1 /**
2   ******************************************************************************
3   * @file    stm32c0xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2022 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32C0xx_LL_TIM_H
21 #define __STM32C0xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32c0xx.h"
29 
30 /** @addtogroup STM32C0xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM16) || defined (TIM17)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #define TIM_POSITION_BRK_SOURCE            ((Source >> 1U) & 0x1FUL)
120 
121 /* Generic bit definitions for TIMx_AF1 register */
122 #define TIMx_AF1_BKINP     TIM_AF1_BKINP     /*!< BRK BKIN input polarity */
123 #define TIMx_AF1_ETRSEL    TIM_AF1_ETRSEL    /*!< TIMx ETR source selection */
124 
125 
126 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
127 #define DT_DELAY_1 ((uint8_t)0x7F)
128 #define DT_DELAY_2 ((uint8_t)0x3F)
129 #define DT_DELAY_3 ((uint8_t)0x1F)
130 #define DT_DELAY_4 ((uint8_t)0x1F)
131 
132 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
133 #define DT_RANGE_1 ((uint8_t)0x00)
134 #define DT_RANGE_2 ((uint8_t)0x80)
135 #define DT_RANGE_3 ((uint8_t)0xC0)
136 #define DT_RANGE_4 ((uint8_t)0xE0)
137 
138 /** Legacy definitions for compatibility purpose
139 @cond 0
140   */
141 /**
142 @endcond
143   */
144 
145 #define OCREF_CLEAR_SELECT_POS (16U)
146 #define OCREF_CLEAR_SELECT_MSK (0x1U << OCREF_CLEAR_SELECT_POS)                /*!< 0x00010000 */
147 /**
148   * @}
149   */
150 
151 /* Private macros ------------------------------------------------------------*/
152 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
153   * @{
154   */
155 /** @brief  Convert channel id into channel index.
156   * @param  __CHANNEL__ This parameter can be one of the following values:
157   *         @arg @ref LL_TIM_CHANNEL_CH1
158   *         @arg @ref LL_TIM_CHANNEL_CH1N
159   *         @arg @ref LL_TIM_CHANNEL_CH2
160   *         @arg @ref LL_TIM_CHANNEL_CH2N
161   *         @arg @ref LL_TIM_CHANNEL_CH3
162   *         @arg @ref LL_TIM_CHANNEL_CH3N
163   *         @arg @ref LL_TIM_CHANNEL_CH4
164   *         @arg @ref LL_TIM_CHANNEL_CH5
165   *         @arg @ref LL_TIM_CHANNEL_CH6
166   * @retval none
167   */
168 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
169   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
170    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
171    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
172    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
173    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
174    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
175    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
176    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
177 
178 /** @brief  Calculate the deadtime sampling period(in ps).
179   * @param  __TIMCLK__ timer input clock frequency (in Hz).
180   * @param  __CKD__ This parameter can be one of the following values:
181   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
182   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
183   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
184   * @retval none
185   */
186 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
187   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
188    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
189    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
190 /**
191   * @}
192   */
193 
194 
195 /* Exported types ------------------------------------------------------------*/
196 #if defined(USE_FULL_LL_DRIVER)
197 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
198   * @{
199   */
200 
201 /**
202   * @brief  TIM Time Base configuration structure definition.
203   */
204 typedef struct
205 {
206   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
207                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
208 
209                                    This feature can be modified afterwards using unitary function
210                                    @ref LL_TIM_SetPrescaler().*/
211 
212   uint32_t CounterMode;       /*!< Specifies the counter mode.
213                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
214 
215                                    This feature can be modified afterwards using unitary function
216                                    @ref LL_TIM_SetCounterMode().*/
217 
218   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
219                                    Auto-Reload Register at the next update event.
220                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
221                                    Some timer instances may support 32 bits counters. In that case this parameter must
222                                    be a number between 0x0000 and 0xFFFFFFFF.
223 
224                                    This feature can be modified afterwards using unitary function
225                                    @ref LL_TIM_SetAutoReload().*/
226 
227   uint32_t ClockDivision;     /*!< Specifies the clock division.
228                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
229 
230                                    This feature can be modified afterwards using unitary function
231                                    @ref LL_TIM_SetClockDivision().*/
232 
233   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
234                                    reaches zero, an update event is generated and counting restarts
235                                    from the RCR value (N).
236                                    This means in PWM mode that (N+1) corresponds to:
237                                       - the number of PWM periods in edge-aligned mode
238                                       - the number of half PWM period in center-aligned mode
239                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
240                                    Max_Data = 0xFF.
241                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
242                                    Max_Data = 0xFFFF.
243 
244                                    This feature can be modified afterwards using unitary function
245                                    @ref LL_TIM_SetRepetitionCounter().*/
246 } LL_TIM_InitTypeDef;
247 
248 /**
249   * @brief  TIM Output Compare configuration structure definition.
250   */
251 typedef struct
252 {
253   uint32_t OCMode;        /*!< Specifies the output mode.
254                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
255 
256                                This feature can be modified afterwards using unitary function
257                                @ref LL_TIM_OC_SetMode().*/
258 
259   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
260                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
261 
262                                This feature can be modified afterwards using unitary functions
263                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
264 
265   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
266                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
267 
268                                This feature can be modified afterwards using unitary functions
269                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
270 
271   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
272                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
273 
274                                This feature can be modified afterwards using unitary function
275                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
276 
277   uint32_t OCPolarity;    /*!< Specifies the output polarity.
278                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
279 
280                                This feature can be modified afterwards using unitary function
281                                @ref LL_TIM_OC_SetPolarity().*/
282 
283   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
284                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
285 
286                                This feature can be modified afterwards using unitary function
287                                @ref LL_TIM_OC_SetPolarity().*/
288 
289 
290   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
291                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
292 
293                                This feature can be modified afterwards using unitary function
294                                @ref LL_TIM_OC_SetIdleState().*/
295 
296   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
297                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
298 
299                                This feature can be modified afterwards using unitary function
300                                @ref LL_TIM_OC_SetIdleState().*/
301 } LL_TIM_OC_InitTypeDef;
302 
303 /**
304   * @brief  TIM Input Capture configuration structure definition.
305   */
306 
307 typedef struct
308 {
309 
310   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
311                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
312 
313                                This feature can be modified afterwards using unitary function
314                                @ref LL_TIM_IC_SetPolarity().*/
315 
316   uint32_t ICActiveInput; /*!< Specifies the input.
317                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
318 
319                                This feature can be modified afterwards using unitary function
320                                @ref LL_TIM_IC_SetActiveInput().*/
321 
322   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
323                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
324 
325                                This feature can be modified afterwards using unitary function
326                                @ref LL_TIM_IC_SetPrescaler().*/
327 
328   uint32_t ICFilter;      /*!< Specifies the input capture filter.
329                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
330 
331                                This feature can be modified afterwards using unitary function
332                                @ref LL_TIM_IC_SetFilter().*/
333 } LL_TIM_IC_InitTypeDef;
334 
335 
336 /**
337   * @brief  TIM Encoder interface configuration structure definition.
338   */
339 typedef struct
340 {
341   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
342                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
343 
344                                  This feature can be modified afterwards using unitary function
345                                  @ref LL_TIM_SetEncoderMode().*/
346 
347   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
348                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
349 
350                                  This feature can be modified afterwards using unitary function
351                                  @ref LL_TIM_IC_SetPolarity().*/
352 
353   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
354                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
355 
356                                  This feature can be modified afterwards using unitary function
357                                  @ref LL_TIM_IC_SetActiveInput().*/
358 
359   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
360                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
361 
362                                  This feature can be modified afterwards using unitary function
363                                  @ref LL_TIM_IC_SetPrescaler().*/
364 
365   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
366                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
367 
368                                  This feature can be modified afterwards using unitary function
369                                  @ref LL_TIM_IC_SetFilter().*/
370 
371   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
372                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
373 
374                                  This feature can be modified afterwards using unitary function
375                                  @ref LL_TIM_IC_SetPolarity().*/
376 
377   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
378                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
379 
380                                  This feature can be modified afterwards using unitary function
381                                  @ref LL_TIM_IC_SetActiveInput().*/
382 
383   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
384                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
385 
386                                  This feature can be modified afterwards using unitary function
387                                  @ref LL_TIM_IC_SetPrescaler().*/
388 
389   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
390                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
391 
392                                  This feature can be modified afterwards using unitary function
393                                  @ref LL_TIM_IC_SetFilter().*/
394 
395 } LL_TIM_ENCODER_InitTypeDef;
396 
397 /**
398   * @brief  TIM Hall sensor interface configuration structure definition.
399   */
400 typedef struct
401 {
402 
403   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
404                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
405 
406                                     This feature can be modified afterwards using unitary function
407                                     @ref LL_TIM_IC_SetPolarity().*/
408 
409   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
410                                     Prescaler must be set to get a maximum counter period longer than the
411                                     time interval between 2 consecutive changes on the Hall inputs.
412                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
413 
414                                     This feature can be modified afterwards using unitary function
415                                     @ref LL_TIM_IC_SetPrescaler().*/
416 
417   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
418                                     This parameter can be a value of
419                                     @ref TIM_LL_EC_IC_FILTER.
420 
421                                     This feature can be modified afterwards using unitary function
422                                     @ref LL_TIM_IC_SetFilter().*/
423 
424   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
425                                     A positive pulse (TRGO event) is generated with a programmable delay every time
426                                     a change occurs on the Hall inputs.
427                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
428 
429                                     This feature can be modified afterwards using unitary function
430                                     @ref LL_TIM_OC_SetCompareCH2().*/
431 } LL_TIM_HALLSENSOR_InitTypeDef;
432 
433 /**
434   * @brief  BDTR (Break and Dead Time) structure definition
435   */
436 typedef struct
437 {
438   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
439                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
440 
441                                       This feature can be modified afterwards using unitary function
442                                       @ref LL_TIM_SetOffStates()
443 
444                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
445                                        programmed. */
446 
447   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
448                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
449 
450                                       This feature can be modified afterwards using unitary function
451                                       @ref LL_TIM_SetOffStates()
452 
453                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
454                                       programmed. */
455 
456   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
457                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
458 
459                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
460                                       register has been written, their content is frozen until the next reset.*/
461 
462   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
463                                       switching-on of the outputs.
464                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
465 
466                                       This feature can be modified afterwards using unitary function
467                                       @ref LL_TIM_OC_SetDeadTime()
468 
469                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
470                                        programmed. */
471 
472   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
473                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
474 
475                                       This feature can be modified afterwards using unitary functions
476                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
477 
478                                       @note This bit-field can not be modified as long as LOCK level 1 has been
479                                       programmed. */
480 
481   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
482                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
483 
484                                       This feature can be modified afterwards using unitary function
485                                       @ref LL_TIM_ConfigBRK()
486 
487                                       @note This bit-field can not be modified as long as LOCK level 1 has been
488                                       programmed. */
489 
490   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
491                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
492 
493                                       This feature can be modified afterwards using unitary function
494                                       @ref LL_TIM_ConfigBRK()
495 
496                                       @note This bit-field can not be modified as long as LOCK level 1 has been
497                                       programmed. */
498 
499   uint32_t BreakAFMode;           /*!< Specifies the alternate function mode of the break input.
500                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_AFMODE
501 
502                                       This feature can be modified afterwards using unitary functions
503                                       @ref LL_TIM_ConfigBRK()
504 
505                                       @note Bidirectional break input is only supported by advanced timers instances.
506 
507                                       @note This bit-field can not be modified as long as LOCK level 1 has been
508                                       programmed. */
509 
510   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
511                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
512 
513                                       This feature can be modified afterwards using unitary functions
514                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
515 
516                                       @note This bit-field can not be modified as long as LOCK level 1 has been
517                                       programmed. */
518 
519   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
520                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
521 
522                                       This feature can be modified afterwards using unitary function
523                                       @ref LL_TIM_ConfigBRK2()
524 
525                                       @note This bit-field can not be modified as long as LOCK level 1 has been
526                                       programmed. */
527 
528   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
529                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
530 
531                                       This feature can be modified afterwards using unitary function
532                                       @ref LL_TIM_ConfigBRK2()
533 
534                                       @note This bit-field can not be modified as long as LOCK level 1 has been
535                                       programmed. */
536 
537   uint32_t Break2AFMode;          /*!< Specifies the alternate function mode of the break2 input.
538                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_AFMODE
539 
540                                       This feature can be modified afterwards using unitary functions
541                                       @ref LL_TIM_ConfigBRK2()
542 
543                                       @note Bidirectional break input is only supported by advanced timers instances.
544 
545                                       @note This bit-field can not be modified as long as LOCK level 1 has been
546                                       programmed. */
547 
548   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
549                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
550 
551                                       This feature can be modified afterwards using unitary functions
552                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
553 
554                                       @note This bit-field can not be modified as long as LOCK level 1 has been
555                                       programmed. */
556 } LL_TIM_BDTR_InitTypeDef;
557 
558 /**
559   * @}
560   */
561 #endif /* USE_FULL_LL_DRIVER */
562 
563 /* Exported constants --------------------------------------------------------*/
564 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
565   * @{
566   */
567 
568 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
569   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
570   * @{
571   */
572 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
573 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
574 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
575 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
576 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
577 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
578 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
579 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
580 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
581 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
582 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
583 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
584 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
585 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
586 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
587 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
588 /**
589   * @}
590   */
591 
592 #if defined(USE_FULL_LL_DRIVER)
593 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
594   * @{
595   */
596 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
597 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
598 /**
599   * @}
600   */
601 
602 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
603   * @{
604   */
605 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
606 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
607 /**
608   * @}
609   */
610 
611 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
612   * @{
613   */
614 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
615 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
616 /**
617   * @}
618   */
619 #endif /* USE_FULL_LL_DRIVER */
620 
621 /** @defgroup TIM_LL_EC_IT IT Defines
622   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
623   * @{
624   */
625 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
626 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
627 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
628 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
629 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
630 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
631 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
632 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
633 /**
634   * @}
635   */
636 
637 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
638   * @{
639   */
640 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
641 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
642 /**
643   * @}
644   */
645 
646 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
647   * @{
648   */
649 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
650 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
651 /**
652   * @}
653   */
654 
655 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
656   * @{
657   */
658 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
659 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
660 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
661 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
662 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
663 /**
664   * @}
665   */
666 
667 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
668   * @{
669   */
670 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
671 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
672 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
673 /**
674   * @}
675   */
676 
677 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
678   * @{
679   */
680 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
681 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
682 /**
683   * @}
684   */
685 
686 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
687   * @{
688   */
689 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
690 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
691 /**
692   * @}
693   */
694 
695 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
696   * @{
697   */
698 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
699 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
700 /**
701   * @}
702   */
703 
704 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
705   * @{
706   */
707 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
708 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
709 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
710 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
711 /**
712   * @}
713   */
714 
715 /** @defgroup TIM_LL_EC_CHANNEL Channel
716   * @{
717   */
718 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
719 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
720 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
721 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
722 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
723 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
724 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
725 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
726 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
727 /**
728   * @}
729   */
730 
731 #if defined(USE_FULL_LL_DRIVER)
732 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
733   * @{
734   */
735 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
736 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
737 /**
738   * @}
739   */
740 #endif /* USE_FULL_LL_DRIVER */
741 
742 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
743   * @{
744   */
745 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
746 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
747 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
748 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
749 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
750 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
751 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
752 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
753 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
754 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
755 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
756 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
757 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
758 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
759 /**
760   * @}
761   */
762 
763 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
764   * @{
765   */
766 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
767 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
768 /**
769   * @}
770   */
771 
772 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
773   * @{
774   */
775 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
776 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
777 /**
778   * @}
779   */
780 
781 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
782   * @{
783   */
784 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
785 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
786 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
787 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
788 /**
789   * @}
790   */
791 
792 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
793   * @{
794   */
795 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
796 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
797 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
798 /**
799   * @}
800   */
801 
802 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
803   * @{
804   */
805 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
806 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
807 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
808 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
809 /**
810   * @}
811   */
812 
813 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
814   * @{
815   */
816 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
817 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
818 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
819 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
820 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
821 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
822 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
823 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
824 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
825 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
826 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
827 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
828 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
829 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
830 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
831 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
832 /**
833   * @}
834   */
835 
836 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
837   * @{
838   */
839 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
840 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
841 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
842 /**
843   * @}
844   */
845 
846 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
847   * @{
848   */
849 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
850 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
851 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
852 /**
853   * @}
854   */
855 
856 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
857   * @{
858   */
859 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
860 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
861 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
862 /**
863   * @}
864   */
865 
866 /** @defgroup TIM_LL_EC_TRGO Trigger Output
867   * @{
868   */
869 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
870 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
871 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
872 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
873 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
874 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
875 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
876 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
877 /**
878   * @}
879   */
880 
881 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
882   * @{
883   */
884 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
885 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
886 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
887 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
888 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
889 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
890 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
891 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
892 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
893 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
894 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
895 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
896 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
897 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
898 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
899 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
900 /**
901   * @}
902   */
903 
904 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
905   * @{
906   */
907 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
908 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
909 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
910 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
911 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
912 /**
913   * @}
914   */
915 
916 /** @defgroup TIM_LL_EC_TS Trigger Selection
917   * @{
918   */
919 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
920 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
921 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
922 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
923 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
924 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
925 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
926 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
927 /**
928   * @}
929   */
930 
931 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
932   * @{
933   */
934 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
935 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
936 /**
937   * @}
938   */
939 
940 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
941   * @{
942   */
943 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
944 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
945 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
946 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
947 /**
948   * @}
949   */
950 
951 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
952   * @{
953   */
954 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
955 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
956 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
957 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
958 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
959 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
960 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
961 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
962 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=6 */
963 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=8 */
964 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=5 */
965 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=6 */
966 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=8 */
967 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
968 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
969 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
970 /**
971   * @}
972   */
973 
974 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
975   * @{
976   */
977 #define LL_TIM_ETRSOURCE_GPIO                  0x00000000U                             /*!< ETR input is connected to GPIO */
978 #define LL_TIM_ETRSOURCE_ADC1_AWD1             (TIM_AF1_ETRSEL_1 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to ADC1 analog watchdog 1 */
979 #define LL_TIM_ETRSOURCE_ADC1_AWD2             TIM_AF1_ETRSEL_2                        /*!< ETR input is connected to ADC1 analog watchdog 2 */
980 #define LL_TIM_ETRSOURCE_ADC1_AWD3             (TIM_AF1_ETRSEL_2 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to ADC1 analog watchdog 3 */
981 #if defined(TIM2)
982 #define LL_TIM_ETRSOURCE_LSE                   (TIM_AF1_ETRSEL_1 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to LSE */
983 #define LL_TIM_ETRSOURCE_MCO                   TIM_AF1_ETRSEL_2                        /*!< ETR input is connected to MCO */
984 #define LL_TIM_ETRSOURCE_MCO2                  (TIM_AF1_ETRSEL_2 | TIM_AF1_ETRSEL_0)   /*!< ETR input is connected to MCO2 */
985 #endif /* TIM2 */
986 /**
987   * @}
988   */
989 
990 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
991   * @{
992   */
993 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
994 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
995 /**
996   * @}
997   */
998 
999 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1000   * @{
1001   */
1002 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1003 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1004 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1005 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1006 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1007 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1008 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1009 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1010 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1011 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1012 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1013 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1014 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1015 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1016 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1017 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1018 /**
1019   * @}
1020   */
1021 
1022 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1023   * @{
1024   */
1025 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1026 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1027 /**
1028   * @}
1029   */
1030 
1031 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1032   * @{
1033   */
1034 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1035 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1036 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1037 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1038 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1039 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1040 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1041 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1042 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1043 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1044 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1045 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1046 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1047 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1048 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1049 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1050 /**
1051   * @}
1052   */
1053 
1054 /** @defgroup TIM_LL_EC_OSSI OSSI
1055   * @{
1056   */
1057 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1058 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1059 /**
1060   * @}
1061   */
1062 
1063 /** @defgroup TIM_LL_EC_OSSR OSSR
1064   * @{
1065   */
1066 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1067 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1068 /**
1069   * @}
1070   */
1071 
1072 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1073   * @{
1074   */
1075 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1076 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1077 /**
1078   * @}
1079   */
1080 
1081 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1082   * @{
1083   */
1084 #define LL_TIM_BKIN_SOURCE_BKIN                TIM_AF1_BKINE      /*!< BKIN input from AF controller */
1085 /**
1086   * @}
1087   */
1088 
1089 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1090   * @{
1091   */
1092 #define LL_TIM_BKIN_POLARITY_LOW               TIM_AF1_BKINP           /*!< BRK BKIN input is active low */
1093 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1094 /**
1095   * @}
1096   */
1097 
1098 /** @defgroup TIM_LL_EC_BREAK_AFMODE BREAK AF MODE
1099   * @{
1100   */
1101 #define LL_TIM_BREAK_AFMODE_INPUT              0x00000000U              /*!< Break input BRK in input mode */
1102 #define LL_TIM_BREAK_AFMODE_BIDIRECTIONAL      TIM_BDTR_BKBID           /*!< Break input BRK in bidirectional mode */
1103 /**
1104   * @}
1105   */
1106 
1107 /** @defgroup TIM_LL_EC_BREAK2_AFMODE BREAK2 AF MODE
1108   * @{
1109   */
1110 #define LL_TIM_BREAK2_AFMODE_INPUT             0x00000000U             /*!< Break2 input BRK2 in input mode */
1111 #define LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL     TIM_BDTR_BK2BID         /*!< Break2 input BRK2 in bidirectional mode */
1112 /**
1113   * @}
1114   */
1115 
1116 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1117   * @{
1118   */
1119 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1120 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1121 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1122 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1123 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1124 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1125 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1126 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1127 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1128 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1129 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1130 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1131 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1132 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1133 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1134 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1135 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1136 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1137 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1138 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1139 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1140 #define LL_TIM_DMABURST_BASEADDR_AF1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_AF1 register is the DMA base address for DMA burst */
1141 #define LL_TIM_DMABURST_BASEADDR_AF2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_AF2 register is the DMA base address for DMA burst */
1142 #define LL_TIM_DMABURST_BASEADDR_TISEL         (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                  /*!< TIMx_TISEL register is the DMA base address for DMA burst */
1143 /**
1144   * @}
1145   */
1146 
1147 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1148   * @{
1149   */
1150 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1151 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1152 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1153 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1154 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1155 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1156 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1157 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1158 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1159 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1160 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1161 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1162 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1163 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1164 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1165 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1166 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1167 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1168 /**
1169   * @}
1170   */
1171 
1172 /** @defgroup TIM_LL_EC_TIM14_TI1_RMP  TIM14 Timer Input Ch1 Remap
1173   * @{
1174   */
1175 #define LL_TIM_TIM14_TI1_RMP_GPIO     0x00000000U                                    /*!< TIM14 input 1 is connected to GPIO */
1176 #define LL_TIM_TIM14_TI1_RMP_RTC_CLK  TIM_TISEL_TI1SEL_0                             /*!< TIM14 input 1 is connected to RTC clock */
1177 #define LL_TIM_TIM14_TI1_RMP_HSE_32   TIM_TISEL_TI1SEL_1                             /*!< TIM14 input 1 is connected to HSE/32 clock */
1178 #define LL_TIM_TIM14_TI1_RMP_MCO     (TIM_TISEL_TI1SEL_0  | TIM_TISEL_TI1SEL_1)      /*!< TIM14 input 1 is connected to MCO */
1179 #define LL_TIM_TIM14_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM14 input 1 is connected to MCO2 */
1180 /**
1181   * @}
1182   */
1183 
1184 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 Timer Input Ch1 Remap
1185   * @{
1186   */
1187 #define LL_TIM_TIM16_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM16 input 1 is connected to GPIO */
1188 #define LL_TIM_TIM16_TI1_RMP_LSI     TIM_TISEL_TI1SEL_0                              /*!< TIM16 input 1 is connected to LSI */
1189 #define LL_TIM_TIM16_TI1_RMP_LSE     TIM_TISEL_TI1SEL_1                              /*!< TIM16 input 1 is connected to LSE */
1190 #define LL_TIM_TIM16_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM16 input 1 is connected to MCO2 */
1191 /**
1192   * @}
1193   */
1194 
1195 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 Timer Input Ch1 Remap
1196   * @{
1197   */
1198 #define LL_TIM_TIM17_TI1_RMP_GPIO    0x00000000U                                     /*!< TIM17 input 1 is connected to GPIO */
1199 #define LL_TIM_TIM17_TI1_RMP_HSE_32  TIM_TISEL_TI1SEL_1                              /*!< TIM17 input 1 is connected to HSE/32 clock */
1200 #define LL_TIM_TIM17_TI1_RMP_MCO    (TIM_TISEL_TI1SEL_0 | TIM_TISEL_TI1SEL_1)        /*!< TIM17 input 1 is connected to MCO */
1201 #define LL_TIM_TIM17_TI1_RMP_MCO2    TIM_TISEL_TI1SEL_2                              /*!< TIM17 input 1 is connected to MCO2 */
1202 /**
1203   * @}
1204   */
1205 
1206 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
1207   * @{
1208   */
1209 #define LL_TIM_OCREF_CLR_INT_ETR         OCREF_CLEAR_SELECT_MSK       /*!< OCREF_CLR_INT is connected to ETRF */
1210 /**
1211   * @}
1212   */
1213 
1214 /** Legacy definitions for compatibility purpose
1215 @cond 0
1216   */
1217 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1218 /**
1219 @endcond
1220   */
1221 
1222 /**
1223   * @}
1224   */
1225 
1226 /* Exported macro ------------------------------------------------------------*/
1227 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1228   * @{
1229   */
1230 
1231 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1232   * @{
1233   */
1234 /**
1235   * @brief  Write a value in TIM register.
1236   * @param  __INSTANCE__ TIM Instance
1237   * @param  __REG__ Register to be written
1238   * @param  __VALUE__ Value to be written in the register
1239   * @retval None
1240   */
1241 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1242 
1243 /**
1244   * @brief  Read a value in TIM register.
1245   * @param  __INSTANCE__ TIM Instance
1246   * @param  __REG__ Register to be read
1247   * @retval Register value
1248   */
1249 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1250 /**
1251   * @}
1252   */
1253 
1254 /**
1255   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1256   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1257   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1258   *        to TIMx_CNT register bit 31)
1259   * @param  __CNT__ Counter value
1260   * @retval UIF status bit
1261   */
1262 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1263   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1264 
1265 /**
1266   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1267   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1268   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1269   * @param  __CKD__ This parameter can be one of the following values:
1270   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1271   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1272   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1273   * @param  __DT__ deadtime duration (in ns)
1274   * @retval DTG[0:7]
1275   */
1276 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1277   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1278     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1279     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1280     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1281                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1282     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1283     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1284                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1285     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1286     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1287                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1288     0U)
1289 
1290 /**
1291   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1292   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1293   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1294   * @param  __CNTCLK__ counter clock frequency (in Hz)
1295   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1296   */
1297 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1298   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1299 
1300 /**
1301   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1302   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1303   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1304   * @param  __PSC__ prescaler
1305   * @param  __FREQ__ output signal frequency (in Hz)
1306   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1307   */
1308 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1309   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1310 
1311 /**
1312   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1313   *         active/inactive delay.
1314   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1315   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1316   * @param  __PSC__ prescaler
1317   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1318   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1319   */
1320 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1321   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1322               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1323 
1324 /**
1325   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1326   *         (when the timer operates in one pulse mode).
1327   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1328   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1329   * @param  __PSC__ prescaler
1330   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1331   * @param  __PULSE__ pulse duration (in us)
1332   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1333   */
1334 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1335   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1336               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1337 
1338 /**
1339   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1340   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1341   * @param  __ICPSC__ This parameter can be one of the following values:
1342   *         @arg @ref LL_TIM_ICPSC_DIV1
1343   *         @arg @ref LL_TIM_ICPSC_DIV2
1344   *         @arg @ref LL_TIM_ICPSC_DIV4
1345   *         @arg @ref LL_TIM_ICPSC_DIV8
1346   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1347   */
1348 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1349   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1350 
1351 
1352 /**
1353   * @}
1354   */
1355 
1356 /* Exported functions --------------------------------------------------------*/
1357 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1358   * @{
1359   */
1360 
1361 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1362   * @{
1363   */
1364 /**
1365   * @brief  Enable timer counter.
1366   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1367   * @param  TIMx Timer instance
1368   * @retval None
1369   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1370 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1371 {
1372   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1373 }
1374 
1375 /**
1376   * @brief  Disable timer counter.
1377   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1378   * @param  TIMx Timer instance
1379   * @retval None
1380   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1381 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1382 {
1383   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1384 }
1385 
1386 /**
1387   * @brief  Indicates whether the timer counter is enabled.
1388   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1389   * @param  TIMx Timer instance
1390   * @retval State of bit (1 or 0).
1391   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1392 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1393 {
1394   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1395 }
1396 
1397 /**
1398   * @brief  Enable update event generation.
1399   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1400   * @param  TIMx Timer instance
1401   * @retval None
1402   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1403 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1404 {
1405   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1406 }
1407 
1408 /**
1409   * @brief  Disable update event generation.
1410   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1411   * @param  TIMx Timer instance
1412   * @retval None
1413   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1414 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1415 {
1416   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1417 }
1418 
1419 /**
1420   * @brief  Indicates whether update event generation is enabled.
1421   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1422   * @param  TIMx Timer instance
1423   * @retval Inverted state of bit (0 or 1).
1424   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1425 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1426 {
1427   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1428 }
1429 
1430 /**
1431   * @brief  Set update event source
1432   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1433   *       generate an update interrupt or DMA request if enabled:
1434   *        - Counter overflow/underflow
1435   *        - Setting the UG bit
1436   *        - Update generation through the slave mode controller
1437   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1438   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1439   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1440   * @param  TIMx Timer instance
1441   * @param  UpdateSource This parameter can be one of the following values:
1442   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1443   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1444   * @retval None
1445   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1446 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1447 {
1448   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1449 }
1450 
1451 /**
1452   * @brief  Get actual event update source
1453   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1454   * @param  TIMx Timer instance
1455   * @retval Returned value can be one of the following values:
1456   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1457   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1458   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1459 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1460 {
1461   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1462 }
1463 
1464 /**
1465   * @brief  Set one pulse mode (one shot v.s. repetitive).
1466   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1467   * @param  TIMx Timer instance
1468   * @param  OnePulseMode This parameter can be one of the following values:
1469   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1470   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1471   * @retval None
1472   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1473 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1474 {
1475   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1476 }
1477 
1478 /**
1479   * @brief  Get actual one pulse mode.
1480   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1481   * @param  TIMx Timer instance
1482   * @retval Returned value can be one of the following values:
1483   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1484   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1485   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)1486 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1487 {
1488   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1489 }
1490 
1491 /**
1492   * @brief  Set the timer counter counting mode.
1493   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1494   *       check whether or not the counter mode selection feature is supported
1495   *       by a timer instance.
1496   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1497   *       requires a timer reset to avoid unexpected direction
1498   *       due to DIR bit readonly in center aligned mode.
1499   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1500   *         CR1          CMS           LL_TIM_SetCounterMode
1501   * @param  TIMx Timer instance
1502   * @param  CounterMode This parameter can be one of the following values:
1503   *         @arg @ref LL_TIM_COUNTERMODE_UP
1504   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1505   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1506   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1507   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1508   * @retval None
1509   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1510 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1511 {
1512   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1513 }
1514 
1515 /**
1516   * @brief  Get actual counter mode.
1517   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1518   *       check whether or not the counter mode selection feature is supported
1519   *       by a timer instance.
1520   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1521   *         CR1          CMS           LL_TIM_GetCounterMode
1522   * @param  TIMx Timer instance
1523   * @retval Returned value can be one of the following values:
1524   *         @arg @ref LL_TIM_COUNTERMODE_UP
1525   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1526   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1527   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1528   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1529   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1530 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1531 {
1532   uint32_t counter_mode;
1533 
1534   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1535 
1536   if (counter_mode == 0U)
1537   {
1538     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1539   }
1540 
1541   return counter_mode;
1542 }
1543 
1544 /**
1545   * @brief  Enable auto-reload (ARR) preload.
1546   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1547   * @param  TIMx Timer instance
1548   * @retval None
1549   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1550 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1551 {
1552   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1553 }
1554 
1555 /**
1556   * @brief  Disable auto-reload (ARR) preload.
1557   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1558   * @param  TIMx Timer instance
1559   * @retval None
1560   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1561 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1562 {
1563   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1564 }
1565 
1566 /**
1567   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1568   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1569   * @param  TIMx Timer instance
1570   * @retval State of bit (1 or 0).
1571   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1572 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1573 {
1574   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1575 }
1576 
1577 /**
1578   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1579   *         (when supported) and the digital filters.
1580   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1581   *       whether or not the clock division feature is supported by the timer
1582   *       instance.
1583   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1584   * @param  TIMx Timer instance
1585   * @param  ClockDivision This parameter can be one of the following values:
1586   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1587   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1588   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1589   * @retval None
1590   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1591 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1592 {
1593   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1594 }
1595 
1596 /**
1597   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1598   *         generators (when supported) and the digital filters.
1599   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1600   *       whether or not the clock division feature is supported by the timer
1601   *       instance.
1602   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1603   * @param  TIMx Timer instance
1604   * @retval Returned value can be one of the following values:
1605   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1606   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1607   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1608   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1609 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1610 {
1611   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1612 }
1613 
1614 /**
1615   * @brief  Set the counter value.
1616   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1617   *       whether or not a timer instance supports a 32 bits counter.
1618   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1619   * @param  TIMx Timer instance
1620   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1621   * @retval None
1622   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1623 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1624 {
1625   WRITE_REG(TIMx->CNT, Counter);
1626 }
1627 
1628 /**
1629   * @brief  Get the counter value.
1630   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1631   *       whether or not a timer instance supports a 32 bits counter.
1632   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1633   * @param  TIMx Timer instance
1634   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1635   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1636 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1637 {
1638   return (uint32_t)(READ_REG(TIMx->CNT));
1639 }
1640 
1641 /**
1642   * @brief  Get the current direction of the counter
1643   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1644   * @param  TIMx Timer instance
1645   * @retval Returned value can be one of the following values:
1646   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1647   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1648   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1649 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1650 {
1651   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1652 }
1653 
1654 /**
1655   * @brief  Set the prescaler value.
1656   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1657   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1658   *       prescaler ratio is taken into account at the next update event.
1659   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1660   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1661   * @param  TIMx Timer instance
1662   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1663   * @retval None
1664   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1665 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1666 {
1667   WRITE_REG(TIMx->PSC, Prescaler);
1668 }
1669 
1670 /**
1671   * @brief  Get the prescaler value.
1672   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1673   * @param  TIMx Timer instance
1674   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1675   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1676 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1677 {
1678   return (uint32_t)(READ_REG(TIMx->PSC));
1679 }
1680 
1681 /**
1682   * @brief  Set the auto-reload value.
1683   * @note The counter is blocked while the auto-reload value is null.
1684   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1685   *       whether or not a timer instance supports a 32 bits counter.
1686   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1687   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1688   * @param  TIMx Timer instance
1689   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1690   * @retval None
1691   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1692 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1693 {
1694   WRITE_REG(TIMx->ARR, AutoReload);
1695 }
1696 
1697 /**
1698   * @brief  Get the auto-reload value.
1699   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1700   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1701   *       whether or not a timer instance supports a 32 bits counter.
1702   * @param  TIMx Timer instance
1703   * @retval Auto-reload value
1704   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1705 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1706 {
1707   return (uint32_t)(READ_REG(TIMx->ARR));
1708 }
1709 
1710 /**
1711   * @brief  Set the repetition counter value.
1712   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1713   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1714   *       whether or not a timer instance supports a repetition counter.
1715   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1716   * @param  TIMx Timer instance
1717   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1718   * @retval None
1719   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1720 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1721 {
1722   WRITE_REG(TIMx->RCR, RepetitionCounter);
1723 }
1724 
1725 /**
1726   * @brief  Get the repetition counter value.
1727   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1728   *       whether or not a timer instance supports a repetition counter.
1729   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1730   * @param  TIMx Timer instance
1731   * @retval Repetition counter value
1732   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)1733 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1734 {
1735   return (uint32_t)(READ_REG(TIMx->RCR));
1736 }
1737 
1738 /**
1739   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1740   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
1741   *       in an atomic way.
1742   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1743   * @param  TIMx Timer instance
1744   * @retval None
1745   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1746 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1747 {
1748   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1749 }
1750 
1751 /**
1752   * @brief  Disable update interrupt flag (UIF) remapping.
1753   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1754   * @param  TIMx Timer instance
1755   * @retval None
1756   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1757 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1758 {
1759   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1760 }
1761 
1762 /**
1763   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
1764   * @param  Counter Counter value
1765   * @retval State of bit (1 or 0).
1766   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)1767 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
1768 {
1769   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
1770 }
1771 
1772 /**
1773   * @}
1774   */
1775 
1776 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1777   * @{
1778   */
1779 /**
1780   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1781   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1782   *       they are updated only when a commutation event (COM) occurs.
1783   * @note Only on channels that have a complementary output.
1784   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1785   *       whether or not a timer instance is able to generate a commutation event.
1786   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1787   * @param  TIMx Timer instance
1788   * @retval None
1789   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1790 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1791 {
1792   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1793 }
1794 
1795 /**
1796   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1797   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1798   *       whether or not a timer instance is able to generate a commutation event.
1799   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1800   * @param  TIMx Timer instance
1801   * @retval None
1802   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)1803 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1804 {
1805   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1806 }
1807 
1808 /**
1809   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1810   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1811   *       whether or not a timer instance is able to generate a commutation event.
1812   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1813   * @param  TIMx Timer instance
1814   * @param  CCUpdateSource This parameter can be one of the following values:
1815   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1816   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1817   * @retval None
1818   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)1819 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1820 {
1821   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1822 }
1823 
1824 /**
1825   * @brief  Set the trigger of the capture/compare DMA request.
1826   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1827   * @param  TIMx Timer instance
1828   * @param  DMAReqTrigger This parameter can be one of the following values:
1829   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1830   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1831   * @retval None
1832   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1833 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1834 {
1835   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1836 }
1837 
1838 /**
1839   * @brief  Get actual trigger of the capture/compare DMA request.
1840   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1841   * @param  TIMx Timer instance
1842   * @retval Returned value can be one of the following values:
1843   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1844   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1845   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)1846 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1847 {
1848   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1849 }
1850 
1851 /**
1852   * @brief  Set the lock level to freeze the
1853   *         configuration of several capture/compare parameters.
1854   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1855   *       the lock mechanism is supported by a timer instance.
1856   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1857   * @param  TIMx Timer instance
1858   * @param  LockLevel This parameter can be one of the following values:
1859   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1860   *         @arg @ref LL_TIM_LOCKLEVEL_1
1861   *         @arg @ref LL_TIM_LOCKLEVEL_2
1862   *         @arg @ref LL_TIM_LOCKLEVEL_3
1863   * @retval None
1864   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)1865 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1866 {
1867   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1868 }
1869 
1870 /**
1871   * @brief  Enable capture/compare channels.
1872   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1873   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1874   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1875   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1876   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1877   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1878   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
1879   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
1880   *         CCER         CC6E          LL_TIM_CC_EnableChannel
1881   * @param  TIMx Timer instance
1882   * @param  Channels This parameter can be a combination of the following values:
1883   *         @arg @ref LL_TIM_CHANNEL_CH1
1884   *         @arg @ref LL_TIM_CHANNEL_CH1N
1885   *         @arg @ref LL_TIM_CHANNEL_CH2
1886   *         @arg @ref LL_TIM_CHANNEL_CH2N
1887   *         @arg @ref LL_TIM_CHANNEL_CH3
1888   *         @arg @ref LL_TIM_CHANNEL_CH3N
1889   *         @arg @ref LL_TIM_CHANNEL_CH4
1890   *         @arg @ref LL_TIM_CHANNEL_CH5
1891   *         @arg @ref LL_TIM_CHANNEL_CH6
1892   * @retval None
1893   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1894 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1895 {
1896   SET_BIT(TIMx->CCER, Channels);
1897 }
1898 
1899 /**
1900   * @brief  Disable capture/compare channels.
1901   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1902   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1903   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1904   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1905   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1906   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1907   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
1908   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
1909   *         CCER         CC6E          LL_TIM_CC_DisableChannel
1910   * @param  TIMx Timer instance
1911   * @param  Channels This parameter can be a combination of the following values:
1912   *         @arg @ref LL_TIM_CHANNEL_CH1
1913   *         @arg @ref LL_TIM_CHANNEL_CH1N
1914   *         @arg @ref LL_TIM_CHANNEL_CH2
1915   *         @arg @ref LL_TIM_CHANNEL_CH2N
1916   *         @arg @ref LL_TIM_CHANNEL_CH3
1917   *         @arg @ref LL_TIM_CHANNEL_CH3N
1918   *         @arg @ref LL_TIM_CHANNEL_CH4
1919   *         @arg @ref LL_TIM_CHANNEL_CH5
1920   *         @arg @ref LL_TIM_CHANNEL_CH6
1921   * @retval None
1922   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)1923 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1924 {
1925   CLEAR_BIT(TIMx->CCER, Channels);
1926 }
1927 
1928 /**
1929   * @brief  Indicate whether channel(s) is(are) enabled.
1930   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1931   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1932   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1933   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1934   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1935   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1936   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
1937   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
1938   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
1939   * @param  TIMx Timer instance
1940   * @param  Channels This parameter can be a combination of the following values:
1941   *         @arg @ref LL_TIM_CHANNEL_CH1
1942   *         @arg @ref LL_TIM_CHANNEL_CH1N
1943   *         @arg @ref LL_TIM_CHANNEL_CH2
1944   *         @arg @ref LL_TIM_CHANNEL_CH2N
1945   *         @arg @ref LL_TIM_CHANNEL_CH3
1946   *         @arg @ref LL_TIM_CHANNEL_CH3N
1947   *         @arg @ref LL_TIM_CHANNEL_CH4
1948   *         @arg @ref LL_TIM_CHANNEL_CH5
1949   *         @arg @ref LL_TIM_CHANNEL_CH6
1950   * @retval State of bit (1 or 0).
1951   */
LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef * TIMx,uint32_t Channels)1952 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
1953 {
1954   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1955 }
1956 
1957 /**
1958   * @}
1959   */
1960 
1961 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1962   * @{
1963   */
1964 /**
1965   * @brief  Configure an output channel.
1966   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
1967   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
1968   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
1969   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
1970   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
1971   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
1972   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
1973   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
1974   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
1975   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
1976   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
1977   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
1978   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
1979   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
1980   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
1981   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
1982   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
1983   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
1984   * @param  TIMx Timer instance
1985   * @param  Channel This parameter can be one of the following values:
1986   *         @arg @ref LL_TIM_CHANNEL_CH1
1987   *         @arg @ref LL_TIM_CHANNEL_CH2
1988   *         @arg @ref LL_TIM_CHANNEL_CH3
1989   *         @arg @ref LL_TIM_CHANNEL_CH4
1990   *         @arg @ref LL_TIM_CHANNEL_CH5
1991   *         @arg @ref LL_TIM_CHANNEL_CH6
1992   * @param  Configuration This parameter must be a combination of all the following values:
1993   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
1994   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
1995   * @retval None
1996   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)1997 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1998 {
1999   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2000   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2001   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2002   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2003              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2004   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2005              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2006 }
2007 
2008 /**
2009   * @brief  Define the behavior of the output reference signal OCxREF from which
2010   *         OCx and OCxN (when relevant) are derived.
2011   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2012   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2013   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2014   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2015   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2016   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2017   * @param  TIMx Timer instance
2018   * @param  Channel This parameter can be one of the following values:
2019   *         @arg @ref LL_TIM_CHANNEL_CH1
2020   *         @arg @ref LL_TIM_CHANNEL_CH2
2021   *         @arg @ref LL_TIM_CHANNEL_CH3
2022   *         @arg @ref LL_TIM_CHANNEL_CH4
2023   *         @arg @ref LL_TIM_CHANNEL_CH5
2024   *         @arg @ref LL_TIM_CHANNEL_CH6
2025   * @param  Mode This parameter can be one of the following values:
2026   *         @arg @ref LL_TIM_OCMODE_FROZEN
2027   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2028   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2029   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2030   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2031   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2032   *         @arg @ref LL_TIM_OCMODE_PWM1
2033   *         @arg @ref LL_TIM_OCMODE_PWM2
2034   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2035   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2036   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2037   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2038   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2039   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2040   * @retval None
2041   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2042 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2043 {
2044   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2045   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2046   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2047 }
2048 
2049 /**
2050   * @brief  Get the output compare mode of an output channel.
2051   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2052   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2053   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2054   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2055   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2056   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2057   * @param  TIMx Timer instance
2058   * @param  Channel This parameter can be one of the following values:
2059   *         @arg @ref LL_TIM_CHANNEL_CH1
2060   *         @arg @ref LL_TIM_CHANNEL_CH2
2061   *         @arg @ref LL_TIM_CHANNEL_CH3
2062   *         @arg @ref LL_TIM_CHANNEL_CH4
2063   *         @arg @ref LL_TIM_CHANNEL_CH5
2064   *         @arg @ref LL_TIM_CHANNEL_CH6
2065   * @retval Returned value can be one of the following values:
2066   *         @arg @ref LL_TIM_OCMODE_FROZEN
2067   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2068   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2069   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2070   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2071   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2072   *         @arg @ref LL_TIM_OCMODE_PWM1
2073   *         @arg @ref LL_TIM_OCMODE_PWM2
2074   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2075   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2076   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2077   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2078   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
2079   *         @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
2080   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2081 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2082 {
2083   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2084   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2085   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2086 }
2087 
2088 /**
2089   * @brief  Set the polarity of an output channel.
2090   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2091   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2092   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2093   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2094   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2095   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2096   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2097   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2098   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2099   * @param  TIMx Timer instance
2100   * @param  Channel This parameter can be one of the following values:
2101   *         @arg @ref LL_TIM_CHANNEL_CH1
2102   *         @arg @ref LL_TIM_CHANNEL_CH1N
2103   *         @arg @ref LL_TIM_CHANNEL_CH2
2104   *         @arg @ref LL_TIM_CHANNEL_CH2N
2105   *         @arg @ref LL_TIM_CHANNEL_CH3
2106   *         @arg @ref LL_TIM_CHANNEL_CH3N
2107   *         @arg @ref LL_TIM_CHANNEL_CH4
2108   *         @arg @ref LL_TIM_CHANNEL_CH5
2109   *         @arg @ref LL_TIM_CHANNEL_CH6
2110   * @param  Polarity This parameter can be one of the following values:
2111   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2112   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2113   * @retval None
2114   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2115 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2116 {
2117   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2118   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2119 }
2120 
2121 /**
2122   * @brief  Get the polarity of an output channel.
2123   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2124   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2125   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2126   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2127   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2128   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2129   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2130   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2131   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2132   * @param  TIMx Timer instance
2133   * @param  Channel This parameter can be one of the following values:
2134   *         @arg @ref LL_TIM_CHANNEL_CH1
2135   *         @arg @ref LL_TIM_CHANNEL_CH1N
2136   *         @arg @ref LL_TIM_CHANNEL_CH2
2137   *         @arg @ref LL_TIM_CHANNEL_CH2N
2138   *         @arg @ref LL_TIM_CHANNEL_CH3
2139   *         @arg @ref LL_TIM_CHANNEL_CH3N
2140   *         @arg @ref LL_TIM_CHANNEL_CH4
2141   *         @arg @ref LL_TIM_CHANNEL_CH5
2142   *         @arg @ref LL_TIM_CHANNEL_CH6
2143   * @retval Returned value can be one of the following values:
2144   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2145   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2146   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2147 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2148 {
2149   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2150   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2151 }
2152 
2153 /**
2154   * @brief  Set the IDLE state of an output channel
2155   * @note This function is significant only for the timer instances
2156   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2157   *       can be used to check whether or not a timer instance provides
2158   *       a break input.
2159   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2160   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2161   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2162   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2163   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2164   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2165   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2166   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2167   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2168   * @param  TIMx Timer instance
2169   * @param  Channel This parameter can be one of the following values:
2170   *         @arg @ref LL_TIM_CHANNEL_CH1
2171   *         @arg @ref LL_TIM_CHANNEL_CH1N
2172   *         @arg @ref LL_TIM_CHANNEL_CH2
2173   *         @arg @ref LL_TIM_CHANNEL_CH2N
2174   *         @arg @ref LL_TIM_CHANNEL_CH3
2175   *         @arg @ref LL_TIM_CHANNEL_CH3N
2176   *         @arg @ref LL_TIM_CHANNEL_CH4
2177   *         @arg @ref LL_TIM_CHANNEL_CH5
2178   *         @arg @ref LL_TIM_CHANNEL_CH6
2179   * @param  IdleState This parameter can be one of the following values:
2180   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2181   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2182   * @retval None
2183   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2184 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2185 {
2186   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2187   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2188 }
2189 
2190 /**
2191   * @brief  Get the IDLE state of an output channel
2192   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2193   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2194   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2195   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2196   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2197   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2198   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2199   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2200   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2201   * @param  TIMx Timer instance
2202   * @param  Channel This parameter can be one of the following values:
2203   *         @arg @ref LL_TIM_CHANNEL_CH1
2204   *         @arg @ref LL_TIM_CHANNEL_CH1N
2205   *         @arg @ref LL_TIM_CHANNEL_CH2
2206   *         @arg @ref LL_TIM_CHANNEL_CH2N
2207   *         @arg @ref LL_TIM_CHANNEL_CH3
2208   *         @arg @ref LL_TIM_CHANNEL_CH3N
2209   *         @arg @ref LL_TIM_CHANNEL_CH4
2210   *         @arg @ref LL_TIM_CHANNEL_CH5
2211   *         @arg @ref LL_TIM_CHANNEL_CH6
2212   * @retval Returned value can be one of the following values:
2213   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2214   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2215   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2216 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2217 {
2218   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2219   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2220 }
2221 
2222 /**
2223   * @brief  Enable fast mode for the output channel.
2224   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2225   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2226   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2227   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2228   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2229   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2230   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2231   * @param  TIMx Timer instance
2232   * @param  Channel This parameter can be one of the following values:
2233   *         @arg @ref LL_TIM_CHANNEL_CH1
2234   *         @arg @ref LL_TIM_CHANNEL_CH2
2235   *         @arg @ref LL_TIM_CHANNEL_CH3
2236   *         @arg @ref LL_TIM_CHANNEL_CH4
2237   *         @arg @ref LL_TIM_CHANNEL_CH5
2238   *         @arg @ref LL_TIM_CHANNEL_CH6
2239   * @retval None
2240   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2241 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2242 {
2243   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2244   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2245   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2246 
2247 }
2248 
2249 /**
2250   * @brief  Disable fast mode for the output channel.
2251   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2252   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2253   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2254   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2255   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2256   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2257   * @param  TIMx Timer instance
2258   * @param  Channel This parameter can be one of the following values:
2259   *         @arg @ref LL_TIM_CHANNEL_CH1
2260   *         @arg @ref LL_TIM_CHANNEL_CH2
2261   *         @arg @ref LL_TIM_CHANNEL_CH3
2262   *         @arg @ref LL_TIM_CHANNEL_CH4
2263   *         @arg @ref LL_TIM_CHANNEL_CH5
2264   *         @arg @ref LL_TIM_CHANNEL_CH6
2265   * @retval None
2266   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2267 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2268 {
2269   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2270   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2271   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2272 
2273 }
2274 
2275 /**
2276   * @brief  Indicates whether fast mode is enabled for the output channel.
2277   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2278   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2279   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2280   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2281   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2282   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2283   * @param  TIMx Timer instance
2284   * @param  Channel This parameter can be one of the following values:
2285   *         @arg @ref LL_TIM_CHANNEL_CH1
2286   *         @arg @ref LL_TIM_CHANNEL_CH2
2287   *         @arg @ref LL_TIM_CHANNEL_CH3
2288   *         @arg @ref LL_TIM_CHANNEL_CH4
2289   *         @arg @ref LL_TIM_CHANNEL_CH5
2290   *         @arg @ref LL_TIM_CHANNEL_CH6
2291   * @retval State of bit (1 or 0).
2292   */
LL_TIM_OC_IsEnabledFast(const TIM_TypeDef * TIMx,uint32_t Channel)2293 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
2294 {
2295   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2296   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2297   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2298   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2299 }
2300 
2301 /**
2302   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2303   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2304   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2305   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2306   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2307   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2308   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2309   * @param  TIMx Timer instance
2310   * @param  Channel This parameter can be one of the following values:
2311   *         @arg @ref LL_TIM_CHANNEL_CH1
2312   *         @arg @ref LL_TIM_CHANNEL_CH2
2313   *         @arg @ref LL_TIM_CHANNEL_CH3
2314   *         @arg @ref LL_TIM_CHANNEL_CH4
2315   *         @arg @ref LL_TIM_CHANNEL_CH5
2316   *         @arg @ref LL_TIM_CHANNEL_CH6
2317   * @retval None
2318   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2319 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2320 {
2321   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2322   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2323   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2324 }
2325 
2326 /**
2327   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2328   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2329   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2330   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2331   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2332   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2333   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2334   * @param  TIMx Timer instance
2335   * @param  Channel This parameter can be one of the following values:
2336   *         @arg @ref LL_TIM_CHANNEL_CH1
2337   *         @arg @ref LL_TIM_CHANNEL_CH2
2338   *         @arg @ref LL_TIM_CHANNEL_CH3
2339   *         @arg @ref LL_TIM_CHANNEL_CH4
2340   *         @arg @ref LL_TIM_CHANNEL_CH5
2341   *         @arg @ref LL_TIM_CHANNEL_CH6
2342   * @retval None
2343   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2344 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2345 {
2346   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2347   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2348   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2349 }
2350 
2351 /**
2352   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2353   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2354   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2355   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2356   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2357   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2358   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2359   * @param  TIMx Timer instance
2360   * @param  Channel This parameter can be one of the following values:
2361   *         @arg @ref LL_TIM_CHANNEL_CH1
2362   *         @arg @ref LL_TIM_CHANNEL_CH2
2363   *         @arg @ref LL_TIM_CHANNEL_CH3
2364   *         @arg @ref LL_TIM_CHANNEL_CH4
2365   *         @arg @ref LL_TIM_CHANNEL_CH5
2366   *         @arg @ref LL_TIM_CHANNEL_CH6
2367   * @retval State of bit (1 or 0).
2368   */
LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef * TIMx,uint32_t Channel)2369 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
2370 {
2371   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2372   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2373   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2374   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2375 }
2376 
2377 /**
2378   * @brief  Enable clearing the output channel on an external event.
2379   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2380   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2381   *       or not a timer instance can clear the OCxREF signal on an external event.
2382   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2383   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2384   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2385   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2386   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2387   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2388   * @param  TIMx Timer instance
2389   * @param  Channel This parameter can be one of the following values:
2390   *         @arg @ref LL_TIM_CHANNEL_CH1
2391   *         @arg @ref LL_TIM_CHANNEL_CH2
2392   *         @arg @ref LL_TIM_CHANNEL_CH3
2393   *         @arg @ref LL_TIM_CHANNEL_CH4
2394   *         @arg @ref LL_TIM_CHANNEL_CH5
2395   *         @arg @ref LL_TIM_CHANNEL_CH6
2396   * @retval None
2397   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2398 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2399 {
2400   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2401   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2402   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2403 }
2404 
2405 /**
2406   * @brief  Disable clearing the output channel on an external event.
2407   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2408   *       or not a timer instance can clear the OCxREF signal on an external event.
2409   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2410   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2411   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2412   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2413   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2414   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2415   * @param  TIMx Timer instance
2416   * @param  Channel This parameter can be one of the following values:
2417   *         @arg @ref LL_TIM_CHANNEL_CH1
2418   *         @arg @ref LL_TIM_CHANNEL_CH2
2419   *         @arg @ref LL_TIM_CHANNEL_CH3
2420   *         @arg @ref LL_TIM_CHANNEL_CH4
2421   *         @arg @ref LL_TIM_CHANNEL_CH5
2422   *         @arg @ref LL_TIM_CHANNEL_CH6
2423   * @retval None
2424   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2425 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2426 {
2427   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2428   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2429   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2430 }
2431 
2432 /**
2433   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2434   * @note This function enables clearing the output channel on an external event.
2435   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2436   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2437   *       or not a timer instance can clear the OCxREF signal on an external event.
2438   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2439   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2440   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2441   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2442   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2443   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2444   * @param  TIMx Timer instance
2445   * @param  Channel This parameter can be one of the following values:
2446   *         @arg @ref LL_TIM_CHANNEL_CH1
2447   *         @arg @ref LL_TIM_CHANNEL_CH2
2448   *         @arg @ref LL_TIM_CHANNEL_CH3
2449   *         @arg @ref LL_TIM_CHANNEL_CH4
2450   *         @arg @ref LL_TIM_CHANNEL_CH5
2451   *         @arg @ref LL_TIM_CHANNEL_CH6
2452   * @retval State of bit (1 or 0).
2453   */
LL_TIM_OC_IsEnabledClear(const TIM_TypeDef * TIMx,uint32_t Channel)2454 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
2455 {
2456   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2457   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2458   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2459   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2460 }
2461 
2462 /**
2463   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2464   *         the Ocx and OCxN signals).
2465   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2466   *       dead-time insertion feature is supported by a timer instance.
2467   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2468   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2469   * @param  TIMx Timer instance
2470   * @param  DeadTime between Min_Data=0 and Max_Data=255
2471   * @retval None
2472   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2473 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2474 {
2475   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2476 }
2477 
2478 /**
2479   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2480   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2481   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2482   *       whether or not a timer instance supports a 32 bits counter.
2483   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2484   *       output channel 1 is supported by a timer instance.
2485   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2486   * @param  TIMx Timer instance
2487   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2488   * @retval None
2489   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2490 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2491 {
2492   WRITE_REG(TIMx->CCR1, CompareValue);
2493 }
2494 
2495 /**
2496   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2497   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2498   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2499   *       whether or not a timer instance supports a 32 bits counter.
2500   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2501   *       output channel 2 is supported by a timer instance.
2502   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2503   * @param  TIMx Timer instance
2504   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2505   * @retval None
2506   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2507 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2508 {
2509   WRITE_REG(TIMx->CCR2, CompareValue);
2510 }
2511 
2512 /**
2513   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2514   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2515   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2516   *       whether or not a timer instance supports a 32 bits counter.
2517   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2518   *       output channel is supported by a timer instance.
2519   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2520   * @param  TIMx Timer instance
2521   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2522   * @retval None
2523   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2524 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2525 {
2526   WRITE_REG(TIMx->CCR3, CompareValue);
2527 }
2528 
2529 /**
2530   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2531   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2532   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2533   *       whether or not a timer instance supports a 32 bits counter.
2534   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2535   *       output channel 4 is supported by a timer instance.
2536   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2537   * @param  TIMx Timer instance
2538   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2539   * @retval None
2540   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2541 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2542 {
2543   WRITE_REG(TIMx->CCR4, CompareValue);
2544 }
2545 
2546 /**
2547   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2548   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2549   *       output channel 5 is supported by a timer instance.
2550   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2551   * @param  TIMx Timer instance
2552   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2553   * @retval None
2554   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2555 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2556 {
2557   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2558 }
2559 
2560 /**
2561   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2562   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2563   *       output channel 6 is supported by a timer instance.
2564   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2565   * @param  TIMx Timer instance
2566   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2567   * @retval None
2568   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2569 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2570 {
2571   WRITE_REG(TIMx->CCR6, CompareValue);
2572 }
2573 
2574 /**
2575   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2576   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2577   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2578   *       whether or not a timer instance supports a 32 bits counter.
2579   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2580   *       output channel 1 is supported by a timer instance.
2581   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2582   * @param  TIMx Timer instance
2583   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2584   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)2585 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2586 {
2587   return (uint32_t)(READ_REG(TIMx->CCR1));
2588 }
2589 
2590 /**
2591   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2592   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2593   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2594   *       whether or not a timer instance supports a 32 bits counter.
2595   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2596   *       output channel 2 is supported by a timer instance.
2597   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2598   * @param  TIMx Timer instance
2599   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2600   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)2601 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2602 {
2603   return (uint32_t)(READ_REG(TIMx->CCR2));
2604 }
2605 
2606 /**
2607   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2608   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2609   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2610   *       whether or not a timer instance supports a 32 bits counter.
2611   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2612   *       output channel 3 is supported by a timer instance.
2613   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2614   * @param  TIMx Timer instance
2615   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2616   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)2617 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2618 {
2619   return (uint32_t)(READ_REG(TIMx->CCR3));
2620 }
2621 
2622 /**
2623   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2624   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2625   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2626   *       whether or not a timer instance supports a 32 bits counter.
2627   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2628   *       output channel 4 is supported by a timer instance.
2629   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2630   * @param  TIMx Timer instance
2631   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2632   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)2633 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2634 {
2635   return (uint32_t)(READ_REG(TIMx->CCR4));
2636 }
2637 
2638 /**
2639   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2640   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2641   *       output channel 5 is supported by a timer instance.
2642   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2643   * @param  TIMx Timer instance
2644   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2645   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)2646 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
2647 {
2648   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2649 }
2650 
2651 /**
2652   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2653   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2654   *       output channel 6 is supported by a timer instance.
2655   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2656   * @param  TIMx Timer instance
2657   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2658   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)2659 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
2660 {
2661   return (uint32_t)(READ_REG(TIMx->CCR6));
2662 }
2663 
2664 /**
2665   * @brief  Select on which reference signal the OC5REF is combined to.
2666   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2667   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2668   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2669   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2670   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2671   * @param  TIMx Timer instance
2672   * @param  GroupCH5 This parameter can be a combination of the following values:
2673   *         @arg @ref LL_TIM_GROUPCH5_NONE
2674   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2675   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2676   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2677   * @retval None
2678   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2679 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2680 {
2681   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2682 }
2683 
2684 /**
2685   * @}
2686   */
2687 
2688 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2689   * @{
2690   */
2691 /**
2692   * @brief  Configure input channel.
2693   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2694   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2695   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2696   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2697   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2698   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2699   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2700   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2701   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2702   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2703   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2704   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2705   *         CCER         CC1P          LL_TIM_IC_Config\n
2706   *         CCER         CC1NP         LL_TIM_IC_Config\n
2707   *         CCER         CC2P          LL_TIM_IC_Config\n
2708   *         CCER         CC2NP         LL_TIM_IC_Config\n
2709   *         CCER         CC3P          LL_TIM_IC_Config\n
2710   *         CCER         CC3NP         LL_TIM_IC_Config\n
2711   *         CCER         CC4P          LL_TIM_IC_Config\n
2712   *         CCER         CC4NP         LL_TIM_IC_Config
2713   * @param  TIMx Timer instance
2714   * @param  Channel This parameter can be one of the following values:
2715   *         @arg @ref LL_TIM_CHANNEL_CH1
2716   *         @arg @ref LL_TIM_CHANNEL_CH2
2717   *         @arg @ref LL_TIM_CHANNEL_CH3
2718   *         @arg @ref LL_TIM_CHANNEL_CH4
2719   * @param  Configuration This parameter must be a combination of all the following values:
2720   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2721   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2722   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2723   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2724   * @retval None
2725   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2726 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2727 {
2728   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2729   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2730   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2731              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2732              << SHIFT_TAB_ICxx[iChannel]);
2733   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2734              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2735 }
2736 
2737 /**
2738   * @brief  Set the active input.
2739   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2740   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2741   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2742   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2743   * @param  TIMx Timer instance
2744   * @param  Channel This parameter can be one of the following values:
2745   *         @arg @ref LL_TIM_CHANNEL_CH1
2746   *         @arg @ref LL_TIM_CHANNEL_CH2
2747   *         @arg @ref LL_TIM_CHANNEL_CH3
2748   *         @arg @ref LL_TIM_CHANNEL_CH4
2749   * @param  ICActiveInput This parameter can be one of the following values:
2750   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2751   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2752   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2753   * @retval None
2754   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2755 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2756 {
2757   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2758   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2759   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2760 }
2761 
2762 /**
2763   * @brief  Get the current active input.
2764   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2765   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2766   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2767   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2768   * @param  TIMx Timer instance
2769   * @param  Channel This parameter can be one of the following values:
2770   *         @arg @ref LL_TIM_CHANNEL_CH1
2771   *         @arg @ref LL_TIM_CHANNEL_CH2
2772   *         @arg @ref LL_TIM_CHANNEL_CH3
2773   *         @arg @ref LL_TIM_CHANNEL_CH4
2774   * @retval Returned value can be one of the following values:
2775   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2776   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2777   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2778   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)2779 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2780 {
2781   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2782   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2783   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2784 }
2785 
2786 /**
2787   * @brief  Set the prescaler of input channel.
2788   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2789   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2790   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2791   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2792   * @param  TIMx Timer instance
2793   * @param  Channel This parameter can be one of the following values:
2794   *         @arg @ref LL_TIM_CHANNEL_CH1
2795   *         @arg @ref LL_TIM_CHANNEL_CH2
2796   *         @arg @ref LL_TIM_CHANNEL_CH3
2797   *         @arg @ref LL_TIM_CHANNEL_CH4
2798   * @param  ICPrescaler This parameter can be one of the following values:
2799   *         @arg @ref LL_TIM_ICPSC_DIV1
2800   *         @arg @ref LL_TIM_ICPSC_DIV2
2801   *         @arg @ref LL_TIM_ICPSC_DIV4
2802   *         @arg @ref LL_TIM_ICPSC_DIV8
2803   * @retval None
2804   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)2805 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2806 {
2807   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2808   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2809   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2810 }
2811 
2812 /**
2813   * @brief  Get the current prescaler value acting on an  input channel.
2814   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2815   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2816   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2817   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2818   * @param  TIMx Timer instance
2819   * @param  Channel This parameter can be one of the following values:
2820   *         @arg @ref LL_TIM_CHANNEL_CH1
2821   *         @arg @ref LL_TIM_CHANNEL_CH2
2822   *         @arg @ref LL_TIM_CHANNEL_CH3
2823   *         @arg @ref LL_TIM_CHANNEL_CH4
2824   * @retval Returned value can be one of the following values:
2825   *         @arg @ref LL_TIM_ICPSC_DIV1
2826   *         @arg @ref LL_TIM_ICPSC_DIV2
2827   *         @arg @ref LL_TIM_ICPSC_DIV4
2828   *         @arg @ref LL_TIM_ICPSC_DIV8
2829   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)2830 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
2831 {
2832   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2833   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2834   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2835 }
2836 
2837 /**
2838   * @brief  Set the input filter duration.
2839   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2840   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2841   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2842   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2843   * @param  TIMx Timer instance
2844   * @param  Channel This parameter can be one of the following values:
2845   *         @arg @ref LL_TIM_CHANNEL_CH1
2846   *         @arg @ref LL_TIM_CHANNEL_CH2
2847   *         @arg @ref LL_TIM_CHANNEL_CH3
2848   *         @arg @ref LL_TIM_CHANNEL_CH4
2849   * @param  ICFilter This parameter can be one of the following values:
2850   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2851   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2852   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2853   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2854   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2855   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2856   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2857   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2858   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2859   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2860   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2861   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2862   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2863   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2864   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2865   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2866   * @retval None
2867   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)2868 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2869 {
2870   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2871   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2872   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2873 }
2874 
2875 /**
2876   * @brief  Get the input filter duration.
2877   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2878   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2879   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2880   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2881   * @param  TIMx Timer instance
2882   * @param  Channel This parameter can be one of the following values:
2883   *         @arg @ref LL_TIM_CHANNEL_CH1
2884   *         @arg @ref LL_TIM_CHANNEL_CH2
2885   *         @arg @ref LL_TIM_CHANNEL_CH3
2886   *         @arg @ref LL_TIM_CHANNEL_CH4
2887   * @retval Returned value can be one of the following values:
2888   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2889   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2890   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2891   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2892   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2893   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2894   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2895   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2896   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2897   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2898   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2899   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2900   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2901   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2902   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2903   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2904   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)2905 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
2906 {
2907   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2908   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2909   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2910 }
2911 
2912 /**
2913   * @brief  Set the input channel polarity.
2914   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2915   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2916   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2917   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2918   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2919   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2920   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2921   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
2922   * @param  TIMx Timer instance
2923   * @param  Channel This parameter can be one of the following values:
2924   *         @arg @ref LL_TIM_CHANNEL_CH1
2925   *         @arg @ref LL_TIM_CHANNEL_CH2
2926   *         @arg @ref LL_TIM_CHANNEL_CH3
2927   *         @arg @ref LL_TIM_CHANNEL_CH4
2928   * @param  ICPolarity This parameter can be one of the following values:
2929   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2930   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2931   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2932   * @retval None
2933   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)2934 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2935 {
2936   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2937   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2938              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2939 }
2940 
2941 /**
2942   * @brief  Get the current input channel polarity.
2943   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2944   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2945   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2946   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2947   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2948   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2949   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2950   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
2951   * @param  TIMx Timer instance
2952   * @param  Channel This parameter can be one of the following values:
2953   *         @arg @ref LL_TIM_CHANNEL_CH1
2954   *         @arg @ref LL_TIM_CHANNEL_CH2
2955   *         @arg @ref LL_TIM_CHANNEL_CH3
2956   *         @arg @ref LL_TIM_CHANNEL_CH4
2957   * @retval Returned value can be one of the following values:
2958   *         @arg @ref LL_TIM_IC_POLARITY_RISING
2959   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2960   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2961   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2962 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2963 {
2964   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2965   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2966           SHIFT_TAB_CCxP[iChannel]);
2967 }
2968 
2969 /**
2970   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
2971   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2972   *       a timer instance provides an XOR input.
2973   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
2974   * @param  TIMx Timer instance
2975   * @retval None
2976   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)2977 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
2978 {
2979   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
2980 }
2981 
2982 /**
2983   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
2984   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2985   *       a timer instance provides an XOR input.
2986   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
2987   * @param  TIMx Timer instance
2988   * @retval None
2989   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)2990 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
2991 {
2992   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
2993 }
2994 
2995 /**
2996   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
2997   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2998   * a timer instance provides an XOR input.
2999   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3000   * @param  TIMx Timer instance
3001   * @retval State of bit (1 or 0).
3002   */
LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef * TIMx)3003 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
3004 {
3005   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3006 }
3007 
3008 /**
3009   * @brief  Get captured value for input channel 1.
3010   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3011   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3012   *       whether or not a timer instance supports a 32 bits counter.
3013   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3014   *       input channel 1 is supported by a timer instance.
3015   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3016   * @param  TIMx Timer instance
3017   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3018   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3019 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3020 {
3021   return (uint32_t)(READ_REG(TIMx->CCR1));
3022 }
3023 
3024 /**
3025   * @brief  Get captured value for input channel 2.
3026   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3027   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3028   *       whether or not a timer instance supports a 32 bits counter.
3029   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3030   *       input channel 2 is supported by a timer instance.
3031   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3032   * @param  TIMx Timer instance
3033   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3034   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3035 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3036 {
3037   return (uint32_t)(READ_REG(TIMx->CCR2));
3038 }
3039 
3040 /**
3041   * @brief  Get captured value for input channel 3.
3042   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3043   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3044   *       whether or not a timer instance supports a 32 bits counter.
3045   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3046   *       input channel 3 is supported by a timer instance.
3047   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3048   * @param  TIMx Timer instance
3049   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3050   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3051 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3052 {
3053   return (uint32_t)(READ_REG(TIMx->CCR3));
3054 }
3055 
3056 /**
3057   * @brief  Get captured value for input channel 4.
3058   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3059   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3060   *       whether or not a timer instance supports a 32 bits counter.
3061   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3062   *       input channel 4 is supported by a timer instance.
3063   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3064   * @param  TIMx Timer instance
3065   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3066   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3067 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3068 {
3069   return (uint32_t)(READ_REG(TIMx->CCR4));
3070 }
3071 
3072 /**
3073   * @}
3074   */
3075 
3076 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3077   * @{
3078   */
3079 /**
3080   * @brief  Enable external clock mode 2.
3081   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3082   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3083   *       whether or not a timer instance supports external clock mode2.
3084   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3085   * @param  TIMx Timer instance
3086   * @retval None
3087   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3088 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3089 {
3090   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3091 }
3092 
3093 /**
3094   * @brief  Disable external clock mode 2.
3095   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3096   *       whether or not a timer instance supports external clock mode2.
3097   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3098   * @param  TIMx Timer instance
3099   * @retval None
3100   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3101 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3102 {
3103   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3104 }
3105 
3106 /**
3107   * @brief  Indicate whether external clock mode 2 is enabled.
3108   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3109   *       whether or not a timer instance supports external clock mode2.
3110   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3111   * @param  TIMx Timer instance
3112   * @retval State of bit (1 or 0).
3113   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3114 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3115 {
3116   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3117 }
3118 
3119 /**
3120   * @brief  Set the clock source of the counter clock.
3121   * @note when selected clock source is external clock mode 1, the timer input
3122   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3123   *       function. This timer input must be configured by calling
3124   *       the @ref LL_TIM_IC_Config() function.
3125   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3126   *       whether or not a timer instance supports external clock mode1.
3127   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3128   *       whether or not a timer instance supports external clock mode2.
3129   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3130   *         SMCR         ECE           LL_TIM_SetClockSource
3131   * @param  TIMx Timer instance
3132   * @param  ClockSource This parameter can be one of the following values:
3133   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3134   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3135   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3136   * @retval None
3137   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3138 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3139 {
3140   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3141 }
3142 
3143 /**
3144   * @brief  Set the encoder interface mode.
3145   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3146   *       whether or not a timer instance supports the encoder mode.
3147   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3148   * @param  TIMx Timer instance
3149   * @param  EncoderMode This parameter can be one of the following values:
3150   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3151   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3152   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3153   * @retval None
3154   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3155 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3156 {
3157   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3158 }
3159 
3160 /**
3161   * @}
3162   */
3163 
3164 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3165   * @{
3166   */
3167 /**
3168   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3169   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3170   *       whether or not a timer instance can operate as a master timer.
3171   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3172   * @param  TIMx Timer instance
3173   * @param  TimerSynchronization This parameter can be one of the following values:
3174   *         @arg @ref LL_TIM_TRGO_RESET
3175   *         @arg @ref LL_TIM_TRGO_ENABLE
3176   *         @arg @ref LL_TIM_TRGO_UPDATE
3177   *         @arg @ref LL_TIM_TRGO_CC1IF
3178   *         @arg @ref LL_TIM_TRGO_OC1REF
3179   *         @arg @ref LL_TIM_TRGO_OC2REF
3180   *         @arg @ref LL_TIM_TRGO_OC3REF
3181   *         @arg @ref LL_TIM_TRGO_OC4REF
3182   * @retval None
3183   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3184 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3185 {
3186   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3187 }
3188 
3189 /**
3190   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3191   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3192   *       whether or not a timer instance can be used for ADC synchronization.
3193   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3194   * @param  TIMx Timer Instance
3195   * @param  ADCSynchronization This parameter can be one of the following values:
3196   *         @arg @ref LL_TIM_TRGO2_RESET
3197   *         @arg @ref LL_TIM_TRGO2_ENABLE
3198   *         @arg @ref LL_TIM_TRGO2_UPDATE
3199   *         @arg @ref LL_TIM_TRGO2_CC1F
3200   *         @arg @ref LL_TIM_TRGO2_OC1
3201   *         @arg @ref LL_TIM_TRGO2_OC2
3202   *         @arg @ref LL_TIM_TRGO2_OC3
3203   *         @arg @ref LL_TIM_TRGO2_OC4
3204   *         @arg @ref LL_TIM_TRGO2_OC5
3205   *         @arg @ref LL_TIM_TRGO2_OC6
3206   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3207   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3208   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3209   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3210   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3211   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3212   * @retval None
3213   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3214 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3215 {
3216   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3217 }
3218 
3219 /**
3220   * @brief  Set the synchronization mode of a slave timer.
3221   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3222   *       a timer instance can operate as a slave timer.
3223   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3224   * @param  TIMx Timer instance
3225   * @param  SlaveMode This parameter can be one of the following values:
3226   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3227   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3228   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3229   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3230   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3231   * @retval None
3232   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3233 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3234 {
3235   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3236 }
3237 
3238 /**
3239   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3240   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3241   *       a timer instance can operate as a slave timer.
3242   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3243   * @param  TIMx Timer instance
3244   * @param  TriggerInput This parameter can be one of the following values:
3245   *         @arg @ref LL_TIM_TS_ITR0
3246   *         @arg @ref LL_TIM_TS_ITR1
3247   *         @arg @ref LL_TIM_TS_ITR2
3248   *         @arg @ref LL_TIM_TS_ITR3
3249   *         @arg @ref LL_TIM_TS_ITR7 (*)
3250   *         @arg @ref LL_TIM_TS_TI1F_ED
3251   *         @arg @ref LL_TIM_TS_TI1FP1
3252   *         @arg @ref LL_TIM_TS_TI2FP2
3253   *         @arg @ref LL_TIM_TS_ETRF
3254   *
3255   *      (*)  Value not defined in all devices.
3256   * @retval None
3257   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3258 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3259 {
3260   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3261 }
3262 
3263 /**
3264   * @brief  Enable the Master/Slave mode.
3265   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3266   *       a timer instance can operate as a slave timer.
3267   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3268   * @param  TIMx Timer instance
3269   * @retval None
3270   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3271 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3272 {
3273   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3274 }
3275 
3276 /**
3277   * @brief  Disable the Master/Slave mode.
3278   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3279   *       a timer instance can operate as a slave timer.
3280   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3281   * @param  TIMx Timer instance
3282   * @retval None
3283   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3284 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3285 {
3286   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3287 }
3288 
3289 /**
3290   * @brief Indicates whether the Master/Slave mode is enabled.
3291   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3292   * a timer instance can operate as a slave timer.
3293   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3294   * @param  TIMx Timer instance
3295   * @retval State of bit (1 or 0).
3296   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3297 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3298 {
3299   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3300 }
3301 
3302 /**
3303   * @brief  Configure the external trigger (ETR) input.
3304   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3305   *       a timer instance provides an external trigger input.
3306   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3307   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3308   *         SMCR         ETF           LL_TIM_ConfigETR
3309   * @param  TIMx Timer instance
3310   * @param  ETRPolarity This parameter can be one of the following values:
3311   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3312   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3313   * @param  ETRPrescaler This parameter can be one of the following values:
3314   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3315   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3316   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3317   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3318   * @param  ETRFilter This parameter can be one of the following values:
3319   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3320   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3321   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3322   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3323   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3324   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3325   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3326   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3327   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3328   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3329   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3330   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3331   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3332   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3333   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3334   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3335   * @retval None
3336   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3337 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3338                                       uint32_t ETRFilter)
3339 {
3340   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3341 }
3342 
3343 /**
3344   * @brief  Select the external trigger (ETR) input source.
3345   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3346   *       not a timer instance supports ETR source selection.
3347   * @rmtoll AF1          ETRSEL        LL_TIM_SetETRSource
3348   * @param  TIMx Timer instance
3349   * @param  ETRSource This parameter can be one of the following values:
3350   *         TIM1
3351   *
3352   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3353   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD1
3354   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD2
3355   *         @arg @ref LL_TIM_ETRSOURCE_ADC1_AWD3
3356   *
3357   *         TIM2 (*)
3358   *
3359   *         @arg @ref LL_TIM_ETRSOURCE_GPIO
3360   *         @arg @ref LL_TIM_ETRSOURCE_LSE
3361   *         @arg @ref LL_TIM_ETRSOURCE_MCO
3362   *         @arg @ref LL_TIM_ETRSOURCE_MCO2
3363   *
3364   *  (*) Timer instance not available on all devices \n
3365   * @retval None
3366   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3367 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3368 {
3369   MODIFY_REG(TIMx->AF1, TIMx_AF1_ETRSEL, ETRSource);
3370 }
3371 
3372 /**
3373   * @}
3374   */
3375 
3376 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3377   * @{
3378   */
3379 /**
3380   * @brief  Enable the break function.
3381   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3382   *       a timer instance provides a break input.
3383   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3384   * @param  TIMx Timer instance
3385   * @retval None
3386   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3387 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3388 {
3389   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3390 }
3391 
3392 /**
3393   * @brief  Disable the break function.
3394   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3395   * @param  TIMx Timer instance
3396   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3397   *       a timer instance provides a break input.
3398   * @retval None
3399   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3400 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3401 {
3402   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3403 }
3404 
3405 /**
3406   * @brief  Configure the break input.
3407   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3408   *       a timer instance provides a break input.
3409   * @note Bidirectional mode is only supported by advanced timer instances.
3410   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3411   *       a timer instance is an advanced-control timer.
3412   * @note In bidirectional mode (BKBID bit set), the Break input is configured both
3413   *        in input mode and in open drain output mode. Any active Break event will
3414   *        assert a low logic level on the Break input to indicate an internal break
3415   *        event to external devices.
3416   * @note When bidirectional mode isn't supported, BreakAFMode must be set to
3417   *       LL_TIM_BREAK_AFMODE_INPUT.
3418   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3419   *         BDTR         BKF           LL_TIM_ConfigBRK\n
3420   *         BDTR         BKBID         LL_TIM_ConfigBRK
3421   * @param  TIMx Timer instance
3422   * @param  BreakPolarity This parameter can be one of the following values:
3423   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3424   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3425   * @param  BreakFilter This parameter can be one of the following values:
3426   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3427   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3428   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3429   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3430   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3431   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3432   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3433   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3434   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3435   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3436   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3437   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3438   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3439   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3440   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3441   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3442   * @param  BreakAFMode This parameter can be one of the following values:
3443   *         @arg @ref LL_TIM_BREAK_AFMODE_INPUT
3444   *         @arg @ref LL_TIM_BREAK_AFMODE_BIDIRECTIONAL
3445   * @retval None
3446   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter,uint32_t BreakAFMode)3447 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity, uint32_t BreakFilter,
3448                                       uint32_t BreakAFMode)
3449 {
3450   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF | TIM_BDTR_BKBID, BreakPolarity | BreakFilter | BreakAFMode);
3451 }
3452 
3453 /**
3454   * @brief  Disarm the break input (when it operates in bidirectional mode).
3455   * @note  The break input can be disarmed only when it is configured in
3456   *        bidirectional mode and when when MOE is reset.
3457   * @note  Purpose is to be able to have the input voltage back to high-state,
3458   *        whatever the time constant on the output .
3459   * @rmtoll BDTR         BKDSRM        LL_TIM_DisarmBRK
3460   * @param  TIMx Timer instance
3461   * @retval None
3462   */
LL_TIM_DisarmBRK(TIM_TypeDef * TIMx)3463 __STATIC_INLINE void LL_TIM_DisarmBRK(TIM_TypeDef *TIMx)
3464 {
3465   SET_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3466 }
3467 
3468 /**
3469   * @brief  Re-arm the break input (when it operates in bidirectional mode).
3470   * @note  The Break input is automatically armed as soon as MOE bit is set.
3471   * @rmtoll BDTR         BKDSRM        LL_TIM_ReArmBRK
3472   * @param  TIMx Timer instance
3473   * @retval None
3474   */
LL_TIM_ReArmBRK(TIM_TypeDef * TIMx)3475 __STATIC_INLINE void LL_TIM_ReArmBRK(TIM_TypeDef *TIMx)
3476 {
3477   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKDSRM);
3478 }
3479 
3480 /**
3481   * @brief  Enable the break 2 function.
3482   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3483   *       a timer instance provides a second break input.
3484   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3485   * @param  TIMx Timer instance
3486   * @retval None
3487   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3488 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3489 {
3490   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3491 }
3492 
3493 /**
3494   * @brief  Disable the break  2 function.
3495   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3496   *       a timer instance provides a second break input.
3497   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3498   * @param  TIMx Timer instance
3499   * @retval None
3500   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3501 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3502 {
3503   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3504 }
3505 
3506 /**
3507   * @brief  Configure the break 2 input.
3508   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3509   *       a timer instance provides a second break input.
3510   * @note Bidirectional mode is only supported by advanced timer instances.
3511   *       Macro IS_TIM_ADVANCED_INSTANCE(TIMx) can be used to check whether or not
3512   *       a timer instance is an advanced-control timer.
3513   * @note In bidirectional mode (BK2BID bit set), the Break 2 input is configured both
3514   *        in input mode and in open drain output mode. Any active Break event will
3515   *        assert a low logic level on the Break 2 input to indicate an internal break
3516   *        event to external devices.
3517   * @note When bidirectional mode isn't supported, Break2AFMode must be set to
3518   *       LL_TIM_BREAK2_AFMODE_INPUT.
3519   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3520   *         BDTR         BK2F          LL_TIM_ConfigBRK2\n
3521   *         BDTR         BK2BID        LL_TIM_ConfigBRK2
3522   * @param  TIMx Timer instance
3523   * @param  Break2Polarity This parameter can be one of the following values:
3524   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3525   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3526   * @param  Break2Filter This parameter can be one of the following values:
3527   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3528   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3529   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3530   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3531   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3532   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3533   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3534   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3535   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3536   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3537   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3538   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3539   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3540   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3541   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3542   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3543   * @param  Break2AFMode This parameter can be one of the following values:
3544   *         @arg @ref LL_TIM_BREAK2_AFMODE_INPUT
3545   *         @arg @ref LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL
3546   * @retval None
3547   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter,uint32_t Break2AFMode)3548 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter,
3549                                        uint32_t Break2AFMode)
3550 {
3551   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F | TIM_BDTR_BK2BID, Break2Polarity | Break2Filter | Break2AFMode);
3552 }
3553 
3554 /**
3555   * @brief  Disarm the break 2 input (when it operates in bidirectional mode).
3556   * @note  The break 2 input can be disarmed only when it is configured in
3557   *        bidirectional mode and when when MOE is reset.
3558   * @note  Purpose is to be able to have the input voltage back to high-state,
3559   *        whatever the time constant on the output.
3560   * @rmtoll BDTR         BK2DSRM       LL_TIM_DisarmBRK2
3561   * @param  TIMx Timer instance
3562   * @retval None
3563   */
LL_TIM_DisarmBRK2(TIM_TypeDef * TIMx)3564 __STATIC_INLINE void LL_TIM_DisarmBRK2(TIM_TypeDef *TIMx)
3565 {
3566   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3567 }
3568 
3569 /**
3570   * @brief  Re-arm the break 2 input (when it operates in bidirectional mode).
3571   * @note  The Break 2 input is automatically armed as soon as MOE bit is set.
3572   * @rmtoll BDTR         BK2DSRM       LL_TIM_ReArmBRK2
3573   * @param  TIMx Timer instance
3574   * @retval None
3575   */
LL_TIM_ReArmBRK2(TIM_TypeDef * TIMx)3576 __STATIC_INLINE void LL_TIM_ReArmBRK2(TIM_TypeDef *TIMx)
3577 {
3578   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2DSRM);
3579 }
3580 
3581 /**
3582   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3583   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3584   *       a timer instance provides a break input.
3585   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3586   *         BDTR         OSSR          LL_TIM_SetOffStates
3587   * @param  TIMx Timer instance
3588   * @param  OffStateIdle This parameter can be one of the following values:
3589   *         @arg @ref LL_TIM_OSSI_DISABLE
3590   *         @arg @ref LL_TIM_OSSI_ENABLE
3591   * @param  OffStateRun This parameter can be one of the following values:
3592   *         @arg @ref LL_TIM_OSSR_DISABLE
3593   *         @arg @ref LL_TIM_OSSR_ENABLE
3594   * @retval None
3595   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3596 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3597 {
3598   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3599 }
3600 
3601 /**
3602   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3603   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3604   *       a timer instance provides a break input.
3605   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3606   * @param  TIMx Timer instance
3607   * @retval None
3608   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3609 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3610 {
3611   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3612 }
3613 
3614 /**
3615   * @brief  Disable automatic output (MOE can be set only by software).
3616   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3617   *       a timer instance provides a break input.
3618   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3619   * @param  TIMx Timer instance
3620   * @retval None
3621   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3622 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3623 {
3624   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3625 }
3626 
3627 /**
3628   * @brief  Indicate whether automatic output is enabled.
3629   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3630   *       a timer instance provides a break input.
3631   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3632   * @param  TIMx Timer instance
3633   * @retval State of bit (1 or 0).
3634   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)3635 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
3636 {
3637   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3638 }
3639 
3640 /**
3641   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3642   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3643   *       software and is reset in case of break or break2 event
3644   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3645   *       a timer instance provides a break input.
3646   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3647   * @param  TIMx Timer instance
3648   * @retval None
3649   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3650 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3651 {
3652   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3653 }
3654 
3655 /**
3656   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3657   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3658   *       software and is reset in case of break or break2 event.
3659   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3660   *       a timer instance provides a break input.
3661   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3662   * @param  TIMx Timer instance
3663   * @retval None
3664   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3665 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3666 {
3667   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3668 }
3669 
3670 /**
3671   * @brief  Indicates whether outputs are enabled.
3672   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3673   *       a timer instance provides a break input.
3674   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3675   * @param  TIMx Timer instance
3676   * @retval State of bit (1 or 0).
3677   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)3678 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
3679 {
3680   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3681 }
3682 
3683 /**
3684   * @brief  Enable the signals connected to the designated timer break input.
3685   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3686   *       or not a timer instance allows for break input selection.
3687   * @rmtoll AF1          BKINE         LL_TIM_EnableBreakInputSource\n
3688   *         AF2          BK2INE        LL_TIM_EnableBreakInputSource\n
3689   * @param  TIMx Timer instance
3690   * @param  BreakInput This parameter can be one of the following values:
3691   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3692   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3693   * @param  Source This parameter can be one of the following values:
3694   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3695   *
3696   * @retval None
3697   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3698 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3699 {
3700   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3701   SET_BIT(*pReg, Source);
3702 }
3703 
3704 /**
3705   * @brief  Disable the signals connected to the designated timer break input.
3706   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3707   *       or not a timer instance allows for break input selection.
3708   * @rmtoll AF1          BKINE         LL_TIM_DisableBreakInputSource\n
3709   *         AF2          BK2INE        LL_TIM_DisableBreakInputSource\n
3710   * @param  TIMx Timer instance
3711   * @param  BreakInput This parameter can be one of the following values:
3712   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3713   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3714   * @param  Source This parameter can be one of the following values:
3715   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3716   *
3717   * @retval None
3718   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3719 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3720 {
3721   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3722   CLEAR_BIT(*pReg, Source);
3723 }
3724 
3725 /**
3726   * @brief  Set the polarity of the break signal for the timer break input.
3727   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3728   *       or not a timer instance allows for break input selection.
3729   * @rmtoll AF1          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3730   *         AF2          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3731   * @param  TIMx Timer instance
3732   * @param  BreakInput This parameter can be one of the following values:
3733   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3734   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3735   * @param  Source This parameter can be one of the following values:
3736   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3737   * @param  Polarity This parameter can be one of the following values:
3738   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
3739   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
3740   * @retval None
3741   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)3742 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
3743                                                         uint32_t Polarity)
3744 {
3745   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->AF1) + BreakInput));
3746   MODIFY_REG(*pReg, (TIMx_AF1_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
3747 }
3748 /**
3749   * @}
3750   */
3751 
3752 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
3753   * @{
3754   */
3755 /**
3756   * @brief  Configures the timer DMA burst feature.
3757   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
3758   *       not a timer instance supports the DMA burst mode.
3759   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
3760   *         DCR          DBA           LL_TIM_ConfigDMABurst
3761   * @param  TIMx Timer instance
3762   * @param  DMABurstBaseAddress This parameter can be one of the following values:
3763   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
3764   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3765   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3766   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3767   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3768   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3769   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3770   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3771   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3772   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3773   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3774   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3775   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3776   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3777   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3778   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3779   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3780   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3781   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
3782   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
3783   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
3784   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF1
3785   *         @arg @ref LL_TIM_DMABURST_BASEADDR_AF2
3786   *         @arg @ref LL_TIM_DMABURST_BASEADDR_TISEL
3787   * @param  DMABurstLength This parameter can be one of the following values:
3788   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3789   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3790   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3791   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3792   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3793   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3794   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3795   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3796   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3797   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3798   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3799   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3800   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3801   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3802   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3803   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3804   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3805   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3806   * @retval None
3807   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)3808 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3809 {
3810   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3811 }
3812 
3813 /**
3814   * @}
3815   */
3816 
3817 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3818   * @{
3819   */
3820 /**
3821   * @brief  Remap TIM inputs (input channel, internal/external triggers).
3822   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3823   *       a some timer inputs can be remapped.
3824   * @rmtoll TIM1_TISEL    TI1SEL      LL_TIM_SetRemap\n
3825   *         TIM1_TISEL    TI2SEL      LL_TIM_SetRemap\n
3826   *         TIM1_TISEL    TI3SEL      LL_TIM_SetRemap\n
3827   *         TIM1_TISEL    TI4SEL      LL_TIM_SetRemap\n
3828   *         TIM2_TISEL    TI1SEL      LL_TIM_SetRemap\n
3829   *         TIM2_TISEL    TI2SEL      LL_TIM_SetRemap\n
3830   *         TIM2_TISEL    TI3SEL      LL_TIM_SetRemap\n
3831   *         TIM2_TISEL    TI4SEL      LL_TIM_SetRemap\n
3832   *         TIM3_TISEL    TI1SEL      LL_TIM_SetRemap\n
3833   *         TIM3_TISEL    TI2SEL      LL_TIM_SetRemap\n
3834   *         TIM3_TISEL    TI3SEL      LL_TIM_SetRemap\n
3835   *         TIM3_TISEL    TI4SEL      LL_TIM_SetRemap\n
3836   *         TIM14_TISEL   TI1SEL      LL_TIM_SetRemap\n
3837   *         TIM16_TISEL   TI1SEL      LL_TIM_SetRemap\n
3838   *         TIM17_TISEL   TI1SEL      LL_TIM_SetRemap
3839   * @param  TIMx Timer instance
3840   * @param  Remap Remap param depends on the TIMx. Description available only
3841   *         in CHM version of the User Manual (not in .pdf).
3842   *         Otherwise see Reference Manual description of TISEL registers.
3843   *
3844   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
3845   *
3846   *         TIM14: one of the following values
3847   *
3848   *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
3849   *            @arg @ref LL_TIM_TIM14_TI1_RMP_RTC_CLK
3850   *            @arg @ref LL_TIM_TIM14_TI1_RMP_HSE_32
3851   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO
3852   *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO2
3853   *
3854   *         TIM16: one of the following values
3855   *
3856   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
3857   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
3858   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
3859   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MCO2
3860   *
3861   *         TIM17: one of the following values
3862   *
3863   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
3864   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSE_32
3865   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO
3866   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO2
3867   * @retval None
3868   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)3869 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
3870 {
3871   MODIFY_REG(TIMx->TISEL, (TIM_TISEL_TI1SEL | TIM_TISEL_TI2SEL | TIM_TISEL_TI3SEL | TIM_TISEL_TI4SEL), Remap);
3872 }
3873 
3874 /**
3875   * @}
3876   */
3877 
3878 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
3879   * @{
3880   */
3881 /**
3882   * @brief  Set the OCREF clear input source
3883   * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
3884   * @note This function can only be used in Output compare and PWM modes.
3885   * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
3886   * @param  TIMx Timer instance
3887   * @param  OCRefClearInputSource This parameter can be one of the following values:
3888   *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
3889   * @retval None
3890   */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)3891 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
3892 {
3893   MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS,
3894              ((OCRefClearInputSource & OCREF_CLEAR_SELECT_MSK) >> OCREF_CLEAR_SELECT_POS) << TIM_SMCR_OCCS_Pos);
3895 }
3896 /**
3897   * @}
3898   */
3899 
3900 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
3901   * @{
3902   */
3903 /**
3904   * @brief  Clear the update interrupt flag (UIF).
3905   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
3906   * @param  TIMx Timer instance
3907   * @retval None
3908   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)3909 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
3910 {
3911   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
3912 }
3913 
3914 /**
3915   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
3916   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
3917   * @param  TIMx Timer instance
3918   * @retval State of bit (1 or 0).
3919   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)3920 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
3921 {
3922   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
3923 }
3924 
3925 /**
3926   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
3927   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
3928   * @param  TIMx Timer instance
3929   * @retval None
3930   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)3931 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
3932 {
3933   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
3934 }
3935 
3936 /**
3937   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
3938   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
3939   * @param  TIMx Timer instance
3940   * @retval State of bit (1 or 0).
3941   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)3942 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
3943 {
3944   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
3945 }
3946 
3947 /**
3948   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
3949   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
3950   * @param  TIMx Timer instance
3951   * @retval None
3952   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)3953 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
3954 {
3955   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
3956 }
3957 
3958 /**
3959   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
3960   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
3961   * @param  TIMx Timer instance
3962   * @retval State of bit (1 or 0).
3963   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)3964 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
3965 {
3966   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
3967 }
3968 
3969 /**
3970   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
3971   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
3972   * @param  TIMx Timer instance
3973   * @retval None
3974   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)3975 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
3976 {
3977   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
3978 }
3979 
3980 /**
3981   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
3982   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
3983   * @param  TIMx Timer instance
3984   * @retval State of bit (1 or 0).
3985   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)3986 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
3987 {
3988   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
3989 }
3990 
3991 /**
3992   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
3993   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
3994   * @param  TIMx Timer instance
3995   * @retval None
3996   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)3997 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
3998 {
3999   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4000 }
4001 
4002 /**
4003   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4004   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4005   * @param  TIMx Timer instance
4006   * @retval State of bit (1 or 0).
4007   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)4008 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
4009 {
4010   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4011 }
4012 
4013 /**
4014   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4015   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4016   * @param  TIMx Timer instance
4017   * @retval None
4018   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4019 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4020 {
4021   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4022 }
4023 
4024 /**
4025   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4026   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4027   * @param  TIMx Timer instance
4028   * @retval State of bit (1 or 0).
4029   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)4030 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
4031 {
4032   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4033 }
4034 
4035 /**
4036   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4037   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4038   * @param  TIMx Timer instance
4039   * @retval None
4040   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4041 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4042 {
4043   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4044 }
4045 
4046 /**
4047   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4048   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4049   * @param  TIMx Timer instance
4050   * @retval State of bit (1 or 0).
4051   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)4052 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
4053 {
4054   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4055 }
4056 
4057 /**
4058   * @brief  Clear the commutation interrupt flag (COMIF).
4059   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4060   * @param  TIMx Timer instance
4061   * @retval None
4062   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4063 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4064 {
4065   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4066 }
4067 
4068 /**
4069   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4070   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4071   * @param  TIMx Timer instance
4072   * @retval State of bit (1 or 0).
4073   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)4074 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
4075 {
4076   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4077 }
4078 
4079 /**
4080   * @brief  Clear the trigger interrupt flag (TIF).
4081   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4082   * @param  TIMx Timer instance
4083   * @retval None
4084   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4085 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4086 {
4087   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4088 }
4089 
4090 /**
4091   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4092   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4093   * @param  TIMx Timer instance
4094   * @retval State of bit (1 or 0).
4095   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)4096 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
4097 {
4098   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4099 }
4100 
4101 /**
4102   * @brief  Clear the break interrupt flag (BIF).
4103   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4104   * @param  TIMx Timer instance
4105   * @retval None
4106   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4107 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4108 {
4109   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4110 }
4111 
4112 /**
4113   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4114   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4115   * @param  TIMx Timer instance
4116   * @retval State of bit (1 or 0).
4117   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)4118 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
4119 {
4120   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4121 }
4122 
4123 /**
4124   * @brief  Clear the break 2 interrupt flag (B2IF).
4125   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4126   * @param  TIMx Timer instance
4127   * @retval None
4128   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4129 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4130 {
4131   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4132 }
4133 
4134 /**
4135   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4136   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4137   * @param  TIMx Timer instance
4138   * @retval State of bit (1 or 0).
4139   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)4140 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
4141 {
4142   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4143 }
4144 
4145 /**
4146   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4147   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4148   * @param  TIMx Timer instance
4149   * @retval None
4150   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4151 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4152 {
4153   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4154 }
4155 
4156 /**
4157   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
4158   *         (Capture/Compare 1 interrupt is pending).
4159   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4160   * @param  TIMx Timer instance
4161   * @retval State of bit (1 or 0).
4162   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)4163 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
4164 {
4165   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4166 }
4167 
4168 /**
4169   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4170   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4171   * @param  TIMx Timer instance
4172   * @retval None
4173   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4174 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4175 {
4176   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4177 }
4178 
4179 /**
4180   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
4181   *         (Capture/Compare 2 over-capture interrupt is pending).
4182   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4183   * @param  TIMx Timer instance
4184   * @retval State of bit (1 or 0).
4185   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)4186 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
4187 {
4188   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4189 }
4190 
4191 /**
4192   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4193   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4194   * @param  TIMx Timer instance
4195   * @retval None
4196   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4197 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4198 {
4199   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4200 }
4201 
4202 /**
4203   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
4204   *         (Capture/Compare 3 over-capture interrupt is pending).
4205   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4206   * @param  TIMx Timer instance
4207   * @retval State of bit (1 or 0).
4208   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)4209 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
4210 {
4211   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4212 }
4213 
4214 /**
4215   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4216   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4217   * @param  TIMx Timer instance
4218   * @retval None
4219   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4220 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4221 {
4222   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4223 }
4224 
4225 /**
4226   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
4227   *         (Capture/Compare 4 over-capture interrupt is pending).
4228   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4229   * @param  TIMx Timer instance
4230   * @retval State of bit (1 or 0).
4231   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)4232 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
4233 {
4234   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4235 }
4236 
4237 /**
4238   * @brief  Clear the system break interrupt flag (SBIF).
4239   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4240   * @param  TIMx Timer instance
4241   * @retval None
4242   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4243 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4244 {
4245   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4246 }
4247 
4248 /**
4249   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4250   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4251   * @param  TIMx Timer instance
4252   * @retval State of bit (1 or 0).
4253   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)4254 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
4255 {
4256   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4257 }
4258 
4259 /**
4260   * @}
4261   */
4262 
4263 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4264   * @{
4265   */
4266 /**
4267   * @brief  Enable update interrupt (UIE).
4268   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4269   * @param  TIMx Timer instance
4270   * @retval None
4271   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4272 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4273 {
4274   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4275 }
4276 
4277 /**
4278   * @brief  Disable update interrupt (UIE).
4279   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4280   * @param  TIMx Timer instance
4281   * @retval None
4282   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4283 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4284 {
4285   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4286 }
4287 
4288 /**
4289   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4290   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4291   * @param  TIMx Timer instance
4292   * @retval State of bit (1 or 0).
4293   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)4294 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
4295 {
4296   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4297 }
4298 
4299 /**
4300   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4301   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4302   * @param  TIMx Timer instance
4303   * @retval None
4304   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4305 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4306 {
4307   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4308 }
4309 
4310 /**
4311   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4312   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4313   * @param  TIMx Timer instance
4314   * @retval None
4315   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4316 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4317 {
4318   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4319 }
4320 
4321 /**
4322   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4323   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4324   * @param  TIMx Timer instance
4325   * @retval State of bit (1 or 0).
4326   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)4327 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
4328 {
4329   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4330 }
4331 
4332 /**
4333   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4334   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4335   * @param  TIMx Timer instance
4336   * @retval None
4337   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4338 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4339 {
4340   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4341 }
4342 
4343 /**
4344   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4345   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4346   * @param  TIMx Timer instance
4347   * @retval None
4348   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4349 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4350 {
4351   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4352 }
4353 
4354 /**
4355   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4356   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4357   * @param  TIMx Timer instance
4358   * @retval State of bit (1 or 0).
4359   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)4360 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
4361 {
4362   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4363 }
4364 
4365 /**
4366   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4367   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4368   * @param  TIMx Timer instance
4369   * @retval None
4370   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4371 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4372 {
4373   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4374 }
4375 
4376 /**
4377   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4378   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4379   * @param  TIMx Timer instance
4380   * @retval None
4381   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4382 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4383 {
4384   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4385 }
4386 
4387 /**
4388   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4389   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4390   * @param  TIMx Timer instance
4391   * @retval State of bit (1 or 0).
4392   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)4393 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
4394 {
4395   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4396 }
4397 
4398 /**
4399   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4400   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4401   * @param  TIMx Timer instance
4402   * @retval None
4403   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4404 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4405 {
4406   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4407 }
4408 
4409 /**
4410   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4411   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4412   * @param  TIMx Timer instance
4413   * @retval None
4414   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4415 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4416 {
4417   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4418 }
4419 
4420 /**
4421   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4422   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4423   * @param  TIMx Timer instance
4424   * @retval State of bit (1 or 0).
4425   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)4426 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
4427 {
4428   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4429 }
4430 
4431 /**
4432   * @brief  Enable commutation interrupt (COMIE).
4433   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4434   * @param  TIMx Timer instance
4435   * @retval None
4436   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4437 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4438 {
4439   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4440 }
4441 
4442 /**
4443   * @brief  Disable commutation interrupt (COMIE).
4444   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4445   * @param  TIMx Timer instance
4446   * @retval None
4447   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4448 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4449 {
4450   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4451 }
4452 
4453 /**
4454   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4455   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4456   * @param  TIMx Timer instance
4457   * @retval State of bit (1 or 0).
4458   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)4459 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
4460 {
4461   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4462 }
4463 
4464 /**
4465   * @brief  Enable trigger interrupt (TIE).
4466   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4467   * @param  TIMx Timer instance
4468   * @retval None
4469   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4470 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4471 {
4472   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4473 }
4474 
4475 /**
4476   * @brief  Disable trigger interrupt (TIE).
4477   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4478   * @param  TIMx Timer instance
4479   * @retval None
4480   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4481 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4482 {
4483   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4484 }
4485 
4486 /**
4487   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4488   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4489   * @param  TIMx Timer instance
4490   * @retval State of bit (1 or 0).
4491   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)4492 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
4493 {
4494   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4495 }
4496 
4497 /**
4498   * @brief  Enable break interrupt (BIE).
4499   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4500   * @param  TIMx Timer instance
4501   * @retval None
4502   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4503 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4504 {
4505   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4506 }
4507 
4508 /**
4509   * @brief  Disable break interrupt (BIE).
4510   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4511   * @param  TIMx Timer instance
4512   * @retval None
4513   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4514 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4515 {
4516   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4517 }
4518 
4519 /**
4520   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4521   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4522   * @param  TIMx Timer instance
4523   * @retval State of bit (1 or 0).
4524   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)4525 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
4526 {
4527   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4528 }
4529 
4530 /**
4531   * @}
4532   */
4533 
4534 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
4535   * @{
4536   */
4537 /**
4538   * @brief  Enable update DMA request (UDE).
4539   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4540   * @param  TIMx Timer instance
4541   * @retval None
4542   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4543 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4544 {
4545   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4546 }
4547 
4548 /**
4549   * @brief  Disable update DMA request (UDE).
4550   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4551   * @param  TIMx Timer instance
4552   * @retval None
4553   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4554 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4555 {
4556   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4557 }
4558 
4559 /**
4560   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4561   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4562   * @param  TIMx Timer instance
4563   * @retval State of bit (1 or 0).
4564   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)4565 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
4566 {
4567   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4568 }
4569 
4570 /**
4571   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4572   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4573   * @param  TIMx Timer instance
4574   * @retval None
4575   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4576 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4577 {
4578   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4579 }
4580 
4581 /**
4582   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4583   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4584   * @param  TIMx Timer instance
4585   * @retval None
4586   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4587 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4588 {
4589   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4590 }
4591 
4592 /**
4593   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4594   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4595   * @param  TIMx Timer instance
4596   * @retval State of bit (1 or 0).
4597   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)4598 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
4599 {
4600   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4601 }
4602 
4603 /**
4604   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4605   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4606   * @param  TIMx Timer instance
4607   * @retval None
4608   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4609 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4610 {
4611   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4612 }
4613 
4614 /**
4615   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4616   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4617   * @param  TIMx Timer instance
4618   * @retval None
4619   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4620 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4621 {
4622   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4623 }
4624 
4625 /**
4626   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4627   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4628   * @param  TIMx Timer instance
4629   * @retval State of bit (1 or 0).
4630   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)4631 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
4632 {
4633   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4634 }
4635 
4636 /**
4637   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4638   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4639   * @param  TIMx Timer instance
4640   * @retval None
4641   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4642 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4643 {
4644   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4645 }
4646 
4647 /**
4648   * @brief  Disable capture/compare 3  DMA request (CC3DE).
4649   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
4650   * @param  TIMx Timer instance
4651   * @retval None
4652   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)4653 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
4654 {
4655   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4656 }
4657 
4658 /**
4659   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
4660   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
4661   * @param  TIMx Timer instance
4662   * @retval State of bit (1 or 0).
4663   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)4664 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
4665 {
4666   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
4667 }
4668 
4669 /**
4670   * @brief  Enable capture/compare 4 DMA request (CC4DE).
4671   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
4672   * @param  TIMx Timer instance
4673   * @retval None
4674   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)4675 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
4676 {
4677   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4678 }
4679 
4680 /**
4681   * @brief  Disable capture/compare 4  DMA request (CC4DE).
4682   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
4683   * @param  TIMx Timer instance
4684   * @retval None
4685   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)4686 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
4687 {
4688   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4689 }
4690 
4691 /**
4692   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
4693   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
4694   * @param  TIMx Timer instance
4695   * @retval State of bit (1 or 0).
4696   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)4697 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
4698 {
4699   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
4700 }
4701 
4702 /**
4703   * @brief  Enable commutation DMA request (COMDE).
4704   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
4705   * @param  TIMx Timer instance
4706   * @retval None
4707   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)4708 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
4709 {
4710   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
4711 }
4712 
4713 /**
4714   * @brief  Disable commutation DMA request (COMDE).
4715   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
4716   * @param  TIMx Timer instance
4717   * @retval None
4718   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)4719 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
4720 {
4721   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
4722 }
4723 
4724 /**
4725   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
4726   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
4727   * @param  TIMx Timer instance
4728   * @retval State of bit (1 or 0).
4729   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)4730 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
4731 {
4732   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
4733 }
4734 
4735 /**
4736   * @brief  Enable trigger interrupt (TDE).
4737   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
4738   * @param  TIMx Timer instance
4739   * @retval None
4740   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)4741 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
4742 {
4743   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
4744 }
4745 
4746 /**
4747   * @brief  Disable trigger interrupt (TDE).
4748   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
4749   * @param  TIMx Timer instance
4750   * @retval None
4751   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)4752 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
4753 {
4754   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
4755 }
4756 
4757 /**
4758   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
4759   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
4760   * @param  TIMx Timer instance
4761   * @retval State of bit (1 or 0).
4762   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)4763 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
4764 {
4765   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
4766 }
4767 
4768 /**
4769   * @}
4770   */
4771 
4772 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
4773   * @{
4774   */
4775 /**
4776   * @brief  Generate an update event.
4777   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
4778   * @param  TIMx Timer instance
4779   * @retval None
4780   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)4781 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
4782 {
4783   SET_BIT(TIMx->EGR, TIM_EGR_UG);
4784 }
4785 
4786 /**
4787   * @brief  Generate Capture/Compare 1 event.
4788   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
4789   * @param  TIMx Timer instance
4790   * @retval None
4791   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)4792 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
4793 {
4794   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
4795 }
4796 
4797 /**
4798   * @brief  Generate Capture/Compare 2 event.
4799   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
4800   * @param  TIMx Timer instance
4801   * @retval None
4802   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)4803 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
4804 {
4805   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
4806 }
4807 
4808 /**
4809   * @brief  Generate Capture/Compare 3 event.
4810   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
4811   * @param  TIMx Timer instance
4812   * @retval None
4813   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)4814 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
4815 {
4816   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
4817 }
4818 
4819 /**
4820   * @brief  Generate Capture/Compare 4 event.
4821   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
4822   * @param  TIMx Timer instance
4823   * @retval None
4824   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)4825 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
4826 {
4827   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
4828 }
4829 
4830 /**
4831   * @brief  Generate commutation event.
4832   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
4833   * @param  TIMx Timer instance
4834   * @retval None
4835   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)4836 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
4837 {
4838   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
4839 }
4840 
4841 /**
4842   * @brief  Generate trigger event.
4843   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
4844   * @param  TIMx Timer instance
4845   * @retval None
4846   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)4847 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
4848 {
4849   SET_BIT(TIMx->EGR, TIM_EGR_TG);
4850 }
4851 
4852 /**
4853   * @brief  Generate break event.
4854   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
4855   * @param  TIMx Timer instance
4856   * @retval None
4857   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)4858 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
4859 {
4860   SET_BIT(TIMx->EGR, TIM_EGR_BG);
4861 }
4862 
4863 /**
4864   * @brief  Generate break 2 event.
4865   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
4866   * @param  TIMx Timer instance
4867   * @retval None
4868   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)4869 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
4870 {
4871   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
4872 }
4873 
4874 /**
4875   * @}
4876   */
4877 
4878 #if defined(USE_FULL_LL_DRIVER)
4879 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
4880   * @{
4881   */
4882 
4883 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
4884 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
4885 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
4886 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4887 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
4888 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
4889 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
4890 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4891 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
4892 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
4893 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
4894 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
4895 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
4896 /**
4897   * @}
4898   */
4899 #endif /* USE_FULL_LL_DRIVER */
4900 
4901 /**
4902   * @}
4903   */
4904 
4905 /**
4906   * @}
4907   */
4908 
4909 #endif /* TIM1 || TIM2 || TIM3 || TIM14 || TIM16 || TIM17 */
4910 
4911 /**
4912   * @}
4913   */
4914 
4915 #ifdef __cplusplus
4916 }
4917 #endif
4918 
4919 #endif /* __STM32C0xx_LL_TIM_H */
4920