079   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1080   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1081   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1082   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1083   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1084 
1085   /* Disable the Channel 5: Reset the CC5E Bit */
1086   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1087 
1088   /* Get the TIMx CCER register value */
1089   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1090 
1091   /* Get the TIMx CCMR3 register value */
1092   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1093 
1094   /* Select the Output Compare Mode */
1095   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1096 
1097   /* Set the Output Compare Polarity */
1098   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1099 
1100   /* Set the Output State */
1101   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1102 
1103   if (IS_TIM_BREAK_INSTANCE(TIMx))
1104   {
1105     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1106     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1107 
1108     /* Set the Output Idle state */
1109     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1110 
1111   }
1112 
1113   /* Write to TIMx CCMR3 */
1114   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1115 
1116   /* Set the Capture Compare Register value */
1117   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1118 
1119   /* Write to TIMx CCER */
1120   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1121 
1122   return SUCCESS;
1123 }
1124 
1125 /**
1126   * @brief  Configure the TIMx output channel 6.
1127   * @param  TIMx Timer Instance
1128   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1129   * @retval An ErrorStatus enumeration value:
1130   *          - SUCCESS: TIMx registers are de-initialized
1131   *          - ERROR: not applicable
1132   */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1133 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1134 {
1135   uint32_t tmpccmr3;
1136   uint32_t tmpccer;
1137 
1138   /* Check the parameters */
1139   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1140   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1141   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1142   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1143   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1144   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1145 
1146   /* Disable the Channel 5: Reset the CC6E Bit */
1147   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1148 
1149   /* Get the TIMx CCER register value */
1150   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1151 
1152   /* Get the TIMx CCMR3 register value */
1153   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1154 
1155   /* Select the Output Compare Mode */
1156   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1157 
1158   /* Set the Output Compare Polarity */
1159   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1160 
1161   /* Set the Output State */
1162   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1163 
1164   if (IS_TIM_BREAK_INSTANCE(TIMx))
1165   {
1166     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1167     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1168 
1169     /* Set the Output Idle state */
1170     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1171   }
1172 
1173   /* Write to TIMx CCMR3 */
1174   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1175 
1176   /* Set the Capture Compare Register value */
1177   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1178 
1179   /* Write to TIMx CCER */
1180   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1181 
1182   return SUCCESS;
1183 }
1184 
1185 /**
1186   * @brief  Configure the TIMx input channel 1.
1187   * @param  TIMx Timer Instance
1188   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1189   * @retval An ErrorStatus enumeration value:
1190   *          - SUCCESS: TIMx registers are de-initialized
1191   *          - ERROR: not applicable
1192   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1193 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1194 {
1195   /* Check the parameters */
1196   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1197   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1198   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1199   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1200   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1201 
1202   /* Disable the Channel 1: Reset the CC1E Bit */
1203   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1204 
1205   /* Select the Input and set the filter and the prescaler value */
1206   MODIFY_REG(TIMx->CCMR1,
1207              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1208              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1209 
1210   /* Select the Polarity and set the CC1E Bit */
1211   MODIFY_REG(TIMx->CCER,
1212              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1213              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1214 
1215   return SUCCESS;
1216 }
1217 
1218 /**
1219   * @brief  Configure the TIMx input channel 2.
1220   * @param  TIMx Timer Instance
1221   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1222   * @retval An ErrorStatus enumeration value:
1223   *          - SUCCESS: TIMx registers are de-initialized
1224   *          - ERROR: not applicable
1225   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1226 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1227 {
1228   /* Check the parameters */
1229   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1230   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1231   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1232   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1233   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1234 
1235   /* Disable the Channel 2: Reset the CC2E Bit */
1236   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1237 
1238   /* Select the Input and set the filter and the prescaler value */
1239   MODIFY_REG(TIMx->CCMR1,
1240              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1241              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1242 
1243   /* Select the Polarity and set the CC2E Bit */
1244   MODIFY_REG(TIMx->CCER,
1245              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1246              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1247 
1248   return SUCCESS;
1249 }
1250 
1251 /**
1252   * @brief  Configure the TIMx input channel 3.
1253   * @param  TIMx Timer Instance
1254   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1255   * @retval An ErrorStatus enumeration value:
1256   *          - SUCCESS: TIMx registers are de-initialized
1257   *          - ERROR: not applicable
1258   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1259 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1260 {
1261   /* Check the parameters */
1262   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1263   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1264   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1265   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1266   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1267 
1268   /* Disable the Channel 3: Reset the CC3E Bit */
1269   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1270 
1271   /* Select the Input and set the filter and the prescaler value */
1272   MODIFY_REG(TIMx->CCMR2,
1273              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1274              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1275 
1276   /* Select the Polarity and set the CC3E Bit */
1277   MODIFY_REG(TIMx->CCER,
1278              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1279              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1280 
1281   return SUCCESS;
1282 }
1283 
1284 /**
1285   * @brief  Configure the TIMx input channel 4.
1286   * @param  TIMx Timer Instance
1287   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1288   * @retval An ErrorStatus enumeration value:
1289   *          - SUCCESS: TIMx registers are de-initialized
1290   *          - ERROR: not applicable
1291   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1292 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1293 {
1294   /* Check the parameters */
1295   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1296   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1297   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1298   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1299   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1300 
1301   /* Disable the Channel 4: Reset the CC4E Bit */
1302   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1303 
1304   /* Select the Input and set the filter and the prescaler value */
1305   MODIFY_REG(TIMx->CCMR2,
1306              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1307              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1308 
1309   /* Select the Polarity and set the CC2E Bit */
1310   MODIFY_REG(TIMx->CCER,
1311              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1312              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1313 
1314   return SUCCESS;
1315 }
1316 
1317 
1318 /**
1319   * @}
1320   */
1321 
1322 /**
1323   * @}
1324   */
1325 
1326 #endif /* TIM1 || TIM2 || TIM3 || TIM14 || TIM16 || TIM17 */
1327 
1328 /**
1329   * @}
1330   */
1331 
1332 #endif /* USE_FULL_LL_DRIVER */
1333 
1334