1 /**
2   ******************************************************************************
3   * @file    stm32c0xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2022 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156     (+) Break2Callback                    : TIM Break2 Callback.
157 
158   [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162 
163   [..]
164   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165   functionalities in the Init / DeInit only when these callbacks are null
166   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168 
169   [..]
170     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171     Exception done MspInit / MspDeInit that can be registered / unregistered
172     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174   In that case first register the MspInit/MspDeInit user callbacks
175       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176 
177   [..]
178       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179       not defined, the callback registration feature is not available and all callbacks
180       are set to the corresponding weak functions.
181 
182   @endverbatim
183   ******************************************************************************
184   */
185 
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32c0xx_hal.h"
188 
189 /** @addtogroup STM32C0xx_HAL_Driver
190   * @{
191   */
192 
193 /** @defgroup TIM TIM
194   * @brief TIM HAL module driver
195   * @{
196   */
197 
198 #ifdef HAL_TIM_MODULE_ENABLED
199 
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /** @addtogroup TIM_Private_Constants
203   * @{
204   */
205 #define TIMx_OR1_OCREF_CLR 0x00000001U
206 /**
207   * @}
208   */
209 
210 /* Private macros ------------------------------------------------------------*/
211 /* Private variables ---------------------------------------------------------*/
212 /* Private function prototypes -----------------------------------------------*/
213 /** @addtogroup TIM_Private_Functions
214   * @{
215   */
216 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
217 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
219 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
220 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
221 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
222 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
223                               uint32_t TIM_ICFilter);
224 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
225 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
226                               uint32_t TIM_ICFilter);
227 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
228                               uint32_t TIM_ICFilter);
229 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
230 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
231 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
232 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
233 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
234 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
235 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
236                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
237 /**
238   * @}
239   */
240 /* Exported functions --------------------------------------------------------*/
241 
242 /** @defgroup TIM_Exported_Functions TIM Exported Functions
243   * @{
244   */
245 
246 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
247   *  @brief    Time Base functions
248   *
249 @verbatim
250   ==============================================================================
251               ##### Time Base functions #####
252   ==============================================================================
253   [..]
254     This section provides functions allowing to:
255     (+) Initialize and configure the TIM base.
256     (+) De-initialize the TIM base.
257     (+) Start the Time Base.
258     (+) Stop the Time Base.
259     (+) Start the Time Base and enable interrupt.
260     (+) Stop the Time Base and disable interrupt.
261     (+) Start the Time Base and enable DMA transfer.
262     (+) Stop the Time Base and disable DMA transfer.
263 
264 @endverbatim
265   * @{
266   */
267 /**
268   * @brief  Initializes the TIM Time base Unit according to the specified
269   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
270   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
271   *         requires a timer reset to avoid unexpected direction
272   *         due to DIR bit readonly in center aligned mode.
273   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
274   * @param  htim TIM Base handle
275   * @retval HAL status
276   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)277 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
278 {
279   /* Check the TIM handle allocation */
280   if (htim == NULL)
281   {
282     return HAL_ERROR;
283   }
284 
285   /* Check the parameters */
286   assert_param(IS_TIM_INSTANCE(htim->Instance));
287   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
288   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
289   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
290   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
291 
292   if (htim->State == HAL_TIM_STATE_RESET)
293   {
294     /* Allocate lock resource and initialize it */
295     htim->Lock = HAL_UNLOCKED;
296 
297 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
298     /* Reset interrupt callbacks to legacy weak callbacks */
299     TIM_ResetCallback(htim);
300 
301     if (htim->Base_MspInitCallback == NULL)
302     {
303       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
304     }
305     /* Init the low level hardware : GPIO, CLOCK, NVIC */
306     htim->Base_MspInitCallback(htim);
307 #else
308     /* Init the low level hardware : GPIO, CLOCK, NVIC */
309     HAL_TIM_Base_MspInit(htim);
310 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
311   }
312 
313   /* Set the TIM state */
314   htim->State = HAL_TIM_STATE_BUSY;
315 
316   /* Set the Time Base configuration */
317   TIM_Base_SetConfig(htim->Instance, &htim->Init);
318 
319   /* Initialize the DMA burst operation state */
320   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
321 
322   /* Initialize the TIM channels state */
323   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
324   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
325 
326   /* Initialize the TIM state*/
327   htim->State = HAL_TIM_STATE_READY;
328 
329   return HAL_OK;
330 }
331 
332 /**
333   * @brief  DeInitializes the TIM Base peripheral
334   * @param  htim TIM Base handle
335   * @retval HAL status
336   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)337 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
338 {
339   /* Check the parameters */
340   assert_param(IS_TIM_INSTANCE(htim->Instance));
341 
342   htim->State = HAL_TIM_STATE_BUSY;
343 
344   /* Disable the TIM Peripheral Clock */
345   __HAL_TIM_DISABLE(htim);
346 
347 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
348   if (htim->Base_MspDeInitCallback == NULL)
349   {
350     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
351   }
352   /* DeInit the low level hardware */
353   htim->Base_MspDeInitCallback(htim);
354 #else
355   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
356   HAL_TIM_Base_MspDeInit(htim);
357 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
358 
359   /* Change the DMA burst operation state */
360   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
361 
362   /* Change the TIM channels state */
363   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
364   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
365 
366   /* Change TIM state */
367   htim->State = HAL_TIM_STATE_RESET;
368 
369   /* Release Lock */
370   __HAL_UNLOCK(htim);
371 
372   return HAL_OK;
373 }
374 
375 /**
376   * @brief  Initializes the TIM Base MSP.
377   * @param  htim TIM Base handle
378   * @retval None
379   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)380 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
381 {
382   /* Prevent unused argument(s) compilation warning */
383   UNUSED(htim);
384 
385   /* NOTE : This function should not be modified, when the callback is needed,
386             the HAL_TIM_Base_MspInit could be implemented in the user file
387    */
388 }
389 
390 /**
391   * @brief  DeInitializes TIM Base MSP.
392   * @param  htim TIM Base handle
393   * @retval None
394   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)395 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
396 {
397   /* Prevent unused argument(s) compilation warning */
398   UNUSED(htim);
399 
400   /* NOTE : This function should not be modified, when the callback is needed,
401             the HAL_TIM_Base_MspDeInit could be implemented in the user file
402    */
403 }
404 
405 
406 /**
407   * @brief  Starts the TIM Base generation.
408   * @param  htim TIM Base handle
409   * @retval HAL status
410   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)411 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
412 {
413   uint32_t tmpsmcr;
414 
415   /* Check the parameters */
416   assert_param(IS_TIM_INSTANCE(htim->Instance));
417 
418   /* Check the TIM state */
419   if (htim->State != HAL_TIM_STATE_READY)
420   {
421     return HAL_ERROR;
422   }
423 
424   /* Set the TIM state */
425   htim->State = HAL_TIM_STATE_BUSY;
426 
427   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
428   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
429   {
430     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
431     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
432     {
433       __HAL_TIM_ENABLE(htim);
434     }
435   }
436   else
437   {
438     __HAL_TIM_ENABLE(htim);
439   }
440 
441   /* Return function status */
442   return HAL_OK;
443 }
444 
445 /**
446   * @brief  Stops the TIM Base generation.
447   * @param  htim TIM Base handle
448   * @retval HAL status
449   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)450 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
451 {
452   /* Check the parameters */
453   assert_param(IS_TIM_INSTANCE(htim->Instance));
454 
455   /* Disable the Peripheral */
456   __HAL_TIM_DISABLE(htim);
457 
458   /* Set the TIM state */
459   htim->State = HAL_TIM_STATE_READY;
460 
461   /* Return function status */
462   return HAL_OK;
463 }
464 
465 /**
466   * @brief  Starts the TIM Base generation in interrupt mode.
467   * @param  htim TIM Base handle
468   * @retval HAL status
469   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)470 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
471 {
472   uint32_t tmpsmcr;
473 
474   /* Check the parameters */
475   assert_param(IS_TIM_INSTANCE(htim->Instance));
476 
477   /* Check the TIM state */
478   if (htim->State != HAL_TIM_STATE_READY)
479   {
480     return HAL_ERROR;
481   }
482 
483   /* Set the TIM state */
484   htim->State = HAL_TIM_STATE_BUSY;
485 
486   /* Enable the TIM Update interrupt */
487   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
488 
489   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
490   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
491   {
492     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
493     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
494     {
495       __HAL_TIM_ENABLE(htim);
496     }
497   }
498   else
499   {
500     __HAL_TIM_ENABLE(htim);
501   }
502 
503   /* Return function status */
504   return HAL_OK;
505 }
506 
507 /**
508   * @brief  Stops the TIM Base generation in interrupt mode.
509   * @param  htim TIM Base handle
510   * @retval HAL status
511   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)512 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
513 {
514   /* Check the parameters */
515   assert_param(IS_TIM_INSTANCE(htim->Instance));
516 
517   /* Disable the TIM Update interrupt */
518   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
519 
520   /* Disable the Peripheral */
521   __HAL_TIM_DISABLE(htim);
522 
523   /* Set the TIM state */
524   htim->State = HAL_TIM_STATE_READY;
525 
526   /* Return function status */
527   return HAL_OK;
528 }
529 
530 /**
531   * @brief  Starts the TIM Base generation in DMA mode.
532   * @param  htim TIM Base handle
533   * @param  pData The source Buffer address.
534   * @param  Length The length of data to be transferred from memory to peripheral.
535   * @retval HAL status
536   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)537 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
538 {
539   uint32_t tmpsmcr;
540 
541   /* Check the parameters */
542   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
543 
544   /* Set the TIM state */
545   if (htim->State == HAL_TIM_STATE_BUSY)
546   {
547     return HAL_BUSY;
548   }
549   else if (htim->State == HAL_TIM_STATE_READY)
550   {
551     if ((pData == NULL) || (Length == 0U))
552     {
553       return HAL_ERROR;
554     }
555     else
556     {
557       htim->State = HAL_TIM_STATE_BUSY;
558     }
559   }
560   else
561   {
562     return HAL_ERROR;
563   }
564 
565   /* Set the DMA Period elapsed callbacks */
566   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
567   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
568 
569   /* Set the DMA error callback */
570   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
571 
572   /* Enable the DMA channel */
573   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
574                        Length) != HAL_OK)
575   {
576     /* Return error status */
577     return HAL_ERROR;
578   }
579 
580   /* Enable the TIM Update DMA request */
581   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
582 
583   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
584   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
585   {
586     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
587     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
588     {
589       __HAL_TIM_ENABLE(htim);
590     }
591   }
592   else
593   {
594     __HAL_TIM_ENABLE(htim);
595   }
596 
597   /* Return function status */
598   return HAL_OK;
599 }
600 
601 /**
602   * @brief  Stops the TIM Base generation in DMA mode.
603   * @param  htim TIM Base handle
604   * @retval HAL status
605   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)606 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
607 {
608   /* Check the parameters */
609   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
610 
611   /* Disable the TIM Update DMA request */
612   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
613 
614   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
615 
616   /* Disable the Peripheral */
617   __HAL_TIM_DISABLE(htim);
618 
619   /* Set the TIM state */
620   htim->State = HAL_TIM_STATE_READY;
621 
622   /* Return function status */
623   return HAL_OK;
624 }
625 
626 /**
627   * @}
628   */
629 
630 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
631   *  @brief    TIM Output Compare functions
632   *
633 @verbatim
634   ==============================================================================
635                   ##### TIM Output Compare functions #####
636   ==============================================================================
637   [..]
638     This section provides functions allowing to:
639     (+) Initialize and configure the TIM Output Compare.
640     (+) De-initialize the TIM Output Compare.
641     (+) Start the TIM Output Compare.
642     (+) Stop the TIM Output Compare.
643     (+) Start the TIM Output Compare and enable interrupt.
644     (+) Stop the TIM Output Compare and disable interrupt.
645     (+) Start the TIM Output Compare and enable DMA transfer.
646     (+) Stop the TIM Output Compare and disable DMA transfer.
647 
648 @endverbatim
649   * @{
650   */
651 /**
652   * @brief  Initializes the TIM Output Compare according to the specified
653   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
654   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
655   *         requires a timer reset to avoid unexpected direction
656   *         due to DIR bit readonly in center aligned mode.
657   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
658   * @param  htim TIM Output Compare handle
659   * @retval HAL status
660   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)661 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
662 {
663   /* Check the TIM handle allocation */
664   if (htim == NULL)
665   {
666     return HAL_ERROR;
667   }
668 
669   /* Check the parameters */
670   assert_param(IS_TIM_INSTANCE(htim->Instance));
671   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
672   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
673   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
674   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
675 
676   if (htim->State == HAL_TIM_STATE_RESET)
677   {
678     /* Allocate lock resource and initialize it */
679     htim->Lock = HAL_UNLOCKED;
680 
681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
682     /* Reset interrupt callbacks to legacy weak callbacks */
683     TIM_ResetCallback(htim);
684 
685     if (htim->OC_MspInitCallback == NULL)
686     {
687       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
688     }
689     /* Init the low level hardware : GPIO, CLOCK, NVIC */
690     htim->OC_MspInitCallback(htim);
691 #else
692     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
693     HAL_TIM_OC_MspInit(htim);
694 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
695   }
696 
697   /* Set the TIM state */
698   htim->State = HAL_TIM_STATE_BUSY;
699 
700   /* Init the base time for the Output Compare */
701   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
702 
703   /* Initialize the DMA burst operation state */
704   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
705 
706   /* Initialize the TIM channels state */
707   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
708   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
709 
710   /* Initialize the TIM state*/
711   htim->State = HAL_TIM_STATE_READY;
712 
713   return HAL_OK;
714 }
715 
716 /**
717   * @brief  DeInitializes the TIM peripheral
718   * @param  htim TIM Output Compare handle
719   * @retval HAL status
720   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)721 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
722 {
723   /* Check the parameters */
724   assert_param(IS_TIM_INSTANCE(htim->Instance));
725 
726   htim->State = HAL_TIM_STATE_BUSY;
727 
728   /* Disable the TIM Peripheral Clock */
729   __HAL_TIM_DISABLE(htim);
730 
731 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
732   if (htim->OC_MspDeInitCallback == NULL)
733   {
734     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
735   }
736   /* DeInit the low level hardware */
737   htim->OC_MspDeInitCallback(htim);
738 #else
739   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
740   HAL_TIM_OC_MspDeInit(htim);
741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
742 
743   /* Change the DMA burst operation state */
744   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
745 
746   /* Change the TIM channels state */
747   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
748   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
749 
750   /* Change TIM state */
751   htim->State = HAL_TIM_STATE_RESET;
752 
753   /* Release Lock */
754   __HAL_UNLOCK(htim);
755 
756   return HAL_OK;
757 }
758 
759 /**
760   * @brief  Initializes the TIM Output Compare MSP.
761   * @param  htim TIM Output Compare handle
762   * @retval None
763   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)764 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
765 {
766   /* Prevent unused argument(s) compilation warning */
767   UNUSED(htim);
768 
769   /* NOTE : This function should not be modified, when the callback is needed,
770             the HAL_TIM_OC_MspInit could be implemented in the user file
771    */
772 }
773 
774 /**
775   * @brief  DeInitializes TIM Output Compare MSP.
776   * @param  htim TIM Output Compare handle
777   * @retval None
778   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)779 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
780 {
781   /* Prevent unused argument(s) compilation warning */
782   UNUSED(htim);
783 
784   /* NOTE : This function should not be modified, when the callback is needed,
785             the HAL_TIM_OC_MspDeInit could be implemented in the user file
786    */
787 }
788 
789 /**
790   * @brief  Starts the TIM Output Compare signal generation.
791   * @param  htim TIM Output Compare handle
792   * @param  Channel TIM Channel to be enabled
793   *          This parameter can be one of the following values:
794   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
795   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
796   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
797   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
798   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
799   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
800   * @retval HAL status
801   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)802 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
803 {
804   uint32_t tmpsmcr;
805 
806   /* Check the parameters */
807   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
808 
809   /* Check the TIM channel state */
810   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
811   {
812     return HAL_ERROR;
813   }
814 
815   /* Set the TIM channel state */
816   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
817 
818   /* Enable the Output compare channel */
819   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
820 
821   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
822   {
823     /* Enable the main output */
824     __HAL_TIM_MOE_ENABLE(htim);
825   }
826 
827   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
828   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
829   {
830     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
831     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
832     {
833       __HAL_TIM_ENABLE(htim);
834     }
835   }
836   else
837   {
838     __HAL_TIM_ENABLE(htim);
839   }
840 
841   /* Return function status */
842   return HAL_OK;
843 }
844 
845 /**
846   * @brief  Stops the TIM Output Compare signal generation.
847   * @param  htim TIM Output Compare handle
848   * @param  Channel TIM Channel to be disabled
849   *          This parameter can be one of the following values:
850   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
851   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
852   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
853   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
854   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
855   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
856   * @retval HAL status
857   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)858 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
859 {
860   /* Check the parameters */
861   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
862 
863   /* Disable the Output compare channel */
864   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
865 
866   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
867   {
868     /* Disable the Main Output */
869     __HAL_TIM_MOE_DISABLE(htim);
870   }
871 
872   /* Disable the Peripheral */
873   __HAL_TIM_DISABLE(htim);
874 
875   /* Set the TIM channel state */
876   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
877 
878   /* Return function status */
879   return HAL_OK;
880 }
881 
882 /**
883   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
884   * @param  htim TIM Output Compare handle
885   * @param  Channel TIM Channel to be enabled
886   *          This parameter can be one of the following values:
887   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
888   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
889   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
890   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
891   * @retval HAL status
892   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)893 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
894 {
895   HAL_StatusTypeDef status = HAL_OK;
896   uint32_t tmpsmcr;
897 
898   /* Check the parameters */
899   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
900 
901   /* Check the TIM channel state */
902   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
903   {
904     return HAL_ERROR;
905   }
906 
907   /* Set the TIM channel state */
908   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
909 
910   switch (Channel)
911   {
912     case TIM_CHANNEL_1:
913     {
914       /* Enable the TIM Capture/Compare 1 interrupt */
915       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
916       break;
917     }
918 
919     case TIM_CHANNEL_2:
920     {
921       /* Enable the TIM Capture/Compare 2 interrupt */
922       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
923       break;
924     }
925 
926     case TIM_CHANNEL_3:
927     {
928       /* Enable the TIM Capture/Compare 3 interrupt */
929       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
930       break;
931     }
932 
933     case TIM_CHANNEL_4:
934     {
935       /* Enable the TIM Capture/Compare 4 interrupt */
936       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
937       break;
938     }
939 
940     default:
941       status = HAL_ERROR;
942       break;
943   }
944 
945   if (status == HAL_OK)
946   {
947     /* Enable the Output compare channel */
948     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
949 
950     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
951     {
952       /* Enable the main output */
953       __HAL_TIM_MOE_ENABLE(htim);
954     }
955 
956     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
957     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
958     {
959       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
960       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
961       {
962         __HAL_TIM_ENABLE(htim);
963       }
964     }
965     else
966     {
967       __HAL_TIM_ENABLE(htim);
968     }
969   }
970 
971   /* Return function status */
972   return status;
973 }
974 
975 /**
976   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
977   * @param  htim TIM Output Compare handle
978   * @param  Channel TIM Channel to be disabled
979   *          This parameter can be one of the following values:
980   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
981   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
982   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
983   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
984   * @retval HAL status
985   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)986 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
987 {
988   HAL_StatusTypeDef status = HAL_OK;
989 
990   /* Check the parameters */
991   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
992 
993   switch (Channel)
994   {
995     case TIM_CHANNEL_1:
996     {
997       /* Disable the TIM Capture/Compare 1 interrupt */
998       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
999       break;
1000     }
1001 
1002     case TIM_CHANNEL_2:
1003     {
1004       /* Disable the TIM Capture/Compare 2 interrupt */
1005       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1006       break;
1007     }
1008 
1009     case TIM_CHANNEL_3:
1010     {
1011       /* Disable the TIM Capture/Compare 3 interrupt */
1012       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1013       break;
1014     }
1015 
1016     case TIM_CHANNEL_4:
1017     {
1018       /* Disable the TIM Capture/Compare 4 interrupt */
1019       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1020       break;
1021     }
1022 
1023     default:
1024       status = HAL_ERROR;
1025       break;
1026   }
1027 
1028   if (status == HAL_OK)
1029   {
1030     /* Disable the Output compare channel */
1031     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1032 
1033     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1034     {
1035       /* Disable the Main Output */
1036       __HAL_TIM_MOE_DISABLE(htim);
1037     }
1038 
1039     /* Disable the Peripheral */
1040     __HAL_TIM_DISABLE(htim);
1041 
1042     /* Set the TIM channel state */
1043     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1044   }
1045 
1046   /* Return function status */
1047   return status;
1048 }
1049 
1050 /**
1051   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1052   * @param  htim TIM Output Compare handle
1053   * @param  Channel TIM Channel to be enabled
1054   *          This parameter can be one of the following values:
1055   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1056   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1057   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1058   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1059   * @param  pData The source Buffer address.
1060   * @param  Length The length of data to be transferred from memory to TIM peripheral
1061   * @retval HAL status
1062   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1063 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1064                                        uint16_t Length)
1065 {
1066   HAL_StatusTypeDef status = HAL_OK;
1067   uint32_t tmpsmcr;
1068 
1069   /* Check the parameters */
1070   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1071 
1072   /* Set the TIM channel state */
1073   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1074   {
1075     return HAL_BUSY;
1076   }
1077   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1078   {
1079     if ((pData == NULL) || (Length == 0U))
1080     {
1081       return HAL_ERROR;
1082     }
1083     else
1084     {
1085       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1086     }
1087   }
1088   else
1089   {
1090     return HAL_ERROR;
1091   }
1092 
1093   switch (Channel)
1094   {
1095     case TIM_CHANNEL_1:
1096     {
1097       /* Set the DMA compare callbacks */
1098       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1099       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1100 
1101       /* Set the DMA error callback */
1102       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1103 
1104       /* Enable the DMA channel */
1105       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1106                            Length) != HAL_OK)
1107       {
1108         /* Return error status */
1109         return HAL_ERROR;
1110       }
1111 
1112       /* Enable the TIM Capture/Compare 1 DMA request */
1113       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1114       break;
1115     }
1116 
1117     case TIM_CHANNEL_2:
1118     {
1119       /* Set the DMA compare callbacks */
1120       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1121       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1122 
1123       /* Set the DMA error callback */
1124       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1125 
1126       /* Enable the DMA channel */
1127       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1128                            Length) != HAL_OK)
1129       {
1130         /* Return error status */
1131         return HAL_ERROR;
1132       }
1133 
1134       /* Enable the TIM Capture/Compare 2 DMA request */
1135       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1136       break;
1137     }
1138 
1139     case TIM_CHANNEL_3:
1140     {
1141       /* Set the DMA compare callbacks */
1142       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1143       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1144 
1145       /* Set the DMA error callback */
1146       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1147 
1148       /* Enable the DMA channel */
1149       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1150                            Length) != HAL_OK)
1151       {
1152         /* Return error status */
1153         return HAL_ERROR;
1154       }
1155       /* Enable the TIM Capture/Compare 3 DMA request */
1156       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1157       break;
1158     }
1159 
1160     case TIM_CHANNEL_4:
1161     {
1162       /* Set the DMA compare callbacks */
1163       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1164       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1165 
1166       /* Set the DMA error callback */
1167       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1168 
1169       /* Enable the DMA channel */
1170       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1171                            Length) != HAL_OK)
1172       {
1173         /* Return error status */
1174         return HAL_ERROR;
1175       }
1176       /* Enable the TIM Capture/Compare 4 DMA request */
1177       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1178       break;
1179     }
1180 
1181     default:
1182       status = HAL_ERROR;
1183       break;
1184   }
1185 
1186   if (status == HAL_OK)
1187   {
1188     /* Enable the Output compare channel */
1189     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1190 
1191     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1192     {
1193       /* Enable the main output */
1194       __HAL_TIM_MOE_ENABLE(htim);
1195     }
1196 
1197     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1198     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1199     {
1200       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1201       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1202       {
1203         __HAL_TIM_ENABLE(htim);
1204       }
1205     }
1206     else
1207     {
1208       __HAL_TIM_ENABLE(htim);
1209     }
1210   }
1211 
1212   /* Return function status */
1213   return status;
1214 }
1215 
1216 /**
1217   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1218   * @param  htim TIM Output Compare handle
1219   * @param  Channel TIM Channel to be disabled
1220   *          This parameter can be one of the following values:
1221   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1222   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1223   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1224   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1225   * @retval HAL status
1226   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1227 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1228 {
1229   HAL_StatusTypeDef status = HAL_OK;
1230 
1231   /* Check the parameters */
1232   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1233 
1234   switch (Channel)
1235   {
1236     case TIM_CHANNEL_1:
1237     {
1238       /* Disable the TIM Capture/Compare 1 DMA request */
1239       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1240       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1241       break;
1242     }
1243 
1244     case TIM_CHANNEL_2:
1245     {
1246       /* Disable the TIM Capture/Compare 2 DMA request */
1247       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1248       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1249       break;
1250     }
1251 
1252     case TIM_CHANNEL_3:
1253     {
1254       /* Disable the TIM Capture/Compare 3 DMA request */
1255       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1256       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1257       break;
1258     }
1259 
1260     case TIM_CHANNEL_4:
1261     {
1262       /* Disable the TIM Capture/Compare 4 interrupt */
1263       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1264       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1265       break;
1266     }
1267 
1268     default:
1269       status = HAL_ERROR;
1270       break;
1271   }
1272 
1273   if (status == HAL_OK)
1274   {
1275     /* Disable the Output compare channel */
1276     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1277 
1278     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1279     {
1280       /* Disable the Main Output */
1281       __HAL_TIM_MOE_DISABLE(htim);
1282     }
1283 
1284     /* Disable the Peripheral */
1285     __HAL_TIM_DISABLE(htim);
1286 
1287     /* Set the TIM channel state */
1288     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1289   }
1290 
1291   /* Return function status */
1292   return status;
1293 }
1294 
1295 /**
1296   * @}
1297   */
1298 
1299 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1300   *  @brief    TIM PWM functions
1301   *
1302 @verbatim
1303   ==============================================================================
1304                           ##### TIM PWM functions #####
1305   ==============================================================================
1306   [..]
1307     This section provides functions allowing to:
1308     (+) Initialize and configure the TIM PWM.
1309     (+) De-initialize the TIM PWM.
1310     (+) Start the TIM PWM.
1311     (+) Stop the TIM PWM.
1312     (+) Start the TIM PWM and enable interrupt.
1313     (+) Stop the TIM PWM and disable interrupt.
1314     (+) Start the TIM PWM and enable DMA transfer.
1315     (+) Stop the TIM PWM and disable DMA transfer.
1316 
1317 @endverbatim
1318   * @{
1319   */
1320 /**
1321   * @brief  Initializes the TIM PWM Time Base according to the specified
1322   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1323   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1324   *         requires a timer reset to avoid unexpected direction
1325   *         due to DIR bit readonly in center aligned mode.
1326   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1327   * @param  htim TIM PWM handle
1328   * @retval HAL status
1329   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1330 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1331 {
1332   /* Check the TIM handle allocation */
1333   if (htim == NULL)
1334   {
1335     return HAL_ERROR;
1336   }
1337 
1338   /* Check the parameters */
1339   assert_param(IS_TIM_INSTANCE(htim->Instance));
1340   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1341   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1342   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1343   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1344 
1345   if (htim->State == HAL_TIM_STATE_RESET)
1346   {
1347     /* Allocate lock resource and initialize it */
1348     htim->Lock = HAL_UNLOCKED;
1349 
1350 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1351     /* Reset interrupt callbacks to legacy weak callbacks */
1352     TIM_ResetCallback(htim);
1353 
1354     if (htim->PWM_MspInitCallback == NULL)
1355     {
1356       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1357     }
1358     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1359     htim->PWM_MspInitCallback(htim);
1360 #else
1361     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1362     HAL_TIM_PWM_MspInit(htim);
1363 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1364   }
1365 
1366   /* Set the TIM state */
1367   htim->State = HAL_TIM_STATE_BUSY;
1368 
1369   /* Init the base time for the PWM */
1370   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1371 
1372   /* Initialize the DMA burst operation state */
1373   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1374 
1375   /* Initialize the TIM channels state */
1376   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1377   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1378 
1379   /* Initialize the TIM state*/
1380   htim->State = HAL_TIM_STATE_READY;
1381 
1382   return HAL_OK;
1383 }
1384 
1385 /**
1386   * @brief  DeInitializes the TIM peripheral
1387   * @param  htim TIM PWM handle
1388   * @retval HAL status
1389   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1390 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1391 {
1392   /* Check the parameters */
1393   assert_param(IS_TIM_INSTANCE(htim->Instance));
1394 
1395   htim->State = HAL_TIM_STATE_BUSY;
1396 
1397   /* Disable the TIM Peripheral Clock */
1398   __HAL_TIM_DISABLE(htim);
1399 
1400 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1401   if (htim->PWM_MspDeInitCallback == NULL)
1402   {
1403     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1404   }
1405   /* DeInit the low level hardware */
1406   htim->PWM_MspDeInitCallback(htim);
1407 #else
1408   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1409   HAL_TIM_PWM_MspDeInit(htim);
1410 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1411 
1412   /* Change the DMA burst operation state */
1413   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1414 
1415   /* Change the TIM channels state */
1416   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1417   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1418 
1419   /* Change TIM state */
1420   htim->State = HAL_TIM_STATE_RESET;
1421 
1422   /* Release Lock */
1423   __HAL_UNLOCK(htim);
1424 
1425   return HAL_OK;
1426 }
1427 
1428 /**
1429   * @brief  Initializes the TIM PWM MSP.
1430   * @param  htim TIM PWM handle
1431   * @retval None
1432   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1434 {
1435   /* Prevent unused argument(s) compilation warning */
1436   UNUSED(htim);
1437 
1438   /* NOTE : This function should not be modified, when the callback is needed,
1439             the HAL_TIM_PWM_MspInit could be implemented in the user file
1440    */
1441 }
1442 
1443 /**
1444   * @brief  DeInitializes TIM PWM MSP.
1445   * @param  htim TIM PWM handle
1446   * @retval None
1447   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1448 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1449 {
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(htim);
1452 
1453   /* NOTE : This function should not be modified, when the callback is needed,
1454             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1455    */
1456 }
1457 
1458 /**
1459   * @brief  Starts the PWM signal generation.
1460   * @param  htim TIM handle
1461   * @param  Channel TIM Channels to be enabled
1462   *          This parameter can be one of the following values:
1463   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1464   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1465   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1466   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1467   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1468   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1469   * @retval HAL status
1470   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1471 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1472 {
1473   uint32_t tmpsmcr;
1474 
1475   /* Check the parameters */
1476   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1477 
1478   /* Check the TIM channel state */
1479   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1480   {
1481     return HAL_ERROR;
1482   }
1483 
1484   /* Set the TIM channel state */
1485   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1486 
1487   /* Enable the Capture compare channel */
1488   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1489 
1490   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1491   {
1492     /* Enable the main output */
1493     __HAL_TIM_MOE_ENABLE(htim);
1494   }
1495 
1496   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1497   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1498   {
1499     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1500     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1501     {
1502       __HAL_TIM_ENABLE(htim);
1503     }
1504   }
1505   else
1506   {
1507     __HAL_TIM_ENABLE(htim);
1508   }
1509 
1510   /* Return function status */
1511   return HAL_OK;
1512 }
1513 
1514 /**
1515   * @brief  Stops the PWM signal generation.
1516   * @param  htim TIM PWM handle
1517   * @param  Channel TIM Channels to be disabled
1518   *          This parameter can be one of the following values:
1519   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1520   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1521   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1522   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1523   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1524   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1525   * @retval HAL status
1526   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529   /* Check the parameters */
1530   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531 
1532   /* Disable the Capture compare channel */
1533   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534 
1535   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536   {
1537     /* Disable the Main Output */
1538     __HAL_TIM_MOE_DISABLE(htim);
1539   }
1540 
1541   /* Disable the Peripheral */
1542   __HAL_TIM_DISABLE(htim);
1543 
1544   /* Set the TIM channel state */
1545   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546 
1547   /* Return function status */
1548   return HAL_OK;
1549 }
1550 
1551 /**
1552   * @brief  Starts the PWM signal generation in interrupt mode.
1553   * @param  htim TIM PWM handle
1554   * @param  Channel TIM Channel to be enabled
1555   *          This parameter can be one of the following values:
1556   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560   * @retval HAL status
1561   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564   HAL_StatusTypeDef status = HAL_OK;
1565   uint32_t tmpsmcr;
1566 
1567   /* Check the parameters */
1568   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1569 
1570   /* Check the TIM channel state */
1571   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572   {
1573     return HAL_ERROR;
1574   }
1575 
1576   /* Set the TIM channel state */
1577   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578 
1579   switch (Channel)
1580   {
1581     case TIM_CHANNEL_1:
1582     {
1583       /* Enable the TIM Capture/Compare 1 interrupt */
1584       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585       break;
1586     }
1587 
1588     case TIM_CHANNEL_2:
1589     {
1590       /* Enable the TIM Capture/Compare 2 interrupt */
1591       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592       break;
1593     }
1594 
1595     case TIM_CHANNEL_3:
1596     {
1597       /* Enable the TIM Capture/Compare 3 interrupt */
1598       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599       break;
1600     }
1601 
1602     case TIM_CHANNEL_4:
1603     {
1604       /* Enable the TIM Capture/Compare 4 interrupt */
1605       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606       break;
1607     }
1608 
1609     default:
1610       status = HAL_ERROR;
1611       break;
1612   }
1613 
1614   if (status == HAL_OK)
1615   {
1616     /* Enable the Capture compare channel */
1617     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618 
1619     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620     {
1621       /* Enable the main output */
1622       __HAL_TIM_MOE_ENABLE(htim);
1623     }
1624 
1625     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627     {
1628       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630       {
1631         __HAL_TIM_ENABLE(htim);
1632       }
1633     }
1634     else
1635     {
1636       __HAL_TIM_ENABLE(htim);
1637     }
1638   }
1639 
1640   /* Return function status */
1641   return status;
1642 }
1643 
1644 /**
1645   * @brief  Stops the PWM signal generation in interrupt mode.
1646   * @param  htim TIM PWM handle
1647   * @param  Channel TIM Channels to be disabled
1648   *          This parameter can be one of the following values:
1649   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653   * @retval HAL status
1654   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657   HAL_StatusTypeDef status = HAL_OK;
1658 
1659   /* Check the parameters */
1660   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1661 
1662   switch (Channel)
1663   {
1664     case TIM_CHANNEL_1:
1665     {
1666       /* Disable the TIM Capture/Compare 1 interrupt */
1667       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668       break;
1669     }
1670 
1671     case TIM_CHANNEL_2:
1672     {
1673       /* Disable the TIM Capture/Compare 2 interrupt */
1674       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675       break;
1676     }
1677 
1678     case TIM_CHANNEL_3:
1679     {
1680       /* Disable the TIM Capture/Compare 3 interrupt */
1681       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682       break;
1683     }
1684 
1685     case TIM_CHANNEL_4:
1686     {
1687       /* Disable the TIM Capture/Compare 4 interrupt */
1688       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689       break;
1690     }
1691 
1692     default:
1693       status = HAL_ERROR;
1694       break;
1695   }
1696 
1697   if (status == HAL_OK)
1698   {
1699     /* Disable the Capture compare channel */
1700     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701 
1702     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703     {
1704       /* Disable the Main Output */
1705       __HAL_TIM_MOE_DISABLE(htim);
1706     }
1707 
1708     /* Disable the Peripheral */
1709     __HAL_TIM_DISABLE(htim);
1710 
1711     /* Set the TIM channel state */
1712     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713   }
1714 
1715   /* Return function status */
1716   return status;
1717 }
1718 
1719 /**
1720   * @brief  Starts the TIM PWM signal generation in DMA mode.
1721   * @param  htim TIM PWM handle
1722   * @param  Channel TIM Channels to be enabled
1723   *          This parameter can be one of the following values:
1724   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728   * @param  pData The source Buffer address.
1729   * @param  Length The length of data to be transferred from memory to TIM peripheral
1730   * @retval HAL status
1731   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733                                         uint16_t Length)
1734 {
1735   HAL_StatusTypeDef status = HAL_OK;
1736   uint32_t tmpsmcr;
1737 
1738   /* Check the parameters */
1739   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1740 
1741   /* Set the TIM channel state */
1742   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743   {
1744     return HAL_BUSY;
1745   }
1746   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747   {
1748     if ((pData == NULL) || (Length == 0U))
1749     {
1750       return HAL_ERROR;
1751     }
1752     else
1753     {
1754       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755     }
1756   }
1757   else
1758   {
1759     return HAL_ERROR;
1760   }
1761 
1762   switch (Channel)
1763   {
1764     case TIM_CHANNEL_1:
1765     {
1766       /* Set the DMA compare callbacks */
1767       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769 
1770       /* Set the DMA error callback */
1771       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772 
1773       /* Enable the DMA channel */
1774       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775                            Length) != HAL_OK)
1776       {
1777         /* Return error status */
1778         return HAL_ERROR;
1779       }
1780 
1781       /* Enable the TIM Capture/Compare 1 DMA request */
1782       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783       break;
1784     }
1785 
1786     case TIM_CHANNEL_2:
1787     {
1788       /* Set the DMA compare callbacks */
1789       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791 
1792       /* Set the DMA error callback */
1793       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794 
1795       /* Enable the DMA channel */
1796       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797                            Length) != HAL_OK)
1798       {
1799         /* Return error status */
1800         return HAL_ERROR;
1801       }
1802       /* Enable the TIM Capture/Compare 2 DMA request */
1803       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804       break;
1805     }
1806 
1807     case TIM_CHANNEL_3:
1808     {
1809       /* Set the DMA compare callbacks */
1810       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812 
1813       /* Set the DMA error callback */
1814       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815 
1816       /* Enable the DMA channel */
1817       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818                            Length) != HAL_OK)
1819       {
1820         /* Return error status */
1821         return HAL_ERROR;
1822       }
1823       /* Enable the TIM Output Capture/Compare 3 request */
1824       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825       break;
1826     }
1827 
1828     case TIM_CHANNEL_4:
1829     {
1830       /* Set the DMA compare callbacks */
1831       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833 
1834       /* Set the DMA error callback */
1835       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836 
1837       /* Enable the DMA channel */
1838       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839                            Length) != HAL_OK)
1840       {
1841         /* Return error status */
1842         return HAL_ERROR;
1843       }
1844       /* Enable the TIM Capture/Compare 4 DMA request */
1845       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846       break;
1847     }
1848 
1849     default:
1850       status = HAL_ERROR;
1851       break;
1852   }
1853 
1854   if (status == HAL_OK)
1855   {
1856     /* Enable the Capture compare channel */
1857     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858 
1859     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860     {
1861       /* Enable the main output */
1862       __HAL_TIM_MOE_ENABLE(htim);
1863     }
1864 
1865     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867     {
1868       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870       {
1871         __HAL_TIM_ENABLE(htim);
1872       }
1873     }
1874     else
1875     {
1876       __HAL_TIM_ENABLE(htim);
1877     }
1878   }
1879 
1880   /* Return function status */
1881   return status;
1882 }
1883 
1884 /**
1885   * @brief  Stops the TIM PWM signal generation in DMA mode.
1886   * @param  htim TIM PWM handle
1887   * @param  Channel TIM Channels to be disabled
1888   *          This parameter can be one of the following values:
1889   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893   * @retval HAL status
1894   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897   HAL_StatusTypeDef status = HAL_OK;
1898 
1899   /* Check the parameters */
1900   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1901 
1902   switch (Channel)
1903   {
1904     case TIM_CHANNEL_1:
1905     {
1906       /* Disable the TIM Capture/Compare 1 DMA request */
1907       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909       break;
1910     }
1911 
1912     case TIM_CHANNEL_2:
1913     {
1914       /* Disable the TIM Capture/Compare 2 DMA request */
1915       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917       break;
1918     }
1919 
1920     case TIM_CHANNEL_3:
1921     {
1922       /* Disable the TIM Capture/Compare 3 DMA request */
1923       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925       break;
1926     }
1927 
1928     case TIM_CHANNEL_4:
1929     {
1930       /* Disable the TIM Capture/Compare 4 interrupt */
1931       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933       break;
1934     }
1935 
1936     default:
1937       status = HAL_ERROR;
1938       break;
1939   }
1940 
1941   if (status == HAL_OK)
1942   {
1943     /* Disable the Capture compare channel */
1944     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945 
1946     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947     {
1948       /* Disable the Main Output */
1949       __HAL_TIM_MOE_DISABLE(htim);
1950     }
1951 
1952     /* Disable the Peripheral */
1953     __HAL_TIM_DISABLE(htim);
1954 
1955     /* Set the TIM channel state */
1956     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957   }
1958 
1959   /* Return function status */
1960   return status;
1961 }
1962 
1963 /**
1964   * @}
1965   */
1966 
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968   *  @brief    TIM Input Capture functions
1969   *
1970 @verbatim
1971   ==============================================================================
1972               ##### TIM Input Capture functions #####
1973   ==============================================================================
1974  [..]
1975    This section provides functions allowing to:
1976    (+) Initialize and configure the TIM Input Capture.
1977    (+) De-initialize the TIM Input Capture.
1978    (+) Start the TIM Input Capture.
1979    (+) Stop the TIM Input Capture.
1980    (+) Start the TIM Input Capture and enable interrupt.
1981    (+) Stop the TIM Input Capture and disable interrupt.
1982    (+) Start the TIM Input Capture and enable DMA transfer.
1983    (+) Stop the TIM Input Capture and disable DMA transfer.
1984 
1985 @endverbatim
1986   * @{
1987   */
1988 /**
1989   * @brief  Initializes the TIM Input Capture Time base according to the specified
1990   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992   *         requires a timer reset to avoid unexpected direction
1993   *         due to DIR bit readonly in center aligned mode.
1994   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995   * @param  htim TIM Input Capture handle
1996   * @retval HAL status
1997   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000   /* Check the TIM handle allocation */
2001   if (htim == NULL)
2002   {
2003     return HAL_ERROR;
2004   }
2005 
2006   /* Check the parameters */
2007   assert_param(IS_TIM_INSTANCE(htim->Instance));
2008   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012 
2013   if (htim->State == HAL_TIM_STATE_RESET)
2014   {
2015     /* Allocate lock resource and initialize it */
2016     htim->Lock = HAL_UNLOCKED;
2017 
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019     /* Reset interrupt callbacks to legacy weak callbacks */
2020     TIM_ResetCallback(htim);
2021 
2022     if (htim->IC_MspInitCallback == NULL)
2023     {
2024       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025     }
2026     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027     htim->IC_MspInitCallback(htim);
2028 #else
2029     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030     HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032   }
2033 
2034   /* Set the TIM state */
2035   htim->State = HAL_TIM_STATE_BUSY;
2036 
2037   /* Init the base time for the input capture */
2038   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039 
2040   /* Initialize the DMA burst operation state */
2041   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042 
2043   /* Initialize the TIM channels state */
2044   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046 
2047   /* Initialize the TIM state*/
2048   htim->State = HAL_TIM_STATE_READY;
2049 
2050   return HAL_OK;
2051 }
2052 
2053 /**
2054   * @brief  DeInitializes the TIM peripheral
2055   * @param  htim TIM Input Capture handle
2056   * @retval HAL status
2057   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060   /* Check the parameters */
2061   assert_param(IS_TIM_INSTANCE(htim->Instance));
2062 
2063   htim->State = HAL_TIM_STATE_BUSY;
2064 
2065   /* Disable the TIM Peripheral Clock */
2066   __HAL_TIM_DISABLE(htim);
2067 
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069   if (htim->IC_MspDeInitCallback == NULL)
2070   {
2071     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072   }
2073   /* DeInit the low level hardware */
2074   htim->IC_MspDeInitCallback(htim);
2075 #else
2076   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077   HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079 
2080   /* Change the DMA burst operation state */
2081   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082 
2083   /* Change the TIM channels state */
2084   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086 
2087   /* Change TIM state */
2088   htim->State = HAL_TIM_STATE_RESET;
2089 
2090   /* Release Lock */
2091   __HAL_UNLOCK(htim);
2092 
2093   return HAL_OK;
2094 }
2095 
2096 /**
2097   * @brief  Initializes the TIM Input Capture MSP.
2098   * @param  htim TIM Input Capture handle
2099   * @retval None
2100   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103   /* Prevent unused argument(s) compilation warning */
2104   UNUSED(htim);
2105 
2106   /* NOTE : This function should not be modified, when the callback is needed,
2107             the HAL_TIM_IC_MspInit could be implemented in the user file
2108    */
2109 }
2110 
2111 /**
2112   * @brief  DeInitializes TIM Input Capture MSP.
2113   * @param  htim TIM handle
2114   * @retval None
2115   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118   /* Prevent unused argument(s) compilation warning */
2119   UNUSED(htim);
2120 
2121   /* NOTE : This function should not be modified, when the callback is needed,
2122             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123    */
2124 }
2125 
2126 /**
2127   * @brief  Starts the TIM Input Capture measurement.
2128   * @param  htim TIM Input Capture handle
2129   * @param  Channel TIM Channels to be enabled
2130   *          This parameter can be one of the following values:
2131   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135   * @retval HAL status
2136   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139   uint32_t tmpsmcr;
2140   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142 
2143   /* Check the parameters */
2144   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2145 
2146   /* Check the TIM channel state */
2147   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149   {
2150     return HAL_ERROR;
2151   }
2152 
2153   /* Set the TIM channel state */
2154   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156 
2157   /* Enable the Input Capture channel */
2158   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159 
2160   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162   {
2163     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165     {
2166       __HAL_TIM_ENABLE(htim);
2167     }
2168   }
2169   else
2170   {
2171     __HAL_TIM_ENABLE(htim);
2172   }
2173 
2174   /* Return function status */
2175   return HAL_OK;
2176 }
2177 
2178 /**
2179   * @brief  Stops the TIM Input Capture measurement.
2180   * @param  htim TIM Input Capture handle
2181   * @param  Channel TIM Channels to be disabled
2182   *          This parameter can be one of the following values:
2183   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187   * @retval HAL status
2188   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191   /* Check the parameters */
2192   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2193 
2194   /* Disable the Input Capture channel */
2195   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196 
2197   /* Disable the Peripheral */
2198   __HAL_TIM_DISABLE(htim);
2199 
2200   /* Set the TIM channel state */
2201   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203 
2204   /* Return function status */
2205   return HAL_OK;
2206 }
2207 
2208 /**
2209   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2210   * @param  htim TIM Input Capture handle
2211   * @param  Channel TIM Channels to be enabled
2212   *          This parameter can be one of the following values:
2213   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217   * @retval HAL status
2218   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221   HAL_StatusTypeDef status = HAL_OK;
2222   uint32_t tmpsmcr;
2223 
2224   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226 
2227   /* Check the parameters */
2228   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2229 
2230   /* Check the TIM channel state */
2231   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233   {
2234     return HAL_ERROR;
2235   }
2236 
2237   /* Set the TIM channel state */
2238   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240 
2241   switch (Channel)
2242   {
2243     case TIM_CHANNEL_1:
2244     {
2245       /* Enable the TIM Capture/Compare 1 interrupt */
2246       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247       break;
2248     }
2249 
2250     case TIM_CHANNEL_2:
2251     {
2252       /* Enable the TIM Capture/Compare 2 interrupt */
2253       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254       break;
2255     }
2256 
2257     case TIM_CHANNEL_3:
2258     {
2259       /* Enable the TIM Capture/Compare 3 interrupt */
2260       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261       break;
2262     }
2263 
2264     case TIM_CHANNEL_4:
2265     {
2266       /* Enable the TIM Capture/Compare 4 interrupt */
2267       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268       break;
2269     }
2270 
2271     default:
2272       status = HAL_ERROR;
2273       break;
2274   }
2275 
2276   if (status == HAL_OK)
2277   {
2278     /* Enable the Input Capture channel */
2279     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280 
2281     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283     {
2284       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286       {
2287         __HAL_TIM_ENABLE(htim);
2288       }
2289     }
2290     else
2291     {
2292       __HAL_TIM_ENABLE(htim);
2293     }
2294   }
2295 
2296   /* Return function status */
2297   return status;
2298 }
2299 
2300 /**
2301   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2302   * @param  htim TIM Input Capture handle
2303   * @param  Channel TIM Channels to be disabled
2304   *          This parameter can be one of the following values:
2305   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309   * @retval HAL status
2310   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313   HAL_StatusTypeDef status = HAL_OK;
2314 
2315   /* Check the parameters */
2316   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2317 
2318   switch (Channel)
2319   {
2320     case TIM_CHANNEL_1:
2321     {
2322       /* Disable the TIM Capture/Compare 1 interrupt */
2323       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324       break;
2325     }
2326 
2327     case TIM_CHANNEL_2:
2328     {
2329       /* Disable the TIM Capture/Compare 2 interrupt */
2330       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331       break;
2332     }
2333 
2334     case TIM_CHANNEL_3:
2335     {
2336       /* Disable the TIM Capture/Compare 3 interrupt */
2337       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338       break;
2339     }
2340 
2341     case TIM_CHANNEL_4:
2342     {
2343       /* Disable the TIM Capture/Compare 4 interrupt */
2344       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345       break;
2346     }
2347 
2348     default:
2349       status = HAL_ERROR;
2350       break;
2351   }
2352 
2353   if (status == HAL_OK)
2354   {
2355     /* Disable the Input Capture channel */
2356     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357 
2358     /* Disable the Peripheral */
2359     __HAL_TIM_DISABLE(htim);
2360 
2361     /* Set the TIM channel state */
2362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364   }
2365 
2366   /* Return function status */
2367   return status;
2368 }
2369 
2370 /**
2371   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2372   * @param  htim TIM Input Capture handle
2373   * @param  Channel TIM Channels to be enabled
2374   *          This parameter can be one of the following values:
2375   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379   * @param  pData The destination Buffer address.
2380   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2381   * @retval HAL status
2382   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385   HAL_StatusTypeDef status = HAL_OK;
2386   uint32_t tmpsmcr;
2387 
2388   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390 
2391   /* Check the parameters */
2392   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2393   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394 
2395   /* Set the TIM channel state */
2396   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398   {
2399     return HAL_BUSY;
2400   }
2401   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403   {
2404     if ((pData == NULL) || (Length == 0U))
2405     {
2406       return HAL_ERROR;
2407     }
2408     else
2409     {
2410       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412     }
2413   }
2414   else
2415   {
2416     return HAL_ERROR;
2417   }
2418 
2419   /* Enable the Input Capture channel */
2420   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421 
2422   switch (Channel)
2423   {
2424     case TIM_CHANNEL_1:
2425     {
2426       /* Set the DMA capture callbacks */
2427       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429 
2430       /* Set the DMA error callback */
2431       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432 
2433       /* Enable the DMA channel */
2434       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435                            Length) != HAL_OK)
2436       {
2437         /* Return error status */
2438         return HAL_ERROR;
2439       }
2440       /* Enable the TIM Capture/Compare 1 DMA request */
2441       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442       break;
2443     }
2444 
2445     case TIM_CHANNEL_2:
2446     {
2447       /* Set the DMA capture callbacks */
2448       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450 
2451       /* Set the DMA error callback */
2452       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453 
2454       /* Enable the DMA channel */
2455       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456                            Length) != HAL_OK)
2457       {
2458         /* Return error status */
2459         return HAL_ERROR;
2460       }
2461       /* Enable the TIM Capture/Compare 2  DMA request */
2462       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463       break;
2464     }
2465 
2466     case TIM_CHANNEL_3:
2467     {
2468       /* Set the DMA capture callbacks */
2469       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471 
2472       /* Set the DMA error callback */
2473       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474 
2475       /* Enable the DMA channel */
2476       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477                            Length) != HAL_OK)
2478       {
2479         /* Return error status */
2480         return HAL_ERROR;
2481       }
2482       /* Enable the TIM Capture/Compare 3  DMA request */
2483       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484       break;
2485     }
2486 
2487     case TIM_CHANNEL_4:
2488     {
2489       /* Set the DMA capture callbacks */
2490       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492 
2493       /* Set the DMA error callback */
2494       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495 
2496       /* Enable the DMA channel */
2497       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498                            Length) != HAL_OK)
2499       {
2500         /* Return error status */
2501         return HAL_ERROR;
2502       }
2503       /* Enable the TIM Capture/Compare 4  DMA request */
2504       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505       break;
2506     }
2507 
2508     default:
2509       status = HAL_ERROR;
2510       break;
2511   }
2512 
2513   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515   {
2516     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518     {
2519       __HAL_TIM_ENABLE(htim);
2520     }
2521   }
2522   else
2523   {
2524     __HAL_TIM_ENABLE(htim);
2525   }
2526 
2527   /* Return function status */
2528   return status;
2529 }
2530 
2531 /**
2532   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2533   * @param  htim TIM Input Capture handle
2534   * @param  Channel TIM Channels to be disabled
2535   *          This parameter can be one of the following values:
2536   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540   * @retval HAL status
2541   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544   HAL_StatusTypeDef status = HAL_OK;
2545 
2546   /* Check the parameters */
2547   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2548   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549 
2550   /* Disable the Input Capture channel */
2551   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552 
2553   switch (Channel)
2554   {
2555     case TIM_CHANNEL_1:
2556     {
2557       /* Disable the TIM Capture/Compare 1 DMA request */
2558       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560       break;
2561     }
2562 
2563     case TIM_CHANNEL_2:
2564     {
2565       /* Disable the TIM Capture/Compare 2 DMA request */
2566       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568       break;
2569     }
2570 
2571     case TIM_CHANNEL_3:
2572     {
2573       /* Disable the TIM Capture/Compare 3  DMA request */
2574       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576       break;
2577     }
2578 
2579     case TIM_CHANNEL_4:
2580     {
2581       /* Disable the TIM Capture/Compare 4  DMA request */
2582       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584       break;
2585     }
2586 
2587     default:
2588       status = HAL_ERROR;
2589       break;
2590   }
2591 
2592   if (status == HAL_OK)
2593   {
2594     /* Disable the Peripheral */
2595     __HAL_TIM_DISABLE(htim);
2596 
2597     /* Set the TIM channel state */
2598     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600   }
2601 
2602   /* Return function status */
2603   return status;
2604 }
2605 /**
2606   * @}
2607   */
2608 
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610   *  @brief    TIM One Pulse functions
2611   *
2612 @verbatim
2613   ==============================================================================
2614                         ##### TIM One Pulse functions #####
2615   ==============================================================================
2616   [..]
2617     This section provides functions allowing to:
2618     (+) Initialize and configure the TIM One Pulse.
2619     (+) De-initialize the TIM One Pulse.
2620     (+) Start the TIM One Pulse.
2621     (+) Stop the TIM One Pulse.
2622     (+) Start the TIM One Pulse and enable interrupt.
2623     (+) Stop the TIM One Pulse and disable interrupt.
2624     (+) Start the TIM One Pulse and enable DMA transfer.
2625     (+) Stop the TIM One Pulse and disable DMA transfer.
2626 
2627 @endverbatim
2628   * @{
2629   */
2630 /**
2631   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2632   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634   *         requires a timer reset to avoid unexpected direction
2635   *         due to DIR bit readonly in center aligned mode.
2636   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637   * @note   When the timer instance is initialized in One Pulse mode, timer
2638   *         channels 1 and channel 2 are reserved and cannot be used for other
2639   *         purpose.
2640   * @param  htim TIM One Pulse handle
2641   * @param  OnePulseMode Select the One pulse mode.
2642   *         This parameter can be one of the following values:
2643   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645   * @retval HAL status
2646   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649   /* Check the TIM handle allocation */
2650   if (htim == NULL)
2651   {
2652     return HAL_ERROR;
2653   }
2654 
2655   /* Check the parameters */
2656   assert_param(IS_TIM_INSTANCE(htim->Instance));
2657   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662 
2663   if (htim->State == HAL_TIM_STATE_RESET)
2664   {
2665     /* Allocate lock resource and initialize it */
2666     htim->Lock = HAL_UNLOCKED;
2667 
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669     /* Reset interrupt callbacks to legacy weak callbacks */
2670     TIM_ResetCallback(htim);
2671 
2672     if (htim->OnePulse_MspInitCallback == NULL)
2673     {
2674       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675     }
2676     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677     htim->OnePulse_MspInitCallback(htim);
2678 #else
2679     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680     HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682   }
2683 
2684   /* Set the TIM state */
2685   htim->State = HAL_TIM_STATE_BUSY;
2686 
2687   /* Configure the Time base in the One Pulse Mode */
2688   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689 
2690   /* Reset the OPM Bit */
2691   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692 
2693   /* Configure the OPM Mode */
2694   htim->Instance->CR1 |= OnePulseMode;
2695 
2696   /* Initialize the DMA burst operation state */
2697   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698 
2699   /* Initialize the TIM channels state */
2700   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704 
2705   /* Initialize the TIM state*/
2706   htim->State = HAL_TIM_STATE_READY;
2707 
2708   return HAL_OK;
2709 }
2710 
2711 /**
2712   * @brief  DeInitializes the TIM One Pulse
2713   * @param  htim TIM One Pulse handle
2714   * @retval HAL status
2715   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718   /* Check the parameters */
2719   assert_param(IS_TIM_INSTANCE(htim->Instance));
2720 
2721   htim->State = HAL_TIM_STATE_BUSY;
2722 
2723   /* Disable the TIM Peripheral Clock */
2724   __HAL_TIM_DISABLE(htim);
2725 
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727   if (htim->OnePulse_MspDeInitCallback == NULL)
2728   {
2729     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730   }
2731   /* DeInit the low level hardware */
2732   htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735   HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737 
2738   /* Change the DMA burst operation state */
2739   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740 
2741   /* Set the TIM channel state */
2742   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746 
2747   /* Change TIM state */
2748   htim->State = HAL_TIM_STATE_RESET;
2749 
2750   /* Release Lock */
2751   __HAL_UNLOCK(htim);
2752 
2753   return HAL_OK;
2754 }
2755 
2756 /**
2757   * @brief  Initializes the TIM One Pulse MSP.
2758   * @param  htim TIM One Pulse handle
2759   * @retval None
2760   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763   /* Prevent unused argument(s) compilation warning */
2764   UNUSED(htim);
2765 
2766   /* NOTE : This function should not be modified, when the callback is needed,
2767             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768    */
2769 }
2770 
2771 /**
2772   * @brief  DeInitializes TIM One Pulse MSP.
2773   * @param  htim TIM One Pulse handle
2774   * @retval None
2775   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778   /* Prevent unused argument(s) compilation warning */
2779   UNUSED(htim);
2780 
2781   /* NOTE : This function should not be modified, when the callback is needed,
2782             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783    */
2784 }
2785 
2786 /**
2787   * @brief  Starts the TIM One Pulse signal generation.
2788   * @note Though OutputChannel parameter is deprecated and ignored by the function
2789   *        it has been kept to avoid HAL_TIM API compatibility break.
2790   * @note The pulse output channel is determined when calling
2791   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2792   * @param  htim TIM One Pulse handle
2793   * @param  OutputChannel See note above
2794   * @retval HAL status
2795   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802 
2803   /* Prevent unused argument(s) compilation warning */
2804   UNUSED(OutputChannel);
2805 
2806   /* Check the TIM channels state */
2807   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811   {
2812     return HAL_ERROR;
2813   }
2814 
2815   /* Set the TIM channels state */
2816   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820 
2821   /* Enable the Capture compare and the Input Capture channels
2822     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826 
2827     No need to enable the counter, it's enabled automatically by hardware
2828     (the counter starts in response to a stimulus and generate a pulse */
2829 
2830   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832 
2833   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834   {
2835     /* Enable the main output */
2836     __HAL_TIM_MOE_ENABLE(htim);
2837   }
2838 
2839   /* Return function status */
2840   return HAL_OK;
2841 }
2842 
2843 /**
2844   * @brief  Stops the TIM One Pulse signal generation.
2845   * @note Though OutputChannel parameter is deprecated and ignored by the function
2846   *        it has been kept to avoid HAL_TIM API compatibility break.
2847   * @note The pulse output channel is determined when calling
2848   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2849   * @param  htim TIM One Pulse handle
2850   * @param  OutputChannel See note above
2851   * @retval HAL status
2852   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855   /* Prevent unused argument(s) compilation warning */
2856   UNUSED(OutputChannel);
2857 
2858   /* Disable the Capture compare and the Input Capture channels
2859   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863 
2864   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866 
2867   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868   {
2869     /* Disable the Main Output */
2870     __HAL_TIM_MOE_DISABLE(htim);
2871   }
2872 
2873   /* Disable the Peripheral */
2874   __HAL_TIM_DISABLE(htim);
2875 
2876   /* Set the TIM channels state */
2877   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881 
2882   /* Return function status */
2883   return HAL_OK;
2884 }
2885 
2886 /**
2887   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2888   * @note Though OutputChannel parameter is deprecated and ignored by the function
2889   *        it has been kept to avoid HAL_TIM API compatibility break.
2890   * @note The pulse output channel is determined when calling
2891   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2892   * @param  htim TIM One Pulse handle
2893   * @param  OutputChannel See note above
2894   * @retval HAL status
2895   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902 
2903   /* Prevent unused argument(s) compilation warning */
2904   UNUSED(OutputChannel);
2905 
2906   /* Check the TIM channels state */
2907   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911   {
2912     return HAL_ERROR;
2913   }
2914 
2915   /* Set the TIM channels state */
2916   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920 
2921   /* Enable the Capture compare and the Input Capture channels
2922     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926 
2927     No need to enable the counter, it's enabled automatically by hardware
2928     (the counter starts in response to a stimulus and generate a pulse */
2929 
2930   /* Enable the TIM Capture/Compare 1 interrupt */
2931   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932 
2933   /* Enable the TIM Capture/Compare 2 interrupt */
2934   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935 
2936   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938 
2939   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940   {
2941     /* Enable the main output */
2942     __HAL_TIM_MOE_ENABLE(htim);
2943   }
2944 
2945   /* Return function status */
2946   return HAL_OK;
2947 }
2948 
2949 /**
2950   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2951   * @note Though OutputChannel parameter is deprecated and ignored by the function
2952   *        it has been kept to avoid HAL_TIM API compatibility break.
2953   * @note The pulse output channel is determined when calling
2954   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2955   * @param  htim TIM One Pulse handle
2956   * @param  OutputChannel See note above
2957   * @retval HAL status
2958   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961   /* Prevent unused argument(s) compilation warning */
2962   UNUSED(OutputChannel);
2963 
2964   /* Disable the TIM Capture/Compare 1 interrupt */
2965   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966 
2967   /* Disable the TIM Capture/Compare 2 interrupt */
2968   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969 
2970   /* Disable the Capture compare and the Input Capture channels
2971   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977 
2978   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979   {
2980     /* Disable the Main Output */
2981     __HAL_TIM_MOE_DISABLE(htim);
2982   }
2983 
2984   /* Disable the Peripheral */
2985   __HAL_TIM_DISABLE(htim);
2986 
2987   /* Set the TIM channels state */
2988   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992 
2993   /* Return function status */
2994   return HAL_OK;
2995 }
2996 
2997 /**
2998   * @}
2999   */
3000 
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002   *  @brief    TIM Encoder functions
3003   *
3004 @verbatim
3005   ==============================================================================
3006                           ##### TIM Encoder functions #####
3007   ==============================================================================
3008   [..]
3009     This section provides functions allowing to:
3010     (+) Initialize and configure the TIM Encoder.
3011     (+) De-initialize the TIM Encoder.
3012     (+) Start the TIM Encoder.
3013     (+) Stop the TIM Encoder.
3014     (+) Start the TIM Encoder and enable interrupt.
3015     (+) Stop the TIM Encoder and disable interrupt.
3016     (+) Start the TIM Encoder and enable DMA transfer.
3017     (+) Stop the TIM Encoder and disable DMA transfer.
3018 
3019 @endverbatim
3020   * @{
3021   */
3022 /**
3023   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3024   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025   *         requires a timer reset to avoid unexpected direction
3026   *         due to DIR bit readonly in center aligned mode.
3027   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031   * @note   When the timer instance is initialized in Encoder mode, timer
3032   *         channels 1 and channel 2 are reserved and cannot be used for other
3033   *         purpose.
3034   * @param  htim TIM Encoder Interface handle
3035   * @param  sConfig TIM Encoder Interface configuration structure
3036   * @retval HAL status
3037   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040   uint32_t tmpsmcr;
3041   uint32_t tmpccmr1;
3042   uint32_t tmpccer;
3043 
3044   /* Check the TIM handle allocation */
3045   if (htim == NULL)
3046   {
3047     return HAL_ERROR;
3048   }
3049 
3050   /* Check the parameters */
3051   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065 
3066   if (htim->State == HAL_TIM_STATE_RESET)
3067   {
3068     /* Allocate lock resource and initialize it */
3069     htim->Lock = HAL_UNLOCKED;
3070 
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072     /* Reset interrupt callbacks to legacy weak callbacks */
3073     TIM_ResetCallback(htim);
3074 
3075     if (htim->Encoder_MspInitCallback == NULL)
3076     {
3077       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078     }
3079     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080     htim->Encoder_MspInitCallback(htim);
3081 #else
3082     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083     HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085   }
3086 
3087   /* Set the TIM state */
3088   htim->State = HAL_TIM_STATE_BUSY;
3089 
3090   /* Reset the SMS and ECE bits */
3091   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092 
3093   /* Configure the Time base in the Encoder Mode */
3094   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095 
3096   /* Get the TIMx SMCR register value */
3097   tmpsmcr = htim->Instance->SMCR;
3098 
3099   /* Get the TIMx CCMR1 register value */
3100   tmpccmr1 = htim->Instance->CCMR1;
3101 
3102   /* Get the TIMx CCER register value */
3103   tmpccer = htim->Instance->CCER;
3104 
3105   /* Set the encoder Mode */
3106   tmpsmcr |= sConfig->EncoderMode;
3107 
3108   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111 
3112   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117 
3118   /* Set the TI1 and the TI2 Polarities */
3119   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120   tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122 
3123   /* Write to TIMx SMCR */
3124   htim->Instance->SMCR = tmpsmcr;
3125 
3126   /* Write to TIMx CCMR1 */
3127   htim->Instance->CCMR1 = tmpccmr1;
3128 
3129   /* Write to TIMx CCER */
3130   htim->Instance->CCER = tmpccer;
3131 
3132   /* Initialize the DMA burst operation state */
3133   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134 
3135   /* Set the TIM channels state */
3136   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140 
3141   /* Initialize the TIM state*/
3142   htim->State = HAL_TIM_STATE_READY;
3143 
3144   return HAL_OK;
3145 }
3146 
3147 
3148 /**
3149   * @brief  DeInitializes the TIM Encoder interface
3150   * @param  htim TIM Encoder Interface handle
3151   * @retval HAL status
3152   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155   /* Check the parameters */
3156   assert_param(IS_TIM_INSTANCE(htim->Instance));
3157 
3158   htim->State = HAL_TIM_STATE_BUSY;
3159 
3160   /* Disable the TIM Peripheral Clock */
3161   __HAL_TIM_DISABLE(htim);
3162 
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164   if (htim->Encoder_MspDeInitCallback == NULL)
3165   {
3166     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167   }
3168   /* DeInit the low level hardware */
3169   htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172   HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174 
3175   /* Change the DMA burst operation state */
3176   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177 
3178   /* Set the TIM channels state */
3179   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183 
3184   /* Change TIM state */
3185   htim->State = HAL_TIM_STATE_RESET;
3186 
3187   /* Release Lock */
3188   __HAL_UNLOCK(htim);
3189 
3190   return HAL_OK;
3191 }
3192 
3193 /**
3194   * @brief  Initializes the TIM Encoder Interface MSP.
3195   * @param  htim TIM Encoder Interface handle
3196   * @retval None
3197   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200   /* Prevent unused argument(s) compilation warning */
3201   UNUSED(htim);
3202 
3203   /* NOTE : This function should not be modified, when the callback is needed,
3204             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205    */
3206 }
3207 
3208 /**
3209   * @brief  DeInitializes TIM Encoder Interface MSP.
3210   * @param  htim TIM Encoder Interface handle
3211   * @retval None
3212   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215   /* Prevent unused argument(s) compilation warning */
3216   UNUSED(htim);
3217 
3218   /* NOTE : This function should not be modified, when the callback is needed,
3219             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220    */
3221 }
3222 
3223 /**
3224   * @brief  Starts the TIM Encoder Interface.
3225   * @param  htim TIM Encoder Interface handle
3226   * @param  Channel TIM Channels to be enabled
3227   *          This parameter can be one of the following values:
3228   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231   * @retval HAL status
3232   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239 
3240   /* Check the parameters */
3241   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242 
3243   /* Set the TIM channel(s) state */
3244   if (Channel == TIM_CHANNEL_1)
3245   {
3246     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248     {
3249       return HAL_ERROR;
3250     }
3251     else
3252     {
3253       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255     }
3256   }
3257   else if (Channel == TIM_CHANNEL_2)
3258   {
3259     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261     {
3262       return HAL_ERROR;
3263     }
3264     else
3265     {
3266       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268     }
3269   }
3270   else
3271   {
3272     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276     {
3277       return HAL_ERROR;
3278     }
3279     else
3280     {
3281       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285     }
3286   }
3287 
3288   /* Enable the encoder interface channels */
3289   switch (Channel)
3290   {
3291     case TIM_CHANNEL_1:
3292     {
3293       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294       break;
3295     }
3296 
3297     case TIM_CHANNEL_2:
3298     {
3299       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300       break;
3301     }
3302 
3303     default :
3304     {
3305       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307       break;
3308     }
3309   }
3310   /* Enable the Peripheral */
3311   __HAL_TIM_ENABLE(htim);
3312 
3313   /* Return function status */
3314   return HAL_OK;
3315 }
3316 
3317 /**
3318   * @brief  Stops the TIM Encoder Interface.
3319   * @param  htim TIM Encoder Interface handle
3320   * @param  Channel TIM Channels to be disabled
3321   *          This parameter can be one of the following values:
3322   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325   * @retval HAL status
3326   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329   /* Check the parameters */
3330   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331 
3332   /* Disable the Input Capture channels 1 and 2
3333     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334   switch (Channel)
3335   {
3336     case TIM_CHANNEL_1:
3337     {
3338       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339       break;
3340     }
3341 
3342     case TIM_CHANNEL_2:
3343     {
3344       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345       break;
3346     }
3347 
3348     default :
3349     {
3350       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352       break;
3353     }
3354   }
3355 
3356   /* Disable the Peripheral */
3357   __HAL_TIM_DISABLE(htim);
3358 
3359   /* Set the TIM channel(s) state */
3360   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361   {
3362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364   }
3365   else
3366   {
3367     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371   }
3372 
3373   /* Return function status */
3374   return HAL_OK;
3375 }
3376 
3377 /**
3378   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3379   * @param  htim TIM Encoder Interface handle
3380   * @param  Channel TIM Channels to be enabled
3381   *          This parameter can be one of the following values:
3382   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385   * @retval HAL status
3386   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393 
3394   /* Check the parameters */
3395   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396 
3397   /* Set the TIM channel(s) state */
3398   if (Channel == TIM_CHANNEL_1)
3399   {
3400     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402     {
3403       return HAL_ERROR;
3404     }
3405     else
3406     {
3407       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409     }
3410   }
3411   else if (Channel == TIM_CHANNEL_2)
3412   {
3413     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415     {
3416       return HAL_ERROR;
3417     }
3418     else
3419     {
3420       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422     }
3423   }
3424   else
3425   {
3426     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430     {
3431       return HAL_ERROR;
3432     }
3433     else
3434     {
3435       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439     }
3440   }
3441 
3442   /* Enable the encoder interface channels */
3443   /* Enable the capture compare Interrupts 1 and/or 2 */
3444   switch (Channel)
3445   {
3446     case TIM_CHANNEL_1:
3447     {
3448       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450       break;
3451     }
3452 
3453     case TIM_CHANNEL_2:
3454     {
3455       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457       break;
3458     }
3459 
3460     default :
3461     {
3462       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466       break;
3467     }
3468   }
3469 
3470   /* Enable the Peripheral */
3471   __HAL_TIM_ENABLE(htim);
3472 
3473   /* Return function status */
3474   return HAL_OK;
3475 }
3476 
3477 /**
3478   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3479   * @param  htim TIM Encoder Interface handle
3480   * @param  Channel TIM Channels to be disabled
3481   *          This parameter can be one of the following values:
3482   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485   * @retval HAL status
3486   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489   /* Check the parameters */
3490   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491 
3492   /* Disable the Input Capture channels 1 and 2
3493     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494   if (Channel == TIM_CHANNEL_1)
3495   {
3496     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497 
3498     /* Disable the capture compare Interrupts 1 */
3499     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500   }
3501   else if (Channel == TIM_CHANNEL_2)
3502   {
3503     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504 
3505     /* Disable the capture compare Interrupts 2 */
3506     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507   }
3508   else
3509   {
3510     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512 
3513     /* Disable the capture compare Interrupts 1 and 2 */
3514     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516   }
3517 
3518   /* Disable the Peripheral */
3519   __HAL_TIM_DISABLE(htim);
3520 
3521   /* Set the TIM channel(s) state */
3522   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523   {
3524     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526   }
3527   else
3528   {
3529     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533   }
3534 
3535   /* Return function status */
3536   return HAL_OK;
3537 }
3538 
3539 /**
3540   * @brief  Starts the TIM Encoder Interface in DMA mode.
3541   * @param  htim TIM Encoder Interface handle
3542   * @param  Channel TIM Channels to be enabled
3543   *          This parameter can be one of the following values:
3544   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547   * @param  pData1 The destination Buffer address for IC1.
3548   * @param  pData2 The destination Buffer address for IC2.
3549   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3550   * @retval HAL status
3551   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553                                             uint32_t *pData2, uint16_t Length)
3554 {
3555   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559 
3560   /* Check the parameters */
3561   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562 
3563   /* Set the TIM channel(s) state */
3564   if (Channel == TIM_CHANNEL_1)
3565   {
3566     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568     {
3569       return HAL_BUSY;
3570     }
3571     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573     {
3574       if ((pData1 == NULL) || (Length == 0U))
3575       {
3576         return HAL_ERROR;
3577       }
3578       else
3579       {
3580         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582       }
3583     }
3584     else
3585     {
3586       return HAL_ERROR;
3587     }
3588   }
3589   else if (Channel == TIM_CHANNEL_2)
3590   {
3591     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593     {
3594       return HAL_BUSY;
3595     }
3596     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598     {
3599       if ((pData2 == NULL) || (Length == 0U))
3600       {
3601         return HAL_ERROR;
3602       }
3603       else
3604       {
3605         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607       }
3608     }
3609     else
3610     {
3611       return HAL_ERROR;
3612     }
3613   }
3614   else
3615   {
3616     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620     {
3621       return HAL_BUSY;
3622     }
3623     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627     {
3628       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629       {
3630         return HAL_ERROR;
3631       }
3632       else
3633       {
3634         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638       }
3639     }
3640     else
3641     {
3642       return HAL_ERROR;
3643     }
3644   }
3645 
3646   switch (Channel)
3647   {
3648     case TIM_CHANNEL_1:
3649     {
3650       /* Set the DMA capture callbacks */
3651       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653 
3654       /* Set the DMA error callback */
3655       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656 
3657       /* Enable the DMA channel */
3658       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659                            Length) != HAL_OK)
3660       {
3661         /* Return error status */
3662         return HAL_ERROR;
3663       }
3664       /* Enable the TIM Input Capture DMA request */
3665       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666 
3667       /* Enable the Capture compare channel */
3668       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669 
3670       /* Enable the Peripheral */
3671       __HAL_TIM_ENABLE(htim);
3672 
3673       break;
3674     }
3675 
3676     case TIM_CHANNEL_2:
3677     {
3678       /* Set the DMA capture callbacks */
3679       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681 
3682       /* Set the DMA error callback */
3683       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684       /* Enable the DMA channel */
3685       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686                            Length) != HAL_OK)
3687       {
3688         /* Return error status */
3689         return HAL_ERROR;
3690       }
3691       /* Enable the TIM Input Capture  DMA request */
3692       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693 
3694       /* Enable the Capture compare channel */
3695       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696 
3697       /* Enable the Peripheral */
3698       __HAL_TIM_ENABLE(htim);
3699 
3700       break;
3701     }
3702 
3703     default:
3704     {
3705       /* Set the DMA capture callbacks */
3706       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708 
3709       /* Set the DMA error callback */
3710       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711 
3712       /* Enable the DMA channel */
3713       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714                            Length) != HAL_OK)
3715       {
3716         /* Return error status */
3717         return HAL_ERROR;
3718       }
3719 
3720       /* Set the DMA capture callbacks */
3721       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723 
3724       /* Set the DMA error callback */
3725       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726 
3727       /* Enable the DMA channel */
3728       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729                            Length) != HAL_OK)
3730       {
3731         /* Return error status */
3732         return HAL_ERROR;
3733       }
3734 
3735       /* Enable the TIM Input Capture  DMA request */
3736       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737       /* Enable the TIM Input Capture  DMA request */
3738       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739 
3740       /* Enable the Capture compare channel */
3741       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743 
3744       /* Enable the Peripheral */
3745       __HAL_TIM_ENABLE(htim);
3746 
3747       break;
3748     }
3749   }
3750 
3751   /* Return function status */
3752   return HAL_OK;
3753 }
3754 
3755 /**
3756   * @brief  Stops the TIM Encoder Interface in DMA mode.
3757   * @param  htim TIM Encoder Interface handle
3758   * @param  Channel TIM Channels to be enabled
3759   *          This parameter can be one of the following values:
3760   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763   * @retval HAL status
3764   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767   /* Check the parameters */
3768   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769 
3770   /* Disable the Input Capture channels 1 and 2
3771     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772   if (Channel == TIM_CHANNEL_1)
3773   {
3774     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775 
3776     /* Disable the capture compare DMA Request 1 */
3777     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779   }
3780   else if (Channel == TIM_CHANNEL_2)
3781   {
3782     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783 
3784     /* Disable the capture compare DMA Request 2 */
3785     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787   }
3788   else
3789   {
3790     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792 
3793     /* Disable the capture compare DMA Request 1 and 2 */
3794     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798   }
3799 
3800   /* Disable the Peripheral */
3801   __HAL_TIM_DISABLE(htim);
3802 
3803   /* Set the TIM channel(s) state */
3804   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805   {
3806     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808   }
3809   else
3810   {
3811     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815   }
3816 
3817   /* Return function status */
3818   return HAL_OK;
3819 }
3820 
3821 /**
3822   * @}
3823   */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825   *  @brief    TIM IRQ handler management
3826   *
3827 @verbatim
3828   ==============================================================================
3829                         ##### IRQ handler management #####
3830   ==============================================================================
3831   [..]
3832     This section provides Timer IRQ handler function.
3833 
3834 @endverbatim
3835   * @{
3836   */
3837 /**
3838   * @brief  This function handles TIM interrupts requests.
3839   * @param  htim TIM  handle
3840   * @retval None
3841   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844   uint32_t itsource = htim->Instance->DIER;
3845   uint32_t itflag   = htim->Instance->SR;
3846 
3847   /* Capture compare 1 event */
3848   if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
3849   {
3850     if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
3851     {
3852       {
3853         __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
3854         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3855 
3856         /* Input capture event */
3857         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3858         {
3859 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3860           htim->IC_CaptureCallback(htim);
3861 #else
3862           HAL_TIM_IC_CaptureCallback(htim);
3863 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3864         }
3865         /* Output compare event */
3866         else
3867         {
3868 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3869           htim->OC_DelayElapsedCallback(htim);
3870           htim->PWM_PulseFinishedCallback(htim);
3871 #else
3872           HAL_TIM_OC_DelayElapsedCallback(htim);
3873           HAL_TIM_PWM_PulseFinishedCallback(htim);
3874 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3875         }
3876         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3877       }
3878     }
3879   }
3880   /* Capture compare 2 event */
3881   if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
3882   {
3883     if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
3884     {
3885       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
3886       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3887       /* Input capture event */
3888       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3889       {
3890 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3891         htim->IC_CaptureCallback(htim);
3892 #else
3893         HAL_TIM_IC_CaptureCallback(htim);
3894 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3895       }
3896       /* Output compare event */
3897       else
3898       {
3899 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3900         htim->OC_DelayElapsedCallback(htim);
3901         htim->PWM_PulseFinishedCallback(htim);
3902 #else
3903         HAL_TIM_OC_DelayElapsedCallback(htim);
3904         HAL_TIM_PWM_PulseFinishedCallback(htim);
3905 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3906       }
3907       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3908     }
3909   }
3910   /* Capture compare 3 event */
3911   if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
3912   {
3913     if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
3914     {
3915       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
3916       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3917       /* Input capture event */
3918       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3919       {
3920 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3921         htim->IC_CaptureCallback(htim);
3922 #else
3923         HAL_TIM_IC_CaptureCallback(htim);
3924 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3925       }
3926       /* Output compare event */
3927       else
3928       {
3929 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3930         htim->OC_DelayElapsedCallback(htim);
3931         htim->PWM_PulseFinishedCallback(htim);
3932 #else
3933         HAL_TIM_OC_DelayElapsedCallback(htim);
3934         HAL_TIM_PWM_PulseFinishedCallback(htim);
3935 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3936       }
3937       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3938     }
3939   }
3940   /* Capture compare 4 event */
3941   if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
3942   {
3943     if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
3944     {
3945       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
3946       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3947       /* Input capture event */
3948       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3949       {
3950 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3951         htim->IC_CaptureCallback(htim);
3952 #else
3953         HAL_TIM_IC_CaptureCallback(htim);
3954 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3955       }
3956       /* Output compare event */
3957       else
3958       {
3959 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3960         htim->OC_DelayElapsedCallback(htim);
3961         htim->PWM_PulseFinishedCallback(htim);
3962 #else
3963         HAL_TIM_OC_DelayElapsedCallback(htim);
3964         HAL_TIM_PWM_PulseFinishedCallback(htim);
3965 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3966       }
3967       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3968     }
3969   }
3970   /* TIM Update event */
3971   if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
3972   {
3973     if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
3974     {
3975       __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
3976 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3977       htim->PeriodElapsedCallback(htim);
3978 #else
3979       HAL_TIM_PeriodElapsedCallback(htim);
3980 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3981     }
3982   }
3983   /* TIM Break input event */
3984   if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK))
3985   {
3986     if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
3987     {
3988       __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
3989 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3990       htim->BreakCallback(htim);
3991 #else
3992       HAL_TIMEx_BreakCallback(htim);
3993 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3994     }
3995   }
3996   /* TIM Break2 input event */
3997   if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2))
3998   {
3999     if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
4000     {
4001       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
4002 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4003       htim->Break2Callback(htim);
4004 #else
4005       HAL_TIMEx_Break2Callback(htim);
4006 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4007     }
4008   }
4009   /* TIM Trigger detection event */
4010   if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
4011   {
4012     if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
4013     {
4014       __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
4015 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4016       htim->TriggerCallback(htim);
4017 #else
4018       HAL_TIM_TriggerCallback(htim);
4019 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4020     }
4021   }
4022   /* TIM commutation event */
4023   if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
4024   {
4025     if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
4026     {
4027       __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
4028 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4029       htim->CommutationCallback(htim);
4030 #else
4031       HAL_TIMEx_CommutCallback(htim);
4032 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4033     }
4034   }
4035 }
4036 
4037 /**
4038   * @}
4039   */
4040 
4041 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4042   *  @brief    TIM Peripheral Control functions
4043   *
4044 @verbatim
4045   ==============================================================================
4046                    ##### Peripheral Control functions #####
4047   ==============================================================================
4048  [..]
4049    This section provides functions allowing to:
4050       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4051       (+) Configure External Clock source.
4052       (+) Configure Complementary channels, break features and dead time.
4053       (+) Configure Master and the Slave synchronization.
4054       (+) Configure the DMA Burst Mode.
4055 
4056 @endverbatim
4057   * @{
4058   */
4059 
4060 /**
4061   * @brief  Initializes the TIM Output Compare Channels according to the specified
4062   *         parameters in the TIM_OC_InitTypeDef.
4063   * @param  htim TIM Output Compare handle
4064   * @param  sConfig TIM Output Compare configuration structure
4065   * @param  Channel TIM Channels to configure
4066   *          This parameter can be one of the following values:
4067   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4068   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4069   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4070   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4071   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4072   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4073   * @retval HAL status
4074   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4075 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4076                                            const TIM_OC_InitTypeDef *sConfig,
4077                                            uint32_t Channel)
4078 {
4079   HAL_StatusTypeDef status = HAL_OK;
4080 
4081   /* Check the parameters */
4082   assert_param(IS_TIM_CHANNELS(Channel));
4083   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4084   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4085 
4086   /* Process Locked */
4087   __HAL_LOCK(htim);
4088 
4089   switch (Channel)
4090   {
4091     case TIM_CHANNEL_1:
4092     {
4093       /* Check the parameters */
4094       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4095 
4096       /* Configure the TIM Channel 1 in Output Compare */
4097       TIM_OC1_SetConfig(htim->Instance, sConfig);
4098       break;
4099     }
4100 
4101     case TIM_CHANNEL_2:
4102     {
4103       /* Check the parameters */
4104       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4105 
4106       /* Configure the TIM Channel 2 in Output Compare */
4107       TIM_OC2_SetConfig(htim->Instance, sConfig);
4108       break;
4109     }
4110 
4111     case TIM_CHANNEL_3:
4112     {
4113       /* Check the parameters */
4114       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4115 
4116       /* Configure the TIM Channel 3 in Output Compare */
4117       TIM_OC3_SetConfig(htim->Instance, sConfig);
4118       break;
4119     }
4120 
4121     case TIM_CHANNEL_4:
4122     {
4123       /* Check the parameters */
4124       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4125 
4126       /* Configure the TIM Channel 4 in Output Compare */
4127       TIM_OC4_SetConfig(htim->Instance, sConfig);
4128       break;
4129     }
4130 
4131     case TIM_CHANNEL_5:
4132     {
4133       /* Check the parameters */
4134       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4135 
4136       /* Configure the TIM Channel 5 in Output Compare */
4137       TIM_OC5_SetConfig(htim->Instance, sConfig);
4138       break;
4139     }
4140 
4141     case TIM_CHANNEL_6:
4142     {
4143       /* Check the parameters */
4144       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4145 
4146       /* Configure the TIM Channel 6 in Output Compare */
4147       TIM_OC6_SetConfig(htim->Instance, sConfig);
4148       break;
4149     }
4150 
4151     default:
4152       status = HAL_ERROR;
4153       break;
4154   }
4155 
4156   __HAL_UNLOCK(htim);
4157 
4158   return status;
4159 }
4160 
4161 /**
4162   * @brief  Initializes the TIM Input Capture Channels according to the specified
4163   *         parameters in the TIM_IC_InitTypeDef.
4164   * @param  htim TIM IC handle
4165   * @param  sConfig TIM Input Capture configuration structure
4166   * @param  Channel TIM Channel to configure
4167   *          This parameter can be one of the following values:
4168   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4169   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4170   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4171   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4172   * @retval HAL status
4173   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4174 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4175 {
4176   HAL_StatusTypeDef status = HAL_OK;
4177 
4178   /* Check the parameters */
4179   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4180   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4181   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4182   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4183   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4184 
4185   /* Process Locked */
4186   __HAL_LOCK(htim);
4187 
4188   if (Channel == TIM_CHANNEL_1)
4189   {
4190     /* TI1 Configuration */
4191     TIM_TI1_SetConfig(htim->Instance,
4192                       sConfig->ICPolarity,
4193                       sConfig->ICSelection,
4194                       sConfig->ICFilter);
4195 
4196     /* Reset the IC1PSC Bits */
4197     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4198 
4199     /* Set the IC1PSC value */
4200     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4201   }
4202   else if (Channel == TIM_CHANNEL_2)
4203   {
4204     /* TI2 Configuration */
4205     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4206 
4207     TIM_TI2_SetConfig(htim->Instance,
4208                       sConfig->ICPolarity,
4209                       sConfig->ICSelection,
4210                       sConfig->ICFilter);
4211 
4212     /* Reset the IC2PSC Bits */
4213     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4214 
4215     /* Set the IC2PSC value */
4216     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4217   }
4218   else if (Channel == TIM_CHANNEL_3)
4219   {
4220     /* TI3 Configuration */
4221     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4222 
4223     TIM_TI3_SetConfig(htim->Instance,
4224                       sConfig->ICPolarity,
4225                       sConfig->ICSelection,
4226                       sConfig->ICFilter);
4227 
4228     /* Reset the IC3PSC Bits */
4229     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4230 
4231     /* Set the IC3PSC value */
4232     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4233   }
4234   else if (Channel == TIM_CHANNEL_4)
4235   {
4236     /* TI4 Configuration */
4237     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4238 
4239     TIM_TI4_SetConfig(htim->Instance,
4240                       sConfig->ICPolarity,
4241                       sConfig->ICSelection,
4242                       sConfig->ICFilter);
4243 
4244     /* Reset the IC4PSC Bits */
4245     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4246 
4247     /* Set the IC4PSC value */
4248     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4249   }
4250   else
4251   {
4252     status = HAL_ERROR;
4253   }
4254 
4255   __HAL_UNLOCK(htim);
4256 
4257   return status;
4258 }
4259 
4260 /**
4261   * @brief  Initializes the TIM PWM  channels according to the specified
4262   *         parameters in the TIM_OC_InitTypeDef.
4263   * @param  htim TIM PWM handle
4264   * @param  sConfig TIM PWM configuration structure
4265   * @param  Channel TIM Channels to be configured
4266   *          This parameter can be one of the following values:
4267   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4268   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4269   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4270   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4271   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4272   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4273   * @retval HAL status
4274   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4275 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4276                                             const TIM_OC_InitTypeDef *sConfig,
4277                                             uint32_t Channel)
4278 {
4279   HAL_StatusTypeDef status = HAL_OK;
4280 
4281   /* Check the parameters */
4282   assert_param(IS_TIM_CHANNELS(Channel));
4283   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4284   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4285   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4286 
4287   /* Process Locked */
4288   __HAL_LOCK(htim);
4289 
4290   switch (Channel)
4291   {
4292     case TIM_CHANNEL_1:
4293     {
4294       /* Check the parameters */
4295       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4296 
4297       /* Configure the Channel 1 in PWM mode */
4298       TIM_OC1_SetConfig(htim->Instance, sConfig);
4299 
4300       /* Set the Preload enable bit for channel1 */
4301       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4302 
4303       /* Configure the Output Fast mode */
4304       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4305       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4306       break;
4307     }
4308 
4309     case TIM_CHANNEL_2:
4310     {
4311       /* Check the parameters */
4312       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4313 
4314       /* Configure the Channel 2 in PWM mode */
4315       TIM_OC2_SetConfig(htim->Instance, sConfig);
4316 
4317       /* Set the Preload enable bit for channel2 */
4318       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4319 
4320       /* Configure the Output Fast mode */
4321       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4322       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4323       break;
4324     }
4325 
4326     case TIM_CHANNEL_3:
4327     {
4328       /* Check the parameters */
4329       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4330 
4331       /* Configure the Channel 3 in PWM mode */
4332       TIM_OC3_SetConfig(htim->Instance, sConfig);
4333 
4334       /* Set the Preload enable bit for channel3 */
4335       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4336 
4337       /* Configure the Output Fast mode */
4338       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4339       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4340       break;
4341     }
4342 
4343     case TIM_CHANNEL_4:
4344     {
4345       /* Check the parameters */
4346       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4347 
4348       /* Configure the Channel 4 in PWM mode */
4349       TIM_OC4_SetConfig(htim->Instance, sConfig);
4350 
4351       /* Set the Preload enable bit for channel4 */
4352       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4353 
4354       /* Configure the Output Fast mode */
4355       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4356       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4357       break;
4358     }
4359 
4360     case TIM_CHANNEL_5:
4361     {
4362       /* Check the parameters */
4363       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4364 
4365       /* Configure the Channel 5 in PWM mode */
4366       TIM_OC5_SetConfig(htim->Instance, sConfig);
4367 
4368       /* Set the Preload enable bit for channel5*/
4369       htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4370 
4371       /* Configure the Output Fast mode */
4372       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4373       htim->Instance->CCMR3 |= sConfig->OCFastMode;
4374       break;
4375     }
4376 
4377     case TIM_CHANNEL_6:
4378     {
4379       /* Check the parameters */
4380       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4381 
4382       /* Configure the Channel 6 in PWM mode */
4383       TIM_OC6_SetConfig(htim->Instance, sConfig);
4384 
4385       /* Set the Preload enable bit for channel6 */
4386       htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4387 
4388       /* Configure the Output Fast mode */
4389       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4390       htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4391       break;
4392     }
4393 
4394     default:
4395       status = HAL_ERROR;
4396       break;
4397   }
4398 
4399   __HAL_UNLOCK(htim);
4400 
4401   return status;
4402 }
4403 
4404 /**
4405   * @brief  Initializes the TIM One Pulse Channels according to the specified
4406   *         parameters in the TIM_OnePulse_InitTypeDef.
4407   * @param  htim TIM One Pulse handle
4408   * @param  sConfig TIM One Pulse configuration structure
4409   * @param  OutputChannel TIM output channel to configure
4410   *          This parameter can be one of the following values:
4411   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4412   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4413   * @param  InputChannel TIM input Channel to configure
4414   *          This parameter can be one of the following values:
4415   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4416   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4417   * @note  To output a waveform with a minimum delay user can enable the fast
4418   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4419   *        output is forced in response to the edge detection on TIx input,
4420   *        without taking in account the comparison.
4421   * @retval HAL status
4422   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4423 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4424                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4425 {
4426   HAL_StatusTypeDef status = HAL_OK;
4427   TIM_OC_InitTypeDef temp1;
4428 
4429   /* Check the parameters */
4430   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4431   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4432 
4433   if (OutputChannel != InputChannel)
4434   {
4435     /* Process Locked */
4436     __HAL_LOCK(htim);
4437 
4438     htim->State = HAL_TIM_STATE_BUSY;
4439 
4440     /* Extract the Output compare configuration from sConfig structure */
4441     temp1.OCMode = sConfig->OCMode;
4442     temp1.Pulse = sConfig->Pulse;
4443     temp1.OCPolarity = sConfig->OCPolarity;
4444     temp1.OCNPolarity = sConfig->OCNPolarity;
4445     temp1.OCIdleState = sConfig->OCIdleState;
4446     temp1.OCNIdleState = sConfig->OCNIdleState;
4447 
4448     switch (OutputChannel)
4449     {
4450       case TIM_CHANNEL_1:
4451       {
4452         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4453 
4454         TIM_OC1_SetConfig(htim->Instance, &temp1);
4455         break;
4456       }
4457 
4458       case TIM_CHANNEL_2:
4459       {
4460         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4461 
4462         TIM_OC2_SetConfig(htim->Instance, &temp1);
4463         break;
4464       }
4465 
4466       default:
4467         status = HAL_ERROR;
4468         break;
4469     }
4470 
4471     if (status == HAL_OK)
4472     {
4473       switch (InputChannel)
4474       {
4475         case TIM_CHANNEL_1:
4476         {
4477           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4478 
4479           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4480                             sConfig->ICSelection, sConfig->ICFilter);
4481 
4482           /* Reset the IC1PSC Bits */
4483           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4484 
4485           /* Select the Trigger source */
4486           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4487           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4488 
4489           /* Select the Slave Mode */
4490           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4491           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4492           break;
4493         }
4494 
4495         case TIM_CHANNEL_2:
4496         {
4497           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4498 
4499           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4500                             sConfig->ICSelection, sConfig->ICFilter);
4501 
4502           /* Reset the IC2PSC Bits */
4503           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4504 
4505           /* Select the Trigger source */
4506           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4507           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4508 
4509           /* Select the Slave Mode */
4510           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4511           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4512           break;
4513         }
4514 
4515         default:
4516           status = HAL_ERROR;
4517           break;
4518       }
4519     }
4520 
4521     htim->State = HAL_TIM_STATE_READY;
4522 
4523     __HAL_UNLOCK(htim);
4524 
4525     return status;
4526   }
4527   else
4528   {
4529     return HAL_ERROR;
4530   }
4531 }
4532 
4533 /**
4534   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4535   * @param  htim TIM handle
4536   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4537   *         This parameter can be one of the following values:
4538   *            @arg TIM_DMABASE_CR1
4539   *            @arg TIM_DMABASE_CR2
4540   *            @arg TIM_DMABASE_SMCR
4541   *            @arg TIM_DMABASE_DIER
4542   *            @arg TIM_DMABASE_SR
4543   *            @arg TIM_DMABASE_EGR
4544   *            @arg TIM_DMABASE_CCMR1
4545   *            @arg TIM_DMABASE_CCMR2
4546   *            @arg TIM_DMABASE_CCER
4547   *            @arg TIM_DMABASE_CNT
4548   *            @arg TIM_DMABASE_PSC
4549   *            @arg TIM_DMABASE_ARR
4550   *            @arg TIM_DMABASE_RCR
4551   *            @arg TIM_DMABASE_CCR1
4552   *            @arg TIM_DMABASE_CCR2
4553   *            @arg TIM_DMABASE_CCR3
4554   *            @arg TIM_DMABASE_CCR4
4555   *            @arg TIM_DMABASE_BDTR
4556   *            @arg TIM_DMABASE_CCMR3
4557   *            @arg TIM_DMABASE_CCR5
4558   *            @arg TIM_DMABASE_CCR6
4559   *            @arg TIM_DMABASE_AF1
4560   *            @arg TIM_DMABASE_AF2
4561   *            @arg TIM_DMABASE_TISEL
4562   * @param  BurstRequestSrc TIM DMA Request sources
4563   *         This parameter can be one of the following values:
4564   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4565   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4566   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4567   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4568   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4569   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4570   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4571   * @param  BurstBuffer The Buffer address.
4572   * @param  BurstLength DMA Burst length. This parameter can be one value
4573   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4574   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4575   * @retval HAL status
4576   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4577 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4578                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t  BurstLength)
4579 {
4580   HAL_StatusTypeDef status;
4581 
4582   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4583                                             ((BurstLength) >> 8U) + 1U);
4584 
4585 
4586 
4587   return status;
4588 }
4589 
4590 /**
4591   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4592   * @param  htim TIM handle
4593   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4594   *         This parameter can be one of the following values:
4595   *            @arg TIM_DMABASE_CR1
4596   *            @arg TIM_DMABASE_CR2
4597   *            @arg TIM_DMABASE_SMCR
4598   *            @arg TIM_DMABASE_DIER
4599   *            @arg TIM_DMABASE_SR
4600   *            @arg TIM_DMABASE_EGR
4601   *            @arg TIM_DMABASE_CCMR1
4602   *            @arg TIM_DMABASE_CCMR2
4603   *            @arg TIM_DMABASE_CCER
4604   *            @arg TIM_DMABASE_CNT
4605   *            @arg TIM_DMABASE_PSC
4606   *            @arg TIM_DMABASE_ARR
4607   *            @arg TIM_DMABASE_RCR
4608   *            @arg TIM_DMABASE_CCR1
4609   *            @arg TIM_DMABASE_CCR2
4610   *            @arg TIM_DMABASE_CCR3
4611   *            @arg TIM_DMABASE_CCR4
4612   *            @arg TIM_DMABASE_BDTR
4613   *            @arg TIM_DMABASE_CCMR3
4614   *            @arg TIM_DMABASE_CCR5
4615   *            @arg TIM_DMABASE_CCR6
4616   *            @arg TIM_DMABASE_AF1
4617   *            @arg TIM_DMABASE_AF2
4618   *            @arg TIM_DMABASE_TISEL
4619   * @param  BurstRequestSrc TIM DMA Request sources
4620   *         This parameter can be one of the following values:
4621   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4622   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4623   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4624   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4625   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4626   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4627   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4628   * @param  BurstBuffer The Buffer address.
4629   * @param  BurstLength DMA Burst length. This parameter can be one value
4630   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4631   * @param  DataLength Data length. This parameter can be one value
4632   *         between 1 and 0xFFFF.
4633   * @retval HAL status
4634   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4635 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4636                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4637                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4638 {
4639   HAL_StatusTypeDef status = HAL_OK;
4640 
4641   /* Check the parameters */
4642   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4643   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4644   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4645   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4646   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4647 
4648   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4649   {
4650     return HAL_BUSY;
4651   }
4652   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4653   {
4654     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4655     {
4656       return HAL_ERROR;
4657     }
4658     else
4659     {
4660       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4661     }
4662   }
4663   else
4664   {
4665     /* nothing to do */
4666   }
4667 
4668   switch (BurstRequestSrc)
4669   {
4670     case TIM_DMA_UPDATE:
4671     {
4672       /* Set the DMA Period elapsed callbacks */
4673       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4674       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4675 
4676       /* Set the DMA error callback */
4677       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4678 
4679       /* Enable the DMA channel */
4680       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4681                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4682       {
4683         /* Return error status */
4684         return HAL_ERROR;
4685       }
4686       break;
4687     }
4688     case TIM_DMA_CC1:
4689     {
4690       /* Set the DMA compare callbacks */
4691       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4692       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4693 
4694       /* Set the DMA error callback */
4695       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4696 
4697       /* Enable the DMA channel */
4698       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4699                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4700       {
4701         /* Return error status */
4702         return HAL_ERROR;
4703       }
4704       break;
4705     }
4706     case TIM_DMA_CC2:
4707     {
4708       /* Set the DMA compare callbacks */
4709       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4710       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4711 
4712       /* Set the DMA error callback */
4713       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4714 
4715       /* Enable the DMA channel */
4716       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4717                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4718       {
4719         /* Return error status */
4720         return HAL_ERROR;
4721       }
4722       break;
4723     }
4724     case TIM_DMA_CC3:
4725     {
4726       /* Set the DMA compare callbacks */
4727       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4728       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4729 
4730       /* Set the DMA error callback */
4731       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4732 
4733       /* Enable the DMA channel */
4734       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4735                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4736       {
4737         /* Return error status */
4738         return HAL_ERROR;
4739       }
4740       break;
4741     }
4742     case TIM_DMA_CC4:
4743     {
4744       /* Set the DMA compare callbacks */
4745       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4746       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4747 
4748       /* Set the DMA error callback */
4749       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4750 
4751       /* Enable the DMA channel */
4752       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4753                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4754       {
4755         /* Return error status */
4756         return HAL_ERROR;
4757       }
4758       break;
4759     }
4760     case TIM_DMA_COM:
4761     {
4762       /* Set the DMA commutation callbacks */
4763       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4764       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4765 
4766       /* Set the DMA error callback */
4767       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4768 
4769       /* Enable the DMA channel */
4770       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4771                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4772       {
4773         /* Return error status */
4774         return HAL_ERROR;
4775       }
4776       break;
4777     }
4778     case TIM_DMA_TRIGGER:
4779     {
4780       /* Set the DMA trigger callbacks */
4781       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4782       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4783 
4784       /* Set the DMA error callback */
4785       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4786 
4787       /* Enable the DMA channel */
4788       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4789                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4790       {
4791         /* Return error status */
4792         return HAL_ERROR;
4793       }
4794       break;
4795     }
4796     default:
4797       status = HAL_ERROR;
4798       break;
4799   }
4800 
4801   if (status == HAL_OK)
4802   {
4803     /* Configure the DMA Burst Mode */
4804     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4805     /* Enable the TIM DMA Request */
4806     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4807   }
4808 
4809   /* Return function status */
4810   return status;
4811 }
4812 
4813 /**
4814   * @brief  Stops the TIM DMA Burst mode
4815   * @param  htim TIM handle
4816   * @param  BurstRequestSrc TIM DMA Request sources to disable
4817   * @retval HAL status
4818   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4819 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4820 {
4821   HAL_StatusTypeDef status = HAL_OK;
4822 
4823   /* Check the parameters */
4824   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4825 
4826   /* Abort the DMA transfer (at least disable the DMA channel) */
4827   switch (BurstRequestSrc)
4828   {
4829     case TIM_DMA_UPDATE:
4830     {
4831       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4832       break;
4833     }
4834     case TIM_DMA_CC1:
4835     {
4836       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4837       break;
4838     }
4839     case TIM_DMA_CC2:
4840     {
4841       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4842       break;
4843     }
4844     case TIM_DMA_CC3:
4845     {
4846       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4847       break;
4848     }
4849     case TIM_DMA_CC4:
4850     {
4851       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4852       break;
4853     }
4854     case TIM_DMA_COM:
4855     {
4856       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4857       break;
4858     }
4859     case TIM_DMA_TRIGGER:
4860     {
4861       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4862       break;
4863     }
4864     default:
4865       status = HAL_ERROR;
4866       break;
4867   }
4868 
4869   if (status == HAL_OK)
4870   {
4871     /* Disable the TIM Update DMA request */
4872     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4873 
4874     /* Change the DMA burst operation state */
4875     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4876   }
4877 
4878   /* Return function status */
4879   return status;
4880 }
4881 
4882 /**
4883   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4884   * @param  htim TIM handle
4885   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4886   *         This parameter can be one of the following values:
4887   *            @arg TIM_DMABASE_CR1
4888   *            @arg TIM_DMABASE_CR2
4889   *            @arg TIM_DMABASE_SMCR
4890   *            @arg TIM_DMABASE_DIER
4891   *            @arg TIM_DMABASE_SR
4892   *            @arg TIM_DMABASE_EGR
4893   *            @arg TIM_DMABASE_CCMR1
4894   *            @arg TIM_DMABASE_CCMR2
4895   *            @arg TIM_DMABASE_CCER
4896   *            @arg TIM_DMABASE_CNT
4897   *            @arg TIM_DMABASE_PSC
4898   *            @arg TIM_DMABASE_ARR
4899   *            @arg TIM_DMABASE_RCR
4900   *            @arg TIM_DMABASE_CCR1
4901   *            @arg TIM_DMABASE_CCR2
4902   *            @arg TIM_DMABASE_CCR3
4903   *            @arg TIM_DMABASE_CCR4
4904   *            @arg TIM_DMABASE_BDTR
4905   *            @arg TIM_DMABASE_CCMR3
4906   *            @arg TIM_DMABASE_CCR5
4907   *            @arg TIM_DMABASE_CCR6
4908   *            @arg TIM_DMABASE_AF1
4909   *            @arg TIM_DMABASE_AF2
4910   *            @arg TIM_DMABASE_TISEL
4911   * @param  BurstRequestSrc TIM DMA Request sources
4912   *         This parameter can be one of the following values:
4913   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4914   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4915   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4916   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4917   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4918   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4919   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4920   * @param  BurstBuffer The Buffer address.
4921   * @param  BurstLength DMA Burst length. This parameter can be one value
4922   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4923   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4924   * @retval HAL status
4925   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4926 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4927                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4928 {
4929   HAL_StatusTypeDef status;
4930 
4931   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4932                                            ((BurstLength) >> 8U) + 1U);
4933 
4934 
4935   return status;
4936 }
4937 
4938 /**
4939   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4940   * @param  htim TIM handle
4941   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4942   *         This parameter can be one of the following values:
4943   *            @arg TIM_DMABASE_CR1
4944   *            @arg TIM_DMABASE_CR2
4945   *            @arg TIM_DMABASE_SMCR
4946   *            @arg TIM_DMABASE_DIER
4947   *            @arg TIM_DMABASE_SR
4948   *            @arg TIM_DMABASE_EGR
4949   *            @arg TIM_DMABASE_CCMR1
4950   *            @arg TIM_DMABASE_CCMR2
4951   *            @arg TIM_DMABASE_CCER
4952   *            @arg TIM_DMABASE_CNT
4953   *            @arg TIM_DMABASE_PSC
4954   *            @arg TIM_DMABASE_ARR
4955   *            @arg TIM_DMABASE_RCR
4956   *            @arg TIM_DMABASE_CCR1
4957   *            @arg TIM_DMABASE_CCR2
4958   *            @arg TIM_DMABASE_CCR3
4959   *            @arg TIM_DMABASE_CCR4
4960   *            @arg TIM_DMABASE_BDTR
4961   *            @arg TIM_DMABASE_CCMR3
4962   *            @arg TIM_DMABASE_CCR5
4963   *            @arg TIM_DMABASE_CCR6
4964   *            @arg TIM_DMABASE_AF1
4965   *            @arg TIM_DMABASE_AF2
4966   *            @arg TIM_DMABASE_TISEL
4967   * @param  BurstRequestSrc TIM DMA Request sources
4968   *         This parameter can be one of the following values:
4969   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4970   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4971   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4972   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4973   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4974   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4975   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4976   * @param  BurstBuffer The Buffer address.
4977   * @param  BurstLength DMA Burst length. This parameter can be one value
4978   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4979   * @param  DataLength Data length. This parameter can be one value
4980   *         between 1 and 0xFFFF.
4981   * @retval HAL status
4982   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4983 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4984                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4985                                                   uint32_t  BurstLength, uint32_t  DataLength)
4986 {
4987   HAL_StatusTypeDef status = HAL_OK;
4988 
4989   /* Check the parameters */
4990   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4991   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4992   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4993   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4994   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4995 
4996   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4997   {
4998     return HAL_BUSY;
4999   }
5000   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5001   {
5002     if ((BurstBuffer == NULL) && (BurstLength > 0U))
5003     {
5004       return HAL_ERROR;
5005     }
5006     else
5007     {
5008       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5009     }
5010   }
5011   else
5012   {
5013     /* nothing to do */
5014   }
5015   switch (BurstRequestSrc)
5016   {
5017     case TIM_DMA_UPDATE:
5018     {
5019       /* Set the DMA Period elapsed callbacks */
5020       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5021       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5022 
5023       /* Set the DMA error callback */
5024       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5025 
5026       /* Enable the DMA channel */
5027       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5028                            DataLength) != HAL_OK)
5029       {
5030         /* Return error status */
5031         return HAL_ERROR;
5032       }
5033       break;
5034     }
5035     case TIM_DMA_CC1:
5036     {
5037       /* Set the DMA capture callbacks */
5038       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5039       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5040 
5041       /* Set the DMA error callback */
5042       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5043 
5044       /* Enable the DMA channel */
5045       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5046                            DataLength) != HAL_OK)
5047       {
5048         /* Return error status */
5049         return HAL_ERROR;
5050       }
5051       break;
5052     }
5053     case TIM_DMA_CC2:
5054     {
5055       /* Set the DMA capture callbacks */
5056       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5057       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5058 
5059       /* Set the DMA error callback */
5060       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5061 
5062       /* Enable the DMA channel */
5063       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5064                            DataLength) != HAL_OK)
5065       {
5066         /* Return error status */
5067         return HAL_ERROR;
5068       }
5069       break;
5070     }
5071     case TIM_DMA_CC3:
5072     {
5073       /* Set the DMA capture callbacks */
5074       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5075       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5076 
5077       /* Set the DMA error callback */
5078       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5079 
5080       /* Enable the DMA channel */
5081       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5082                            DataLength) != HAL_OK)
5083       {
5084         /* Return error status */
5085         return HAL_ERROR;
5086       }
5087       break;
5088     }
5089     case TIM_DMA_CC4:
5090     {
5091       /* Set the DMA capture callbacks */
5092       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5093       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5094 
5095       /* Set the DMA error callback */
5096       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5097 
5098       /* Enable the DMA channel */
5099       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5100                            DataLength) != HAL_OK)
5101       {
5102         /* Return error status */
5103         return HAL_ERROR;
5104       }
5105       break;
5106     }
5107     case TIM_DMA_COM:
5108     {
5109       /* Set the DMA commutation callbacks */
5110       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
5111       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
5112 
5113       /* Set the DMA error callback */
5114       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5115 
5116       /* Enable the DMA channel */
5117       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5118                            DataLength) != HAL_OK)
5119       {
5120         /* Return error status */
5121         return HAL_ERROR;
5122       }
5123       break;
5124     }
5125     case TIM_DMA_TRIGGER:
5126     {
5127       /* Set the DMA trigger callbacks */
5128       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5129       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5130 
5131       /* Set the DMA error callback */
5132       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5133 
5134       /* Enable the DMA channel */
5135       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5136                            DataLength) != HAL_OK)
5137       {
5138         /* Return error status */
5139         return HAL_ERROR;
5140       }
5141       break;
5142     }
5143     default:
5144       status = HAL_ERROR;
5145       break;
5146   }
5147 
5148   if (status == HAL_OK)
5149   {
5150     /* Configure the DMA Burst Mode */
5151     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5152 
5153     /* Enable the TIM DMA Request */
5154     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5155   }
5156 
5157   /* Return function status */
5158   return status;
5159 }
5160 
5161 /**
5162   * @brief  Stop the DMA burst reading
5163   * @param  htim TIM handle
5164   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5165   * @retval HAL status
5166   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5167 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5168 {
5169   HAL_StatusTypeDef status = HAL_OK;
5170 
5171   /* Check the parameters */
5172   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5173 
5174   /* Abort the DMA transfer (at least disable the DMA channel) */
5175   switch (BurstRequestSrc)
5176   {
5177     case TIM_DMA_UPDATE:
5178     {
5179       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5180       break;
5181     }
5182     case TIM_DMA_CC1:
5183     {
5184       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5185       break;
5186     }
5187     case TIM_DMA_CC2:
5188     {
5189       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5190       break;
5191     }
5192     case TIM_DMA_CC3:
5193     {
5194       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5195       break;
5196     }
5197     case TIM_DMA_CC4:
5198     {
5199       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5200       break;
5201     }
5202     case TIM_DMA_COM:
5203     {
5204       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5205       break;
5206     }
5207     case TIM_DMA_TRIGGER:
5208     {
5209       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5210       break;
5211     }
5212     default:
5213       status = HAL_ERROR;
5214       break;
5215   }
5216 
5217   if (status == HAL_OK)
5218   {
5219     /* Disable the TIM Update DMA request */
5220     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5221 
5222     /* Change the DMA burst operation state */
5223     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5224   }
5225 
5226   /* Return function status */
5227   return status;
5228 }
5229 
5230 /**
5231   * @brief  Generate a software event
5232   * @param  htim TIM handle
5233   * @param  EventSource specifies the event source.
5234   *          This parameter can be one of the following values:
5235   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5236   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5237   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5238   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5239   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5240   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5241   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5242   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5243   *            @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5244   * @note   Basic timers can only generate an update event.
5245   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5246   * @note   TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
5247   *         only for timer instances supporting break input(s).
5248   * @retval HAL status
5249   */
5250 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5251 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5252 {
5253   /* Check the parameters */
5254   assert_param(IS_TIM_INSTANCE(htim->Instance));
5255   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5256 
5257   /* Process Locked */
5258   __HAL_LOCK(htim);
5259 
5260   /* Change the TIM state */
5261   htim->State = HAL_TIM_STATE_BUSY;
5262 
5263   /* Set the event sources */
5264   htim->Instance->EGR = EventSource;
5265 
5266   /* Change the TIM state */
5267   htim->State = HAL_TIM_STATE_READY;
5268 
5269   __HAL_UNLOCK(htim);
5270 
5271   /* Return function status */
5272   return HAL_OK;
5273 }
5274 
5275 /**
5276   * @brief  Configures the OCRef clear feature
5277   * @param  htim TIM handle
5278   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5279   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5280   * @param  Channel specifies the TIM Channel
5281   *          This parameter can be one of the following values:
5282   *            @arg TIM_CHANNEL_1: TIM Channel 1
5283   *            @arg TIM_CHANNEL_2: TIM Channel 2
5284   *            @arg TIM_CHANNEL_3: TIM Channel 3
5285   *            @arg TIM_CHANNEL_4: TIM Channel 4
5286   *            @arg TIM_CHANNEL_5: TIM Channel 5
5287   *            @arg TIM_CHANNEL_6: TIM Channel 6
5288   * @retval HAL status
5289   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5290 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5291                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5292                                            uint32_t Channel)
5293 {
5294   HAL_StatusTypeDef status = HAL_OK;
5295 
5296   /* Check the parameters */
5297   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5298   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5299 
5300   /* Process Locked */
5301   __HAL_LOCK(htim);
5302 
5303   htim->State = HAL_TIM_STATE_BUSY;
5304 
5305   switch (sClearInputConfig->ClearInputSource)
5306   {
5307     case TIM_CLEARINPUTSOURCE_NONE:
5308     {
5309       /* Clear the OCREF clear selection bit and the the ETR Bits */
5310       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5311       break;
5312     }
5313 
5314     case TIM_CLEARINPUTSOURCE_ETR:
5315     {
5316       /* Check the parameters */
5317       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5318       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5319       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5320 
5321       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5322       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5323       {
5324         htim->State = HAL_TIM_STATE_READY;
5325         __HAL_UNLOCK(htim);
5326         return HAL_ERROR;
5327       }
5328 
5329       TIM_ETR_SetConfig(htim->Instance,
5330                         sClearInputConfig->ClearInputPrescaler,
5331                         sClearInputConfig->ClearInputPolarity,
5332                         sClearInputConfig->ClearInputFilter);
5333 
5334       /* Set the OCREF clear selection bit */
5335       SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5336       break;
5337     }
5338 
5339     default:
5340       status = HAL_ERROR;
5341       break;
5342   }
5343 
5344   if (status == HAL_OK)
5345   {
5346     switch (Channel)
5347     {
5348       case TIM_CHANNEL_1:
5349       {
5350         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5351         {
5352           /* Enable the OCREF clear feature for Channel 1 */
5353           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5354         }
5355         else
5356         {
5357           /* Disable the OCREF clear feature for Channel 1 */
5358           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5359         }
5360         break;
5361       }
5362       case TIM_CHANNEL_2:
5363       {
5364         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5365         {
5366           /* Enable the OCREF clear feature for Channel 2 */
5367           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5368         }
5369         else
5370         {
5371           /* Disable the OCREF clear feature for Channel 2 */
5372           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5373         }
5374         break;
5375       }
5376       case TIM_CHANNEL_3:
5377       {
5378         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5379         {
5380           /* Enable the OCREF clear feature for Channel 3 */
5381           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5382         }
5383         else
5384         {
5385           /* Disable the OCREF clear feature for Channel 3 */
5386           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5387         }
5388         break;
5389       }
5390       case TIM_CHANNEL_4:
5391       {
5392         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5393         {
5394           /* Enable the OCREF clear feature for Channel 4 */
5395           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5396         }
5397         else
5398         {
5399           /* Disable the OCREF clear feature for Channel 4 */
5400           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5401         }
5402         break;
5403       }
5404       case TIM_CHANNEL_5:
5405       {
5406         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5407         {
5408           /* Enable the OCREF clear feature for Channel 5 */
5409           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5410         }
5411         else
5412         {
5413           /* Disable the OCREF clear feature for Channel 5 */
5414           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5415         }
5416         break;
5417       }
5418       case TIM_CHANNEL_6:
5419       {
5420         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5421         {
5422           /* Enable the OCREF clear feature for Channel 6 */
5423           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5424         }
5425         else
5426         {
5427           /* Disable the OCREF clear feature for Channel 6 */
5428           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5429         }
5430         break;
5431       }
5432       default:
5433         break;
5434     }
5435   }
5436 
5437   htim->State = HAL_TIM_STATE_READY;
5438 
5439   __HAL_UNLOCK(htim);
5440 
5441   return status;
5442 }
5443 
5444 /**
5445   * @brief   Configures the clock source to be used
5446   * @param  htim TIM handle
5447   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5448   *         contains the clock source information for the TIM peripheral.
5449   * @retval HAL status
5450   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5451 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5452 {
5453   HAL_StatusTypeDef status = HAL_OK;
5454   uint32_t tmpsmcr;
5455 
5456   /* Process Locked */
5457   __HAL_LOCK(htim);
5458 
5459   htim->State = HAL_TIM_STATE_BUSY;
5460 
5461   /* Check the parameters */
5462   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5463 
5464   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5465   tmpsmcr = htim->Instance->SMCR;
5466   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5467   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5468   htim->Instance->SMCR = tmpsmcr;
5469 
5470   switch (sClockSourceConfig->ClockSource)
5471   {
5472     case TIM_CLOCKSOURCE_INTERNAL:
5473     {
5474       assert_param(IS_TIM_INSTANCE(htim->Instance));
5475       break;
5476     }
5477 
5478     case TIM_CLOCKSOURCE_ETRMODE1:
5479     {
5480       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5481       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5482 
5483       /* Check ETR input conditioning related parameters */
5484       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5485       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5486       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5487 
5488       /* Configure the ETR Clock source */
5489       TIM_ETR_SetConfig(htim->Instance,
5490                         sClockSourceConfig->ClockPrescaler,
5491                         sClockSourceConfig->ClockPolarity,
5492                         sClockSourceConfig->ClockFilter);
5493 
5494       /* Select the External clock mode1 and the ETRF trigger */
5495       tmpsmcr = htim->Instance->SMCR;
5496       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5497       /* Write to TIMx SMCR */
5498       htim->Instance->SMCR = tmpsmcr;
5499       break;
5500     }
5501 
5502     case TIM_CLOCKSOURCE_ETRMODE2:
5503     {
5504       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5505       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5506 
5507       /* Check ETR input conditioning related parameters */
5508       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5509       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5510       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5511 
5512       /* Configure the ETR Clock source */
5513       TIM_ETR_SetConfig(htim->Instance,
5514                         sClockSourceConfig->ClockPrescaler,
5515                         sClockSourceConfig->ClockPolarity,
5516                         sClockSourceConfig->ClockFilter);
5517       /* Enable the External clock mode2 */
5518       htim->Instance->SMCR |= TIM_SMCR_ECE;
5519       break;
5520     }
5521 
5522     case TIM_CLOCKSOURCE_TI1:
5523     {
5524       /* Check whether or not the timer instance supports external clock mode 1 */
5525       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5526 
5527       /* Check TI1 input conditioning related parameters */
5528       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5529       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5530 
5531       TIM_TI1_ConfigInputStage(htim->Instance,
5532                                sClockSourceConfig->ClockPolarity,
5533                                sClockSourceConfig->ClockFilter);
5534       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5535       break;
5536     }
5537 
5538     case TIM_CLOCKSOURCE_TI2:
5539     {
5540       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5541       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5542 
5543       /* Check TI2 input conditioning related parameters */
5544       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5545       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5546 
5547       TIM_TI2_ConfigInputStage(htim->Instance,
5548                                sClockSourceConfig->ClockPolarity,
5549                                sClockSourceConfig->ClockFilter);
5550       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5551       break;
5552     }
5553 
5554     case TIM_CLOCKSOURCE_TI1ED:
5555     {
5556       /* Check whether or not the timer instance supports external clock mode 1 */
5557       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5558 
5559       /* Check TI1 input conditioning related parameters */
5560       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5561       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5562 
5563       TIM_TI1_ConfigInputStage(htim->Instance,
5564                                sClockSourceConfig->ClockPolarity,
5565                                sClockSourceConfig->ClockFilter);
5566       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5567       break;
5568     }
5569 
5570     case TIM_CLOCKSOURCE_ITR0:
5571     case TIM_CLOCKSOURCE_ITR1:
5572     case TIM_CLOCKSOURCE_ITR2:
5573     case TIM_CLOCKSOURCE_ITR3:
5574     {
5575       /* Check whether or not the timer instance supports internal trigger input */
5576       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5577 
5578       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5579       break;
5580     }
5581 
5582     default:
5583       status = HAL_ERROR;
5584       break;
5585   }
5586   htim->State = HAL_TIM_STATE_READY;
5587 
5588   __HAL_UNLOCK(htim);
5589 
5590   return status;
5591 }
5592 
5593 /**
5594   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5595   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5596   * @param  htim TIM handle.
5597   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5598   *         output of a XOR gate.
5599   *          This parameter can be one of the following values:
5600   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5601   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5602   *            pins are connected to the TI1 input (XOR combination)
5603   * @retval HAL status
5604   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5605 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5606 {
5607   uint32_t tmpcr2;
5608 
5609   /* Check the parameters */
5610   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5611   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5612 
5613   /* Get the TIMx CR2 register value */
5614   tmpcr2 = htim->Instance->CR2;
5615 
5616   /* Reset the TI1 selection */
5617   tmpcr2 &= ~TIM_CR2_TI1S;
5618 
5619   /* Set the TI1 selection */
5620   tmpcr2 |= TI1_Selection;
5621 
5622   /* Write to TIMxCR2 */
5623   htim->Instance->CR2 = tmpcr2;
5624 
5625   return HAL_OK;
5626 }
5627 
5628 /**
5629   * @brief  Configures the TIM in Slave mode
5630   * @param  htim TIM handle.
5631   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5632   *         contains the selected trigger (internal trigger input, filtered
5633   *         timer input or external trigger input) and the Slave mode
5634   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5635   * @retval HAL status
5636   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5637 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5638 {
5639   /* Check the parameters */
5640   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5641   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5642   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5643 
5644   __HAL_LOCK(htim);
5645 
5646   htim->State = HAL_TIM_STATE_BUSY;
5647 
5648   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5649   {
5650     htim->State = HAL_TIM_STATE_READY;
5651     __HAL_UNLOCK(htim);
5652     return HAL_ERROR;
5653   }
5654 
5655   /* Disable Trigger Interrupt */
5656   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5657 
5658   /* Disable Trigger DMA request */
5659   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5660 
5661   htim->State = HAL_TIM_STATE_READY;
5662 
5663   __HAL_UNLOCK(htim);
5664 
5665   return HAL_OK;
5666 }
5667 
5668 /**
5669   * @brief  Configures the TIM in Slave mode in interrupt mode
5670   * @param  htim TIM handle.
5671   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5672   *         contains the selected trigger (internal trigger input, filtered
5673   *         timer input or external trigger input) and the Slave mode
5674   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5675   * @retval HAL status
5676   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5677 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5678                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5679 {
5680   /* Check the parameters */
5681   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5682   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5683   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5684 
5685   __HAL_LOCK(htim);
5686 
5687   htim->State = HAL_TIM_STATE_BUSY;
5688 
5689   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5690   {
5691     htim->State = HAL_TIM_STATE_READY;
5692     __HAL_UNLOCK(htim);
5693     return HAL_ERROR;
5694   }
5695 
5696   /* Enable Trigger Interrupt */
5697   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5698 
5699   /* Disable Trigger DMA request */
5700   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5701 
5702   htim->State = HAL_TIM_STATE_READY;
5703 
5704   __HAL_UNLOCK(htim);
5705 
5706   return HAL_OK;
5707 }
5708 
5709 /**
5710   * @brief  Read the captured value from Capture Compare unit
5711   * @param  htim TIM handle.
5712   * @param  Channel TIM Channels to be enabled
5713   *          This parameter can be one of the following values:
5714   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5715   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5716   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5717   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5718   * @retval Captured value
5719   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5720 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5721 {
5722   uint32_t tmpreg = 0U;
5723 
5724   switch (Channel)
5725   {
5726     case TIM_CHANNEL_1:
5727     {
5728       /* Check the parameters */
5729       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5730 
5731       /* Return the capture 1 value */
5732       tmpreg =  htim->Instance->CCR1;
5733 
5734       break;
5735     }
5736     case TIM_CHANNEL_2:
5737     {
5738       /* Check the parameters */
5739       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5740 
5741       /* Return the capture 2 value */
5742       tmpreg =   htim->Instance->CCR2;
5743 
5744       break;
5745     }
5746 
5747     case TIM_CHANNEL_3:
5748     {
5749       /* Check the parameters */
5750       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5751 
5752       /* Return the capture 3 value */
5753       tmpreg =   htim->Instance->CCR3;
5754 
5755       break;
5756     }
5757 
5758     case TIM_CHANNEL_4:
5759     {
5760       /* Check the parameters */
5761       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5762 
5763       /* Return the capture 4 value */
5764       tmpreg =   htim->Instance->CCR4;
5765 
5766       break;
5767     }
5768 
5769     default:
5770       break;
5771   }
5772 
5773   return tmpreg;
5774 }
5775 
5776 /**
5777   * @}
5778   */
5779 
5780 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5781   *  @brief    TIM Callbacks functions
5782   *
5783 @verbatim
5784   ==============================================================================
5785                         ##### TIM Callbacks functions #####
5786   ==============================================================================
5787  [..]
5788    This section provides TIM callback functions:
5789    (+) TIM Period elapsed callback
5790    (+) TIM Output Compare callback
5791    (+) TIM Input capture callback
5792    (+) TIM Trigger callback
5793    (+) TIM Error callback
5794 
5795 @endverbatim
5796   * @{
5797   */
5798 
5799 /**
5800   * @brief  Period elapsed callback in non-blocking mode
5801   * @param  htim TIM handle
5802   * @retval None
5803   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5804 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5805 {
5806   /* Prevent unused argument(s) compilation warning */
5807   UNUSED(htim);
5808 
5809   /* NOTE : This function should not be modified, when the callback is needed,
5810             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5811    */
5812 }
5813 
5814 /**
5815   * @brief  Period elapsed half complete callback in non-blocking mode
5816   * @param  htim TIM handle
5817   * @retval None
5818   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5819 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5820 {
5821   /* Prevent unused argument(s) compilation warning */
5822   UNUSED(htim);
5823 
5824   /* NOTE : This function should not be modified, when the callback is needed,
5825             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5826    */
5827 }
5828 
5829 /**
5830   * @brief  Output Compare callback in non-blocking mode
5831   * @param  htim TIM OC handle
5832   * @retval None
5833   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5834 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5835 {
5836   /* Prevent unused argument(s) compilation warning */
5837   UNUSED(htim);
5838 
5839   /* NOTE : This function should not be modified, when the callback is needed,
5840             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5841    */
5842 }
5843 
5844 /**
5845   * @brief  Input Capture callback in non-blocking mode
5846   * @param  htim TIM IC handle
5847   * @retval None
5848   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5849 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5850 {
5851   /* Prevent unused argument(s) compilation warning */
5852   UNUSED(htim);
5853 
5854   /* NOTE : This function should not be modified, when the callback is needed,
5855             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5856    */
5857 }
5858 
5859 /**
5860   * @brief  Input Capture half complete callback in non-blocking mode
5861   * @param  htim TIM IC handle
5862   * @retval None
5863   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5864 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5865 {
5866   /* Prevent unused argument(s) compilation warning */
5867   UNUSED(htim);
5868 
5869   /* NOTE : This function should not be modified, when the callback is needed,
5870             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5871    */
5872 }
5873 
5874 /**
5875   * @brief  PWM Pulse finished callback in non-blocking mode
5876   * @param  htim TIM handle
5877   * @retval None
5878   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5879 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5880 {
5881   /* Prevent unused argument(s) compilation warning */
5882   UNUSED(htim);
5883 
5884   /* NOTE : This function should not be modified, when the callback is needed,
5885             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5886    */
5887 }
5888 
5889 /**
5890   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5891   * @param  htim TIM handle
5892   * @retval None
5893   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5894 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5895 {
5896   /* Prevent unused argument(s) compilation warning */
5897   UNUSED(htim);
5898 
5899   /* NOTE : This function should not be modified, when the callback is needed,
5900             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5901    */
5902 }
5903 
5904 /**
5905   * @brief  Hall Trigger detection callback in non-blocking mode
5906   * @param  htim TIM handle
5907   * @retval None
5908   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5909 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5910 {
5911   /* Prevent unused argument(s) compilation warning */
5912   UNUSED(htim);
5913 
5914   /* NOTE : This function should not be modified, when the callback is needed,
5915             the HAL_TIM_TriggerCallback could be implemented in the user file
5916    */
5917 }
5918 
5919 /**
5920   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5921   * @param  htim TIM handle
5922   * @retval None
5923   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5924 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5925 {
5926   /* Prevent unused argument(s) compilation warning */
5927   UNUSED(htim);
5928 
5929   /* NOTE : This function should not be modified, when the callback is needed,
5930             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5931    */
5932 }
5933 
5934 /**
5935   * @brief  Timer error callback in non-blocking mode
5936   * @param  htim TIM handle
5937   * @retval None
5938   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5939 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5940 {
5941   /* Prevent unused argument(s) compilation warning */
5942   UNUSED(htim);
5943 
5944   /* NOTE : This function should not be modified, when the callback is needed,
5945             the HAL_TIM_ErrorCallback could be implemented in the user file
5946    */
5947 }
5948 
5949 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5950 /**
5951   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5952   * @param htim tim handle
5953   * @param CallbackID ID of the callback to be registered
5954   *        This parameter can be one of the following values:
5955   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5956   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5957   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5958   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5959   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5960   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5961   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5962   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5963   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5964   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5965   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5966   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5967   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5968   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5969   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5970   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5971   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5972   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5973   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5974   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5975   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
5976   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
5977   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
5978   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
5979   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
5980   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
5981   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
5982   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
5983   *          @param pCallback pointer to the callback function
5984   *          @retval status
5985   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)5986 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
5987                                            pTIM_CallbackTypeDef pCallback)
5988 {
5989   HAL_StatusTypeDef status = HAL_OK;
5990 
5991   if (pCallback == NULL)
5992   {
5993     return HAL_ERROR;
5994   }
5995 
5996   if (htim->State == HAL_TIM_STATE_READY)
5997   {
5998     switch (CallbackID)
5999     {
6000       case HAL_TIM_BASE_MSPINIT_CB_ID :
6001         htim->Base_MspInitCallback                 = pCallback;
6002         break;
6003 
6004       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6005         htim->Base_MspDeInitCallback               = pCallback;
6006         break;
6007 
6008       case HAL_TIM_IC_MSPINIT_CB_ID :
6009         htim->IC_MspInitCallback                   = pCallback;
6010         break;
6011 
6012       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6013         htim->IC_MspDeInitCallback                 = pCallback;
6014         break;
6015 
6016       case HAL_TIM_OC_MSPINIT_CB_ID :
6017         htim->OC_MspInitCallback                   = pCallback;
6018         break;
6019 
6020       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6021         htim->OC_MspDeInitCallback                 = pCallback;
6022         break;
6023 
6024       case HAL_TIM_PWM_MSPINIT_CB_ID :
6025         htim->PWM_MspInitCallback                  = pCallback;
6026         break;
6027 
6028       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6029         htim->PWM_MspDeInitCallback                = pCallback;
6030         break;
6031 
6032       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6033         htim->OnePulse_MspInitCallback             = pCallback;
6034         break;
6035 
6036       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6037         htim->OnePulse_MspDeInitCallback           = pCallback;
6038         break;
6039 
6040       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6041         htim->Encoder_MspInitCallback              = pCallback;
6042         break;
6043 
6044       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6045         htim->Encoder_MspDeInitCallback            = pCallback;
6046         break;
6047 
6048       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6049         htim->HallSensor_MspInitCallback           = pCallback;
6050         break;
6051 
6052       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6053         htim->HallSensor_MspDeInitCallback         = pCallback;
6054         break;
6055 
6056       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6057         htim->PeriodElapsedCallback                = pCallback;
6058         break;
6059 
6060       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6061         htim->PeriodElapsedHalfCpltCallback        = pCallback;
6062         break;
6063 
6064       case HAL_TIM_TRIGGER_CB_ID :
6065         htim->TriggerCallback                      = pCallback;
6066         break;
6067 
6068       case HAL_TIM_TRIGGER_HALF_CB_ID :
6069         htim->TriggerHalfCpltCallback              = pCallback;
6070         break;
6071 
6072       case HAL_TIM_IC_CAPTURE_CB_ID :
6073         htim->IC_CaptureCallback                   = pCallback;
6074         break;
6075 
6076       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6077         htim->IC_CaptureHalfCpltCallback           = pCallback;
6078         break;
6079 
6080       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6081         htim->OC_DelayElapsedCallback              = pCallback;
6082         break;
6083 
6084       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6085         htim->PWM_PulseFinishedCallback            = pCallback;
6086         break;
6087 
6088       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6089         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
6090         break;
6091 
6092       case HAL_TIM_ERROR_CB_ID :
6093         htim->ErrorCallback                        = pCallback;
6094         break;
6095 
6096       case HAL_TIM_COMMUTATION_CB_ID :
6097         htim->CommutationCallback                  = pCallback;
6098         break;
6099 
6100       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6101         htim->CommutationHalfCpltCallback          = pCallback;
6102         break;
6103 
6104       case HAL_TIM_BREAK_CB_ID :
6105         htim->BreakCallback                        = pCallback;
6106         break;
6107 
6108       case HAL_TIM_BREAK2_CB_ID :
6109         htim->Break2Callback                       = pCallback;
6110         break;
6111 
6112       default :
6113         /* Return error status */
6114         status = HAL_ERROR;
6115         break;
6116     }
6117   }
6118   else if (htim->State == HAL_TIM_STATE_RESET)
6119   {
6120     switch (CallbackID)
6121     {
6122       case HAL_TIM_BASE_MSPINIT_CB_ID :
6123         htim->Base_MspInitCallback         = pCallback;
6124         break;
6125 
6126       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6127         htim->Base_MspDeInitCallback       = pCallback;
6128         break;
6129 
6130       case HAL_TIM_IC_MSPINIT_CB_ID :
6131         htim->IC_MspInitCallback           = pCallback;
6132         break;
6133 
6134       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6135         htim->IC_MspDeInitCallback         = pCallback;
6136         break;
6137 
6138       case HAL_TIM_OC_MSPINIT_CB_ID :
6139         htim->OC_MspInitCallback           = pCallback;
6140         break;
6141 
6142       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6143         htim->OC_MspDeInitCallback         = pCallback;
6144         break;
6145 
6146       case HAL_TIM_PWM_MSPINIT_CB_ID :
6147         htim->PWM_MspInitCallback          = pCallback;
6148         break;
6149 
6150       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6151         htim->PWM_MspDeInitCallback        = pCallback;
6152         break;
6153 
6154       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6155         htim->OnePulse_MspInitCallback     = pCallback;
6156         break;
6157 
6158       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6159         htim->OnePulse_MspDeInitCallback   = pCallback;
6160         break;
6161 
6162       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6163         htim->Encoder_MspInitCallback      = pCallback;
6164         break;
6165 
6166       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6167         htim->Encoder_MspDeInitCallback    = pCallback;
6168         break;
6169 
6170       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6171         htim->HallSensor_MspInitCallback   = pCallback;
6172         break;
6173 
6174       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6175         htim->HallSensor_MspDeInitCallback = pCallback;
6176         break;
6177 
6178       default :
6179         /* Return error status */
6180         status = HAL_ERROR;
6181         break;
6182     }
6183   }
6184   else
6185   {
6186     /* Return error status */
6187     status = HAL_ERROR;
6188   }
6189 
6190   return status;
6191 }
6192 
6193 /**
6194   * @brief  Unregister a TIM callback
6195   *         TIM callback is redirected to the weak predefined callback
6196   * @param htim tim handle
6197   * @param CallbackID ID of the callback to be unregistered
6198   *        This parameter can be one of the following values:
6199   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6200   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6201   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6202   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6203   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6204   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6205   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6206   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6207   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6208   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6209   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6210   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6211   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6212   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6213   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6214   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6215   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6216   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6217   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6218   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6219   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6220   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6221   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6222   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6223   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6224   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6225   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6226   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6227   *          @retval status
6228   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6229 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6230 {
6231   HAL_StatusTypeDef status = HAL_OK;
6232 
6233   if (htim->State == HAL_TIM_STATE_READY)
6234   {
6235     switch (CallbackID)
6236     {
6237       case HAL_TIM_BASE_MSPINIT_CB_ID :
6238         /* Legacy weak Base MspInit Callback */
6239         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6240         break;
6241 
6242       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6243         /* Legacy weak Base Msp DeInit Callback */
6244         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6245         break;
6246 
6247       case HAL_TIM_IC_MSPINIT_CB_ID :
6248         /* Legacy weak IC Msp Init Callback */
6249         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6250         break;
6251 
6252       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6253         /* Legacy weak IC Msp DeInit Callback */
6254         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6255         break;
6256 
6257       case HAL_TIM_OC_MSPINIT_CB_ID :
6258         /* Legacy weak OC Msp Init Callback */
6259         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6260         break;
6261 
6262       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6263         /* Legacy weak OC Msp DeInit Callback */
6264         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6265         break;
6266 
6267       case HAL_TIM_PWM_MSPINIT_CB_ID :
6268         /* Legacy weak PWM Msp Init Callback */
6269         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6270         break;
6271 
6272       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6273         /* Legacy weak PWM Msp DeInit Callback */
6274         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6275         break;
6276 
6277       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6278         /* Legacy weak One Pulse Msp Init Callback */
6279         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6280         break;
6281 
6282       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6283         /* Legacy weak One Pulse Msp DeInit Callback */
6284         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6285         break;
6286 
6287       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6288         /* Legacy weak Encoder Msp Init Callback */
6289         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6290         break;
6291 
6292       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6293         /* Legacy weak Encoder Msp DeInit Callback */
6294         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6295         break;
6296 
6297       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6298         /* Legacy weak Hall Sensor Msp Init Callback */
6299         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6300         break;
6301 
6302       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6303         /* Legacy weak Hall Sensor Msp DeInit Callback */
6304         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6305         break;
6306 
6307       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6308         /* Legacy weak Period Elapsed Callback */
6309         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6310         break;
6311 
6312       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6313         /* Legacy weak Period Elapsed half complete Callback */
6314         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6315         break;
6316 
6317       case HAL_TIM_TRIGGER_CB_ID :
6318         /* Legacy weak Trigger Callback */
6319         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6320         break;
6321 
6322       case HAL_TIM_TRIGGER_HALF_CB_ID :
6323         /* Legacy weak Trigger half complete Callback */
6324         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6325         break;
6326 
6327       case HAL_TIM_IC_CAPTURE_CB_ID :
6328         /* Legacy weak IC Capture Callback */
6329         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6330         break;
6331 
6332       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6333         /* Legacy weak IC Capture half complete Callback */
6334         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6335         break;
6336 
6337       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6338         /* Legacy weak OC Delay Elapsed Callback */
6339         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6340         break;
6341 
6342       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6343         /* Legacy weak PWM Pulse Finished Callback */
6344         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6345         break;
6346 
6347       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6348         /* Legacy weak PWM Pulse Finished half complete Callback */
6349         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6350         break;
6351 
6352       case HAL_TIM_ERROR_CB_ID :
6353         /* Legacy weak Error Callback */
6354         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6355         break;
6356 
6357       case HAL_TIM_COMMUTATION_CB_ID :
6358         /* Legacy weak Commutation Callback */
6359         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6360         break;
6361 
6362       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6363         /* Legacy weak Commutation half complete Callback */
6364         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6365         break;
6366 
6367       case HAL_TIM_BREAK_CB_ID :
6368         /* Legacy weak Break Callback */
6369         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6370         break;
6371 
6372       case HAL_TIM_BREAK2_CB_ID :
6373         /* Legacy weak Break2 Callback */
6374         htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
6375         break;
6376 
6377       default :
6378         /* Return error status */
6379         status = HAL_ERROR;
6380         break;
6381     }
6382   }
6383   else if (htim->State == HAL_TIM_STATE_RESET)
6384   {
6385     switch (CallbackID)
6386     {
6387       case HAL_TIM_BASE_MSPINIT_CB_ID :
6388         /* Legacy weak Base MspInit Callback */
6389         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6390         break;
6391 
6392       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6393         /* Legacy weak Base Msp DeInit Callback */
6394         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6395         break;
6396 
6397       case HAL_TIM_IC_MSPINIT_CB_ID :
6398         /* Legacy weak IC Msp Init Callback */
6399         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6400         break;
6401 
6402       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6403         /* Legacy weak IC Msp DeInit Callback */
6404         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6405         break;
6406 
6407       case HAL_TIM_OC_MSPINIT_CB_ID :
6408         /* Legacy weak OC Msp Init Callback */
6409         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6410         break;
6411 
6412       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6413         /* Legacy weak OC Msp DeInit Callback */
6414         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6415         break;
6416 
6417       case HAL_TIM_PWM_MSPINIT_CB_ID :
6418         /* Legacy weak PWM Msp Init Callback */
6419         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6420         break;
6421 
6422       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6423         /* Legacy weak PWM Msp DeInit Callback */
6424         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6425         break;
6426 
6427       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6428         /* Legacy weak One Pulse Msp Init Callback */
6429         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6430         break;
6431 
6432       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6433         /* Legacy weak One Pulse Msp DeInit Callback */
6434         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6435         break;
6436 
6437       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6438         /* Legacy weak Encoder Msp Init Callback */
6439         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6440         break;
6441 
6442       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6443         /* Legacy weak Encoder Msp DeInit Callback */
6444         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6445         break;
6446 
6447       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6448         /* Legacy weak Hall Sensor Msp Init Callback */
6449         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6450         break;
6451 
6452       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6453         /* Legacy weak Hall Sensor Msp DeInit Callback */
6454         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6455         break;
6456 
6457       default :
6458         /* Return error status */
6459         status = HAL_ERROR;
6460         break;
6461     }
6462   }
6463   else
6464   {
6465     /* Return error status */
6466     status = HAL_ERROR;
6467   }
6468 
6469   return status;
6470 }
6471 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6472 
6473 /**
6474   * @}
6475   */
6476 
6477 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6478   *  @brief   TIM Peripheral State functions
6479   *
6480 @verbatim
6481   ==============================================================================
6482                         ##### Peripheral State functions #####
6483   ==============================================================================
6484     [..]
6485     This subsection permits to get in run-time the status of the peripheral
6486     and the data flow.
6487 
6488 @endverbatim
6489   * @{
6490   */
6491 
6492 /**
6493   * @brief  Return the TIM Base handle state.
6494   * @param  htim TIM Base handle
6495   * @retval HAL state
6496   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6497 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6498 {
6499   return htim->State;
6500 }
6501 
6502 /**
6503   * @brief  Return the TIM OC handle state.
6504   * @param  htim TIM Output Compare handle
6505   * @retval HAL state
6506   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6507 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6508 {
6509   return htim->State;
6510 }
6511 
6512 /**
6513   * @brief  Return the TIM PWM handle state.
6514   * @param  htim TIM handle
6515   * @retval HAL state
6516   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6517 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6518 {
6519   return htim->State;
6520 }
6521 
6522 /**
6523   * @brief  Return the TIM Input Capture handle state.
6524   * @param  htim TIM IC handle
6525   * @retval HAL state
6526   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6527 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6528 {
6529   return htim->State;
6530 }
6531 
6532 /**
6533   * @brief  Return the TIM One Pulse Mode handle state.
6534   * @param  htim TIM OPM handle
6535   * @retval HAL state
6536   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6537 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6538 {
6539   return htim->State;
6540 }
6541 
6542 /**
6543   * @brief  Return the TIM Encoder Mode handle state.
6544   * @param  htim TIM Encoder Interface handle
6545   * @retval HAL state
6546   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6547 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6548 {
6549   return htim->State;
6550 }
6551 
6552 /**
6553   * @brief  Return the TIM Encoder Mode handle state.
6554   * @param  htim TIM handle
6555   * @retval Active channel
6556   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6557 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6558 {
6559   return htim->Channel;
6560 }
6561 
6562 /**
6563   * @brief  Return actual state of the TIM channel.
6564   * @param  htim TIM handle
6565   * @param  Channel TIM Channel
6566   *          This parameter can be one of the following values:
6567   *            @arg TIM_CHANNEL_1: TIM Channel 1
6568   *            @arg TIM_CHANNEL_2: TIM Channel 2
6569   *            @arg TIM_CHANNEL_3: TIM Channel 3
6570   *            @arg TIM_CHANNEL_4: TIM Channel 4
6571   *            @arg TIM_CHANNEL_5: TIM Channel 5
6572   *            @arg TIM_CHANNEL_6: TIM Channel 6
6573   * @retval TIM Channel state
6574   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6575 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6576 {
6577   HAL_TIM_ChannelStateTypeDef channel_state;
6578 
6579   /* Check the parameters */
6580   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6581 
6582   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6583 
6584   return channel_state;
6585 }
6586 
6587 /**
6588   * @brief  Return actual state of a DMA burst operation.
6589   * @param  htim TIM handle
6590   * @retval DMA burst state
6591   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6592 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6593 {
6594   /* Check the parameters */
6595   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6596 
6597   return htim->DMABurstState;
6598 }
6599 
6600 /**
6601   * @}
6602   */
6603 
6604 /**
6605   * @}
6606   */
6607 
6608 /** @defgroup TIM_Private_Functions TIM Private Functions
6609   * @{
6610   */
6611 
6612 /**
6613   * @brief  TIM DMA error callback
6614   * @param  hdma pointer to DMA handle.
6615   * @retval None
6616   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6617 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6618 {
6619   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6620 
6621   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6622   {
6623     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6624     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6625   }
6626   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6627   {
6628     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6629     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6630   }
6631   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6632   {
6633     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6634     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6635   }
6636   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6637   {
6638     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6639     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6640   }
6641   else
6642   {
6643     htim->State = HAL_TIM_STATE_READY;
6644   }
6645 
6646 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6647   htim->ErrorCallback(htim);
6648 #else
6649   HAL_TIM_ErrorCallback(htim);
6650 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6651 
6652   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6653 }
6654 
6655 /**
6656   * @brief  TIM DMA Delay Pulse complete callback.
6657   * @param  hdma pointer to DMA handle.
6658   * @retval None
6659   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6660 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6661 {
6662   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6663 
6664   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6665   {
6666     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6667 
6668     if (hdma->Init.Mode == DMA_NORMAL)
6669     {
6670       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6671     }
6672   }
6673   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6674   {
6675     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6676 
6677     if (hdma->Init.Mode == DMA_NORMAL)
6678     {
6679       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6680     }
6681   }
6682   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6683   {
6684     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6685 
6686     if (hdma->Init.Mode == DMA_NORMAL)
6687     {
6688       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6689     }
6690   }
6691   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6692   {
6693     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6694 
6695     if (hdma->Init.Mode == DMA_NORMAL)
6696     {
6697       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6698     }
6699   }
6700   else
6701   {
6702     /* nothing to do */
6703   }
6704 
6705 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6706   htim->PWM_PulseFinishedCallback(htim);
6707 #else
6708   HAL_TIM_PWM_PulseFinishedCallback(htim);
6709 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6710 
6711   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6712 }
6713 
6714 /**
6715   * @brief  TIM DMA Delay Pulse half complete callback.
6716   * @param  hdma pointer to DMA handle.
6717   * @retval None
6718   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6719 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6720 {
6721   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6722 
6723   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6724   {
6725     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6726   }
6727   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6728   {
6729     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6730   }
6731   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6732   {
6733     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6734   }
6735   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6736   {
6737     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6738   }
6739   else
6740   {
6741     /* nothing to do */
6742   }
6743 
6744 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6745   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6746 #else
6747   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6748 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6749 
6750   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6751 }
6752 
6753 /**
6754   * @brief  TIM DMA Capture complete callback.
6755   * @param  hdma pointer to DMA handle.
6756   * @retval None
6757   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6758 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6759 {
6760   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6761 
6762   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6763   {
6764     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6765 
6766     if (hdma->Init.Mode == DMA_NORMAL)
6767     {
6768       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6769       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6770     }
6771   }
6772   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6773   {
6774     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6775 
6776     if (hdma->Init.Mode == DMA_NORMAL)
6777     {
6778       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6779       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6780     }
6781   }
6782   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6783   {
6784     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6785 
6786     if (hdma->Init.Mode == DMA_NORMAL)
6787     {
6788       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6789       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6790     }
6791   }
6792   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6793   {
6794     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6795 
6796     if (hdma->Init.Mode == DMA_NORMAL)
6797     {
6798       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6799       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6800     }
6801   }
6802   else
6803   {
6804     /* nothing to do */
6805   }
6806 
6807 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6808   htim->IC_CaptureCallback(htim);
6809 #else
6810   HAL_TIM_IC_CaptureCallback(htim);
6811 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6812 
6813   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6814 }
6815 
6816 /**
6817   * @brief  TIM DMA Capture half complete callback.
6818   * @param  hdma pointer to DMA handle.
6819   * @retval None
6820   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6821 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6822 {
6823   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6824 
6825   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6826   {
6827     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6828   }
6829   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6830   {
6831     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6832   }
6833   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6834   {
6835     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6836   }
6837   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6838   {
6839     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6840   }
6841   else
6842   {
6843     /* nothing to do */
6844   }
6845 
6846 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6847   htim->IC_CaptureHalfCpltCallback(htim);
6848 #else
6849   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6850 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6851 
6852   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6853 }
6854 
6855 /**
6856   * @brief  TIM DMA Period Elapse complete callback.
6857   * @param  hdma pointer to DMA handle.
6858   * @retval None
6859   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6860 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6861 {
6862   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6863 
6864   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6865   {
6866     htim->State = HAL_TIM_STATE_READY;
6867   }
6868 
6869 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6870   htim->PeriodElapsedCallback(htim);
6871 #else
6872   HAL_TIM_PeriodElapsedCallback(htim);
6873 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6874 }
6875 
6876 /**
6877   * @brief  TIM DMA Period Elapse half complete callback.
6878   * @param  hdma pointer to DMA handle.
6879   * @retval None
6880   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6881 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6882 {
6883   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6884 
6885 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6886   htim->PeriodElapsedHalfCpltCallback(htim);
6887 #else
6888   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6889 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6890 }
6891 
6892 /**
6893   * @brief  TIM DMA Trigger callback.
6894   * @param  hdma pointer to DMA handle.
6895   * @retval None
6896   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6897 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6898 {
6899   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6900 
6901   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6902   {
6903     htim->State = HAL_TIM_STATE_READY;
6904   }
6905 
6906 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6907   htim->TriggerCallback(htim);
6908 #else
6909   HAL_TIM_TriggerCallback(htim);
6910 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6911 }
6912 
6913 /**
6914   * @brief  TIM DMA Trigger half complete callback.
6915   * @param  hdma pointer to DMA handle.
6916   * @retval None
6917   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6918 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6919 {
6920   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6921 
6922 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6923   htim->TriggerHalfCpltCallback(htim);
6924 #else
6925   HAL_TIM_TriggerHalfCpltCallback(htim);
6926 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6927 }
6928 
6929 /**
6930   * @brief  Time Base configuration
6931   * @param  TIMx TIM peripheral
6932   * @param  Structure TIM Base configuration structure
6933   * @retval None
6934   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6935 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6936 {
6937   uint32_t tmpcr1;
6938   tmpcr1 = TIMx->CR1;
6939 
6940   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6941   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6942   {
6943     /* Select the Counter Mode */
6944     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6945     tmpcr1 |= Structure->CounterMode;
6946   }
6947 
6948   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6949   {
6950     /* Set the clock division */
6951     tmpcr1 &= ~TIM_CR1_CKD;
6952     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6953   }
6954 
6955   /* Set the auto-reload preload */
6956   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6957 
6958   TIMx->CR1 = tmpcr1;
6959 
6960   /* Set the Autoreload value */
6961   TIMx->ARR = (uint32_t)Structure->Period ;
6962 
6963   /* Set the Prescaler value */
6964   TIMx->PSC = Structure->Prescaler;
6965 
6966   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6967   {
6968     /* Set the Repetition Counter value */
6969     TIMx->RCR = Structure->RepetitionCounter;
6970   }
6971 
6972   /* Generate an update event to reload the Prescaler
6973      and the repetition counter (only for advanced timer) value immediately */
6974   TIMx->EGR = TIM_EGR_UG;
6975 }
6976 
6977 /**
6978   * @brief  Timer Output Compare 1 configuration
6979   * @param  TIMx to select the TIM peripheral
6980   * @param  OC_Config The output configuration structure
6981   * @retval None
6982   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6983 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6984 {
6985   uint32_t tmpccmrx;
6986   uint32_t tmpccer;
6987   uint32_t tmpcr2;
6988 
6989   /* Get the TIMx CCER register value */
6990   tmpccer = TIMx->CCER;
6991 
6992   /* Disable the Channel 1: Reset the CC1E Bit */
6993   TIMx->CCER &= ~TIM_CCER_CC1E;
6994 
6995   /* Get the TIMx CR2 register value */
6996   tmpcr2 =  TIMx->CR2;
6997 
6998   /* Get the TIMx CCMR1 register value */
6999   tmpccmrx = TIMx->CCMR1;
7000 
7001   /* Reset the Output Compare Mode Bits */
7002   tmpccmrx &= ~TIM_CCMR1_OC1M;
7003   tmpccmrx &= ~TIM_CCMR1_CC1S;
7004   /* Select the Output Compare Mode */
7005   tmpccmrx |= OC_Config->OCMode;
7006 
7007   /* Reset the Output Polarity level */
7008   tmpccer &= ~TIM_CCER_CC1P;
7009   /* Set the Output Compare Polarity */
7010   tmpccer |= OC_Config->OCPolarity;
7011 
7012   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7013   {
7014     /* Check parameters */
7015     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7016 
7017     /* Reset the Output N Polarity level */
7018     tmpccer &= ~TIM_CCER_CC1NP;
7019     /* Set the Output N Polarity */
7020     tmpccer |= OC_Config->OCNPolarity;
7021     /* Reset the Output N State */
7022     tmpccer &= ~TIM_CCER_CC1NE;
7023   }
7024 
7025   if (IS_TIM_BREAK_INSTANCE(TIMx))
7026   {
7027     /* Check parameters */
7028     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7029     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7030 
7031     /* Reset the Output Compare and Output Compare N IDLE State */
7032     tmpcr2 &= ~TIM_CR2_OIS1;
7033     tmpcr2 &= ~TIM_CR2_OIS1N;
7034     /* Set the Output Idle state */
7035     tmpcr2 |= OC_Config->OCIdleState;
7036     /* Set the Output N Idle state */
7037     tmpcr2 |= OC_Config->OCNIdleState;
7038   }
7039 
7040   /* Write to TIMx CR2 */
7041   TIMx->CR2 = tmpcr2;
7042 
7043   /* Write to TIMx CCMR1 */
7044   TIMx->CCMR1 = tmpccmrx;
7045 
7046   /* Set the Capture Compare Register value */
7047   TIMx->CCR1 = OC_Config->Pulse;
7048 
7049   /* Write to TIMx CCER */
7050   TIMx->CCER = tmpccer;
7051 }
7052 
7053 /**
7054   * @brief  Timer Output Compare 2 configuration
7055   * @param  TIMx to select the TIM peripheral
7056   * @param  OC_Config The output configuration structure
7057   * @retval None
7058   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7059 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7060 {
7061   uint32_t tmpccmrx;
7062   uint32_t tmpccer;
7063   uint32_t tmpcr2;
7064 
7065   /* Get the TIMx CCER register value */
7066   tmpccer = TIMx->CCER;
7067 
7068   /* Disable the Channel 2: Reset the CC2E Bit */
7069   TIMx->CCER &= ~TIM_CCER_CC2E;
7070 
7071   /* Get the TIMx CR2 register value */
7072   tmpcr2 =  TIMx->CR2;
7073 
7074   /* Get the TIMx CCMR1 register value */
7075   tmpccmrx = TIMx->CCMR1;
7076 
7077   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7078   tmpccmrx &= ~TIM_CCMR1_OC2M;
7079   tmpccmrx &= ~TIM_CCMR1_CC2S;
7080 
7081   /* Select the Output Compare Mode */
7082   tmpccmrx |= (OC_Config->OCMode << 8U);
7083 
7084   /* Reset the Output Polarity level */
7085   tmpccer &= ~TIM_CCER_CC2P;
7086   /* Set the Output Compare Polarity */
7087   tmpccer |= (OC_Config->OCPolarity << 4U);
7088 
7089   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7090   {
7091     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7092 
7093     /* Reset the Output N Polarity level */
7094     tmpccer &= ~TIM_CCER_CC2NP;
7095     /* Set the Output N Polarity */
7096     tmpccer |= (OC_Config->OCNPolarity << 4U);
7097     /* Reset the Output N State */
7098     tmpccer &= ~TIM_CCER_CC2NE;
7099 
7100   }
7101 
7102   if (IS_TIM_BREAK_INSTANCE(TIMx))
7103   {
7104     /* Check parameters */
7105     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7106     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7107 
7108     /* Reset the Output Compare and Output Compare N IDLE State */
7109     tmpcr2 &= ~TIM_CR2_OIS2;
7110     tmpcr2 &= ~TIM_CR2_OIS2N;
7111     /* Set the Output Idle state */
7112     tmpcr2 |= (OC_Config->OCIdleState << 2U);
7113     /* Set the Output N Idle state */
7114     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7115   }
7116 
7117   /* Write to TIMx CR2 */
7118   TIMx->CR2 = tmpcr2;
7119 
7120   /* Write to TIMx CCMR1 */
7121   TIMx->CCMR1 = tmpccmrx;
7122 
7123   /* Set the Capture Compare Register value */
7124   TIMx->CCR2 = OC_Config->Pulse;
7125 
7126   /* Write to TIMx CCER */
7127   TIMx->CCER = tmpccer;
7128 }
7129 
7130 /**
7131   * @brief  Timer Output Compare 3 configuration
7132   * @param  TIMx to select the TIM peripheral
7133   * @param  OC_Config The output configuration structure
7134   * @retval None
7135   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7136 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7137 {
7138   uint32_t tmpccmrx;
7139   uint32_t tmpccer;
7140   uint32_t tmpcr2;
7141 
7142   /* Get the TIMx CCER register value */
7143   tmpccer = TIMx->CCER;
7144 
7145   /* Disable the Channel 3: Reset the CC2E Bit */
7146   TIMx->CCER &= ~TIM_CCER_CC3E;
7147 
7148   /* Get the TIMx CR2 register value */
7149   tmpcr2 =  TIMx->CR2;
7150 
7151   /* Get the TIMx CCMR2 register value */
7152   tmpccmrx = TIMx->CCMR2;
7153 
7154   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7155   tmpccmrx &= ~TIM_CCMR2_OC3M;
7156   tmpccmrx &= ~TIM_CCMR2_CC3S;
7157   /* Select the Output Compare Mode */
7158   tmpccmrx |= OC_Config->OCMode;
7159 
7160   /* Reset the Output Polarity level */
7161   tmpccer &= ~TIM_CCER_CC3P;
7162   /* Set the Output Compare Polarity */
7163   tmpccer |= (OC_Config->OCPolarity << 8U);
7164 
7165   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7166   {
7167     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7168 
7169     /* Reset the Output N Polarity level */
7170     tmpccer &= ~TIM_CCER_CC3NP;
7171     /* Set the Output N Polarity */
7172     tmpccer |= (OC_Config->OCNPolarity << 8U);
7173     /* Reset the Output N State */
7174     tmpccer &= ~TIM_CCER_CC3NE;
7175   }
7176 
7177   if (IS_TIM_BREAK_INSTANCE(TIMx))
7178   {
7179     /* Check parameters */
7180     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7181     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7182 
7183     /* Reset the Output Compare and Output Compare N IDLE State */
7184     tmpcr2 &= ~TIM_CR2_OIS3;
7185     tmpcr2 &= ~TIM_CR2_OIS3N;
7186     /* Set the Output Idle state */
7187     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7188     /* Set the Output N Idle state */
7189     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7190   }
7191 
7192   /* Write to TIMx CR2 */
7193   TIMx->CR2 = tmpcr2;
7194 
7195   /* Write to TIMx CCMR2 */
7196   TIMx->CCMR2 = tmpccmrx;
7197 
7198   /* Set the Capture Compare Register value */
7199   TIMx->CCR3 = OC_Config->Pulse;
7200 
7201   /* Write to TIMx CCER */
7202   TIMx->CCER = tmpccer;
7203 }
7204 
7205 /**
7206   * @brief  Timer Output Compare 4 configuration
7207   * @param  TIMx to select the TIM peripheral
7208   * @param  OC_Config The output configuration structure
7209   * @retval None
7210   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7211 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7212 {
7213   uint32_t tmpccmrx;
7214   uint32_t tmpccer;
7215   uint32_t tmpcr2;
7216 
7217   /* Get the TIMx CCER register value */
7218   tmpccer = TIMx->CCER;
7219 
7220   /* Disable the Channel 4: Reset the CC4E Bit */
7221   TIMx->CCER &= ~TIM_CCER_CC4E;
7222 
7223   /* Get the TIMx CR2 register value */
7224   tmpcr2 =  TIMx->CR2;
7225 
7226   /* Get the TIMx CCMR2 register value */
7227   tmpccmrx = TIMx->CCMR2;
7228 
7229   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7230   tmpccmrx &= ~TIM_CCMR2_OC4M;
7231   tmpccmrx &= ~TIM_CCMR2_CC4S;
7232 
7233   /* Select the Output Compare Mode */
7234   tmpccmrx |= (OC_Config->OCMode << 8U);
7235 
7236   /* Reset the Output Polarity level */
7237   tmpccer &= ~TIM_CCER_CC4P;
7238   /* Set the Output Compare Polarity */
7239   tmpccer |= (OC_Config->OCPolarity << 12U);
7240 
7241   if (IS_TIM_BREAK_INSTANCE(TIMx))
7242   {
7243     /* Check parameters */
7244     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7245 
7246     /* Reset the Output Compare IDLE State */
7247     tmpcr2 &= ~TIM_CR2_OIS4;
7248 
7249     /* Set the Output Idle state */
7250     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7251   }
7252 
7253   /* Write to TIMx CR2 */
7254   TIMx->CR2 = tmpcr2;
7255 
7256   /* Write to TIMx CCMR2 */
7257   TIMx->CCMR2 = tmpccmrx;
7258 
7259   /* Set the Capture Compare Register value */
7260   TIMx->CCR4 = OC_Config->Pulse;
7261 
7262   /* Write to TIMx CCER */
7263   TIMx->CCER = tmpccer;
7264 }
7265 
7266 /**
7267   * @brief  Timer Output Compare 5 configuration
7268   * @param  TIMx to select the TIM peripheral
7269   * @param  OC_Config The output configuration structure
7270   * @retval None
7271   */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7272 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7273                               const TIM_OC_InitTypeDef *OC_Config)
7274 {
7275   uint32_t tmpccmrx;
7276   uint32_t tmpccer;
7277   uint32_t tmpcr2;
7278 
7279   /* Get the TIMx CCER register value */
7280   tmpccer = TIMx->CCER;
7281 
7282   /* Disable the output: Reset the CCxE Bit */
7283   TIMx->CCER &= ~TIM_CCER_CC5E;
7284 
7285   /* Get the TIMx CR2 register value */
7286   tmpcr2 =  TIMx->CR2;
7287   /* Get the TIMx CCMR1 register value */
7288   tmpccmrx = TIMx->CCMR3;
7289 
7290   /* Reset the Output Compare Mode Bits */
7291   tmpccmrx &= ~(TIM_CCMR3_OC5M);
7292   /* Select the Output Compare Mode */
7293   tmpccmrx |= OC_Config->OCMode;
7294 
7295   /* Reset the Output Polarity level */
7296   tmpccer &= ~TIM_CCER_CC5P;
7297   /* Set the Output Compare Polarity */
7298   tmpccer |= (OC_Config->OCPolarity << 16U);
7299 
7300   if (IS_TIM_BREAK_INSTANCE(TIMx))
7301   {
7302     /* Reset the Output Compare IDLE State */
7303     tmpcr2 &= ~TIM_CR2_OIS5;
7304     /* Set the Output Idle state */
7305     tmpcr2 |= (OC_Config->OCIdleState << 8U);
7306   }
7307   /* Write to TIMx CR2 */
7308   TIMx->CR2 = tmpcr2;
7309 
7310   /* Write to TIMx CCMR3 */
7311   TIMx->CCMR3 = tmpccmrx;
7312 
7313   /* Set the Capture Compare Register value */
7314   TIMx->CCR5 = OC_Config->Pulse;
7315 
7316   /* Write to TIMx CCER */
7317   TIMx->CCER = tmpccer;
7318 }
7319 
7320 /**
7321   * @brief  Timer Output Compare 6 configuration
7322   * @param  TIMx to select the TIM peripheral
7323   * @param  OC_Config The output configuration structure
7324   * @retval None
7325   */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7326 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7327                               const TIM_OC_InitTypeDef *OC_Config)
7328 {
7329   uint32_t tmpccmrx;
7330   uint32_t tmpccer;
7331   uint32_t tmpcr2;
7332 
7333   /* Get the TIMx CCER register value */
7334   tmpccer = TIMx->CCER;
7335 
7336   /* Disable the output: Reset the CCxE Bit */
7337   TIMx->CCER &= ~TIM_CCER_CC6E;
7338 
7339   /* Get the TIMx CR2 register value */
7340   tmpcr2 =  TIMx->CR2;
7341   /* Get the TIMx CCMR1 register value */
7342   tmpccmrx = TIMx->CCMR3;
7343 
7344   /* Reset the Output Compare Mode Bits */
7345   tmpccmrx &= ~(TIM_CCMR3_OC6M);
7346   /* Select the Output Compare Mode */
7347   tmpccmrx |= (OC_Config->OCMode << 8U);
7348 
7349   /* Reset the Output Polarity level */
7350   tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7351   /* Set the Output Compare Polarity */
7352   tmpccer |= (OC_Config->OCPolarity << 20U);
7353 
7354   if (IS_TIM_BREAK_INSTANCE(TIMx))
7355   {
7356     /* Reset the Output Compare IDLE State */
7357     tmpcr2 &= ~TIM_CR2_OIS6;
7358     /* Set the Output Idle state */
7359     tmpcr2 |= (OC_Config->OCIdleState << 10U);
7360   }
7361 
7362   /* Write to TIMx CR2 */
7363   TIMx->CR2 = tmpcr2;
7364 
7365   /* Write to TIMx CCMR3 */
7366   TIMx->CCMR3 = tmpccmrx;
7367 
7368   /* Set the Capture Compare Register value */
7369   TIMx->CCR6 = OC_Config->Pulse;
7370 
7371   /* Write to TIMx CCER */
7372   TIMx->CCER = tmpccer;
7373 }
7374 
7375 /**
7376   * @brief  Slave Timer configuration function
7377   * @param  htim TIM handle
7378   * @param  sSlaveConfig Slave timer configuration
7379   * @retval None
7380   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7381 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7382                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7383 {
7384   HAL_StatusTypeDef status = HAL_OK;
7385   uint32_t tmpsmcr;
7386   uint32_t tmpccmr1;
7387   uint32_t tmpccer;
7388 
7389   /* Get the TIMx SMCR register value */
7390   tmpsmcr = htim->Instance->SMCR;
7391 
7392   /* Reset the Trigger Selection Bits */
7393   tmpsmcr &= ~TIM_SMCR_TS;
7394   /* Set the Input Trigger source */
7395   tmpsmcr |= sSlaveConfig->InputTrigger;
7396 
7397   /* Reset the slave mode Bits */
7398   tmpsmcr &= ~TIM_SMCR_SMS;
7399   /* Set the slave mode */
7400   tmpsmcr |= sSlaveConfig->SlaveMode;
7401 
7402   /* Write to TIMx SMCR */
7403   htim->Instance->SMCR = tmpsmcr;
7404 
7405   /* Configure the trigger prescaler, filter, and polarity */
7406   switch (sSlaveConfig->InputTrigger)
7407   {
7408     case TIM_TS_ETRF:
7409     {
7410       /* Check the parameters */
7411       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7412       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7413       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7414       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7415       /* Configure the ETR Trigger source */
7416       TIM_ETR_SetConfig(htim->Instance,
7417                         sSlaveConfig->TriggerPrescaler,
7418                         sSlaveConfig->TriggerPolarity,
7419                         sSlaveConfig->TriggerFilter);
7420       break;
7421     }
7422 
7423     case TIM_TS_TI1F_ED:
7424     {
7425       /* Check the parameters */
7426       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7427       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7428 
7429       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7430       {
7431         return HAL_ERROR;
7432       }
7433 
7434       /* Disable the Channel 1: Reset the CC1E Bit */
7435       tmpccer = htim->Instance->CCER;
7436       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7437       tmpccmr1 = htim->Instance->CCMR1;
7438 
7439       /* Set the filter */
7440       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7441       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7442 
7443       /* Write to TIMx CCMR1 and CCER registers */
7444       htim->Instance->CCMR1 = tmpccmr1;
7445       htim->Instance->CCER = tmpccer;
7446       break;
7447     }
7448 
7449     case TIM_TS_TI1FP1:
7450     {
7451       /* Check the parameters */
7452       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7453       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7454       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7455 
7456       /* Configure TI1 Filter and Polarity */
7457       TIM_TI1_ConfigInputStage(htim->Instance,
7458                                sSlaveConfig->TriggerPolarity,
7459                                sSlaveConfig->TriggerFilter);
7460       break;
7461     }
7462 
7463     case TIM_TS_TI2FP2:
7464     {
7465       /* Check the parameters */
7466       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7467       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7468       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7469 
7470       /* Configure TI2 Filter and Polarity */
7471       TIM_TI2_ConfigInputStage(htim->Instance,
7472                                sSlaveConfig->TriggerPolarity,
7473                                sSlaveConfig->TriggerFilter);
7474       break;
7475     }
7476 
7477     case TIM_TS_ITR0:
7478     case TIM_TS_ITR1:
7479     case TIM_TS_ITR2:
7480     case TIM_TS_ITR3:
7481     {
7482       /* Check the parameter */
7483       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7484       break;
7485     }
7486 
7487     default:
7488       status = HAL_ERROR;
7489       break;
7490   }
7491 
7492   return status;
7493 }
7494 
7495 /**
7496   * @brief  Configure the TI1 as Input.
7497   * @param  TIMx to select the TIM peripheral.
7498   * @param  TIM_ICPolarity The Input Polarity.
7499   *          This parameter can be one of the following values:
7500   *            @arg TIM_ICPOLARITY_RISING
7501   *            @arg TIM_ICPOLARITY_FALLING
7502   *            @arg TIM_ICPOLARITY_BOTHEDGE
7503   * @param  TIM_ICSelection specifies the input to be used.
7504   *          This parameter can be one of the following values:
7505   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7506   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7507   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7508   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7509   *          This parameter must be a value between 0x00 and 0x0F.
7510   * @retval None
7511   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7512   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7513   *        protected against un-initialized filter and polarity values.
7514   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7515 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7516                        uint32_t TIM_ICFilter)
7517 {
7518   uint32_t tmpccmr1;
7519   uint32_t tmpccer;
7520 
7521   /* Disable the Channel 1: Reset the CC1E Bit */
7522   tmpccer = TIMx->CCER;
7523   TIMx->CCER &= ~TIM_CCER_CC1E;
7524   tmpccmr1 = TIMx->CCMR1;
7525 
7526   /* Select the Input */
7527   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7528   {
7529     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7530     tmpccmr1 |= TIM_ICSelection;
7531   }
7532   else
7533   {
7534     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7535   }
7536 
7537   /* Set the filter */
7538   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7539   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7540 
7541   /* Select the Polarity and set the CC1E Bit */
7542   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7543   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7544 
7545   /* Write to TIMx CCMR1 and CCER registers */
7546   TIMx->CCMR1 = tmpccmr1;
7547   TIMx->CCER = tmpccer;
7548 }
7549 
7550 /**
7551   * @brief  Configure the Polarity and Filter for TI1.
7552   * @param  TIMx to select the TIM peripheral.
7553   * @param  TIM_ICPolarity The Input Polarity.
7554   *          This parameter can be one of the following values:
7555   *            @arg TIM_ICPOLARITY_RISING
7556   *            @arg TIM_ICPOLARITY_FALLING
7557   *            @arg TIM_ICPOLARITY_BOTHEDGE
7558   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7559   *          This parameter must be a value between 0x00 and 0x0F.
7560   * @retval None
7561   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7562 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7563 {
7564   uint32_t tmpccmr1;
7565   uint32_t tmpccer;
7566 
7567   /* Disable the Channel 1: Reset the CC1E Bit */
7568   tmpccer = TIMx->CCER;
7569   TIMx->CCER &= ~TIM_CCER_CC1E;
7570   tmpccmr1 = TIMx->CCMR1;
7571 
7572   /* Set the filter */
7573   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7574   tmpccmr1 |= (TIM_ICFilter << 4U);
7575 
7576   /* Select the Polarity and set the CC1E Bit */
7577   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7578   tmpccer |= TIM_ICPolarity;
7579 
7580   /* Write to TIMx CCMR1 and CCER registers */
7581   TIMx->CCMR1 = tmpccmr1;
7582   TIMx->CCER = tmpccer;
7583 }
7584 
7585 /**
7586   * @brief  Configure the TI2 as Input.
7587   * @param  TIMx to select the TIM peripheral
7588   * @param  TIM_ICPolarity The Input Polarity.
7589   *          This parameter can be one of the following values:
7590   *            @arg TIM_ICPOLARITY_RISING
7591   *            @arg TIM_ICPOLARITY_FALLING
7592   *            @arg TIM_ICPOLARITY_BOTHEDGE
7593   * @param  TIM_ICSelection specifies the input to be used.
7594   *          This parameter can be one of the following values:
7595   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7596   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7597   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7598   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7599   *          This parameter must be a value between 0x00 and 0x0F.
7600   * @retval None
7601   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7602   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7603   *        protected against un-initialized filter and polarity values.
7604   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7605 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7606                               uint32_t TIM_ICFilter)
7607 {
7608   uint32_t tmpccmr1;
7609   uint32_t tmpccer;
7610 
7611   /* Disable the Channel 2: Reset the CC2E Bit */
7612   tmpccer = TIMx->CCER;
7613   TIMx->CCER &= ~TIM_CCER_CC2E;
7614   tmpccmr1 = TIMx->CCMR1;
7615 
7616   /* Select the Input */
7617   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7618   tmpccmr1 |= (TIM_ICSelection << 8U);
7619 
7620   /* Set the filter */
7621   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7622   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7623 
7624   /* Select the Polarity and set the CC2E Bit */
7625   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7626   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7627 
7628   /* Write to TIMx CCMR1 and CCER registers */
7629   TIMx->CCMR1 = tmpccmr1 ;
7630   TIMx->CCER = tmpccer;
7631 }
7632 
7633 /**
7634   * @brief  Configure the Polarity and Filter for TI2.
7635   * @param  TIMx to select the TIM peripheral.
7636   * @param  TIM_ICPolarity The Input Polarity.
7637   *          This parameter can be one of the following values:
7638   *            @arg TIM_ICPOLARITY_RISING
7639   *            @arg TIM_ICPOLARITY_FALLING
7640   *            @arg TIM_ICPOLARITY_BOTHEDGE
7641   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7642   *          This parameter must be a value between 0x00 and 0x0F.
7643   * @retval None
7644   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7645 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7646 {
7647   uint32_t tmpccmr1;
7648   uint32_t tmpccer;
7649 
7650   /* Disable the Channel 2: Reset the CC2E Bit */
7651   tmpccer = TIMx->CCER;
7652   TIMx->CCER &= ~TIM_CCER_CC2E;
7653   tmpccmr1 = TIMx->CCMR1;
7654 
7655   /* Set the filter */
7656   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7657   tmpccmr1 |= (TIM_ICFilter << 12U);
7658 
7659   /* Select the Polarity and set the CC2E Bit */
7660   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7661   tmpccer |= (TIM_ICPolarity << 4U);
7662 
7663   /* Write to TIMx CCMR1 and CCER registers */
7664   TIMx->CCMR1 = tmpccmr1 ;
7665   TIMx->CCER = tmpccer;
7666 }
7667 
7668 /**
7669   * @brief  Configure the TI3 as Input.
7670   * @param  TIMx to select the TIM peripheral
7671   * @param  TIM_ICPolarity The Input Polarity.
7672   *          This parameter can be one of the following values:
7673   *            @arg TIM_ICPOLARITY_RISING
7674   *            @arg TIM_ICPOLARITY_FALLING
7675   *            @arg TIM_ICPOLARITY_BOTHEDGE
7676   * @param  TIM_ICSelection specifies the input to be used.
7677   *          This parameter can be one of the following values:
7678   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7679   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7680   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7681   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7682   *          This parameter must be a value between 0x00 and 0x0F.
7683   * @retval None
7684   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7685   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7686   *        protected against un-initialized filter and polarity values.
7687   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7688 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7689                               uint32_t TIM_ICFilter)
7690 {
7691   uint32_t tmpccmr2;
7692   uint32_t tmpccer;
7693 
7694   /* Disable the Channel 3: Reset the CC3E Bit */
7695   tmpccer = TIMx->CCER;
7696   TIMx->CCER &= ~TIM_CCER_CC3E;
7697   tmpccmr2 = TIMx->CCMR2;
7698 
7699   /* Select the Input */
7700   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7701   tmpccmr2 |= TIM_ICSelection;
7702 
7703   /* Set the filter */
7704   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7705   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7706 
7707   /* Select the Polarity and set the CC3E Bit */
7708   tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7709   tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7710 
7711   /* Write to TIMx CCMR2 and CCER registers */
7712   TIMx->CCMR2 = tmpccmr2;
7713   TIMx->CCER = tmpccer;
7714 }
7715 
7716 /**
7717   * @brief  Configure the TI4 as Input.
7718   * @param  TIMx to select the TIM peripheral
7719   * @param  TIM_ICPolarity The Input Polarity.
7720   *          This parameter can be one of the following values:
7721   *            @arg TIM_ICPOLARITY_RISING
7722   *            @arg TIM_ICPOLARITY_FALLING
7723   *            @arg TIM_ICPOLARITY_BOTHEDGE
7724   * @param  TIM_ICSelection specifies the input to be used.
7725   *          This parameter can be one of the following values:
7726   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7727   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7728   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7729   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7730   *          This parameter must be a value between 0x00 and 0x0F.
7731   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7732   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7733   *        protected against un-initialized filter and polarity values.
7734   * @retval None
7735   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7736 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7737                               uint32_t TIM_ICFilter)
7738 {
7739   uint32_t tmpccmr2;
7740   uint32_t tmpccer;
7741 
7742   /* Disable the Channel 4: Reset the CC4E Bit */
7743   tmpccer = TIMx->CCER;
7744   TIMx->CCER &= ~TIM_CCER_CC4E;
7745   tmpccmr2 = TIMx->CCMR2;
7746 
7747   /* Select the Input */
7748   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7749   tmpccmr2 |= (TIM_ICSelection << 8U);
7750 
7751   /* Set the filter */
7752   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7753   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7754 
7755   /* Select the Polarity and set the CC4E Bit */
7756   tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7757   tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7758 
7759   /* Write to TIMx CCMR2 and CCER registers */
7760   TIMx->CCMR2 = tmpccmr2;
7761   TIMx->CCER = tmpccer ;
7762 }
7763 
7764 /**
7765   * @brief  Selects the Input Trigger source
7766   * @param  TIMx to select the TIM peripheral
7767   * @param  InputTriggerSource The Input Trigger source.
7768   *          This parameter can be one of the following values:
7769   *            @arg TIM_TS_ITR0: Internal Trigger 0
7770   *            @arg TIM_TS_ITR1: Internal Trigger 1
7771   *            @arg TIM_TS_ITR2: Internal Trigger 2
7772   *            @arg TIM_TS_ITR3: Internal Trigger 3
7773   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7774   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7775   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7776   *            @arg TIM_TS_ETRF: External Trigger input
7777   * @retval None
7778   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7779 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7780 {
7781   uint32_t tmpsmcr;
7782 
7783   /* Get the TIMx SMCR register value */
7784   tmpsmcr = TIMx->SMCR;
7785   /* Reset the TS Bits */
7786   tmpsmcr &= ~TIM_SMCR_TS;
7787   /* Set the Input Trigger source and the slave mode*/
7788   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7789   /* Write to TIMx SMCR */
7790   TIMx->SMCR = tmpsmcr;
7791 }
7792 /**
7793   * @brief  Configures the TIMx External Trigger (ETR).
7794   * @param  TIMx to select the TIM peripheral
7795   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7796   *          This parameter can be one of the following values:
7797   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7798   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7799   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7800   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7801   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7802   *          This parameter can be one of the following values:
7803   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7804   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7805   * @param  ExtTRGFilter External Trigger Filter.
7806   *          This parameter must be a value between 0x00 and 0x0F
7807   * @retval None
7808   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7809 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7810                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7811 {
7812   uint32_t tmpsmcr;
7813 
7814   tmpsmcr = TIMx->SMCR;
7815 
7816   /* Reset the ETR Bits */
7817   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7818 
7819   /* Set the Prescaler, the Filter value and the Polarity */
7820   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7821 
7822   /* Write to TIMx SMCR */
7823   TIMx->SMCR = tmpsmcr;
7824 }
7825 
7826 /**
7827   * @brief  Enables or disables the TIM Capture Compare Channel x.
7828   * @param  TIMx to select the TIM peripheral
7829   * @param  Channel specifies the TIM Channel
7830   *          This parameter can be one of the following values:
7831   *            @arg TIM_CHANNEL_1: TIM Channel 1
7832   *            @arg TIM_CHANNEL_2: TIM Channel 2
7833   *            @arg TIM_CHANNEL_3: TIM Channel 3
7834   *            @arg TIM_CHANNEL_4: TIM Channel 4
7835   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
7836   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
7837   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7838   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7839   * @retval None
7840   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7841 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7842 {
7843   uint32_t tmp;
7844 
7845   /* Check the parameters */
7846   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7847   assert_param(IS_TIM_CHANNELS(Channel));
7848 
7849   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7850 
7851   /* Reset the CCxE Bit */
7852   TIMx->CCER &= ~tmp;
7853 
7854   /* Set or reset the CCxE Bit */
7855   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7856 }
7857 
7858 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7859 /**
7860   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7861   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7862   *                the configuration information for TIM module.
7863   * @retval None
7864   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7865 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7866 {
7867   /* Reset the TIM callback to the legacy weak callbacks */
7868   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7869   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7870   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7871   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7872   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7873   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7874   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7875   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7876   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7877   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7878   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7879   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7880   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7881   htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
7882 }
7883 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7884 
7885 /**
7886   * @}
7887   */
7888 
7889 #endif /* HAL_TIM_MODULE_ENABLED */
7890 /**
7891   * @}
7892   */
7893 
7894 /**
7895   * @}
7896   */
7897