1 /**
2   ******************************************************************************
3   * @file    stm32f3xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2016 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156     (+) Break2Callback                    : TIM Break2 Callback (when supported).
157 
158   [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162 
163   [..]
164   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165   functionalities in the Init / DeInit only when these callbacks are null
166   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168 
169   [..]
170     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171     Exception done MspInit / MspDeInit that can be registered / unregistered
172     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174   In that case first register the MspInit/MspDeInit user callbacks
175       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176 
177   [..]
178       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179       not defined, the callback registration feature is not available and all callbacks
180       are set to the corresponding weak functions.
181 
182   @endverbatim
183   ******************************************************************************
184   */
185 
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32f3xx_hal.h"
188 
189 /** @addtogroup STM32F3xx_HAL_Driver
190   * @{
191   */
192 
193 /** @defgroup TIM TIM
194   * @brief TIM HAL module driver
195   * @{
196   */
197 
198 #ifdef HAL_TIM_MODULE_ENABLED
199 
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /* Private macros ------------------------------------------------------------*/
203 /* Private variables ---------------------------------------------------------*/
204 /* Private function prototypes -----------------------------------------------*/
205 /** @addtogroup TIM_Private_Functions
206   * @{
207   */
208 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
209 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
210 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
211 #if defined(TIM_CCER_CC5E)
212 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
213 #endif /* TIM_CCER_CC5E */
214 #if defined(TIM_CCER_CC6E)
215 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
216 #endif /* TIM_CCER_CC6E */
217 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
218 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
219                               uint32_t TIM_ICFilter);
220 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
221 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
222                               uint32_t TIM_ICFilter);
223 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
224                               uint32_t TIM_ICFilter);
225 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
226 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
227 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
228 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
229 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
230 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
231 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
232                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
233 /**
234   * @}
235   */
236 /* Exported functions --------------------------------------------------------*/
237 
238 /** @defgroup TIM_Exported_Functions TIM Exported Functions
239   * @{
240   */
241 
242 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
243   *  @brief    Time Base functions
244   *
245 @verbatim
246   ==============================================================================
247               ##### Time Base functions #####
248   ==============================================================================
249   [..]
250     This section provides functions allowing to:
251     (+) Initialize and configure the TIM base.
252     (+) De-initialize the TIM base.
253     (+) Start the Time Base.
254     (+) Stop the Time Base.
255     (+) Start the Time Base and enable interrupt.
256     (+) Stop the Time Base and disable interrupt.
257     (+) Start the Time Base and enable DMA transfer.
258     (+) Stop the Time Base and disable DMA transfer.
259 
260 @endverbatim
261   * @{
262   */
263 /**
264   * @brief  Initializes the TIM Time base Unit according to the specified
265   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
266   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
267   *         requires a timer reset to avoid unexpected direction
268   *         due to DIR bit readonly in center aligned mode.
269   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
270   * @param  htim TIM Base handle
271   * @retval HAL status
272   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)273 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
274 {
275   /* Check the TIM handle allocation */
276   if (htim == NULL)
277   {
278     return HAL_ERROR;
279   }
280 
281   /* Check the parameters */
282   assert_param(IS_TIM_INSTANCE(htim->Instance));
283   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
284   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
285   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
286   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
287 
288   if (htim->State == HAL_TIM_STATE_RESET)
289   {
290     /* Allocate lock resource and initialize it */
291     htim->Lock = HAL_UNLOCKED;
292 
293 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
294     /* Reset interrupt callbacks to legacy weak callbacks */
295     TIM_ResetCallback(htim);
296 
297     if (htim->Base_MspInitCallback == NULL)
298     {
299       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
300     }
301     /* Init the low level hardware : GPIO, CLOCK, NVIC */
302     htim->Base_MspInitCallback(htim);
303 #else
304     /* Init the low level hardware : GPIO, CLOCK, NVIC */
305     HAL_TIM_Base_MspInit(htim);
306 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
307   }
308 
309   /* Set the TIM state */
310   htim->State = HAL_TIM_STATE_BUSY;
311 
312   /* Set the Time Base configuration */
313   TIM_Base_SetConfig(htim->Instance, &htim->Init);
314 
315   /* Initialize the DMA burst operation state */
316   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
317 
318   /* Initialize the TIM channels state */
319   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
320   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
321 
322   /* Initialize the TIM state*/
323   htim->State = HAL_TIM_STATE_READY;
324 
325   return HAL_OK;
326 }
327 
328 /**
329   * @brief  DeInitializes the TIM Base peripheral
330   * @param  htim TIM Base handle
331   * @retval HAL status
332   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)333 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
334 {
335   /* Check the parameters */
336   assert_param(IS_TIM_INSTANCE(htim->Instance));
337 
338   htim->State = HAL_TIM_STATE_BUSY;
339 
340   /* Disable the TIM Peripheral Clock */
341   __HAL_TIM_DISABLE(htim);
342 
343 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
344   if (htim->Base_MspDeInitCallback == NULL)
345   {
346     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
347   }
348   /* DeInit the low level hardware */
349   htim->Base_MspDeInitCallback(htim);
350 #else
351   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
352   HAL_TIM_Base_MspDeInit(htim);
353 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
354 
355   /* Change the DMA burst operation state */
356   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
357 
358   /* Change the TIM channels state */
359   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
360   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
361 
362   /* Change TIM state */
363   htim->State = HAL_TIM_STATE_RESET;
364 
365   /* Release Lock */
366   __HAL_UNLOCK(htim);
367 
368   return HAL_OK;
369 }
370 
371 /**
372   * @brief  Initializes the TIM Base MSP.
373   * @param  htim TIM Base handle
374   * @retval None
375   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)376 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
377 {
378   /* Prevent unused argument(s) compilation warning */
379   UNUSED(htim);
380 
381   /* NOTE : This function should not be modified, when the callback is needed,
382             the HAL_TIM_Base_MspInit could be implemented in the user file
383    */
384 }
385 
386 /**
387   * @brief  DeInitializes TIM Base MSP.
388   * @param  htim TIM Base handle
389   * @retval None
390   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)391 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
392 {
393   /* Prevent unused argument(s) compilation warning */
394   UNUSED(htim);
395 
396   /* NOTE : This function should not be modified, when the callback is needed,
397             the HAL_TIM_Base_MspDeInit could be implemented in the user file
398    */
399 }
400 
401 
402 /**
403   * @brief  Starts the TIM Base generation.
404   * @param  htim TIM Base handle
405   * @retval HAL status
406   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)407 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
408 {
409   uint32_t tmpsmcr;
410 
411   /* Check the parameters */
412   assert_param(IS_TIM_INSTANCE(htim->Instance));
413 
414   /* Check the TIM state */
415   if (htim->State != HAL_TIM_STATE_READY)
416   {
417     return HAL_ERROR;
418   }
419 
420   /* Set the TIM state */
421   htim->State = HAL_TIM_STATE_BUSY;
422 
423   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
424   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
425   {
426     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
427     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
428     {
429       __HAL_TIM_ENABLE(htim);
430     }
431   }
432   else
433   {
434     __HAL_TIM_ENABLE(htim);
435   }
436 
437   /* Return function status */
438   return HAL_OK;
439 }
440 
441 /**
442   * @brief  Stops the TIM Base generation.
443   * @param  htim TIM Base handle
444   * @retval HAL status
445   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)446 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
447 {
448   /* Check the parameters */
449   assert_param(IS_TIM_INSTANCE(htim->Instance));
450 
451   /* Disable the Peripheral */
452   __HAL_TIM_DISABLE(htim);
453 
454   /* Set the TIM state */
455   htim->State = HAL_TIM_STATE_READY;
456 
457   /* Return function status */
458   return HAL_OK;
459 }
460 
461 /**
462   * @brief  Starts the TIM Base generation in interrupt mode.
463   * @param  htim TIM Base handle
464   * @retval HAL status
465   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)466 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
467 {
468   uint32_t tmpsmcr;
469 
470   /* Check the parameters */
471   assert_param(IS_TIM_INSTANCE(htim->Instance));
472 
473   /* Check the TIM state */
474   if (htim->State != HAL_TIM_STATE_READY)
475   {
476     return HAL_ERROR;
477   }
478 
479   /* Set the TIM state */
480   htim->State = HAL_TIM_STATE_BUSY;
481 
482   /* Enable the TIM Update interrupt */
483   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
484 
485   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
486   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
487   {
488     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
489     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
490     {
491       __HAL_TIM_ENABLE(htim);
492     }
493   }
494   else
495   {
496     __HAL_TIM_ENABLE(htim);
497   }
498 
499   /* Return function status */
500   return HAL_OK;
501 }
502 
503 /**
504   * @brief  Stops the TIM Base generation in interrupt mode.
505   * @param  htim TIM Base handle
506   * @retval HAL status
507   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)508 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
509 {
510   /* Check the parameters */
511   assert_param(IS_TIM_INSTANCE(htim->Instance));
512 
513   /* Disable the TIM Update interrupt */
514   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
515 
516   /* Disable the Peripheral */
517   __HAL_TIM_DISABLE(htim);
518 
519   /* Set the TIM state */
520   htim->State = HAL_TIM_STATE_READY;
521 
522   /* Return function status */
523   return HAL_OK;
524 }
525 
526 /**
527   * @brief  Starts the TIM Base generation in DMA mode.
528   * @param  htim TIM Base handle
529   * @param  pData The source Buffer address.
530   * @param  Length The length of data to be transferred from memory to peripheral.
531   * @retval HAL status
532   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)533 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
534 {
535   uint32_t tmpsmcr;
536 
537   /* Check the parameters */
538   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
539 
540   /* Set the TIM state */
541   if (htim->State == HAL_TIM_STATE_BUSY)
542   {
543     return HAL_BUSY;
544   }
545   else if (htim->State == HAL_TIM_STATE_READY)
546   {
547     if ((pData == NULL) || (Length == 0U))
548     {
549       return HAL_ERROR;
550     }
551     else
552     {
553       htim->State = HAL_TIM_STATE_BUSY;
554     }
555   }
556   else
557   {
558     return HAL_ERROR;
559   }
560 
561   /* Set the DMA Period elapsed callbacks */
562   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
563   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
564 
565   /* Set the DMA error callback */
566   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
567 
568   /* Enable the DMA channel */
569   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
570                        Length) != HAL_OK)
571   {
572     /* Return error status */
573     return HAL_ERROR;
574   }
575 
576   /* Enable the TIM Update DMA request */
577   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
578 
579   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
580   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
581   {
582     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
583     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
584     {
585       __HAL_TIM_ENABLE(htim);
586     }
587   }
588   else
589   {
590     __HAL_TIM_ENABLE(htim);
591   }
592 
593   /* Return function status */
594   return HAL_OK;
595 }
596 
597 /**
598   * @brief  Stops the TIM Base generation in DMA mode.
599   * @param  htim TIM Base handle
600   * @retval HAL status
601   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)602 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
603 {
604   /* Check the parameters */
605   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
606 
607   /* Disable the TIM Update DMA request */
608   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
609 
610   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
611 
612   /* Disable the Peripheral */
613   __HAL_TIM_DISABLE(htim);
614 
615   /* Set the TIM state */
616   htim->State = HAL_TIM_STATE_READY;
617 
618   /* Return function status */
619   return HAL_OK;
620 }
621 
622 /**
623   * @}
624   */
625 
626 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
627   *  @brief    TIM Output Compare functions
628   *
629 @verbatim
630   ==============================================================================
631                   ##### TIM Output Compare functions #####
632   ==============================================================================
633   [..]
634     This section provides functions allowing to:
635     (+) Initialize and configure the TIM Output Compare.
636     (+) De-initialize the TIM Output Compare.
637     (+) Start the TIM Output Compare.
638     (+) Stop the TIM Output Compare.
639     (+) Start the TIM Output Compare and enable interrupt.
640     (+) Stop the TIM Output Compare and disable interrupt.
641     (+) Start the TIM Output Compare and enable DMA transfer.
642     (+) Stop the TIM Output Compare and disable DMA transfer.
643 
644 @endverbatim
645   * @{
646   */
647 /**
648   * @brief  Initializes the TIM Output Compare according to the specified
649   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
650   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
651   *         requires a timer reset to avoid unexpected direction
652   *         due to DIR bit readonly in center aligned mode.
653   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
654   * @param  htim TIM Output Compare handle
655   * @retval HAL status
656   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)657 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
658 {
659   /* Check the TIM handle allocation */
660   if (htim == NULL)
661   {
662     return HAL_ERROR;
663   }
664 
665   /* Check the parameters */
666   assert_param(IS_TIM_INSTANCE(htim->Instance));
667   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
668   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
669   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
670   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
671 
672   if (htim->State == HAL_TIM_STATE_RESET)
673   {
674     /* Allocate lock resource and initialize it */
675     htim->Lock = HAL_UNLOCKED;
676 
677 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
678     /* Reset interrupt callbacks to legacy weak callbacks */
679     TIM_ResetCallback(htim);
680 
681     if (htim->OC_MspInitCallback == NULL)
682     {
683       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
684     }
685     /* Init the low level hardware : GPIO, CLOCK, NVIC */
686     htim->OC_MspInitCallback(htim);
687 #else
688     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
689     HAL_TIM_OC_MspInit(htim);
690 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
691   }
692 
693   /* Set the TIM state */
694   htim->State = HAL_TIM_STATE_BUSY;
695 
696   /* Init the base time for the Output Compare */
697   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
698 
699   /* Initialize the DMA burst operation state */
700   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
701 
702   /* Initialize the TIM channels state */
703   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
704   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
705 
706   /* Initialize the TIM state*/
707   htim->State = HAL_TIM_STATE_READY;
708 
709   return HAL_OK;
710 }
711 
712 /**
713   * @brief  DeInitializes the TIM peripheral
714   * @param  htim TIM Output Compare handle
715   * @retval HAL status
716   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)717 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
718 {
719   /* Check the parameters */
720   assert_param(IS_TIM_INSTANCE(htim->Instance));
721 
722   htim->State = HAL_TIM_STATE_BUSY;
723 
724   /* Disable the TIM Peripheral Clock */
725   __HAL_TIM_DISABLE(htim);
726 
727 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
728   if (htim->OC_MspDeInitCallback == NULL)
729   {
730     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
731   }
732   /* DeInit the low level hardware */
733   htim->OC_MspDeInitCallback(htim);
734 #else
735   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
736   HAL_TIM_OC_MspDeInit(htim);
737 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
738 
739   /* Change the DMA burst operation state */
740   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
741 
742   /* Change the TIM channels state */
743   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
744   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
745 
746   /* Change TIM state */
747   htim->State = HAL_TIM_STATE_RESET;
748 
749   /* Release Lock */
750   __HAL_UNLOCK(htim);
751 
752   return HAL_OK;
753 }
754 
755 /**
756   * @brief  Initializes the TIM Output Compare MSP.
757   * @param  htim TIM Output Compare handle
758   * @retval None
759   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)760 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
761 {
762   /* Prevent unused argument(s) compilation warning */
763   UNUSED(htim);
764 
765   /* NOTE : This function should not be modified, when the callback is needed,
766             the HAL_TIM_OC_MspInit could be implemented in the user file
767    */
768 }
769 
770 /**
771   * @brief  DeInitializes TIM Output Compare MSP.
772   * @param  htim TIM Output Compare handle
773   * @retval None
774   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)775 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
776 {
777   /* Prevent unused argument(s) compilation warning */
778   UNUSED(htim);
779 
780   /* NOTE : This function should not be modified, when the callback is needed,
781             the HAL_TIM_OC_MspDeInit could be implemented in the user file
782    */
783 }
784 
785 /**
786   * @brief  Starts the TIM Output Compare signal generation.
787   * @param  htim TIM Output Compare handle
788   * @param  Channel TIM Channel to be enabled
789   *          This parameter can be one of the following values:
790   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
791   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
792   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
793   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
794   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
795   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
796   *         (*) Value not defined for all devices
797   * @retval HAL status
798   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)799 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
800 {
801   uint32_t tmpsmcr;
802 
803   /* Check the parameters */
804   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
805 
806   /* Check the TIM channel state */
807   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
808   {
809     return HAL_ERROR;
810   }
811 
812   /* Set the TIM channel state */
813   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
814 
815   /* Enable the Output compare channel */
816   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
817 
818   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
819   {
820     /* Enable the main output */
821     __HAL_TIM_MOE_ENABLE(htim);
822   }
823 
824   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
825   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
826   {
827     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
828     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
829     {
830       __HAL_TIM_ENABLE(htim);
831     }
832   }
833   else
834   {
835     __HAL_TIM_ENABLE(htim);
836   }
837 
838   /* Return function status */
839   return HAL_OK;
840 }
841 
842 /**
843   * @brief  Stops the TIM Output Compare signal generation.
844   * @param  htim TIM Output Compare handle
845   * @param  Channel TIM Channel to be disabled
846   *          This parameter can be one of the following values:
847   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
848   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
849   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
850   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
851   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
852   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
853   *         (*) Value not defined for all devices
854   * @retval HAL status
855   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)856 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
857 {
858   /* Check the parameters */
859   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
860 
861   /* Disable the Output compare channel */
862   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
863 
864   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
865   {
866     /* Disable the Main Output */
867     __HAL_TIM_MOE_DISABLE(htim);
868   }
869 
870   /* Disable the Peripheral */
871   __HAL_TIM_DISABLE(htim);
872 
873   /* Set the TIM channel state */
874   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
875 
876   /* Return function status */
877   return HAL_OK;
878 }
879 
880 /**
881   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
882   * @param  htim TIM Output Compare handle
883   * @param  Channel TIM Channel to be enabled
884   *          This parameter can be one of the following values:
885   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
886   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
887   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
888   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
889   * @retval HAL status
890   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)891 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
892 {
893   HAL_StatusTypeDef status = HAL_OK;
894   uint32_t tmpsmcr;
895 
896   /* Check the parameters */
897   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
898 
899   /* Check the TIM channel state */
900   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
901   {
902     return HAL_ERROR;
903   }
904 
905   /* Set the TIM channel state */
906   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
907 
908   switch (Channel)
909   {
910     case TIM_CHANNEL_1:
911     {
912       /* Enable the TIM Capture/Compare 1 interrupt */
913       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
914       break;
915     }
916 
917     case TIM_CHANNEL_2:
918     {
919       /* Enable the TIM Capture/Compare 2 interrupt */
920       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
921       break;
922     }
923 
924     case TIM_CHANNEL_3:
925     {
926       /* Enable the TIM Capture/Compare 3 interrupt */
927       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
928       break;
929     }
930 
931     case TIM_CHANNEL_4:
932     {
933       /* Enable the TIM Capture/Compare 4 interrupt */
934       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
935       break;
936     }
937 
938     default:
939       status = HAL_ERROR;
940       break;
941   }
942 
943   if (status == HAL_OK)
944   {
945     /* Enable the Output compare channel */
946     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
947 
948     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
949     {
950       /* Enable the main output */
951       __HAL_TIM_MOE_ENABLE(htim);
952     }
953 
954     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
955     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
956     {
957       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
958       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
959       {
960         __HAL_TIM_ENABLE(htim);
961       }
962     }
963     else
964     {
965       __HAL_TIM_ENABLE(htim);
966     }
967   }
968 
969   /* Return function status */
970   return status;
971 }
972 
973 /**
974   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
975   * @param  htim TIM Output Compare handle
976   * @param  Channel TIM Channel to be disabled
977   *          This parameter can be one of the following values:
978   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
979   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
980   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
981   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
982   * @retval HAL status
983   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)984 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
985 {
986   HAL_StatusTypeDef status = HAL_OK;
987 
988   /* Check the parameters */
989   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
990 
991   switch (Channel)
992   {
993     case TIM_CHANNEL_1:
994     {
995       /* Disable the TIM Capture/Compare 1 interrupt */
996       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
997       break;
998     }
999 
1000     case TIM_CHANNEL_2:
1001     {
1002       /* Disable the TIM Capture/Compare 2 interrupt */
1003       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1004       break;
1005     }
1006 
1007     case TIM_CHANNEL_3:
1008     {
1009       /* Disable the TIM Capture/Compare 3 interrupt */
1010       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1011       break;
1012     }
1013 
1014     case TIM_CHANNEL_4:
1015     {
1016       /* Disable the TIM Capture/Compare 4 interrupt */
1017       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1018       break;
1019     }
1020 
1021     default:
1022       status = HAL_ERROR;
1023       break;
1024   }
1025 
1026   if (status == HAL_OK)
1027   {
1028     /* Disable the Output compare channel */
1029     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1030 
1031     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1032     {
1033       /* Disable the Main Output */
1034       __HAL_TIM_MOE_DISABLE(htim);
1035     }
1036 
1037     /* Disable the Peripheral */
1038     __HAL_TIM_DISABLE(htim);
1039 
1040     /* Set the TIM channel state */
1041     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1042   }
1043 
1044   /* Return function status */
1045   return status;
1046 }
1047 
1048 /**
1049   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1050   * @param  htim TIM Output Compare handle
1051   * @param  Channel TIM Channel to be enabled
1052   *          This parameter can be one of the following values:
1053   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1054   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1055   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1056   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1057   * @param  pData The source Buffer address.
1058   * @param  Length The length of data to be transferred from memory to TIM peripheral
1059   * @retval HAL status
1060   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1061 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1062                                        uint16_t Length)
1063 {
1064   HAL_StatusTypeDef status = HAL_OK;
1065   uint32_t tmpsmcr;
1066 
1067   /* Check the parameters */
1068   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1069 
1070   /* Set the TIM channel state */
1071   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1072   {
1073     return HAL_BUSY;
1074   }
1075   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1076   {
1077     if ((pData == NULL) || (Length == 0U))
1078     {
1079       return HAL_ERROR;
1080     }
1081     else
1082     {
1083       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1084     }
1085   }
1086   else
1087   {
1088     return HAL_ERROR;
1089   }
1090 
1091   switch (Channel)
1092   {
1093     case TIM_CHANNEL_1:
1094     {
1095       /* Set the DMA compare callbacks */
1096       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1097       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1098 
1099       /* Set the DMA error callback */
1100       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1101 
1102       /* Enable the DMA channel */
1103       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1104                            Length) != HAL_OK)
1105       {
1106         /* Return error status */
1107         return HAL_ERROR;
1108       }
1109 
1110       /* Enable the TIM Capture/Compare 1 DMA request */
1111       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1112       break;
1113     }
1114 
1115     case TIM_CHANNEL_2:
1116     {
1117       /* Set the DMA compare callbacks */
1118       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1119       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1120 
1121       /* Set the DMA error callback */
1122       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1123 
1124       /* Enable the DMA channel */
1125       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1126                            Length) != HAL_OK)
1127       {
1128         /* Return error status */
1129         return HAL_ERROR;
1130       }
1131 
1132       /* Enable the TIM Capture/Compare 2 DMA request */
1133       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1134       break;
1135     }
1136 
1137     case TIM_CHANNEL_3:
1138     {
1139       /* Set the DMA compare callbacks */
1140       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1141       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1142 
1143       /* Set the DMA error callback */
1144       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1145 
1146       /* Enable the DMA channel */
1147       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1148                            Length) != HAL_OK)
1149       {
1150         /* Return error status */
1151         return HAL_ERROR;
1152       }
1153       /* Enable the TIM Capture/Compare 3 DMA request */
1154       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1155       break;
1156     }
1157 
1158     case TIM_CHANNEL_4:
1159     {
1160       /* Set the DMA compare callbacks */
1161       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1162       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1163 
1164       /* Set the DMA error callback */
1165       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1166 
1167       /* Enable the DMA channel */
1168       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1169                            Length) != HAL_OK)
1170       {
1171         /* Return error status */
1172         return HAL_ERROR;
1173       }
1174       /* Enable the TIM Capture/Compare 4 DMA request */
1175       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1176       break;
1177     }
1178 
1179     default:
1180       status = HAL_ERROR;
1181       break;
1182   }
1183 
1184   if (status == HAL_OK)
1185   {
1186     /* Enable the Output compare channel */
1187     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1188 
1189     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1190     {
1191       /* Enable the main output */
1192       __HAL_TIM_MOE_ENABLE(htim);
1193     }
1194 
1195     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1196     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1197     {
1198       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1199       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1200       {
1201         __HAL_TIM_ENABLE(htim);
1202       }
1203     }
1204     else
1205     {
1206       __HAL_TIM_ENABLE(htim);
1207     }
1208   }
1209 
1210   /* Return function status */
1211   return status;
1212 }
1213 
1214 /**
1215   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1216   * @param  htim TIM Output Compare handle
1217   * @param  Channel TIM Channel to be disabled
1218   *          This parameter can be one of the following values:
1219   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1220   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1221   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1222   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1223   * @retval HAL status
1224   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1225 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1226 {
1227   HAL_StatusTypeDef status = HAL_OK;
1228 
1229   /* Check the parameters */
1230   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1231 
1232   switch (Channel)
1233   {
1234     case TIM_CHANNEL_1:
1235     {
1236       /* Disable the TIM Capture/Compare 1 DMA request */
1237       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1238       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1239       break;
1240     }
1241 
1242     case TIM_CHANNEL_2:
1243     {
1244       /* Disable the TIM Capture/Compare 2 DMA request */
1245       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1246       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1247       break;
1248     }
1249 
1250     case TIM_CHANNEL_3:
1251     {
1252       /* Disable the TIM Capture/Compare 3 DMA request */
1253       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1254       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1255       break;
1256     }
1257 
1258     case TIM_CHANNEL_4:
1259     {
1260       /* Disable the TIM Capture/Compare 4 interrupt */
1261       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1262       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1263       break;
1264     }
1265 
1266     default:
1267       status = HAL_ERROR;
1268       break;
1269   }
1270 
1271   if (status == HAL_OK)
1272   {
1273     /* Disable the Output compare channel */
1274     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1275 
1276     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1277     {
1278       /* Disable the Main Output */
1279       __HAL_TIM_MOE_DISABLE(htim);
1280     }
1281 
1282     /* Disable the Peripheral */
1283     __HAL_TIM_DISABLE(htim);
1284 
1285     /* Set the TIM channel state */
1286     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1287   }
1288 
1289   /* Return function status */
1290   return status;
1291 }
1292 
1293 /**
1294   * @}
1295   */
1296 
1297 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1298   *  @brief    TIM PWM functions
1299   *
1300 @verbatim
1301   ==============================================================================
1302                           ##### TIM PWM functions #####
1303   ==============================================================================
1304   [..]
1305     This section provides functions allowing to:
1306     (+) Initialize and configure the TIM PWM.
1307     (+) De-initialize the TIM PWM.
1308     (+) Start the TIM PWM.
1309     (+) Stop the TIM PWM.
1310     (+) Start the TIM PWM and enable interrupt.
1311     (+) Stop the TIM PWM and disable interrupt.
1312     (+) Start the TIM PWM and enable DMA transfer.
1313     (+) Stop the TIM PWM and disable DMA transfer.
1314 
1315 @endverbatim
1316   * @{
1317   */
1318 /**
1319   * @brief  Initializes the TIM PWM Time Base according to the specified
1320   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1321   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1322   *         requires a timer reset to avoid unexpected direction
1323   *         due to DIR bit readonly in center aligned mode.
1324   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1325   * @param  htim TIM PWM handle
1326   * @retval HAL status
1327   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1328 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1329 {
1330   /* Check the TIM handle allocation */
1331   if (htim == NULL)
1332   {
1333     return HAL_ERROR;
1334   }
1335 
1336   /* Check the parameters */
1337   assert_param(IS_TIM_INSTANCE(htim->Instance));
1338   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1339   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1340   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1341   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1342 
1343   if (htim->State == HAL_TIM_STATE_RESET)
1344   {
1345     /* Allocate lock resource and initialize it */
1346     htim->Lock = HAL_UNLOCKED;
1347 
1348 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1349     /* Reset interrupt callbacks to legacy weak callbacks */
1350     TIM_ResetCallback(htim);
1351 
1352     if (htim->PWM_MspInitCallback == NULL)
1353     {
1354       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1355     }
1356     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1357     htim->PWM_MspInitCallback(htim);
1358 #else
1359     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1360     HAL_TIM_PWM_MspInit(htim);
1361 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1362   }
1363 
1364   /* Set the TIM state */
1365   htim->State = HAL_TIM_STATE_BUSY;
1366 
1367   /* Init the base time for the PWM */
1368   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1369 
1370   /* Initialize the DMA burst operation state */
1371   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1372 
1373   /* Initialize the TIM channels state */
1374   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1375   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1376 
1377   /* Initialize the TIM state*/
1378   htim->State = HAL_TIM_STATE_READY;
1379 
1380   return HAL_OK;
1381 }
1382 
1383 /**
1384   * @brief  DeInitializes the TIM peripheral
1385   * @param  htim TIM PWM handle
1386   * @retval HAL status
1387   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1388 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1389 {
1390   /* Check the parameters */
1391   assert_param(IS_TIM_INSTANCE(htim->Instance));
1392 
1393   htim->State = HAL_TIM_STATE_BUSY;
1394 
1395   /* Disable the TIM Peripheral Clock */
1396   __HAL_TIM_DISABLE(htim);
1397 
1398 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1399   if (htim->PWM_MspDeInitCallback == NULL)
1400   {
1401     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1402   }
1403   /* DeInit the low level hardware */
1404   htim->PWM_MspDeInitCallback(htim);
1405 #else
1406   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1407   HAL_TIM_PWM_MspDeInit(htim);
1408 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1409 
1410   /* Change the DMA burst operation state */
1411   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1412 
1413   /* Change the TIM channels state */
1414   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1415   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1416 
1417   /* Change TIM state */
1418   htim->State = HAL_TIM_STATE_RESET;
1419 
1420   /* Release Lock */
1421   __HAL_UNLOCK(htim);
1422 
1423   return HAL_OK;
1424 }
1425 
1426 /**
1427   * @brief  Initializes the TIM PWM MSP.
1428   * @param  htim TIM PWM handle
1429   * @retval None
1430   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1431 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1432 {
1433   /* Prevent unused argument(s) compilation warning */
1434   UNUSED(htim);
1435 
1436   /* NOTE : This function should not be modified, when the callback is needed,
1437             the HAL_TIM_PWM_MspInit could be implemented in the user file
1438    */
1439 }
1440 
1441 /**
1442   * @brief  DeInitializes TIM PWM MSP.
1443   * @param  htim TIM PWM handle
1444   * @retval None
1445   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1446 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1447 {
1448   /* Prevent unused argument(s) compilation warning */
1449   UNUSED(htim);
1450 
1451   /* NOTE : This function should not be modified, when the callback is needed,
1452             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1453    */
1454 }
1455 
1456 /**
1457   * @brief  Starts the PWM signal generation.
1458   * @param  htim TIM handle
1459   * @param  Channel TIM Channels to be enabled
1460   *          This parameter can be one of the following values:
1461   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1462   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1463   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1464   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1465   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
1466   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
1467   *         (*) Value not defined for all devices
1468   * @retval HAL status
1469   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1470 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1471 {
1472   uint32_t tmpsmcr;
1473 
1474   /* Check the parameters */
1475   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1476 
1477   /* Check the TIM channel state */
1478   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1479   {
1480     return HAL_ERROR;
1481   }
1482 
1483   /* Set the TIM channel state */
1484   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1485 
1486   /* Enable the Capture compare channel */
1487   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1488 
1489   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1490   {
1491     /* Enable the main output */
1492     __HAL_TIM_MOE_ENABLE(htim);
1493   }
1494 
1495   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1496   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1497   {
1498     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1499     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1500     {
1501       __HAL_TIM_ENABLE(htim);
1502     }
1503   }
1504   else
1505   {
1506     __HAL_TIM_ENABLE(htim);
1507   }
1508 
1509   /* Return function status */
1510   return HAL_OK;
1511 }
1512 
1513 /**
1514   * @brief  Stops the PWM signal generation.
1515   * @param  htim TIM PWM handle
1516   * @param  Channel TIM Channels to be disabled
1517   *          This parameter can be one of the following values:
1518   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1519   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1520   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1521   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1522   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
1523   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
1524   *         (*) Value not defined for all devices
1525   * @retval HAL status
1526   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529   /* Check the parameters */
1530   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531 
1532   /* Disable the Capture compare channel */
1533   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534 
1535   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536   {
1537     /* Disable the Main Output */
1538     __HAL_TIM_MOE_DISABLE(htim);
1539   }
1540 
1541   /* Disable the Peripheral */
1542   __HAL_TIM_DISABLE(htim);
1543 
1544   /* Set the TIM channel state */
1545   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546 
1547   /* Return function status */
1548   return HAL_OK;
1549 }
1550 
1551 /**
1552   * @brief  Starts the PWM signal generation in interrupt mode.
1553   * @param  htim TIM PWM handle
1554   * @param  Channel TIM Channel to be enabled
1555   *          This parameter can be one of the following values:
1556   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560   * @retval HAL status
1561   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564   HAL_StatusTypeDef status = HAL_OK;
1565   uint32_t tmpsmcr;
1566 
1567   /* Check the parameters */
1568   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1569 
1570   /* Check the TIM channel state */
1571   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572   {
1573     return HAL_ERROR;
1574   }
1575 
1576   /* Set the TIM channel state */
1577   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578 
1579   switch (Channel)
1580   {
1581     case TIM_CHANNEL_1:
1582     {
1583       /* Enable the TIM Capture/Compare 1 interrupt */
1584       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585       break;
1586     }
1587 
1588     case TIM_CHANNEL_2:
1589     {
1590       /* Enable the TIM Capture/Compare 2 interrupt */
1591       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592       break;
1593     }
1594 
1595     case TIM_CHANNEL_3:
1596     {
1597       /* Enable the TIM Capture/Compare 3 interrupt */
1598       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599       break;
1600     }
1601 
1602     case TIM_CHANNEL_4:
1603     {
1604       /* Enable the TIM Capture/Compare 4 interrupt */
1605       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606       break;
1607     }
1608 
1609     default:
1610       status = HAL_ERROR;
1611       break;
1612   }
1613 
1614   if (status == HAL_OK)
1615   {
1616     /* Enable the Capture compare channel */
1617     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618 
1619     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620     {
1621       /* Enable the main output */
1622       __HAL_TIM_MOE_ENABLE(htim);
1623     }
1624 
1625     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627     {
1628       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630       {
1631         __HAL_TIM_ENABLE(htim);
1632       }
1633     }
1634     else
1635     {
1636       __HAL_TIM_ENABLE(htim);
1637     }
1638   }
1639 
1640   /* Return function status */
1641   return status;
1642 }
1643 
1644 /**
1645   * @brief  Stops the PWM signal generation in interrupt mode.
1646   * @param  htim TIM PWM handle
1647   * @param  Channel TIM Channels to be disabled
1648   *          This parameter can be one of the following values:
1649   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653   * @retval HAL status
1654   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657   HAL_StatusTypeDef status = HAL_OK;
1658 
1659   /* Check the parameters */
1660   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1661 
1662   switch (Channel)
1663   {
1664     case TIM_CHANNEL_1:
1665     {
1666       /* Disable the TIM Capture/Compare 1 interrupt */
1667       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668       break;
1669     }
1670 
1671     case TIM_CHANNEL_2:
1672     {
1673       /* Disable the TIM Capture/Compare 2 interrupt */
1674       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675       break;
1676     }
1677 
1678     case TIM_CHANNEL_3:
1679     {
1680       /* Disable the TIM Capture/Compare 3 interrupt */
1681       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682       break;
1683     }
1684 
1685     case TIM_CHANNEL_4:
1686     {
1687       /* Disable the TIM Capture/Compare 4 interrupt */
1688       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689       break;
1690     }
1691 
1692     default:
1693       status = HAL_ERROR;
1694       break;
1695   }
1696 
1697   if (status == HAL_OK)
1698   {
1699     /* Disable the Capture compare channel */
1700     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701 
1702     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703     {
1704       /* Disable the Main Output */
1705       __HAL_TIM_MOE_DISABLE(htim);
1706     }
1707 
1708     /* Disable the Peripheral */
1709     __HAL_TIM_DISABLE(htim);
1710 
1711     /* Set the TIM channel state */
1712     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713   }
1714 
1715   /* Return function status */
1716   return status;
1717 }
1718 
1719 /**
1720   * @brief  Starts the TIM PWM signal generation in DMA mode.
1721   * @param  htim TIM PWM handle
1722   * @param  Channel TIM Channels to be enabled
1723   *          This parameter can be one of the following values:
1724   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728   * @param  pData The source Buffer address.
1729   * @param  Length The length of data to be transferred from memory to TIM peripheral
1730   * @retval HAL status
1731   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733                                         uint16_t Length)
1734 {
1735   HAL_StatusTypeDef status = HAL_OK;
1736   uint32_t tmpsmcr;
1737 
1738   /* Check the parameters */
1739   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1740 
1741   /* Set the TIM channel state */
1742   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743   {
1744     return HAL_BUSY;
1745   }
1746   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747   {
1748     if ((pData == NULL) || (Length == 0U))
1749     {
1750       return HAL_ERROR;
1751     }
1752     else
1753     {
1754       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755     }
1756   }
1757   else
1758   {
1759     return HAL_ERROR;
1760   }
1761 
1762   switch (Channel)
1763   {
1764     case TIM_CHANNEL_1:
1765     {
1766       /* Set the DMA compare callbacks */
1767       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769 
1770       /* Set the DMA error callback */
1771       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772 
1773       /* Enable the DMA channel */
1774       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775                            Length) != HAL_OK)
1776       {
1777         /* Return error status */
1778         return HAL_ERROR;
1779       }
1780 
1781       /* Enable the TIM Capture/Compare 1 DMA request */
1782       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783       break;
1784     }
1785 
1786     case TIM_CHANNEL_2:
1787     {
1788       /* Set the DMA compare callbacks */
1789       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791 
1792       /* Set the DMA error callback */
1793       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794 
1795       /* Enable the DMA channel */
1796       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797                            Length) != HAL_OK)
1798       {
1799         /* Return error status */
1800         return HAL_ERROR;
1801       }
1802       /* Enable the TIM Capture/Compare 2 DMA request */
1803       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804       break;
1805     }
1806 
1807     case TIM_CHANNEL_3:
1808     {
1809       /* Set the DMA compare callbacks */
1810       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812 
1813       /* Set the DMA error callback */
1814       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815 
1816       /* Enable the DMA channel */
1817       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818                            Length) != HAL_OK)
1819       {
1820         /* Return error status */
1821         return HAL_ERROR;
1822       }
1823       /* Enable the TIM Output Capture/Compare 3 request */
1824       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825       break;
1826     }
1827 
1828     case TIM_CHANNEL_4:
1829     {
1830       /* Set the DMA compare callbacks */
1831       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833 
1834       /* Set the DMA error callback */
1835       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836 
1837       /* Enable the DMA channel */
1838       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839                            Length) != HAL_OK)
1840       {
1841         /* Return error status */
1842         return HAL_ERROR;
1843       }
1844       /* Enable the TIM Capture/Compare 4 DMA request */
1845       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846       break;
1847     }
1848 
1849     default:
1850       status = HAL_ERROR;
1851       break;
1852   }
1853 
1854   if (status == HAL_OK)
1855   {
1856     /* Enable the Capture compare channel */
1857     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858 
1859     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860     {
1861       /* Enable the main output */
1862       __HAL_TIM_MOE_ENABLE(htim);
1863     }
1864 
1865     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867     {
1868       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870       {
1871         __HAL_TIM_ENABLE(htim);
1872       }
1873     }
1874     else
1875     {
1876       __HAL_TIM_ENABLE(htim);
1877     }
1878   }
1879 
1880   /* Return function status */
1881   return status;
1882 }
1883 
1884 /**
1885   * @brief  Stops the TIM PWM signal generation in DMA mode.
1886   * @param  htim TIM PWM handle
1887   * @param  Channel TIM Channels to be disabled
1888   *          This parameter can be one of the following values:
1889   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893   * @retval HAL status
1894   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897   HAL_StatusTypeDef status = HAL_OK;
1898 
1899   /* Check the parameters */
1900   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1901 
1902   switch (Channel)
1903   {
1904     case TIM_CHANNEL_1:
1905     {
1906       /* Disable the TIM Capture/Compare 1 DMA request */
1907       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909       break;
1910     }
1911 
1912     case TIM_CHANNEL_2:
1913     {
1914       /* Disable the TIM Capture/Compare 2 DMA request */
1915       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917       break;
1918     }
1919 
1920     case TIM_CHANNEL_3:
1921     {
1922       /* Disable the TIM Capture/Compare 3 DMA request */
1923       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925       break;
1926     }
1927 
1928     case TIM_CHANNEL_4:
1929     {
1930       /* Disable the TIM Capture/Compare 4 interrupt */
1931       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933       break;
1934     }
1935 
1936     default:
1937       status = HAL_ERROR;
1938       break;
1939   }
1940 
1941   if (status == HAL_OK)
1942   {
1943     /* Disable the Capture compare channel */
1944     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945 
1946     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947     {
1948       /* Disable the Main Output */
1949       __HAL_TIM_MOE_DISABLE(htim);
1950     }
1951 
1952     /* Disable the Peripheral */
1953     __HAL_TIM_DISABLE(htim);
1954 
1955     /* Set the TIM channel state */
1956     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957   }
1958 
1959   /* Return function status */
1960   return status;
1961 }
1962 
1963 /**
1964   * @}
1965   */
1966 
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968   *  @brief    TIM Input Capture functions
1969   *
1970 @verbatim
1971   ==============================================================================
1972               ##### TIM Input Capture functions #####
1973   ==============================================================================
1974  [..]
1975    This section provides functions allowing to:
1976    (+) Initialize and configure the TIM Input Capture.
1977    (+) De-initialize the TIM Input Capture.
1978    (+) Start the TIM Input Capture.
1979    (+) Stop the TIM Input Capture.
1980    (+) Start the TIM Input Capture and enable interrupt.
1981    (+) Stop the TIM Input Capture and disable interrupt.
1982    (+) Start the TIM Input Capture and enable DMA transfer.
1983    (+) Stop the TIM Input Capture and disable DMA transfer.
1984 
1985 @endverbatim
1986   * @{
1987   */
1988 /**
1989   * @brief  Initializes the TIM Input Capture Time base according to the specified
1990   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992   *         requires a timer reset to avoid unexpected direction
1993   *         due to DIR bit readonly in center aligned mode.
1994   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995   * @param  htim TIM Input Capture handle
1996   * @retval HAL status
1997   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000   /* Check the TIM handle allocation */
2001   if (htim == NULL)
2002   {
2003     return HAL_ERROR;
2004   }
2005 
2006   /* Check the parameters */
2007   assert_param(IS_TIM_INSTANCE(htim->Instance));
2008   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012 
2013   if (htim->State == HAL_TIM_STATE_RESET)
2014   {
2015     /* Allocate lock resource and initialize it */
2016     htim->Lock = HAL_UNLOCKED;
2017 
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019     /* Reset interrupt callbacks to legacy weak callbacks */
2020     TIM_ResetCallback(htim);
2021 
2022     if (htim->IC_MspInitCallback == NULL)
2023     {
2024       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025     }
2026     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027     htim->IC_MspInitCallback(htim);
2028 #else
2029     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030     HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032   }
2033 
2034   /* Set the TIM state */
2035   htim->State = HAL_TIM_STATE_BUSY;
2036 
2037   /* Init the base time for the input capture */
2038   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039 
2040   /* Initialize the DMA burst operation state */
2041   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042 
2043   /* Initialize the TIM channels state */
2044   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046 
2047   /* Initialize the TIM state*/
2048   htim->State = HAL_TIM_STATE_READY;
2049 
2050   return HAL_OK;
2051 }
2052 
2053 /**
2054   * @brief  DeInitializes the TIM peripheral
2055   * @param  htim TIM Input Capture handle
2056   * @retval HAL status
2057   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060   /* Check the parameters */
2061   assert_param(IS_TIM_INSTANCE(htim->Instance));
2062 
2063   htim->State = HAL_TIM_STATE_BUSY;
2064 
2065   /* Disable the TIM Peripheral Clock */
2066   __HAL_TIM_DISABLE(htim);
2067 
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069   if (htim->IC_MspDeInitCallback == NULL)
2070   {
2071     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072   }
2073   /* DeInit the low level hardware */
2074   htim->IC_MspDeInitCallback(htim);
2075 #else
2076   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077   HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079 
2080   /* Change the DMA burst operation state */
2081   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082 
2083   /* Change the TIM channels state */
2084   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086 
2087   /* Change TIM state */
2088   htim->State = HAL_TIM_STATE_RESET;
2089 
2090   /* Release Lock */
2091   __HAL_UNLOCK(htim);
2092 
2093   return HAL_OK;
2094 }
2095 
2096 /**
2097   * @brief  Initializes the TIM Input Capture MSP.
2098   * @param  htim TIM Input Capture handle
2099   * @retval None
2100   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103   /* Prevent unused argument(s) compilation warning */
2104   UNUSED(htim);
2105 
2106   /* NOTE : This function should not be modified, when the callback is needed,
2107             the HAL_TIM_IC_MspInit could be implemented in the user file
2108    */
2109 }
2110 
2111 /**
2112   * @brief  DeInitializes TIM Input Capture MSP.
2113   * @param  htim TIM handle
2114   * @retval None
2115   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118   /* Prevent unused argument(s) compilation warning */
2119   UNUSED(htim);
2120 
2121   /* NOTE : This function should not be modified, when the callback is needed,
2122             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123    */
2124 }
2125 
2126 /**
2127   * @brief  Starts the TIM Input Capture measurement.
2128   * @param  htim TIM Input Capture handle
2129   * @param  Channel TIM Channels to be enabled
2130   *          This parameter can be one of the following values:
2131   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135   * @retval HAL status
2136   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139   uint32_t tmpsmcr;
2140   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142 
2143   /* Check the parameters */
2144   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2145 
2146   /* Check the TIM channel state */
2147   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149   {
2150     return HAL_ERROR;
2151   }
2152 
2153   /* Set the TIM channel state */
2154   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156 
2157   /* Enable the Input Capture channel */
2158   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159 
2160   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162   {
2163     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165     {
2166       __HAL_TIM_ENABLE(htim);
2167     }
2168   }
2169   else
2170   {
2171     __HAL_TIM_ENABLE(htim);
2172   }
2173 
2174   /* Return function status */
2175   return HAL_OK;
2176 }
2177 
2178 /**
2179   * @brief  Stops the TIM Input Capture measurement.
2180   * @param  htim TIM Input Capture handle
2181   * @param  Channel TIM Channels to be disabled
2182   *          This parameter can be one of the following values:
2183   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187   * @retval HAL status
2188   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191   /* Check the parameters */
2192   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2193 
2194   /* Disable the Input Capture channel */
2195   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196 
2197   /* Disable the Peripheral */
2198   __HAL_TIM_DISABLE(htim);
2199 
2200   /* Set the TIM channel state */
2201   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203 
2204   /* Return function status */
2205   return HAL_OK;
2206 }
2207 
2208 /**
2209   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2210   * @param  htim TIM Input Capture handle
2211   * @param  Channel TIM Channels to be enabled
2212   *          This parameter can be one of the following values:
2213   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217   * @retval HAL status
2218   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221   HAL_StatusTypeDef status = HAL_OK;
2222   uint32_t tmpsmcr;
2223 
2224   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226 
2227   /* Check the parameters */
2228   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2229 
2230   /* Check the TIM channel state */
2231   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233   {
2234     return HAL_ERROR;
2235   }
2236 
2237   /* Set the TIM channel state */
2238   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240 
2241   switch (Channel)
2242   {
2243     case TIM_CHANNEL_1:
2244     {
2245       /* Enable the TIM Capture/Compare 1 interrupt */
2246       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247       break;
2248     }
2249 
2250     case TIM_CHANNEL_2:
2251     {
2252       /* Enable the TIM Capture/Compare 2 interrupt */
2253       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254       break;
2255     }
2256 
2257     case TIM_CHANNEL_3:
2258     {
2259       /* Enable the TIM Capture/Compare 3 interrupt */
2260       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261       break;
2262     }
2263 
2264     case TIM_CHANNEL_4:
2265     {
2266       /* Enable the TIM Capture/Compare 4 interrupt */
2267       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268       break;
2269     }
2270 
2271     default:
2272       status = HAL_ERROR;
2273       break;
2274   }
2275 
2276   if (status == HAL_OK)
2277   {
2278     /* Enable the Input Capture channel */
2279     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280 
2281     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283     {
2284       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286       {
2287         __HAL_TIM_ENABLE(htim);
2288       }
2289     }
2290     else
2291     {
2292       __HAL_TIM_ENABLE(htim);
2293     }
2294   }
2295 
2296   /* Return function status */
2297   return status;
2298 }
2299 
2300 /**
2301   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2302   * @param  htim TIM Input Capture handle
2303   * @param  Channel TIM Channels to be disabled
2304   *          This parameter can be one of the following values:
2305   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309   * @retval HAL status
2310   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313   HAL_StatusTypeDef status = HAL_OK;
2314 
2315   /* Check the parameters */
2316   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2317 
2318   switch (Channel)
2319   {
2320     case TIM_CHANNEL_1:
2321     {
2322       /* Disable the TIM Capture/Compare 1 interrupt */
2323       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324       break;
2325     }
2326 
2327     case TIM_CHANNEL_2:
2328     {
2329       /* Disable the TIM Capture/Compare 2 interrupt */
2330       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331       break;
2332     }
2333 
2334     case TIM_CHANNEL_3:
2335     {
2336       /* Disable the TIM Capture/Compare 3 interrupt */
2337       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338       break;
2339     }
2340 
2341     case TIM_CHANNEL_4:
2342     {
2343       /* Disable the TIM Capture/Compare 4 interrupt */
2344       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345       break;
2346     }
2347 
2348     default:
2349       status = HAL_ERROR;
2350       break;
2351   }
2352 
2353   if (status == HAL_OK)
2354   {
2355     /* Disable the Input Capture channel */
2356     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357 
2358     /* Disable the Peripheral */
2359     __HAL_TIM_DISABLE(htim);
2360 
2361     /* Set the TIM channel state */
2362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364   }
2365 
2366   /* Return function status */
2367   return status;
2368 }
2369 
2370 /**
2371   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2372   * @param  htim TIM Input Capture handle
2373   * @param  Channel TIM Channels to be enabled
2374   *          This parameter can be one of the following values:
2375   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379   * @param  pData The destination Buffer address.
2380   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2381   * @retval HAL status
2382   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385   HAL_StatusTypeDef status = HAL_OK;
2386   uint32_t tmpsmcr;
2387 
2388   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390 
2391   /* Check the parameters */
2392   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2393   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394 
2395   /* Set the TIM channel state */
2396   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398   {
2399     return HAL_BUSY;
2400   }
2401   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403   {
2404     if ((pData == NULL) || (Length == 0U))
2405     {
2406       return HAL_ERROR;
2407     }
2408     else
2409     {
2410       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412     }
2413   }
2414   else
2415   {
2416     return HAL_ERROR;
2417   }
2418 
2419   /* Enable the Input Capture channel */
2420   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421 
2422   switch (Channel)
2423   {
2424     case TIM_CHANNEL_1:
2425     {
2426       /* Set the DMA capture callbacks */
2427       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429 
2430       /* Set the DMA error callback */
2431       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432 
2433       /* Enable the DMA channel */
2434       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435                            Length) != HAL_OK)
2436       {
2437         /* Return error status */
2438         return HAL_ERROR;
2439       }
2440       /* Enable the TIM Capture/Compare 1 DMA request */
2441       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442       break;
2443     }
2444 
2445     case TIM_CHANNEL_2:
2446     {
2447       /* Set the DMA capture callbacks */
2448       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450 
2451       /* Set the DMA error callback */
2452       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453 
2454       /* Enable the DMA channel */
2455       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456                            Length) != HAL_OK)
2457       {
2458         /* Return error status */
2459         return HAL_ERROR;
2460       }
2461       /* Enable the TIM Capture/Compare 2  DMA request */
2462       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463       break;
2464     }
2465 
2466     case TIM_CHANNEL_3:
2467     {
2468       /* Set the DMA capture callbacks */
2469       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471 
2472       /* Set the DMA error callback */
2473       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474 
2475       /* Enable the DMA channel */
2476       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477                            Length) != HAL_OK)
2478       {
2479         /* Return error status */
2480         return HAL_ERROR;
2481       }
2482       /* Enable the TIM Capture/Compare 3  DMA request */
2483       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484       break;
2485     }
2486 
2487     case TIM_CHANNEL_4:
2488     {
2489       /* Set the DMA capture callbacks */
2490       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492 
2493       /* Set the DMA error callback */
2494       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495 
2496       /* Enable the DMA channel */
2497       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498                            Length) != HAL_OK)
2499       {
2500         /* Return error status */
2501         return HAL_ERROR;
2502       }
2503       /* Enable the TIM Capture/Compare 4  DMA request */
2504       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505       break;
2506     }
2507 
2508     default:
2509       status = HAL_ERROR;
2510       break;
2511   }
2512 
2513   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515   {
2516     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518     {
2519       __HAL_TIM_ENABLE(htim);
2520     }
2521   }
2522   else
2523   {
2524     __HAL_TIM_ENABLE(htim);
2525   }
2526 
2527   /* Return function status */
2528   return status;
2529 }
2530 
2531 /**
2532   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2533   * @param  htim TIM Input Capture handle
2534   * @param  Channel TIM Channels to be disabled
2535   *          This parameter can be one of the following values:
2536   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540   * @retval HAL status
2541   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544   HAL_StatusTypeDef status = HAL_OK;
2545 
2546   /* Check the parameters */
2547   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2548   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549 
2550   /* Disable the Input Capture channel */
2551   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552 
2553   switch (Channel)
2554   {
2555     case TIM_CHANNEL_1:
2556     {
2557       /* Disable the TIM Capture/Compare 1 DMA request */
2558       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560       break;
2561     }
2562 
2563     case TIM_CHANNEL_2:
2564     {
2565       /* Disable the TIM Capture/Compare 2 DMA request */
2566       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568       break;
2569     }
2570 
2571     case TIM_CHANNEL_3:
2572     {
2573       /* Disable the TIM Capture/Compare 3  DMA request */
2574       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576       break;
2577     }
2578 
2579     case TIM_CHANNEL_4:
2580     {
2581       /* Disable the TIM Capture/Compare 4  DMA request */
2582       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584       break;
2585     }
2586 
2587     default:
2588       status = HAL_ERROR;
2589       break;
2590   }
2591 
2592   if (status == HAL_OK)
2593   {
2594     /* Disable the Peripheral */
2595     __HAL_TIM_DISABLE(htim);
2596 
2597     /* Set the TIM channel state */
2598     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600   }
2601 
2602   /* Return function status */
2603   return status;
2604 }
2605 /**
2606   * @}
2607   */
2608 
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610   *  @brief    TIM One Pulse functions
2611   *
2612 @verbatim
2613   ==============================================================================
2614                         ##### TIM One Pulse functions #####
2615   ==============================================================================
2616   [..]
2617     This section provides functions allowing to:
2618     (+) Initialize and configure the TIM One Pulse.
2619     (+) De-initialize the TIM One Pulse.
2620     (+) Start the TIM One Pulse.
2621     (+) Stop the TIM One Pulse.
2622     (+) Start the TIM One Pulse and enable interrupt.
2623     (+) Stop the TIM One Pulse and disable interrupt.
2624     (+) Start the TIM One Pulse and enable DMA transfer.
2625     (+) Stop the TIM One Pulse and disable DMA transfer.
2626 
2627 @endverbatim
2628   * @{
2629   */
2630 /**
2631   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2632   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634   *         requires a timer reset to avoid unexpected direction
2635   *         due to DIR bit readonly in center aligned mode.
2636   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637   * @note   When the timer instance is initialized in One Pulse mode, timer
2638   *         channels 1 and channel 2 are reserved and cannot be used for other
2639   *         purpose.
2640   * @param  htim TIM One Pulse handle
2641   * @param  OnePulseMode Select the One pulse mode.
2642   *         This parameter can be one of the following values:
2643   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645   * @retval HAL status
2646   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649   /* Check the TIM handle allocation */
2650   if (htim == NULL)
2651   {
2652     return HAL_ERROR;
2653   }
2654 
2655   /* Check the parameters */
2656   assert_param(IS_TIM_INSTANCE(htim->Instance));
2657   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662 
2663   if (htim->State == HAL_TIM_STATE_RESET)
2664   {
2665     /* Allocate lock resource and initialize it */
2666     htim->Lock = HAL_UNLOCKED;
2667 
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669     /* Reset interrupt callbacks to legacy weak callbacks */
2670     TIM_ResetCallback(htim);
2671 
2672     if (htim->OnePulse_MspInitCallback == NULL)
2673     {
2674       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675     }
2676     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677     htim->OnePulse_MspInitCallback(htim);
2678 #else
2679     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680     HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682   }
2683 
2684   /* Set the TIM state */
2685   htim->State = HAL_TIM_STATE_BUSY;
2686 
2687   /* Configure the Time base in the One Pulse Mode */
2688   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689 
2690   /* Reset the OPM Bit */
2691   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692 
2693   /* Configure the OPM Mode */
2694   htim->Instance->CR1 |= OnePulseMode;
2695 
2696   /* Initialize the DMA burst operation state */
2697   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698 
2699   /* Initialize the TIM channels state */
2700   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704 
2705   /* Initialize the TIM state*/
2706   htim->State = HAL_TIM_STATE_READY;
2707 
2708   return HAL_OK;
2709 }
2710 
2711 /**
2712   * @brief  DeInitializes the TIM One Pulse
2713   * @param  htim TIM One Pulse handle
2714   * @retval HAL status
2715   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718   /* Check the parameters */
2719   assert_param(IS_TIM_INSTANCE(htim->Instance));
2720 
2721   htim->State = HAL_TIM_STATE_BUSY;
2722 
2723   /* Disable the TIM Peripheral Clock */
2724   __HAL_TIM_DISABLE(htim);
2725 
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727   if (htim->OnePulse_MspDeInitCallback == NULL)
2728   {
2729     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730   }
2731   /* DeInit the low level hardware */
2732   htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735   HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737 
2738   /* Change the DMA burst operation state */
2739   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740 
2741   /* Set the TIM channel state */
2742   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746 
2747   /* Change TIM state */
2748   htim->State = HAL_TIM_STATE_RESET;
2749 
2750   /* Release Lock */
2751   __HAL_UNLOCK(htim);
2752 
2753   return HAL_OK;
2754 }
2755 
2756 /**
2757   * @brief  Initializes the TIM One Pulse MSP.
2758   * @param  htim TIM One Pulse handle
2759   * @retval None
2760   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763   /* Prevent unused argument(s) compilation warning */
2764   UNUSED(htim);
2765 
2766   /* NOTE : This function should not be modified, when the callback is needed,
2767             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768    */
2769 }
2770 
2771 /**
2772   * @brief  DeInitializes TIM One Pulse MSP.
2773   * @param  htim TIM One Pulse handle
2774   * @retval None
2775   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778   /* Prevent unused argument(s) compilation warning */
2779   UNUSED(htim);
2780 
2781   /* NOTE : This function should not be modified, when the callback is needed,
2782             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783    */
2784 }
2785 
2786 /**
2787   * @brief  Starts the TIM One Pulse signal generation.
2788   * @note Though OutputChannel parameter is deprecated and ignored by the function
2789   *        it has been kept to avoid HAL_TIM API compatibility break.
2790   * @note The pulse output channel is determined when calling
2791   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2792   * @param  htim TIM One Pulse handle
2793   * @param  OutputChannel See note above
2794   * @retval HAL status
2795   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802 
2803   /* Prevent unused argument(s) compilation warning */
2804   UNUSED(OutputChannel);
2805 
2806   /* Check the TIM channels state */
2807   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811   {
2812     return HAL_ERROR;
2813   }
2814 
2815   /* Set the TIM channels state */
2816   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820 
2821   /* Enable the Capture compare and the Input Capture channels
2822     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826 
2827     No need to enable the counter, it's enabled automatically by hardware
2828     (the counter starts in response to a stimulus and generate a pulse */
2829 
2830   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832 
2833   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834   {
2835     /* Enable the main output */
2836     __HAL_TIM_MOE_ENABLE(htim);
2837   }
2838 
2839   /* Return function status */
2840   return HAL_OK;
2841 }
2842 
2843 /**
2844   * @brief  Stops the TIM One Pulse signal generation.
2845   * @note Though OutputChannel parameter is deprecated and ignored by the function
2846   *        it has been kept to avoid HAL_TIM API compatibility break.
2847   * @note The pulse output channel is determined when calling
2848   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2849   * @param  htim TIM One Pulse handle
2850   * @param  OutputChannel See note above
2851   * @retval HAL status
2852   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855   /* Prevent unused argument(s) compilation warning */
2856   UNUSED(OutputChannel);
2857 
2858   /* Disable the Capture compare and the Input Capture channels
2859   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863 
2864   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866 
2867   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868   {
2869     /* Disable the Main Output */
2870     __HAL_TIM_MOE_DISABLE(htim);
2871   }
2872 
2873   /* Disable the Peripheral */
2874   __HAL_TIM_DISABLE(htim);
2875 
2876   /* Set the TIM channels state */
2877   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881 
2882   /* Return function status */
2883   return HAL_OK;
2884 }
2885 
2886 /**
2887   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2888   * @note Though OutputChannel parameter is deprecated and ignored by the function
2889   *        it has been kept to avoid HAL_TIM API compatibility break.
2890   * @note The pulse output channel is determined when calling
2891   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2892   * @param  htim TIM One Pulse handle
2893   * @param  OutputChannel See note above
2894   * @retval HAL status
2895   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902 
2903   /* Prevent unused argument(s) compilation warning */
2904   UNUSED(OutputChannel);
2905 
2906   /* Check the TIM channels state */
2907   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911   {
2912     return HAL_ERROR;
2913   }
2914 
2915   /* Set the TIM channels state */
2916   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920 
2921   /* Enable the Capture compare and the Input Capture channels
2922     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926 
2927     No need to enable the counter, it's enabled automatically by hardware
2928     (the counter starts in response to a stimulus and generate a pulse */
2929 
2930   /* Enable the TIM Capture/Compare 1 interrupt */
2931   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932 
2933   /* Enable the TIM Capture/Compare 2 interrupt */
2934   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935 
2936   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938 
2939   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940   {
2941     /* Enable the main output */
2942     __HAL_TIM_MOE_ENABLE(htim);
2943   }
2944 
2945   /* Return function status */
2946   return HAL_OK;
2947 }
2948 
2949 /**
2950   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2951   * @note Though OutputChannel parameter is deprecated and ignored by the function
2952   *        it has been kept to avoid HAL_TIM API compatibility break.
2953   * @note The pulse output channel is determined when calling
2954   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2955   * @param  htim TIM One Pulse handle
2956   * @param  OutputChannel See note above
2957   * @retval HAL status
2958   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961   /* Prevent unused argument(s) compilation warning */
2962   UNUSED(OutputChannel);
2963 
2964   /* Disable the TIM Capture/Compare 1 interrupt */
2965   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966 
2967   /* Disable the TIM Capture/Compare 2 interrupt */
2968   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969 
2970   /* Disable the Capture compare and the Input Capture channels
2971   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977 
2978   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979   {
2980     /* Disable the Main Output */
2981     __HAL_TIM_MOE_DISABLE(htim);
2982   }
2983 
2984   /* Disable the Peripheral */
2985   __HAL_TIM_DISABLE(htim);
2986 
2987   /* Set the TIM channels state */
2988   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992 
2993   /* Return function status */
2994   return HAL_OK;
2995 }
2996 
2997 /**
2998   * @}
2999   */
3000 
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002   *  @brief    TIM Encoder functions
3003   *
3004 @verbatim
3005   ==============================================================================
3006                           ##### TIM Encoder functions #####
3007   ==============================================================================
3008   [..]
3009     This section provides functions allowing to:
3010     (+) Initialize and configure the TIM Encoder.
3011     (+) De-initialize the TIM Encoder.
3012     (+) Start the TIM Encoder.
3013     (+) Stop the TIM Encoder.
3014     (+) Start the TIM Encoder and enable interrupt.
3015     (+) Stop the TIM Encoder and disable interrupt.
3016     (+) Start the TIM Encoder and enable DMA transfer.
3017     (+) Stop the TIM Encoder and disable DMA transfer.
3018 
3019 @endverbatim
3020   * @{
3021   */
3022 /**
3023   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3024   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025   *         requires a timer reset to avoid unexpected direction
3026   *         due to DIR bit readonly in center aligned mode.
3027   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031   * @note   When the timer instance is initialized in Encoder mode, timer
3032   *         channels 1 and channel 2 are reserved and cannot be used for other
3033   *         purpose.
3034   * @param  htim TIM Encoder Interface handle
3035   * @param  sConfig TIM Encoder Interface configuration structure
3036   * @retval HAL status
3037   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040   uint32_t tmpsmcr;
3041   uint32_t tmpccmr1;
3042   uint32_t tmpccer;
3043 
3044   /* Check the TIM handle allocation */
3045   if (htim == NULL)
3046   {
3047     return HAL_ERROR;
3048   }
3049 
3050   /* Check the parameters */
3051   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065 
3066   if (htim->State == HAL_TIM_STATE_RESET)
3067   {
3068     /* Allocate lock resource and initialize it */
3069     htim->Lock = HAL_UNLOCKED;
3070 
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072     /* Reset interrupt callbacks to legacy weak callbacks */
3073     TIM_ResetCallback(htim);
3074 
3075     if (htim->Encoder_MspInitCallback == NULL)
3076     {
3077       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078     }
3079     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080     htim->Encoder_MspInitCallback(htim);
3081 #else
3082     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083     HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085   }
3086 
3087   /* Set the TIM state */
3088   htim->State = HAL_TIM_STATE_BUSY;
3089 
3090   /* Reset the SMS and ECE bits */
3091   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092 
3093   /* Configure the Time base in the Encoder Mode */
3094   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095 
3096   /* Get the TIMx SMCR register value */
3097   tmpsmcr = htim->Instance->SMCR;
3098 
3099   /* Get the TIMx CCMR1 register value */
3100   tmpccmr1 = htim->Instance->CCMR1;
3101 
3102   /* Get the TIMx CCER register value */
3103   tmpccer = htim->Instance->CCER;
3104 
3105   /* Set the encoder Mode */
3106   tmpsmcr |= sConfig->EncoderMode;
3107 
3108   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111 
3112   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117 
3118   /* Set the TI1 and the TI2 Polarities */
3119   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120   tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122 
3123   /* Write to TIMx SMCR */
3124   htim->Instance->SMCR = tmpsmcr;
3125 
3126   /* Write to TIMx CCMR1 */
3127   htim->Instance->CCMR1 = tmpccmr1;
3128 
3129   /* Write to TIMx CCER */
3130   htim->Instance->CCER = tmpccer;
3131 
3132   /* Initialize the DMA burst operation state */
3133   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134 
3135   /* Set the TIM channels state */
3136   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140 
3141   /* Initialize the TIM state*/
3142   htim->State = HAL_TIM_STATE_READY;
3143 
3144   return HAL_OK;
3145 }
3146 
3147 
3148 /**
3149   * @brief  DeInitializes the TIM Encoder interface
3150   * @param  htim TIM Encoder Interface handle
3151   * @retval HAL status
3152   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155   /* Check the parameters */
3156   assert_param(IS_TIM_INSTANCE(htim->Instance));
3157 
3158   htim->State = HAL_TIM_STATE_BUSY;
3159 
3160   /* Disable the TIM Peripheral Clock */
3161   __HAL_TIM_DISABLE(htim);
3162 
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164   if (htim->Encoder_MspDeInitCallback == NULL)
3165   {
3166     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167   }
3168   /* DeInit the low level hardware */
3169   htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172   HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174 
3175   /* Change the DMA burst operation state */
3176   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177 
3178   /* Set the TIM channels state */
3179   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183 
3184   /* Change TIM state */
3185   htim->State = HAL_TIM_STATE_RESET;
3186 
3187   /* Release Lock */
3188   __HAL_UNLOCK(htim);
3189 
3190   return HAL_OK;
3191 }
3192 
3193 /**
3194   * @brief  Initializes the TIM Encoder Interface MSP.
3195   * @param  htim TIM Encoder Interface handle
3196   * @retval None
3197   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200   /* Prevent unused argument(s) compilation warning */
3201   UNUSED(htim);
3202 
3203   /* NOTE : This function should not be modified, when the callback is needed,
3204             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205    */
3206 }
3207 
3208 /**
3209   * @brief  DeInitializes TIM Encoder Interface MSP.
3210   * @param  htim TIM Encoder Interface handle
3211   * @retval None
3212   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215   /* Prevent unused argument(s) compilation warning */
3216   UNUSED(htim);
3217 
3218   /* NOTE : This function should not be modified, when the callback is needed,
3219             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220    */
3221 }
3222 
3223 /**
3224   * @brief  Starts the TIM Encoder Interface.
3225   * @param  htim TIM Encoder Interface handle
3226   * @param  Channel TIM Channels to be enabled
3227   *          This parameter can be one of the following values:
3228   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231   * @retval HAL status
3232   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239 
3240   /* Check the parameters */
3241   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242 
3243   /* Set the TIM channel(s) state */
3244   if (Channel == TIM_CHANNEL_1)
3245   {
3246     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248     {
3249       return HAL_ERROR;
3250     }
3251     else
3252     {
3253       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255     }
3256   }
3257   else if (Channel == TIM_CHANNEL_2)
3258   {
3259     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261     {
3262       return HAL_ERROR;
3263     }
3264     else
3265     {
3266       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268     }
3269   }
3270   else
3271   {
3272     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276     {
3277       return HAL_ERROR;
3278     }
3279     else
3280     {
3281       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285     }
3286   }
3287 
3288   /* Enable the encoder interface channels */
3289   switch (Channel)
3290   {
3291     case TIM_CHANNEL_1:
3292     {
3293       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294       break;
3295     }
3296 
3297     case TIM_CHANNEL_2:
3298     {
3299       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300       break;
3301     }
3302 
3303     default :
3304     {
3305       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307       break;
3308     }
3309   }
3310   /* Enable the Peripheral */
3311   __HAL_TIM_ENABLE(htim);
3312 
3313   /* Return function status */
3314   return HAL_OK;
3315 }
3316 
3317 /**
3318   * @brief  Stops the TIM Encoder Interface.
3319   * @param  htim TIM Encoder Interface handle
3320   * @param  Channel TIM Channels to be disabled
3321   *          This parameter can be one of the following values:
3322   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325   * @retval HAL status
3326   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329   /* Check the parameters */
3330   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331 
3332   /* Disable the Input Capture channels 1 and 2
3333     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334   switch (Channel)
3335   {
3336     case TIM_CHANNEL_1:
3337     {
3338       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339       break;
3340     }
3341 
3342     case TIM_CHANNEL_2:
3343     {
3344       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345       break;
3346     }
3347 
3348     default :
3349     {
3350       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352       break;
3353     }
3354   }
3355 
3356   /* Disable the Peripheral */
3357   __HAL_TIM_DISABLE(htim);
3358 
3359   /* Set the TIM channel(s) state */
3360   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361   {
3362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364   }
3365   else
3366   {
3367     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371   }
3372 
3373   /* Return function status */
3374   return HAL_OK;
3375 }
3376 
3377 /**
3378   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3379   * @param  htim TIM Encoder Interface handle
3380   * @param  Channel TIM Channels to be enabled
3381   *          This parameter can be one of the following values:
3382   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385   * @retval HAL status
3386   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393 
3394   /* Check the parameters */
3395   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396 
3397   /* Set the TIM channel(s) state */
3398   if (Channel == TIM_CHANNEL_1)
3399   {
3400     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402     {
3403       return HAL_ERROR;
3404     }
3405     else
3406     {
3407       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409     }
3410   }
3411   else if (Channel == TIM_CHANNEL_2)
3412   {
3413     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415     {
3416       return HAL_ERROR;
3417     }
3418     else
3419     {
3420       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422     }
3423   }
3424   else
3425   {
3426     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430     {
3431       return HAL_ERROR;
3432     }
3433     else
3434     {
3435       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439     }
3440   }
3441 
3442   /* Enable the encoder interface channels */
3443   /* Enable the capture compare Interrupts 1 and/or 2 */
3444   switch (Channel)
3445   {
3446     case TIM_CHANNEL_1:
3447     {
3448       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450       break;
3451     }
3452 
3453     case TIM_CHANNEL_2:
3454     {
3455       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457       break;
3458     }
3459 
3460     default :
3461     {
3462       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466       break;
3467     }
3468   }
3469 
3470   /* Enable the Peripheral */
3471   __HAL_TIM_ENABLE(htim);
3472 
3473   /* Return function status */
3474   return HAL_OK;
3475 }
3476 
3477 /**
3478   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3479   * @param  htim TIM Encoder Interface handle
3480   * @param  Channel TIM Channels to be disabled
3481   *          This parameter can be one of the following values:
3482   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485   * @retval HAL status
3486   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489   /* Check the parameters */
3490   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491 
3492   /* Disable the Input Capture channels 1 and 2
3493     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494   if (Channel == TIM_CHANNEL_1)
3495   {
3496     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497 
3498     /* Disable the capture compare Interrupts 1 */
3499     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500   }
3501   else if (Channel == TIM_CHANNEL_2)
3502   {
3503     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504 
3505     /* Disable the capture compare Interrupts 2 */
3506     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507   }
3508   else
3509   {
3510     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512 
3513     /* Disable the capture compare Interrupts 1 and 2 */
3514     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516   }
3517 
3518   /* Disable the Peripheral */
3519   __HAL_TIM_DISABLE(htim);
3520 
3521   /* Set the TIM channel(s) state */
3522   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523   {
3524     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526   }
3527   else
3528   {
3529     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533   }
3534 
3535   /* Return function status */
3536   return HAL_OK;
3537 }
3538 
3539 /**
3540   * @brief  Starts the TIM Encoder Interface in DMA mode.
3541   * @param  htim TIM Encoder Interface handle
3542   * @param  Channel TIM Channels to be enabled
3543   *          This parameter can be one of the following values:
3544   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547   * @param  pData1 The destination Buffer address for IC1.
3548   * @param  pData2 The destination Buffer address for IC2.
3549   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3550   * @retval HAL status
3551   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553                                             uint32_t *pData2, uint16_t Length)
3554 {
3555   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559 
3560   /* Check the parameters */
3561   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562 
3563   /* Set the TIM channel(s) state */
3564   if (Channel == TIM_CHANNEL_1)
3565   {
3566     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568     {
3569       return HAL_BUSY;
3570     }
3571     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573     {
3574       if ((pData1 == NULL) || (Length == 0U))
3575       {
3576         return HAL_ERROR;
3577       }
3578       else
3579       {
3580         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582       }
3583     }
3584     else
3585     {
3586       return HAL_ERROR;
3587     }
3588   }
3589   else if (Channel == TIM_CHANNEL_2)
3590   {
3591     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593     {
3594       return HAL_BUSY;
3595     }
3596     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598     {
3599       if ((pData2 == NULL) || (Length == 0U))
3600       {
3601         return HAL_ERROR;
3602       }
3603       else
3604       {
3605         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607       }
3608     }
3609     else
3610     {
3611       return HAL_ERROR;
3612     }
3613   }
3614   else
3615   {
3616     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620     {
3621       return HAL_BUSY;
3622     }
3623     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627     {
3628       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629       {
3630         return HAL_ERROR;
3631       }
3632       else
3633       {
3634         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638       }
3639     }
3640     else
3641     {
3642       return HAL_ERROR;
3643     }
3644   }
3645 
3646   switch (Channel)
3647   {
3648     case TIM_CHANNEL_1:
3649     {
3650       /* Set the DMA capture callbacks */
3651       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653 
3654       /* Set the DMA error callback */
3655       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656 
3657       /* Enable the DMA channel */
3658       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659                            Length) != HAL_OK)
3660       {
3661         /* Return error status */
3662         return HAL_ERROR;
3663       }
3664       /* Enable the TIM Input Capture DMA request */
3665       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666 
3667       /* Enable the Capture compare channel */
3668       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669 
3670       /* Enable the Peripheral */
3671       __HAL_TIM_ENABLE(htim);
3672 
3673       break;
3674     }
3675 
3676     case TIM_CHANNEL_2:
3677     {
3678       /* Set the DMA capture callbacks */
3679       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681 
3682       /* Set the DMA error callback */
3683       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684       /* Enable the DMA channel */
3685       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686                            Length) != HAL_OK)
3687       {
3688         /* Return error status */
3689         return HAL_ERROR;
3690       }
3691       /* Enable the TIM Input Capture  DMA request */
3692       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693 
3694       /* Enable the Capture compare channel */
3695       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696 
3697       /* Enable the Peripheral */
3698       __HAL_TIM_ENABLE(htim);
3699 
3700       break;
3701     }
3702 
3703     default:
3704     {
3705       /* Set the DMA capture callbacks */
3706       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708 
3709       /* Set the DMA error callback */
3710       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711 
3712       /* Enable the DMA channel */
3713       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714                            Length) != HAL_OK)
3715       {
3716         /* Return error status */
3717         return HAL_ERROR;
3718       }
3719 
3720       /* Set the DMA capture callbacks */
3721       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723 
3724       /* Set the DMA error callback */
3725       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726 
3727       /* Enable the DMA channel */
3728       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729                            Length) != HAL_OK)
3730       {
3731         /* Return error status */
3732         return HAL_ERROR;
3733       }
3734 
3735       /* Enable the TIM Input Capture  DMA request */
3736       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737       /* Enable the TIM Input Capture  DMA request */
3738       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739 
3740       /* Enable the Capture compare channel */
3741       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743 
3744       /* Enable the Peripheral */
3745       __HAL_TIM_ENABLE(htim);
3746 
3747       break;
3748     }
3749   }
3750 
3751   /* Return function status */
3752   return HAL_OK;
3753 }
3754 
3755 /**
3756   * @brief  Stops the TIM Encoder Interface in DMA mode.
3757   * @param  htim TIM Encoder Interface handle
3758   * @param  Channel TIM Channels to be enabled
3759   *          This parameter can be one of the following values:
3760   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763   * @retval HAL status
3764   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767   /* Check the parameters */
3768   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769 
3770   /* Disable the Input Capture channels 1 and 2
3771     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772   if (Channel == TIM_CHANNEL_1)
3773   {
3774     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775 
3776     /* Disable the capture compare DMA Request 1 */
3777     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779   }
3780   else if (Channel == TIM_CHANNEL_2)
3781   {
3782     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783 
3784     /* Disable the capture compare DMA Request 2 */
3785     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787   }
3788   else
3789   {
3790     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792 
3793     /* Disable the capture compare DMA Request 1 and 2 */
3794     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798   }
3799 
3800   /* Disable the Peripheral */
3801   __HAL_TIM_DISABLE(htim);
3802 
3803   /* Set the TIM channel(s) state */
3804   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805   {
3806     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808   }
3809   else
3810   {
3811     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815   }
3816 
3817   /* Return function status */
3818   return HAL_OK;
3819 }
3820 
3821 /**
3822   * @}
3823   */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825   *  @brief    TIM IRQ handler management
3826   *
3827 @verbatim
3828   ==============================================================================
3829                         ##### IRQ handler management #####
3830   ==============================================================================
3831   [..]
3832     This section provides Timer IRQ handler function.
3833 
3834 @endverbatim
3835   * @{
3836   */
3837 /**
3838   * @brief  This function handles TIM interrupts requests.
3839   * @param  htim TIM  handle
3840   * @retval None
3841   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844   /* Capture compare 1 event */
3845   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
3846   {
3847     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
3848     {
3849       {
3850         __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
3851         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3852 
3853         /* Input capture event */
3854         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3855         {
3856 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3857           htim->IC_CaptureCallback(htim);
3858 #else
3859           HAL_TIM_IC_CaptureCallback(htim);
3860 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3861         }
3862         /* Output compare event */
3863         else
3864         {
3865 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3866           htim->OC_DelayElapsedCallback(htim);
3867           htim->PWM_PulseFinishedCallback(htim);
3868 #else
3869           HAL_TIM_OC_DelayElapsedCallback(htim);
3870           HAL_TIM_PWM_PulseFinishedCallback(htim);
3871 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3872         }
3873         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3874       }
3875     }
3876   }
3877   /* Capture compare 2 event */
3878   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
3879   {
3880     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
3881     {
3882       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
3883       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3884       /* Input capture event */
3885       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3886       {
3887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3888         htim->IC_CaptureCallback(htim);
3889 #else
3890         HAL_TIM_IC_CaptureCallback(htim);
3891 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3892       }
3893       /* Output compare event */
3894       else
3895       {
3896 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3897         htim->OC_DelayElapsedCallback(htim);
3898         htim->PWM_PulseFinishedCallback(htim);
3899 #else
3900         HAL_TIM_OC_DelayElapsedCallback(htim);
3901         HAL_TIM_PWM_PulseFinishedCallback(htim);
3902 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3903       }
3904       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3905     }
3906   }
3907   /* Capture compare 3 event */
3908   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
3909   {
3910     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
3911     {
3912       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
3913       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3914       /* Input capture event */
3915       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3916       {
3917 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3918         htim->IC_CaptureCallback(htim);
3919 #else
3920         HAL_TIM_IC_CaptureCallback(htim);
3921 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3922       }
3923       /* Output compare event */
3924       else
3925       {
3926 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3927         htim->OC_DelayElapsedCallback(htim);
3928         htim->PWM_PulseFinishedCallback(htim);
3929 #else
3930         HAL_TIM_OC_DelayElapsedCallback(htim);
3931         HAL_TIM_PWM_PulseFinishedCallback(htim);
3932 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3933       }
3934       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3935     }
3936   }
3937   /* Capture compare 4 event */
3938   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
3939   {
3940     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
3941     {
3942       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
3943       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3944       /* Input capture event */
3945       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3946       {
3947 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3948         htim->IC_CaptureCallback(htim);
3949 #else
3950         HAL_TIM_IC_CaptureCallback(htim);
3951 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3952       }
3953       /* Output compare event */
3954       else
3955       {
3956 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3957         htim->OC_DelayElapsedCallback(htim);
3958         htim->PWM_PulseFinishedCallback(htim);
3959 #else
3960         HAL_TIM_OC_DelayElapsedCallback(htim);
3961         HAL_TIM_PWM_PulseFinishedCallback(htim);
3962 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3963       }
3964       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3965     }
3966   }
3967   /* TIM Update event */
3968   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
3969   {
3970     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
3971     {
3972       __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
3973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3974       htim->PeriodElapsedCallback(htim);
3975 #else
3976       HAL_TIM_PeriodElapsedCallback(htim);
3977 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3978     }
3979   }
3980   /* TIM Break input event */
3981   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
3982   {
3983     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3984     {
3985       __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
3986 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3987       htim->BreakCallback(htim);
3988 #else
3989       HAL_TIMEx_BreakCallback(htim);
3990 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3991     }
3992   }
3993 #if defined(TIM_BDTR_BK2E)
3994   /* TIM Break2 input event */
3995   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET)
3996   {
3997     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3998     {
3999       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
4000 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4001       htim->Break2Callback(htim);
4002 #else
4003       HAL_TIMEx_Break2Callback(htim);
4004 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4005     }
4006   }
4007 #endif /* TIM_BDTR_BK2E */
4008   /* TIM Trigger detection event */
4009   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
4010   {
4011     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
4012     {
4013       __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
4014 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4015       htim->TriggerCallback(htim);
4016 #else
4017       HAL_TIM_TriggerCallback(htim);
4018 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4019     }
4020   }
4021   /* TIM commutation event */
4022   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
4023   {
4024     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
4025     {
4026       __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
4027 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4028       htim->CommutationCallback(htim);
4029 #else
4030       HAL_TIMEx_CommutCallback(htim);
4031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4032     }
4033   }
4034 }
4035 
4036 /**
4037   * @}
4038   */
4039 
4040 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4041   *  @brief    TIM Peripheral Control functions
4042   *
4043 @verbatim
4044   ==============================================================================
4045                    ##### Peripheral Control functions #####
4046   ==============================================================================
4047  [..]
4048    This section provides functions allowing to:
4049       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4050       (+) Configure External Clock source.
4051       (+) Configure Complementary channels, break features and dead time.
4052       (+) Configure Master and the Slave synchronization.
4053       (+) Configure the DMA Burst Mode.
4054 
4055 @endverbatim
4056   * @{
4057   */
4058 
4059 /**
4060   * @brief  Initializes the TIM Output Compare Channels according to the specified
4061   *         parameters in the TIM_OC_InitTypeDef.
4062   * @param  htim TIM Output Compare handle
4063   * @param  sConfig TIM Output Compare configuration structure
4064   * @param  Channel TIM Channels to configure
4065   *          This parameter can be one of the following values:
4066   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4067   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4068   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4069   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4070   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
4071   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
4072   *         (*) Value not defined for all devices
4073   * @retval HAL status
4074   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4075 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4076                                            const TIM_OC_InitTypeDef *sConfig,
4077                                            uint32_t Channel)
4078 {
4079   HAL_StatusTypeDef status = HAL_OK;
4080 
4081   /* Check the parameters */
4082   assert_param(IS_TIM_CHANNELS(Channel));
4083   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4084   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4085 
4086   /* Process Locked */
4087   __HAL_LOCK(htim);
4088 
4089   switch (Channel)
4090   {
4091     case TIM_CHANNEL_1:
4092     {
4093       /* Check the parameters */
4094       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4095 
4096       /* Configure the TIM Channel 1 in Output Compare */
4097       TIM_OC1_SetConfig(htim->Instance, sConfig);
4098       break;
4099     }
4100 
4101     case TIM_CHANNEL_2:
4102     {
4103       /* Check the parameters */
4104       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4105 
4106       /* Configure the TIM Channel 2 in Output Compare */
4107       TIM_OC2_SetConfig(htim->Instance, sConfig);
4108       break;
4109     }
4110 
4111     case TIM_CHANNEL_3:
4112     {
4113       /* Check the parameters */
4114       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4115 
4116       /* Configure the TIM Channel 3 in Output Compare */
4117       TIM_OC3_SetConfig(htim->Instance, sConfig);
4118       break;
4119     }
4120 
4121     case TIM_CHANNEL_4:
4122     {
4123       /* Check the parameters */
4124       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4125 
4126       /* Configure the TIM Channel 4 in Output Compare */
4127       TIM_OC4_SetConfig(htim->Instance, sConfig);
4128       break;
4129     }
4130 
4131 #if defined(TIM_CCER_CC5E)
4132     case TIM_CHANNEL_5:
4133     {
4134       /* Check the parameters */
4135       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4136 
4137       /* Configure the TIM Channel 5 in Output Compare */
4138       TIM_OC5_SetConfig(htim->Instance, sConfig);
4139       break;
4140     }
4141 #endif /* TIM_CCER_CC5E */
4142 
4143 #if defined(TIM_CCER_CC6E)
4144     case TIM_CHANNEL_6:
4145     {
4146       /* Check the parameters */
4147       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4148 
4149       /* Configure the TIM Channel 6 in Output Compare */
4150       TIM_OC6_SetConfig(htim->Instance, sConfig);
4151       break;
4152     }
4153 #endif /* TIM_CCER_CC6E */
4154 
4155     default:
4156       status = HAL_ERROR;
4157       break;
4158   }
4159 
4160   __HAL_UNLOCK(htim);
4161 
4162   return status;
4163 }
4164 
4165 /**
4166   * @brief  Initializes the TIM Input Capture Channels according to the specified
4167   *         parameters in the TIM_IC_InitTypeDef.
4168   * @param  htim TIM IC handle
4169   * @param  sConfig TIM Input Capture configuration structure
4170   * @param  Channel TIM Channel to configure
4171   *          This parameter can be one of the following values:
4172   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4173   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4174   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4175   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4176   * @retval HAL status
4177   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4178 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4179 {
4180   HAL_StatusTypeDef status = HAL_OK;
4181 
4182   /* Check the parameters */
4183   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4184   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4185   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4186   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4187   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4188 
4189   /* Process Locked */
4190   __HAL_LOCK(htim);
4191 
4192   if (Channel == TIM_CHANNEL_1)
4193   {
4194     /* TI1 Configuration */
4195     TIM_TI1_SetConfig(htim->Instance,
4196                       sConfig->ICPolarity,
4197                       sConfig->ICSelection,
4198                       sConfig->ICFilter);
4199 
4200     /* Reset the IC1PSC Bits */
4201     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4202 
4203     /* Set the IC1PSC value */
4204     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4205   }
4206   else if (Channel == TIM_CHANNEL_2)
4207   {
4208     /* TI2 Configuration */
4209     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4210 
4211     TIM_TI2_SetConfig(htim->Instance,
4212                       sConfig->ICPolarity,
4213                       sConfig->ICSelection,
4214                       sConfig->ICFilter);
4215 
4216     /* Reset the IC2PSC Bits */
4217     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4218 
4219     /* Set the IC2PSC value */
4220     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4221   }
4222   else if (Channel == TIM_CHANNEL_3)
4223   {
4224     /* TI3 Configuration */
4225     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4226 
4227     TIM_TI3_SetConfig(htim->Instance,
4228                       sConfig->ICPolarity,
4229                       sConfig->ICSelection,
4230                       sConfig->ICFilter);
4231 
4232     /* Reset the IC3PSC Bits */
4233     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4234 
4235     /* Set the IC3PSC value */
4236     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4237   }
4238   else if (Channel == TIM_CHANNEL_4)
4239   {
4240     /* TI4 Configuration */
4241     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4242 
4243     TIM_TI4_SetConfig(htim->Instance,
4244                       sConfig->ICPolarity,
4245                       sConfig->ICSelection,
4246                       sConfig->ICFilter);
4247 
4248     /* Reset the IC4PSC Bits */
4249     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4250 
4251     /* Set the IC4PSC value */
4252     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4253   }
4254   else
4255   {
4256     status = HAL_ERROR;
4257   }
4258 
4259   __HAL_UNLOCK(htim);
4260 
4261   return status;
4262 }
4263 
4264 /**
4265   * @brief  Initializes the TIM PWM  channels according to the specified
4266   *         parameters in the TIM_OC_InitTypeDef.
4267   * @param  htim TIM PWM handle
4268   * @param  sConfig TIM PWM configuration structure
4269   * @param  Channel TIM Channels to be configured
4270   *          This parameter can be one of the following values:
4271   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4272   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4273   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4274   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4275   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected (*)
4276   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected (*)
4277   *         (*) Value not defined for all devices
4278   * @retval HAL status
4279   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4280 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4281                                             const TIM_OC_InitTypeDef *sConfig,
4282                                             uint32_t Channel)
4283 {
4284   HAL_StatusTypeDef status = HAL_OK;
4285 
4286   /* Check the parameters */
4287   assert_param(IS_TIM_CHANNELS(Channel));
4288   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4289   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4290   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4291 
4292   /* Process Locked */
4293   __HAL_LOCK(htim);
4294 
4295   switch (Channel)
4296   {
4297     case TIM_CHANNEL_1:
4298     {
4299       /* Check the parameters */
4300       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4301 
4302       /* Configure the Channel 1 in PWM mode */
4303       TIM_OC1_SetConfig(htim->Instance, sConfig);
4304 
4305       /* Set the Preload enable bit for channel1 */
4306       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4307 
4308       /* Configure the Output Fast mode */
4309       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4310       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4311       break;
4312     }
4313 
4314     case TIM_CHANNEL_2:
4315     {
4316       /* Check the parameters */
4317       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4318 
4319       /* Configure the Channel 2 in PWM mode */
4320       TIM_OC2_SetConfig(htim->Instance, sConfig);
4321 
4322       /* Set the Preload enable bit for channel2 */
4323       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4324 
4325       /* Configure the Output Fast mode */
4326       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4327       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4328       break;
4329     }
4330 
4331     case TIM_CHANNEL_3:
4332     {
4333       /* Check the parameters */
4334       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4335 
4336       /* Configure the Channel 3 in PWM mode */
4337       TIM_OC3_SetConfig(htim->Instance, sConfig);
4338 
4339       /* Set the Preload enable bit for channel3 */
4340       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4341 
4342       /* Configure the Output Fast mode */
4343       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4344       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4345       break;
4346     }
4347 
4348     case TIM_CHANNEL_4:
4349     {
4350       /* Check the parameters */
4351       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4352 
4353       /* Configure the Channel 4 in PWM mode */
4354       TIM_OC4_SetConfig(htim->Instance, sConfig);
4355 
4356       /* Set the Preload enable bit for channel4 */
4357       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4358 
4359       /* Configure the Output Fast mode */
4360       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4361       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4362       break;
4363     }
4364 
4365 #if defined(TIM_CCER_CC5E)
4366     case TIM_CHANNEL_5:
4367     {
4368       /* Check the parameters */
4369       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4370 
4371       /* Configure the Channel 5 in PWM mode */
4372       TIM_OC5_SetConfig(htim->Instance, sConfig);
4373 
4374       /* Set the Preload enable bit for channel5*/
4375       htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4376 
4377       /* Configure the Output Fast mode */
4378       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4379       htim->Instance->CCMR3 |= sConfig->OCFastMode;
4380       break;
4381     }
4382 #endif /* TIM_CCER_CC5E */
4383 
4384 #if defined(TIM_CCER_CC6E)
4385     case TIM_CHANNEL_6:
4386     {
4387       /* Check the parameters */
4388       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4389 
4390       /* Configure the Channel 6 in PWM mode */
4391       TIM_OC6_SetConfig(htim->Instance, sConfig);
4392 
4393       /* Set the Preload enable bit for channel6 */
4394       htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4395 
4396       /* Configure the Output Fast mode */
4397       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4398       htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4399       break;
4400     }
4401 #endif /* TIM_CCER_CC6E */
4402 
4403     default:
4404       status = HAL_ERROR;
4405       break;
4406   }
4407 
4408   __HAL_UNLOCK(htim);
4409 
4410   return status;
4411 }
4412 
4413 /**
4414   * @brief  Initializes the TIM One Pulse Channels according to the specified
4415   *         parameters in the TIM_OnePulse_InitTypeDef.
4416   * @param  htim TIM One Pulse handle
4417   * @param  sConfig TIM One Pulse configuration structure
4418   * @param  OutputChannel TIM output channel to configure
4419   *          This parameter can be one of the following values:
4420   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4421   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4422   * @param  InputChannel TIM input Channel to configure
4423   *          This parameter can be one of the following values:
4424   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4425   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4426   * @note  To output a waveform with a minimum delay user can enable the fast
4427   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4428   *        output is forced in response to the edge detection on TIx input,
4429   *        without taking in account the comparison.
4430   * @retval HAL status
4431   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4432 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4433                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4434 {
4435   HAL_StatusTypeDef status = HAL_OK;
4436   TIM_OC_InitTypeDef temp1;
4437 
4438   /* Check the parameters */
4439   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4440   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4441 
4442   if (OutputChannel != InputChannel)
4443   {
4444     /* Process Locked */
4445     __HAL_LOCK(htim);
4446 
4447     htim->State = HAL_TIM_STATE_BUSY;
4448 
4449     /* Extract the Output compare configuration from sConfig structure */
4450     temp1.OCMode = sConfig->OCMode;
4451     temp1.Pulse = sConfig->Pulse;
4452     temp1.OCPolarity = sConfig->OCPolarity;
4453     temp1.OCNPolarity = sConfig->OCNPolarity;
4454     temp1.OCIdleState = sConfig->OCIdleState;
4455     temp1.OCNIdleState = sConfig->OCNIdleState;
4456 
4457     switch (OutputChannel)
4458     {
4459       case TIM_CHANNEL_1:
4460       {
4461         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4462 
4463         TIM_OC1_SetConfig(htim->Instance, &temp1);
4464         break;
4465       }
4466 
4467       case TIM_CHANNEL_2:
4468       {
4469         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4470 
4471         TIM_OC2_SetConfig(htim->Instance, &temp1);
4472         break;
4473       }
4474 
4475       default:
4476         status = HAL_ERROR;
4477         break;
4478     }
4479 
4480     if (status == HAL_OK)
4481     {
4482       switch (InputChannel)
4483       {
4484         case TIM_CHANNEL_1:
4485         {
4486           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4487 
4488           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4489                             sConfig->ICSelection, sConfig->ICFilter);
4490 
4491           /* Reset the IC1PSC Bits */
4492           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4493 
4494           /* Select the Trigger source */
4495           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4496           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4497 
4498           /* Select the Slave Mode */
4499           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4500           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4501           break;
4502         }
4503 
4504         case TIM_CHANNEL_2:
4505         {
4506           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4507 
4508           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4509                             sConfig->ICSelection, sConfig->ICFilter);
4510 
4511           /* Reset the IC2PSC Bits */
4512           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4513 
4514           /* Select the Trigger source */
4515           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4516           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4517 
4518           /* Select the Slave Mode */
4519           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4520           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4521           break;
4522         }
4523 
4524         default:
4525           status = HAL_ERROR;
4526           break;
4527       }
4528     }
4529 
4530     htim->State = HAL_TIM_STATE_READY;
4531 
4532     __HAL_UNLOCK(htim);
4533 
4534     return status;
4535   }
4536   else
4537   {
4538     return HAL_ERROR;
4539   }
4540 }
4541 
4542 /**
4543   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4544   * @param  htim TIM handle
4545   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4546   *         This parameter can be one of the following values:
4547   *            @arg TIM_DMABASE_CR1
4548   *            @arg TIM_DMABASE_CR2
4549   *            @arg TIM_DMABASE_SMCR
4550   *            @arg TIM_DMABASE_DIER
4551   *            @arg TIM_DMABASE_SR
4552   *            @arg TIM_DMABASE_EGR
4553   *            @arg TIM_DMABASE_CCMR1
4554   *            @arg TIM_DMABASE_CCMR2
4555   *            @arg TIM_DMABASE_CCER
4556   *            @arg TIM_DMABASE_CNT
4557   *            @arg TIM_DMABASE_PSC
4558   *            @arg TIM_DMABASE_ARR
4559   *            @arg TIM_DMABASE_RCR
4560   *            @arg TIM_DMABASE_CCR1
4561   *            @arg TIM_DMABASE_CCR2
4562   *            @arg TIM_DMABASE_CCR3
4563   *            @arg TIM_DMABASE_CCR4
4564   *            @arg TIM_DMABASE_BDTR
4565   *            @arg TIM_DMABASE_OR
4566   *            @arg TIM_DMABASE_CCMR3 (*)
4567   *            @arg TIM_DMABASE_CCR5  (*)
4568   *            @arg TIM_DMABASE_CCR6  (*)
4569   *         (*) value not defined in all devices
4570   * @param  BurstRequestSrc TIM DMA Request sources
4571   *         This parameter can be one of the following values:
4572   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4573   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4574   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4575   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4576   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4577   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4578   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4579   * @param  BurstBuffer The Buffer address.
4580   * @param  BurstLength DMA Burst length. This parameter can be one value
4581   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4582   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4583   * @retval HAL status
4584   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4585 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4586                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t  BurstLength)
4587 {
4588   HAL_StatusTypeDef status;
4589 
4590   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4591                                             ((BurstLength) >> 8U) + 1U);
4592 
4593 
4594 
4595   return status;
4596 }
4597 
4598 /**
4599   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4600   * @param  htim TIM handle
4601   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4602   *         This parameter can be one of the following values:
4603   *            @arg TIM_DMABASE_CR1
4604   *            @arg TIM_DMABASE_CR2
4605   *            @arg TIM_DMABASE_SMCR
4606   *            @arg TIM_DMABASE_DIER
4607   *            @arg TIM_DMABASE_SR
4608   *            @arg TIM_DMABASE_EGR
4609   *            @arg TIM_DMABASE_CCMR1
4610   *            @arg TIM_DMABASE_CCMR2
4611   *            @arg TIM_DMABASE_CCER
4612   *            @arg TIM_DMABASE_CNT
4613   *            @arg TIM_DMABASE_PSC
4614   *            @arg TIM_DMABASE_ARR
4615   *            @arg TIM_DMABASE_RCR
4616   *            @arg TIM_DMABASE_CCR1
4617   *            @arg TIM_DMABASE_CCR2
4618   *            @arg TIM_DMABASE_CCR3
4619   *            @arg TIM_DMABASE_CCR4
4620   *            @arg TIM_DMABASE_BDTR
4621   *            @arg TIM_DMABASE_OR
4622   *            @arg TIM_DMABASE_CCMR3 (*)
4623   *            @arg TIM_DMABASE_CCR5  (*)
4624   *            @arg TIM_DMABASE_CCR6  (*)
4625   *         (*) value not defined in all devices
4626   * @param  BurstRequestSrc TIM DMA Request sources
4627   *         This parameter can be one of the following values:
4628   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4629   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4630   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4631   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4632   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4633   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4634   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4635   * @param  BurstBuffer The Buffer address.
4636   * @param  BurstLength DMA Burst length. This parameter can be one value
4637   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4638   * @param  DataLength Data length. This parameter can be one value
4639   *         between 1 and 0xFFFF.
4640   * @retval HAL status
4641   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4642 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4643                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4644                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4645 {
4646   HAL_StatusTypeDef status = HAL_OK;
4647 
4648   /* Check the parameters */
4649   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4650   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4651   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4652   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4653   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4654 
4655   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4656   {
4657     return HAL_BUSY;
4658   }
4659   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4660   {
4661     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4662     {
4663       return HAL_ERROR;
4664     }
4665     else
4666     {
4667       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4668     }
4669   }
4670   else
4671   {
4672     /* nothing to do */
4673   }
4674 
4675   switch (BurstRequestSrc)
4676   {
4677     case TIM_DMA_UPDATE:
4678     {
4679       /* Set the DMA Period elapsed callbacks */
4680       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4681       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4682 
4683       /* Set the DMA error callback */
4684       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4685 
4686       /* Enable the DMA channel */
4687       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4688                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4689       {
4690         /* Return error status */
4691         return HAL_ERROR;
4692       }
4693       break;
4694     }
4695     case TIM_DMA_CC1:
4696     {
4697       /* Set the DMA compare callbacks */
4698       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4699       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4700 
4701       /* Set the DMA error callback */
4702       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4703 
4704       /* Enable the DMA channel */
4705       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4706                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4707       {
4708         /* Return error status */
4709         return HAL_ERROR;
4710       }
4711       break;
4712     }
4713     case TIM_DMA_CC2:
4714     {
4715       /* Set the DMA compare callbacks */
4716       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4717       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4718 
4719       /* Set the DMA error callback */
4720       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4721 
4722       /* Enable the DMA channel */
4723       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4724                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4725       {
4726         /* Return error status */
4727         return HAL_ERROR;
4728       }
4729       break;
4730     }
4731     case TIM_DMA_CC3:
4732     {
4733       /* Set the DMA compare callbacks */
4734       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4735       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4736 
4737       /* Set the DMA error callback */
4738       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4739 
4740       /* Enable the DMA channel */
4741       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4742                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4743       {
4744         /* Return error status */
4745         return HAL_ERROR;
4746       }
4747       break;
4748     }
4749     case TIM_DMA_CC4:
4750     {
4751       /* Set the DMA compare callbacks */
4752       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4753       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4754 
4755       /* Set the DMA error callback */
4756       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4757 
4758       /* Enable the DMA channel */
4759       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4760                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4761       {
4762         /* Return error status */
4763         return HAL_ERROR;
4764       }
4765       break;
4766     }
4767     case TIM_DMA_COM:
4768     {
4769       /* Set the DMA commutation callbacks */
4770       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4771       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4772 
4773       /* Set the DMA error callback */
4774       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4775 
4776       /* Enable the DMA channel */
4777       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4778                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4779       {
4780         /* Return error status */
4781         return HAL_ERROR;
4782       }
4783       break;
4784     }
4785     case TIM_DMA_TRIGGER:
4786     {
4787       /* Set the DMA trigger callbacks */
4788       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4789       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4790 
4791       /* Set the DMA error callback */
4792       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4793 
4794       /* Enable the DMA channel */
4795       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4796                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4797       {
4798         /* Return error status */
4799         return HAL_ERROR;
4800       }
4801       break;
4802     }
4803     default:
4804       status = HAL_ERROR;
4805       break;
4806   }
4807 
4808   if (status == HAL_OK)
4809   {
4810     /* Configure the DMA Burst Mode */
4811     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4812     /* Enable the TIM DMA Request */
4813     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4814   }
4815 
4816   /* Return function status */
4817   return status;
4818 }
4819 
4820 /**
4821   * @brief  Stops the TIM DMA Burst mode
4822   * @param  htim TIM handle
4823   * @param  BurstRequestSrc TIM DMA Request sources to disable
4824   * @retval HAL status
4825   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4826 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4827 {
4828   HAL_StatusTypeDef status = HAL_OK;
4829 
4830   /* Check the parameters */
4831   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4832 
4833   /* Abort the DMA transfer (at least disable the DMA channel) */
4834   switch (BurstRequestSrc)
4835   {
4836     case TIM_DMA_UPDATE:
4837     {
4838       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4839       break;
4840     }
4841     case TIM_DMA_CC1:
4842     {
4843       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4844       break;
4845     }
4846     case TIM_DMA_CC2:
4847     {
4848       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4849       break;
4850     }
4851     case TIM_DMA_CC3:
4852     {
4853       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4854       break;
4855     }
4856     case TIM_DMA_CC4:
4857     {
4858       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4859       break;
4860     }
4861     case TIM_DMA_COM:
4862     {
4863       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4864       break;
4865     }
4866     case TIM_DMA_TRIGGER:
4867     {
4868       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4869       break;
4870     }
4871     default:
4872       status = HAL_ERROR;
4873       break;
4874   }
4875 
4876   if (status == HAL_OK)
4877   {
4878     /* Disable the TIM Update DMA request */
4879     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4880 
4881     /* Change the DMA burst operation state */
4882     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4883   }
4884 
4885   /* Return function status */
4886   return status;
4887 }
4888 
4889 /**
4890   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4891   * @param  htim TIM handle
4892   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4893   *         This parameter can be one of the following values:
4894   *            @arg TIM_DMABASE_CR1
4895   *            @arg TIM_DMABASE_CR2
4896   *            @arg TIM_DMABASE_SMCR
4897   *            @arg TIM_DMABASE_DIER
4898   *            @arg TIM_DMABASE_SR
4899   *            @arg TIM_DMABASE_EGR
4900   *            @arg TIM_DMABASE_CCMR1
4901   *            @arg TIM_DMABASE_CCMR2
4902   *            @arg TIM_DMABASE_CCER
4903   *            @arg TIM_DMABASE_CNT
4904   *            @arg TIM_DMABASE_PSC
4905   *            @arg TIM_DMABASE_ARR
4906   *            @arg TIM_DMABASE_RCR
4907   *            @arg TIM_DMABASE_CCR1
4908   *            @arg TIM_DMABASE_CCR2
4909   *            @arg TIM_DMABASE_CCR3
4910   *            @arg TIM_DMABASE_CCR4
4911   *            @arg TIM_DMABASE_BDTR
4912   *            @arg TIM_DMABASE_OR
4913   *            @arg TIM_DMABASE_CCMR3 (*)
4914   *            @arg TIM_DMABASE_CCR5  (*)
4915   *            @arg TIM_DMABASE_CCR6  (*)
4916   *         (*) value not defined in all devices
4917   * @param  BurstRequestSrc TIM DMA Request sources
4918   *         This parameter can be one of the following values:
4919   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4920   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4921   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4922   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4923   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4924   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4925   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4926   * @param  BurstBuffer The Buffer address.
4927   * @param  BurstLength DMA Burst length. This parameter can be one value
4928   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4929   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4930   * @retval HAL status
4931   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4932 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4933                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4934 {
4935   HAL_StatusTypeDef status;
4936 
4937   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4938                                            ((BurstLength) >> 8U) + 1U);
4939 
4940 
4941   return status;
4942 }
4943 
4944 /**
4945   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4946   * @param  htim TIM handle
4947   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4948   *         This parameter can be one of the following values:
4949   *            @arg TIM_DMABASE_CR1
4950   *            @arg TIM_DMABASE_CR2
4951   *            @arg TIM_DMABASE_SMCR
4952   *            @arg TIM_DMABASE_DIER
4953   *            @arg TIM_DMABASE_SR
4954   *            @arg TIM_DMABASE_EGR
4955   *            @arg TIM_DMABASE_CCMR1
4956   *            @arg TIM_DMABASE_CCMR2
4957   *            @arg TIM_DMABASE_CCER
4958   *            @arg TIM_DMABASE_CNT
4959   *            @arg TIM_DMABASE_PSC
4960   *            @arg TIM_DMABASE_ARR
4961   *            @arg TIM_DMABASE_RCR
4962   *            @arg TIM_DMABASE_CCR1
4963   *            @arg TIM_DMABASE_CCR2
4964   *            @arg TIM_DMABASE_CCR3
4965   *            @arg TIM_DMABASE_CCR4
4966   *            @arg TIM_DMABASE_BDTR
4967   *            @arg TIM_DMABASE_OR
4968   *            @arg TIM_DMABASE_CCMR3 (*)
4969   *            @arg TIM_DMABASE_CCR5  (*)
4970   *            @arg TIM_DMABASE_CCR6  (*)
4971   *         (*) value not defined in all devices
4972   * @param  BurstRequestSrc TIM DMA Request sources
4973   *         This parameter can be one of the following values:
4974   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4975   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4976   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4977   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4978   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4979   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4980   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4981   * @param  BurstBuffer The Buffer address.
4982   * @param  BurstLength DMA Burst length. This parameter can be one value
4983   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4984   * @param  DataLength Data length. This parameter can be one value
4985   *         between 1 and 0xFFFF.
4986   * @retval HAL status
4987   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4988 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4989                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4990                                                   uint32_t  BurstLength, uint32_t  DataLength)
4991 {
4992   HAL_StatusTypeDef status = HAL_OK;
4993 
4994   /* Check the parameters */
4995   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4996   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4997   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4998   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4999   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
5000 
5001   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
5002   {
5003     return HAL_BUSY;
5004   }
5005   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5006   {
5007     if ((BurstBuffer == NULL) && (BurstLength > 0U))
5008     {
5009       return HAL_ERROR;
5010     }
5011     else
5012     {
5013       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5014     }
5015   }
5016   else
5017   {
5018     /* nothing to do */
5019   }
5020   switch (BurstRequestSrc)
5021   {
5022     case TIM_DMA_UPDATE:
5023     {
5024       /* Set the DMA Period elapsed callbacks */
5025       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5026       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5027 
5028       /* Set the DMA error callback */
5029       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5030 
5031       /* Enable the DMA channel */
5032       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5033                            DataLength) != HAL_OK)
5034       {
5035         /* Return error status */
5036         return HAL_ERROR;
5037       }
5038       break;
5039     }
5040     case TIM_DMA_CC1:
5041     {
5042       /* Set the DMA capture callbacks */
5043       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5044       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5045 
5046       /* Set the DMA error callback */
5047       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5048 
5049       /* Enable the DMA channel */
5050       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5051                            DataLength) != HAL_OK)
5052       {
5053         /* Return error status */
5054         return HAL_ERROR;
5055       }
5056       break;
5057     }
5058     case TIM_DMA_CC2:
5059     {
5060       /* Set the DMA capture callbacks */
5061       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5062       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5063 
5064       /* Set the DMA error callback */
5065       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5066 
5067       /* Enable the DMA channel */
5068       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5069                            DataLength) != HAL_OK)
5070       {
5071         /* Return error status */
5072         return HAL_ERROR;
5073       }
5074       break;
5075     }
5076     case TIM_DMA_CC3:
5077     {
5078       /* Set the DMA capture callbacks */
5079       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5080       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5081 
5082       /* Set the DMA error callback */
5083       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5084 
5085       /* Enable the DMA channel */
5086       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5087                            DataLength) != HAL_OK)
5088       {
5089         /* Return error status */
5090         return HAL_ERROR;
5091       }
5092       break;
5093     }
5094     case TIM_DMA_CC4:
5095     {
5096       /* Set the DMA capture callbacks */
5097       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5098       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5099 
5100       /* Set the DMA error callback */
5101       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5102 
5103       /* Enable the DMA channel */
5104       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5105                            DataLength) != HAL_OK)
5106       {
5107         /* Return error status */
5108         return HAL_ERROR;
5109       }
5110       break;
5111     }
5112     case TIM_DMA_COM:
5113     {
5114       /* Set the DMA commutation callbacks */
5115       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
5116       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
5117 
5118       /* Set the DMA error callback */
5119       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5120 
5121       /* Enable the DMA channel */
5122       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5123                            DataLength) != HAL_OK)
5124       {
5125         /* Return error status */
5126         return HAL_ERROR;
5127       }
5128       break;
5129     }
5130     case TIM_DMA_TRIGGER:
5131     {
5132       /* Set the DMA trigger callbacks */
5133       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5134       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5135 
5136       /* Set the DMA error callback */
5137       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5138 
5139       /* Enable the DMA channel */
5140       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5141                            DataLength) != HAL_OK)
5142       {
5143         /* Return error status */
5144         return HAL_ERROR;
5145       }
5146       break;
5147     }
5148     default:
5149       status = HAL_ERROR;
5150       break;
5151   }
5152 
5153   if (status == HAL_OK)
5154   {
5155     /* Configure the DMA Burst Mode */
5156     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5157 
5158     /* Enable the TIM DMA Request */
5159     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5160   }
5161 
5162   /* Return function status */
5163   return status;
5164 }
5165 
5166 /**
5167   * @brief  Stop the DMA burst reading
5168   * @param  htim TIM handle
5169   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5170   * @retval HAL status
5171   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5172 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5173 {
5174   HAL_StatusTypeDef status = HAL_OK;
5175 
5176   /* Check the parameters */
5177   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5178 
5179   /* Abort the DMA transfer (at least disable the DMA channel) */
5180   switch (BurstRequestSrc)
5181   {
5182     case TIM_DMA_UPDATE:
5183     {
5184       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5185       break;
5186     }
5187     case TIM_DMA_CC1:
5188     {
5189       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5190       break;
5191     }
5192     case TIM_DMA_CC2:
5193     {
5194       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5195       break;
5196     }
5197     case TIM_DMA_CC3:
5198     {
5199       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5200       break;
5201     }
5202     case TIM_DMA_CC4:
5203     {
5204       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5205       break;
5206     }
5207     case TIM_DMA_COM:
5208     {
5209       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5210       break;
5211     }
5212     case TIM_DMA_TRIGGER:
5213     {
5214       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5215       break;
5216     }
5217     default:
5218       status = HAL_ERROR;
5219       break;
5220   }
5221 
5222   if (status == HAL_OK)
5223   {
5224     /* Disable the TIM Update DMA request */
5225     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5226 
5227     /* Change the DMA burst operation state */
5228     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5229   }
5230 
5231   /* Return function status */
5232   return status;
5233 }
5234 
5235 /**
5236   * @brief  Generate a software event
5237   * @param  htim TIM handle
5238   * @param  EventSource specifies the event source.
5239   *          This parameter can be one of the following values:
5240   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5241   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5242   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5243   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5244   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5245   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5246   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5247   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5248   *            @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5249   * @note   Basic timers can only generate an update event.
5250   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5251   * @note   TIM_EVENTSOURCE_BREAK are relevant only for timer instances
5252   *         supporting a break input.
5253   * @retval HAL status
5254   */
5255 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5256 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5257 {
5258   /* Check the parameters */
5259   assert_param(IS_TIM_INSTANCE(htim->Instance));
5260   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5261 
5262   /* Process Locked */
5263   __HAL_LOCK(htim);
5264 
5265   /* Change the TIM state */
5266   htim->State = HAL_TIM_STATE_BUSY;
5267 
5268   /* Set the event sources */
5269   htim->Instance->EGR = EventSource;
5270 
5271   /* Change the TIM state */
5272   htim->State = HAL_TIM_STATE_READY;
5273 
5274   __HAL_UNLOCK(htim);
5275 
5276   /* Return function status */
5277   return HAL_OK;
5278 }
5279 
5280 /**
5281   * @brief  Configures the OCRef clear feature
5282   * @param  htim TIM handle
5283   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5284   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5285   * @param  Channel specifies the TIM Channel
5286   *          This parameter can be one of the following values:
5287   *            @arg TIM_CHANNEL_1: TIM Channel 1
5288   *            @arg TIM_CHANNEL_2: TIM Channel 2
5289   *            @arg TIM_CHANNEL_3: TIM Channel 3
5290   *            @arg TIM_CHANNEL_4: TIM Channel 4
5291   *            @arg TIM_CHANNEL_5: TIM Channel 5 (*)
5292   *            @arg TIM_CHANNEL_6: TIM Channel 6 (*)
5293   *         (*) Value not defined for all devices
5294   * @retval HAL status
5295   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5296 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5297                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5298                                            uint32_t Channel)
5299 {
5300   HAL_StatusTypeDef status = HAL_OK;
5301 
5302   /* Check the parameters */
5303   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5304   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5305 
5306   /* Process Locked */
5307   __HAL_LOCK(htim);
5308 
5309   htim->State = HAL_TIM_STATE_BUSY;
5310 
5311   switch (sClearInputConfig->ClearInputSource)
5312   {
5313     case TIM_CLEARINPUTSOURCE_NONE:
5314     {
5315       /* Clear the OCREF clear selection bit and the the ETR Bits */
5316 #if defined(TIM_SMCR_OCCS)
5317       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5318 #else
5319       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5320 #endif /* TIM_SMCR_OCCS */
5321       break;
5322     }
5323 #if defined(TIM_SMCR_OCCS)
5324     case TIM_CLEARINPUTSOURCE_OCREFCLR:
5325     {
5326       /* Clear the OCREF clear selection bit */
5327       CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5328       break;
5329     }
5330 #endif /* TIM_SMCR_OCCS */
5331 
5332     case TIM_CLEARINPUTSOURCE_ETR:
5333     {
5334       /* Check the parameters */
5335       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5336       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5337       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5338 
5339       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5340       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5341       {
5342         htim->State = HAL_TIM_STATE_READY;
5343         __HAL_UNLOCK(htim);
5344         return HAL_ERROR;
5345       }
5346 
5347       TIM_ETR_SetConfig(htim->Instance,
5348                         sClearInputConfig->ClearInputPrescaler,
5349                         sClearInputConfig->ClearInputPolarity,
5350                         sClearInputConfig->ClearInputFilter);
5351 #if defined(TIM_SMCR_OCCS)
5352 
5353       /* Set the OCREF clear selection bit */
5354       SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5355 #endif /* TIM_SMCR_OCCS */
5356       break;
5357     }
5358 
5359     default:
5360       status = HAL_ERROR;
5361       break;
5362   }
5363 
5364   if (status == HAL_OK)
5365   {
5366     switch (Channel)
5367     {
5368       case TIM_CHANNEL_1:
5369       {
5370         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5371         {
5372           /* Enable the OCREF clear feature for Channel 1 */
5373           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5374         }
5375         else
5376         {
5377           /* Disable the OCREF clear feature for Channel 1 */
5378           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5379         }
5380         break;
5381       }
5382       case TIM_CHANNEL_2:
5383       {
5384         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5385         {
5386           /* Enable the OCREF clear feature for Channel 2 */
5387           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5388         }
5389         else
5390         {
5391           /* Disable the OCREF clear feature for Channel 2 */
5392           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5393         }
5394         break;
5395       }
5396       case TIM_CHANNEL_3:
5397       {
5398         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5399         {
5400           /* Enable the OCREF clear feature for Channel 3 */
5401           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5402         }
5403         else
5404         {
5405           /* Disable the OCREF clear feature for Channel 3 */
5406           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5407         }
5408         break;
5409       }
5410       case TIM_CHANNEL_4:
5411       {
5412         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5413         {
5414           /* Enable the OCREF clear feature for Channel 4 */
5415           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5416         }
5417         else
5418         {
5419           /* Disable the OCREF clear feature for Channel 4 */
5420           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5421         }
5422         break;
5423       }
5424 #if defined(TIM_CCER_CC5E)
5425       case TIM_CHANNEL_5:
5426       {
5427         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5428         {
5429           /* Enable the OCREF clear feature for Channel 5 */
5430           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5431         }
5432         else
5433         {
5434           /* Disable the OCREF clear feature for Channel 5 */
5435           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5436         }
5437         break;
5438       }
5439 #endif /* TIM_CCER_CC5E */
5440 #if defined(TIM_CCER_CC6E)
5441       case TIM_CHANNEL_6:
5442       {
5443         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5444         {
5445           /* Enable the OCREF clear feature for Channel 6 */
5446           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5447         }
5448         else
5449         {
5450           /* Disable the OCREF clear feature for Channel 6 */
5451           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5452         }
5453         break;
5454       }
5455 #endif /* TIM_CCER_CC6E */
5456       default:
5457         break;
5458     }
5459   }
5460 
5461   htim->State = HAL_TIM_STATE_READY;
5462 
5463   __HAL_UNLOCK(htim);
5464 
5465   return status;
5466 }
5467 
5468 /**
5469   * @brief   Configures the clock source to be used
5470   * @param  htim TIM handle
5471   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5472   *         contains the clock source information for the TIM peripheral.
5473   * @retval HAL status
5474   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5475 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5476 {
5477   HAL_StatusTypeDef status = HAL_OK;
5478   uint32_t tmpsmcr;
5479 
5480   /* Process Locked */
5481   __HAL_LOCK(htim);
5482 
5483   htim->State = HAL_TIM_STATE_BUSY;
5484 
5485   /* Check the parameters */
5486   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5487 
5488   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5489   tmpsmcr = htim->Instance->SMCR;
5490   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5491   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5492   htim->Instance->SMCR = tmpsmcr;
5493 
5494   switch (sClockSourceConfig->ClockSource)
5495   {
5496     case TIM_CLOCKSOURCE_INTERNAL:
5497     {
5498       assert_param(IS_TIM_INSTANCE(htim->Instance));
5499       break;
5500     }
5501 
5502     case TIM_CLOCKSOURCE_ETRMODE1:
5503     {
5504       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5505       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5506 
5507       /* Check ETR input conditioning related parameters */
5508       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5509       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5510       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5511 
5512       /* Configure the ETR Clock source */
5513       TIM_ETR_SetConfig(htim->Instance,
5514                         sClockSourceConfig->ClockPrescaler,
5515                         sClockSourceConfig->ClockPolarity,
5516                         sClockSourceConfig->ClockFilter);
5517 
5518       /* Select the External clock mode1 and the ETRF trigger */
5519       tmpsmcr = htim->Instance->SMCR;
5520       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5521       /* Write to TIMx SMCR */
5522       htim->Instance->SMCR = tmpsmcr;
5523       break;
5524     }
5525 
5526     case TIM_CLOCKSOURCE_ETRMODE2:
5527     {
5528       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5529       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5530 
5531       /* Check ETR input conditioning related parameters */
5532       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5533       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5534       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5535 
5536       /* Configure the ETR Clock source */
5537       TIM_ETR_SetConfig(htim->Instance,
5538                         sClockSourceConfig->ClockPrescaler,
5539                         sClockSourceConfig->ClockPolarity,
5540                         sClockSourceConfig->ClockFilter);
5541       /* Enable the External clock mode2 */
5542       htim->Instance->SMCR |= TIM_SMCR_ECE;
5543       break;
5544     }
5545 
5546     case TIM_CLOCKSOURCE_TI1:
5547     {
5548       /* Check whether or not the timer instance supports external clock mode 1 */
5549       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5550 
5551       /* Check TI1 input conditioning related parameters */
5552       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5553       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5554 
5555       TIM_TI1_ConfigInputStage(htim->Instance,
5556                                sClockSourceConfig->ClockPolarity,
5557                                sClockSourceConfig->ClockFilter);
5558       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5559       break;
5560     }
5561 
5562     case TIM_CLOCKSOURCE_TI2:
5563     {
5564       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5565       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5566 
5567       /* Check TI2 input conditioning related parameters */
5568       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5569       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5570 
5571       TIM_TI2_ConfigInputStage(htim->Instance,
5572                                sClockSourceConfig->ClockPolarity,
5573                                sClockSourceConfig->ClockFilter);
5574       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5575       break;
5576     }
5577 
5578     case TIM_CLOCKSOURCE_TI1ED:
5579     {
5580       /* Check whether or not the timer instance supports external clock mode 1 */
5581       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5582 
5583       /* Check TI1 input conditioning related parameters */
5584       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5585       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5586 
5587       TIM_TI1_ConfigInputStage(htim->Instance,
5588                                sClockSourceConfig->ClockPolarity,
5589                                sClockSourceConfig->ClockFilter);
5590       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5591       break;
5592     }
5593 
5594     case TIM_CLOCKSOURCE_ITR0:
5595     case TIM_CLOCKSOURCE_ITR1:
5596     case TIM_CLOCKSOURCE_ITR2:
5597     case TIM_CLOCKSOURCE_ITR3:
5598     {
5599       /* Check whether or not the timer instance supports internal trigger input */
5600       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5601 
5602       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5603       break;
5604     }
5605 
5606     default:
5607       status = HAL_ERROR;
5608       break;
5609   }
5610   htim->State = HAL_TIM_STATE_READY;
5611 
5612   __HAL_UNLOCK(htim);
5613 
5614   return status;
5615 }
5616 
5617 /**
5618   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5619   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5620   * @param  htim TIM handle.
5621   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5622   *         output of a XOR gate.
5623   *          This parameter can be one of the following values:
5624   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5625   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5626   *            pins are connected to the TI1 input (XOR combination)
5627   * @retval HAL status
5628   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5629 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5630 {
5631   uint32_t tmpcr2;
5632 
5633   /* Check the parameters */
5634   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5635   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5636 
5637   /* Get the TIMx CR2 register value */
5638   tmpcr2 = htim->Instance->CR2;
5639 
5640   /* Reset the TI1 selection */
5641   tmpcr2 &= ~TIM_CR2_TI1S;
5642 
5643   /* Set the TI1 selection */
5644   tmpcr2 |= TI1_Selection;
5645 
5646   /* Write to TIMxCR2 */
5647   htim->Instance->CR2 = tmpcr2;
5648 
5649   return HAL_OK;
5650 }
5651 
5652 /**
5653   * @brief  Configures the TIM in Slave mode
5654   * @param  htim TIM handle.
5655   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5656   *         contains the selected trigger (internal trigger input, filtered
5657   *         timer input or external trigger input) and the Slave mode
5658   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5659   * @retval HAL status
5660   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5661 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5662 {
5663   /* Check the parameters */
5664   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5665   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5666   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5667 
5668   __HAL_LOCK(htim);
5669 
5670   htim->State = HAL_TIM_STATE_BUSY;
5671 
5672   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5673   {
5674     htim->State = HAL_TIM_STATE_READY;
5675     __HAL_UNLOCK(htim);
5676     return HAL_ERROR;
5677   }
5678 
5679   /* Disable Trigger Interrupt */
5680   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5681 
5682   /* Disable Trigger DMA request */
5683   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5684 
5685   htim->State = HAL_TIM_STATE_READY;
5686 
5687   __HAL_UNLOCK(htim);
5688 
5689   return HAL_OK;
5690 }
5691 
5692 /**
5693   * @brief  Configures the TIM in Slave mode in interrupt mode
5694   * @param  htim TIM handle.
5695   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5696   *         contains the selected trigger (internal trigger input, filtered
5697   *         timer input or external trigger input) and the Slave mode
5698   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5699   * @retval HAL status
5700   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5701 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5702                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5703 {
5704   /* Check the parameters */
5705   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5706   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5707   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5708 
5709   __HAL_LOCK(htim);
5710 
5711   htim->State = HAL_TIM_STATE_BUSY;
5712 
5713   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5714   {
5715     htim->State = HAL_TIM_STATE_READY;
5716     __HAL_UNLOCK(htim);
5717     return HAL_ERROR;
5718   }
5719 
5720   /* Enable Trigger Interrupt */
5721   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5722 
5723   /* Disable Trigger DMA request */
5724   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5725 
5726   htim->State = HAL_TIM_STATE_READY;
5727 
5728   __HAL_UNLOCK(htim);
5729 
5730   return HAL_OK;
5731 }
5732 
5733 /**
5734   * @brief  Read the captured value from Capture Compare unit
5735   * @param  htim TIM handle.
5736   * @param  Channel TIM Channels to be enabled
5737   *          This parameter can be one of the following values:
5738   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5739   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5740   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5741   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5742   * @retval Captured value
5743   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5744 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5745 {
5746   uint32_t tmpreg = 0U;
5747 
5748   switch (Channel)
5749   {
5750     case TIM_CHANNEL_1:
5751     {
5752       /* Check the parameters */
5753       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5754 
5755       /* Return the capture 1 value */
5756       tmpreg =  htim->Instance->CCR1;
5757 
5758       break;
5759     }
5760     case TIM_CHANNEL_2:
5761     {
5762       /* Check the parameters */
5763       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5764 
5765       /* Return the capture 2 value */
5766       tmpreg =   htim->Instance->CCR2;
5767 
5768       break;
5769     }
5770 
5771     case TIM_CHANNEL_3:
5772     {
5773       /* Check the parameters */
5774       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5775 
5776       /* Return the capture 3 value */
5777       tmpreg =   htim->Instance->CCR3;
5778 
5779       break;
5780     }
5781 
5782     case TIM_CHANNEL_4:
5783     {
5784       /* Check the parameters */
5785       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5786 
5787       /* Return the capture 4 value */
5788       tmpreg =   htim->Instance->CCR4;
5789 
5790       break;
5791     }
5792 
5793     default:
5794       break;
5795   }
5796 
5797   return tmpreg;
5798 }
5799 
5800 /**
5801   * @}
5802   */
5803 
5804 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5805   *  @brief    TIM Callbacks functions
5806   *
5807 @verbatim
5808   ==============================================================================
5809                         ##### TIM Callbacks functions #####
5810   ==============================================================================
5811  [..]
5812    This section provides TIM callback functions:
5813    (+) TIM Period elapsed callback
5814    (+) TIM Output Compare callback
5815    (+) TIM Input capture callback
5816    (+) TIM Trigger callback
5817    (+) TIM Error callback
5818 
5819 @endverbatim
5820   * @{
5821   */
5822 
5823 /**
5824   * @brief  Period elapsed callback in non-blocking mode
5825   * @param  htim TIM handle
5826   * @retval None
5827   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5828 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5829 {
5830   /* Prevent unused argument(s) compilation warning */
5831   UNUSED(htim);
5832 
5833   /* NOTE : This function should not be modified, when the callback is needed,
5834             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5835    */
5836 }
5837 
5838 /**
5839   * @brief  Period elapsed half complete callback in non-blocking mode
5840   * @param  htim TIM handle
5841   * @retval None
5842   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5843 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5844 {
5845   /* Prevent unused argument(s) compilation warning */
5846   UNUSED(htim);
5847 
5848   /* NOTE : This function should not be modified, when the callback is needed,
5849             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5850    */
5851 }
5852 
5853 /**
5854   * @brief  Output Compare callback in non-blocking mode
5855   * @param  htim TIM OC handle
5856   * @retval None
5857   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5858 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5859 {
5860   /* Prevent unused argument(s) compilation warning */
5861   UNUSED(htim);
5862 
5863   /* NOTE : This function should not be modified, when the callback is needed,
5864             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5865    */
5866 }
5867 
5868 /**
5869   * @brief  Input Capture callback in non-blocking mode
5870   * @param  htim TIM IC handle
5871   * @retval None
5872   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5873 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5874 {
5875   /* Prevent unused argument(s) compilation warning */
5876   UNUSED(htim);
5877 
5878   /* NOTE : This function should not be modified, when the callback is needed,
5879             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5880    */
5881 }
5882 
5883 /**
5884   * @brief  Input Capture half complete callback in non-blocking mode
5885   * @param  htim TIM IC handle
5886   * @retval None
5887   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5888 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5889 {
5890   /* Prevent unused argument(s) compilation warning */
5891   UNUSED(htim);
5892 
5893   /* NOTE : This function should not be modified, when the callback is needed,
5894             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5895    */
5896 }
5897 
5898 /**
5899   * @brief  PWM Pulse finished callback in non-blocking mode
5900   * @param  htim TIM handle
5901   * @retval None
5902   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5903 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5904 {
5905   /* Prevent unused argument(s) compilation warning */
5906   UNUSED(htim);
5907 
5908   /* NOTE : This function should not be modified, when the callback is needed,
5909             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5910    */
5911 }
5912 
5913 /**
5914   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5915   * @param  htim TIM handle
5916   * @retval None
5917   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5918 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5919 {
5920   /* Prevent unused argument(s) compilation warning */
5921   UNUSED(htim);
5922 
5923   /* NOTE : This function should not be modified, when the callback is needed,
5924             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5925    */
5926 }
5927 
5928 /**
5929   * @brief  Hall Trigger detection callback in non-blocking mode
5930   * @param  htim TIM handle
5931   * @retval None
5932   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5933 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5934 {
5935   /* Prevent unused argument(s) compilation warning */
5936   UNUSED(htim);
5937 
5938   /* NOTE : This function should not be modified, when the callback is needed,
5939             the HAL_TIM_TriggerCallback could be implemented in the user file
5940    */
5941 }
5942 
5943 /**
5944   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5945   * @param  htim TIM handle
5946   * @retval None
5947   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5948 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5949 {
5950   /* Prevent unused argument(s) compilation warning */
5951   UNUSED(htim);
5952 
5953   /* NOTE : This function should not be modified, when the callback is needed,
5954             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5955    */
5956 }
5957 
5958 /**
5959   * @brief  Timer error callback in non-blocking mode
5960   * @param  htim TIM handle
5961   * @retval None
5962   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5963 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5964 {
5965   /* Prevent unused argument(s) compilation warning */
5966   UNUSED(htim);
5967 
5968   /* NOTE : This function should not be modified, when the callback is needed,
5969             the HAL_TIM_ErrorCallback could be implemented in the user file
5970    */
5971 }
5972 
5973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5974 /**
5975   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5976   * @param htim tim handle
5977   * @param CallbackID ID of the callback to be registered
5978   *        This parameter can be one of the following values:
5979   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5980   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5981   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5982   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5983   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5984   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5985   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5986   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5987   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5988   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5989   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5990   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5991   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5992   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5993   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5994   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5995   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5996   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5997   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5998   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5999   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6000   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6001   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6002   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6003   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6004   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6005   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6006 #if defined(TIM_BDTR_BK2E)
6007   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6008 #endif
6009   *          @param pCallback pointer to the callback function
6010   *          @retval status
6011   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)6012 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
6013                                            pTIM_CallbackTypeDef pCallback)
6014 {
6015   HAL_StatusTypeDef status = HAL_OK;
6016 
6017   if (pCallback == NULL)
6018   {
6019     return HAL_ERROR;
6020   }
6021 
6022   if (htim->State == HAL_TIM_STATE_READY)
6023   {
6024     switch (CallbackID)
6025     {
6026       case HAL_TIM_BASE_MSPINIT_CB_ID :
6027         htim->Base_MspInitCallback                 = pCallback;
6028         break;
6029 
6030       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6031         htim->Base_MspDeInitCallback               = pCallback;
6032         break;
6033 
6034       case HAL_TIM_IC_MSPINIT_CB_ID :
6035         htim->IC_MspInitCallback                   = pCallback;
6036         break;
6037 
6038       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6039         htim->IC_MspDeInitCallback                 = pCallback;
6040         break;
6041 
6042       case HAL_TIM_OC_MSPINIT_CB_ID :
6043         htim->OC_MspInitCallback                   = pCallback;
6044         break;
6045 
6046       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6047         htim->OC_MspDeInitCallback                 = pCallback;
6048         break;
6049 
6050       case HAL_TIM_PWM_MSPINIT_CB_ID :
6051         htim->PWM_MspInitCallback                  = pCallback;
6052         break;
6053 
6054       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6055         htim->PWM_MspDeInitCallback                = pCallback;
6056         break;
6057 
6058       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6059         htim->OnePulse_MspInitCallback             = pCallback;
6060         break;
6061 
6062       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6063         htim->OnePulse_MspDeInitCallback           = pCallback;
6064         break;
6065 
6066       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6067         htim->Encoder_MspInitCallback              = pCallback;
6068         break;
6069 
6070       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6071         htim->Encoder_MspDeInitCallback            = pCallback;
6072         break;
6073 
6074       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6075         htim->HallSensor_MspInitCallback           = pCallback;
6076         break;
6077 
6078       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6079         htim->HallSensor_MspDeInitCallback         = pCallback;
6080         break;
6081 
6082       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6083         htim->PeriodElapsedCallback                = pCallback;
6084         break;
6085 
6086       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6087         htim->PeriodElapsedHalfCpltCallback        = pCallback;
6088         break;
6089 
6090       case HAL_TIM_TRIGGER_CB_ID :
6091         htim->TriggerCallback                      = pCallback;
6092         break;
6093 
6094       case HAL_TIM_TRIGGER_HALF_CB_ID :
6095         htim->TriggerHalfCpltCallback              = pCallback;
6096         break;
6097 
6098       case HAL_TIM_IC_CAPTURE_CB_ID :
6099         htim->IC_CaptureCallback                   = pCallback;
6100         break;
6101 
6102       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6103         htim->IC_CaptureHalfCpltCallback           = pCallback;
6104         break;
6105 
6106       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6107         htim->OC_DelayElapsedCallback              = pCallback;
6108         break;
6109 
6110       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6111         htim->PWM_PulseFinishedCallback            = pCallback;
6112         break;
6113 
6114       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6115         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
6116         break;
6117 
6118       case HAL_TIM_ERROR_CB_ID :
6119         htim->ErrorCallback                        = pCallback;
6120         break;
6121 
6122       case HAL_TIM_COMMUTATION_CB_ID :
6123         htim->CommutationCallback                  = pCallback;
6124         break;
6125 
6126       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6127         htim->CommutationHalfCpltCallback          = pCallback;
6128         break;
6129 
6130       case HAL_TIM_BREAK_CB_ID :
6131         htim->BreakCallback                        = pCallback;
6132         break;
6133 #if defined(TIM_BDTR_BK2E)
6134 
6135       case HAL_TIM_BREAK2_CB_ID :
6136         htim->Break2Callback                       = pCallback;
6137         break;
6138 #endif /* TIM_BDTR_BK2E */
6139 
6140       default :
6141         /* Return error status */
6142         status = HAL_ERROR;
6143         break;
6144     }
6145   }
6146   else if (htim->State == HAL_TIM_STATE_RESET)
6147   {
6148     switch (CallbackID)
6149     {
6150       case HAL_TIM_BASE_MSPINIT_CB_ID :
6151         htim->Base_MspInitCallback         = pCallback;
6152         break;
6153 
6154       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6155         htim->Base_MspDeInitCallback       = pCallback;
6156         break;
6157 
6158       case HAL_TIM_IC_MSPINIT_CB_ID :
6159         htim->IC_MspInitCallback           = pCallback;
6160         break;
6161 
6162       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6163         htim->IC_MspDeInitCallback         = pCallback;
6164         break;
6165 
6166       case HAL_TIM_OC_MSPINIT_CB_ID :
6167         htim->OC_MspInitCallback           = pCallback;
6168         break;
6169 
6170       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6171         htim->OC_MspDeInitCallback         = pCallback;
6172         break;
6173 
6174       case HAL_TIM_PWM_MSPINIT_CB_ID :
6175         htim->PWM_MspInitCallback          = pCallback;
6176         break;
6177 
6178       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6179         htim->PWM_MspDeInitCallback        = pCallback;
6180         break;
6181 
6182       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6183         htim->OnePulse_MspInitCallback     = pCallback;
6184         break;
6185 
6186       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6187         htim->OnePulse_MspDeInitCallback   = pCallback;
6188         break;
6189 
6190       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6191         htim->Encoder_MspInitCallback      = pCallback;
6192         break;
6193 
6194       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6195         htim->Encoder_MspDeInitCallback    = pCallback;
6196         break;
6197 
6198       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6199         htim->HallSensor_MspInitCallback   = pCallback;
6200         break;
6201 
6202       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6203         htim->HallSensor_MspDeInitCallback = pCallback;
6204         break;
6205 
6206       default :
6207         /* Return error status */
6208         status = HAL_ERROR;
6209         break;
6210     }
6211   }
6212   else
6213   {
6214     /* Return error status */
6215     status = HAL_ERROR;
6216   }
6217 
6218   return status;
6219 }
6220 
6221 /**
6222   * @brief  Unregister a TIM callback
6223   *         TIM callback is redirected to the weak predefined callback
6224   * @param htim tim handle
6225   * @param CallbackID ID of the callback to be unregistered
6226   *        This parameter can be one of the following values:
6227   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6228   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6229   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6230   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6231   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6232   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6233   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6234   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6235   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6236   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6237   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6238   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6239   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6240   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6241   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6242   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6243   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6244   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6245   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6246   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6247   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6248   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6249   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6250   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6251   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6252   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6253   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6254 #if defined(TIM_BDTR_BK2E)
6255   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6256 #endif
6257   *          @retval status
6258   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6259 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6260 {
6261   HAL_StatusTypeDef status = HAL_OK;
6262 
6263   if (htim->State == HAL_TIM_STATE_READY)
6264   {
6265     switch (CallbackID)
6266     {
6267       case HAL_TIM_BASE_MSPINIT_CB_ID :
6268         /* Legacy weak Base MspInit Callback */
6269         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6270         break;
6271 
6272       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6273         /* Legacy weak Base Msp DeInit Callback */
6274         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6275         break;
6276 
6277       case HAL_TIM_IC_MSPINIT_CB_ID :
6278         /* Legacy weak IC Msp Init Callback */
6279         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6280         break;
6281 
6282       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6283         /* Legacy weak IC Msp DeInit Callback */
6284         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6285         break;
6286 
6287       case HAL_TIM_OC_MSPINIT_CB_ID :
6288         /* Legacy weak OC Msp Init Callback */
6289         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6290         break;
6291 
6292       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6293         /* Legacy weak OC Msp DeInit Callback */
6294         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6295         break;
6296 
6297       case HAL_TIM_PWM_MSPINIT_CB_ID :
6298         /* Legacy weak PWM Msp Init Callback */
6299         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6300         break;
6301 
6302       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6303         /* Legacy weak PWM Msp DeInit Callback */
6304         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6305         break;
6306 
6307       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6308         /* Legacy weak One Pulse Msp Init Callback */
6309         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6310         break;
6311 
6312       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6313         /* Legacy weak One Pulse Msp DeInit Callback */
6314         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6315         break;
6316 
6317       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6318         /* Legacy weak Encoder Msp Init Callback */
6319         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6320         break;
6321 
6322       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6323         /* Legacy weak Encoder Msp DeInit Callback */
6324         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6325         break;
6326 
6327       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6328         /* Legacy weak Hall Sensor Msp Init Callback */
6329         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6330         break;
6331 
6332       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6333         /* Legacy weak Hall Sensor Msp DeInit Callback */
6334         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6335         break;
6336 
6337       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6338         /* Legacy weak Period Elapsed Callback */
6339         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6340         break;
6341 
6342       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6343         /* Legacy weak Period Elapsed half complete Callback */
6344         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6345         break;
6346 
6347       case HAL_TIM_TRIGGER_CB_ID :
6348         /* Legacy weak Trigger Callback */
6349         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6350         break;
6351 
6352       case HAL_TIM_TRIGGER_HALF_CB_ID :
6353         /* Legacy weak Trigger half complete Callback */
6354         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6355         break;
6356 
6357       case HAL_TIM_IC_CAPTURE_CB_ID :
6358         /* Legacy weak IC Capture Callback */
6359         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6360         break;
6361 
6362       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6363         /* Legacy weak IC Capture half complete Callback */
6364         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6365         break;
6366 
6367       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6368         /* Legacy weak OC Delay Elapsed Callback */
6369         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6370         break;
6371 
6372       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6373         /* Legacy weak PWM Pulse Finished Callback */
6374         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6375         break;
6376 
6377       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6378         /* Legacy weak PWM Pulse Finished half complete Callback */
6379         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6380         break;
6381 
6382       case HAL_TIM_ERROR_CB_ID :
6383         /* Legacy weak Error Callback */
6384         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6385         break;
6386 
6387       case HAL_TIM_COMMUTATION_CB_ID :
6388         /* Legacy weak Commutation Callback */
6389         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6390         break;
6391 
6392       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6393         /* Legacy weak Commutation half complete Callback */
6394         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6395         break;
6396 
6397       case HAL_TIM_BREAK_CB_ID :
6398         /* Legacy weak Break Callback */
6399         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6400         break;
6401 #if defined(TIM_BDTR_BK2E)
6402 
6403       case HAL_TIM_BREAK2_CB_ID :
6404         /* Legacy weak Break2 Callback */
6405         htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
6406         break;
6407 #endif /* TIM_BDTR_BK2E */
6408 
6409       default :
6410         /* Return error status */
6411         status = HAL_ERROR;
6412         break;
6413     }
6414   }
6415   else if (htim->State == HAL_TIM_STATE_RESET)
6416   {
6417     switch (CallbackID)
6418     {
6419       case HAL_TIM_BASE_MSPINIT_CB_ID :
6420         /* Legacy weak Base MspInit Callback */
6421         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6422         break;
6423 
6424       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6425         /* Legacy weak Base Msp DeInit Callback */
6426         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6427         break;
6428 
6429       case HAL_TIM_IC_MSPINIT_CB_ID :
6430         /* Legacy weak IC Msp Init Callback */
6431         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6432         break;
6433 
6434       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6435         /* Legacy weak IC Msp DeInit Callback */
6436         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6437         break;
6438 
6439       case HAL_TIM_OC_MSPINIT_CB_ID :
6440         /* Legacy weak OC Msp Init Callback */
6441         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6442         break;
6443 
6444       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6445         /* Legacy weak OC Msp DeInit Callback */
6446         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6447         break;
6448 
6449       case HAL_TIM_PWM_MSPINIT_CB_ID :
6450         /* Legacy weak PWM Msp Init Callback */
6451         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6452         break;
6453 
6454       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6455         /* Legacy weak PWM Msp DeInit Callback */
6456         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6457         break;
6458 
6459       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6460         /* Legacy weak One Pulse Msp Init Callback */
6461         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6462         break;
6463 
6464       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6465         /* Legacy weak One Pulse Msp DeInit Callback */
6466         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6467         break;
6468 
6469       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6470         /* Legacy weak Encoder Msp Init Callback */
6471         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6472         break;
6473 
6474       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6475         /* Legacy weak Encoder Msp DeInit Callback */
6476         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6477         break;
6478 
6479       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6480         /* Legacy weak Hall Sensor Msp Init Callback */
6481         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6482         break;
6483 
6484       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6485         /* Legacy weak Hall Sensor Msp DeInit Callback */
6486         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6487         break;
6488 
6489       default :
6490         /* Return error status */
6491         status = HAL_ERROR;
6492         break;
6493     }
6494   }
6495   else
6496   {
6497     /* Return error status */
6498     status = HAL_ERROR;
6499   }
6500 
6501   return status;
6502 }
6503 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6504 
6505 /**
6506   * @}
6507   */
6508 
6509 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6510   *  @brief   TIM Peripheral State functions
6511   *
6512 @verbatim
6513   ==============================================================================
6514                         ##### Peripheral State functions #####
6515   ==============================================================================
6516     [..]
6517     This subsection permits to get in run-time the status of the peripheral
6518     and the data flow.
6519 
6520 @endverbatim
6521   * @{
6522   */
6523 
6524 /**
6525   * @brief  Return the TIM Base handle state.
6526   * @param  htim TIM Base handle
6527   * @retval HAL state
6528   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6529 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6530 {
6531   return htim->State;
6532 }
6533 
6534 /**
6535   * @brief  Return the TIM OC handle state.
6536   * @param  htim TIM Output Compare handle
6537   * @retval HAL state
6538   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6539 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6540 {
6541   return htim->State;
6542 }
6543 
6544 /**
6545   * @brief  Return the TIM PWM handle state.
6546   * @param  htim TIM handle
6547   * @retval HAL state
6548   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6549 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6550 {
6551   return htim->State;
6552 }
6553 
6554 /**
6555   * @brief  Return the TIM Input Capture handle state.
6556   * @param  htim TIM IC handle
6557   * @retval HAL state
6558   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6559 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6560 {
6561   return htim->State;
6562 }
6563 
6564 /**
6565   * @brief  Return the TIM One Pulse Mode handle state.
6566   * @param  htim TIM OPM handle
6567   * @retval HAL state
6568   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6569 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6570 {
6571   return htim->State;
6572 }
6573 
6574 /**
6575   * @brief  Return the TIM Encoder Mode handle state.
6576   * @param  htim TIM Encoder Interface handle
6577   * @retval HAL state
6578   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6579 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6580 {
6581   return htim->State;
6582 }
6583 
6584 /**
6585   * @brief  Return the TIM Encoder Mode handle state.
6586   * @param  htim TIM handle
6587   * @retval Active channel
6588   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6589 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6590 {
6591   return htim->Channel;
6592 }
6593 
6594 /**
6595   * @brief  Return actual state of the TIM channel.
6596   * @param  htim TIM handle
6597   * @param  Channel TIM Channel
6598   *          This parameter can be one of the following values:
6599   *            @arg TIM_CHANNEL_1: TIM Channel 1
6600   *            @arg TIM_CHANNEL_2: TIM Channel 2
6601   *            @arg TIM_CHANNEL_3: TIM Channel 3
6602   *            @arg TIM_CHANNEL_4: TIM Channel 4
6603   *            @arg TIM_CHANNEL_5: TIM Channel 5
6604   *            @arg TIM_CHANNEL_6: TIM Channel 6
6605   * @retval TIM Channel state
6606   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6607 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6608 {
6609   HAL_TIM_ChannelStateTypeDef channel_state;
6610 
6611   /* Check the parameters */
6612   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6613 
6614   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6615 
6616   return channel_state;
6617 }
6618 
6619 /**
6620   * @brief  Return actual state of a DMA burst operation.
6621   * @param  htim TIM handle
6622   * @retval DMA burst state
6623   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6624 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6625 {
6626   /* Check the parameters */
6627   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6628 
6629   return htim->DMABurstState;
6630 }
6631 
6632 /**
6633   * @}
6634   */
6635 
6636 /**
6637   * @}
6638   */
6639 
6640 /** @defgroup TIM_Private_Functions TIM Private Functions
6641   * @{
6642   */
6643 
6644 /**
6645   * @brief  TIM DMA error callback
6646   * @param  hdma pointer to DMA handle.
6647   * @retval None
6648   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6649 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6650 {
6651   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6652 
6653   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6654   {
6655     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6656     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6657   }
6658   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6659   {
6660     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6661     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6662   }
6663   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6664   {
6665     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6666     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6667   }
6668   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6669   {
6670     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6671     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6672   }
6673   else
6674   {
6675     htim->State = HAL_TIM_STATE_READY;
6676   }
6677 
6678 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6679   htim->ErrorCallback(htim);
6680 #else
6681   HAL_TIM_ErrorCallback(htim);
6682 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6683 
6684   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6685 }
6686 
6687 /**
6688   * @brief  TIM DMA Delay Pulse complete callback.
6689   * @param  hdma pointer to DMA handle.
6690   * @retval None
6691   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6692 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6693 {
6694   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6695 
6696   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6697   {
6698     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6699 
6700     if (hdma->Init.Mode == DMA_NORMAL)
6701     {
6702       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6703     }
6704   }
6705   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6706   {
6707     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6708 
6709     if (hdma->Init.Mode == DMA_NORMAL)
6710     {
6711       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6712     }
6713   }
6714   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6715   {
6716     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6717 
6718     if (hdma->Init.Mode == DMA_NORMAL)
6719     {
6720       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6721     }
6722   }
6723   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6724   {
6725     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6726 
6727     if (hdma->Init.Mode == DMA_NORMAL)
6728     {
6729       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6730     }
6731   }
6732   else
6733   {
6734     /* nothing to do */
6735   }
6736 
6737 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6738   htim->PWM_PulseFinishedCallback(htim);
6739 #else
6740   HAL_TIM_PWM_PulseFinishedCallback(htim);
6741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6742 
6743   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6744 }
6745 
6746 /**
6747   * @brief  TIM DMA Delay Pulse half complete callback.
6748   * @param  hdma pointer to DMA handle.
6749   * @retval None
6750   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6751 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6752 {
6753   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6754 
6755   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6756   {
6757     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6758   }
6759   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6760   {
6761     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6762   }
6763   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6764   {
6765     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6766   }
6767   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6768   {
6769     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6770   }
6771   else
6772   {
6773     /* nothing to do */
6774   }
6775 
6776 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6777   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6778 #else
6779   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6780 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6781 
6782   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6783 }
6784 
6785 /**
6786   * @brief  TIM DMA Capture complete callback.
6787   * @param  hdma pointer to DMA handle.
6788   * @retval None
6789   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6790 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6791 {
6792   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6793 
6794   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6795   {
6796     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6797 
6798     if (hdma->Init.Mode == DMA_NORMAL)
6799     {
6800       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6801       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6802     }
6803   }
6804   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6805   {
6806     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6807 
6808     if (hdma->Init.Mode == DMA_NORMAL)
6809     {
6810       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6811       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6812     }
6813   }
6814   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6815   {
6816     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6817 
6818     if (hdma->Init.Mode == DMA_NORMAL)
6819     {
6820       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6821       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6822     }
6823   }
6824   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6825   {
6826     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6827 
6828     if (hdma->Init.Mode == DMA_NORMAL)
6829     {
6830       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6831       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6832     }
6833   }
6834   else
6835   {
6836     /* nothing to do */
6837   }
6838 
6839 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6840   htim->IC_CaptureCallback(htim);
6841 #else
6842   HAL_TIM_IC_CaptureCallback(htim);
6843 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6844 
6845   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6846 }
6847 
6848 /**
6849   * @brief  TIM DMA Capture half complete callback.
6850   * @param  hdma pointer to DMA handle.
6851   * @retval None
6852   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6853 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6854 {
6855   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6856 
6857   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6858   {
6859     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6860   }
6861   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6862   {
6863     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6864   }
6865   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6866   {
6867     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6868   }
6869   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6870   {
6871     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6872   }
6873   else
6874   {
6875     /* nothing to do */
6876   }
6877 
6878 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6879   htim->IC_CaptureHalfCpltCallback(htim);
6880 #else
6881   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6882 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6883 
6884   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6885 }
6886 
6887 /**
6888   * @brief  TIM DMA Period Elapse complete callback.
6889   * @param  hdma pointer to DMA handle.
6890   * @retval None
6891   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6892 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6893 {
6894   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6895 
6896   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6897   {
6898     htim->State = HAL_TIM_STATE_READY;
6899   }
6900 
6901 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6902   htim->PeriodElapsedCallback(htim);
6903 #else
6904   HAL_TIM_PeriodElapsedCallback(htim);
6905 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6906 }
6907 
6908 /**
6909   * @brief  TIM DMA Period Elapse half complete callback.
6910   * @param  hdma pointer to DMA handle.
6911   * @retval None
6912   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6913 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6914 {
6915   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6916 
6917 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6918   htim->PeriodElapsedHalfCpltCallback(htim);
6919 #else
6920   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6921 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6922 }
6923 
6924 /**
6925   * @brief  TIM DMA Trigger callback.
6926   * @param  hdma pointer to DMA handle.
6927   * @retval None
6928   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6929 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6930 {
6931   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6932 
6933   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6934   {
6935     htim->State = HAL_TIM_STATE_READY;
6936   }
6937 
6938 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6939   htim->TriggerCallback(htim);
6940 #else
6941   HAL_TIM_TriggerCallback(htim);
6942 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6943 }
6944 
6945 /**
6946   * @brief  TIM DMA Trigger half complete callback.
6947   * @param  hdma pointer to DMA handle.
6948   * @retval None
6949   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6950 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6951 {
6952   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6953 
6954 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6955   htim->TriggerHalfCpltCallback(htim);
6956 #else
6957   HAL_TIM_TriggerHalfCpltCallback(htim);
6958 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6959 }
6960 
6961 /**
6962   * @brief  Time Base configuration
6963   * @param  TIMx TIM peripheral
6964   * @param  Structure TIM Base configuration structure
6965   * @retval None
6966   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6967 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6968 {
6969   uint32_t tmpcr1;
6970   tmpcr1 = TIMx->CR1;
6971 
6972   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6973   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6974   {
6975     /* Select the Counter Mode */
6976     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6977     tmpcr1 |= Structure->CounterMode;
6978   }
6979 
6980   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6981   {
6982     /* Set the clock division */
6983     tmpcr1 &= ~TIM_CR1_CKD;
6984     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6985   }
6986 
6987   /* Set the auto-reload preload */
6988   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6989 
6990   TIMx->CR1 = tmpcr1;
6991 
6992   /* Set the Autoreload value */
6993   TIMx->ARR = (uint32_t)Structure->Period ;
6994 
6995   /* Set the Prescaler value */
6996   TIMx->PSC = Structure->Prescaler;
6997 
6998   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6999   {
7000     /* Set the Repetition Counter value */
7001     TIMx->RCR = Structure->RepetitionCounter;
7002   }
7003 
7004   /* Generate an update event to reload the Prescaler
7005      and the repetition counter (only for advanced timer) value immediately */
7006   TIMx->EGR = TIM_EGR_UG;
7007 }
7008 
7009 /**
7010   * @brief  Timer Output Compare 1 configuration
7011   * @param  TIMx to select the TIM peripheral
7012   * @param  OC_Config The output configuration structure
7013   * @retval None
7014   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7015 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7016 {
7017   uint32_t tmpccmrx;
7018   uint32_t tmpccer;
7019   uint32_t tmpcr2;
7020 
7021   /* Disable the Channel 1: Reset the CC1E Bit */
7022   TIMx->CCER &= ~TIM_CCER_CC1E;
7023 
7024   /* Get the TIMx CCER register value */
7025   tmpccer = TIMx->CCER;
7026   /* Get the TIMx CR2 register value */
7027   tmpcr2 =  TIMx->CR2;
7028 
7029   /* Get the TIMx CCMR1 register value */
7030   tmpccmrx = TIMx->CCMR1;
7031 
7032   /* Reset the Output Compare Mode Bits */
7033   tmpccmrx &= ~TIM_CCMR1_OC1M;
7034   tmpccmrx &= ~TIM_CCMR1_CC1S;
7035   /* Select the Output Compare Mode */
7036   tmpccmrx |= OC_Config->OCMode;
7037 
7038   /* Reset the Output Polarity level */
7039   tmpccer &= ~TIM_CCER_CC1P;
7040   /* Set the Output Compare Polarity */
7041   tmpccer |= OC_Config->OCPolarity;
7042 
7043   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7044   {
7045     /* Check parameters */
7046     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7047 
7048     /* Reset the Output N Polarity level */
7049     tmpccer &= ~TIM_CCER_CC1NP;
7050     /* Set the Output N Polarity */
7051     tmpccer |= OC_Config->OCNPolarity;
7052     /* Reset the Output N State */
7053     tmpccer &= ~TIM_CCER_CC1NE;
7054   }
7055 
7056   if (IS_TIM_BREAK_INSTANCE(TIMx))
7057   {
7058     /* Check parameters */
7059     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7060     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7061 
7062     /* Reset the Output Compare and Output Compare N IDLE State */
7063     tmpcr2 &= ~TIM_CR2_OIS1;
7064     tmpcr2 &= ~TIM_CR2_OIS1N;
7065     /* Set the Output Idle state */
7066     tmpcr2 |= OC_Config->OCIdleState;
7067     /* Set the Output N Idle state */
7068     tmpcr2 |= OC_Config->OCNIdleState;
7069   }
7070 
7071   /* Write to TIMx CR2 */
7072   TIMx->CR2 = tmpcr2;
7073 
7074   /* Write to TIMx CCMR1 */
7075   TIMx->CCMR1 = tmpccmrx;
7076 
7077   /* Set the Capture Compare Register value */
7078   TIMx->CCR1 = OC_Config->Pulse;
7079 
7080   /* Write to TIMx CCER */
7081   TIMx->CCER = tmpccer;
7082 }
7083 
7084 /**
7085   * @brief  Timer Output Compare 2 configuration
7086   * @param  TIMx to select the TIM peripheral
7087   * @param  OC_Config The output configuration structure
7088   * @retval None
7089   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7090 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7091 {
7092   uint32_t tmpccmrx;
7093   uint32_t tmpccer;
7094   uint32_t tmpcr2;
7095 
7096   /* Disable the Channel 2: Reset the CC2E Bit */
7097   TIMx->CCER &= ~TIM_CCER_CC2E;
7098 
7099   /* Get the TIMx CCER register value */
7100   tmpccer = TIMx->CCER;
7101   /* Get the TIMx CR2 register value */
7102   tmpcr2 =  TIMx->CR2;
7103 
7104   /* Get the TIMx CCMR1 register value */
7105   tmpccmrx = TIMx->CCMR1;
7106 
7107   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7108   tmpccmrx &= ~TIM_CCMR1_OC2M;
7109   tmpccmrx &= ~TIM_CCMR1_CC2S;
7110 
7111   /* Select the Output Compare Mode */
7112   tmpccmrx |= (OC_Config->OCMode << 8U);
7113 
7114   /* Reset the Output Polarity level */
7115   tmpccer &= ~TIM_CCER_CC2P;
7116   /* Set the Output Compare Polarity */
7117   tmpccer |= (OC_Config->OCPolarity << 4U);
7118 
7119   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7120   {
7121     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7122 
7123     /* Reset the Output N Polarity level */
7124     tmpccer &= ~TIM_CCER_CC2NP;
7125     /* Set the Output N Polarity */
7126     tmpccer |= (OC_Config->OCNPolarity << 4U);
7127     /* Reset the Output N State */
7128     tmpccer &= ~TIM_CCER_CC2NE;
7129 
7130   }
7131 
7132   if (IS_TIM_BREAK_INSTANCE(TIMx))
7133   {
7134     /* Check parameters */
7135     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7136     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7137 
7138     /* Reset the Output Compare and Output Compare N IDLE State */
7139     tmpcr2 &= ~TIM_CR2_OIS2;
7140 #if defined(TIM_CR2_OIS2N)
7141     tmpcr2 &= ~TIM_CR2_OIS2N;
7142 #endif /* TIM_CR2_OIS2N */
7143     /* Set the Output Idle state */
7144     tmpcr2 |= (OC_Config->OCIdleState << 2U);
7145     /* Set the Output N Idle state */
7146     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7147   }
7148 
7149   /* Write to TIMx CR2 */
7150   TIMx->CR2 = tmpcr2;
7151 
7152   /* Write to TIMx CCMR1 */
7153   TIMx->CCMR1 = tmpccmrx;
7154 
7155   /* Set the Capture Compare Register value */
7156   TIMx->CCR2 = OC_Config->Pulse;
7157 
7158   /* Write to TIMx CCER */
7159   TIMx->CCER = tmpccer;
7160 }
7161 
7162 /**
7163   * @brief  Timer Output Compare 3 configuration
7164   * @param  TIMx to select the TIM peripheral
7165   * @param  OC_Config The output configuration structure
7166   * @retval None
7167   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7168 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7169 {
7170   uint32_t tmpccmrx;
7171   uint32_t tmpccer;
7172   uint32_t tmpcr2;
7173 
7174   /* Disable the Channel 3: Reset the CC2E Bit */
7175   TIMx->CCER &= ~TIM_CCER_CC3E;
7176 
7177   /* Get the TIMx CCER register value */
7178   tmpccer = TIMx->CCER;
7179   /* Get the TIMx CR2 register value */
7180   tmpcr2 =  TIMx->CR2;
7181 
7182   /* Get the TIMx CCMR2 register value */
7183   tmpccmrx = TIMx->CCMR2;
7184 
7185   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7186   tmpccmrx &= ~TIM_CCMR2_OC3M;
7187   tmpccmrx &= ~TIM_CCMR2_CC3S;
7188   /* Select the Output Compare Mode */
7189   tmpccmrx |= OC_Config->OCMode;
7190 
7191   /* Reset the Output Polarity level */
7192   tmpccer &= ~TIM_CCER_CC3P;
7193   /* Set the Output Compare Polarity */
7194   tmpccer |= (OC_Config->OCPolarity << 8U);
7195 
7196   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7197   {
7198     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7199 
7200     /* Reset the Output N Polarity level */
7201     tmpccer &= ~TIM_CCER_CC3NP;
7202     /* Set the Output N Polarity */
7203     tmpccer |= (OC_Config->OCNPolarity << 8U);
7204     /* Reset the Output N State */
7205     tmpccer &= ~TIM_CCER_CC3NE;
7206   }
7207 
7208 #if defined(TIM_CR2_OIS3)
7209   if (IS_TIM_BREAK_INSTANCE(TIMx))
7210   {
7211     /* Check parameters */
7212     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7213     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7214 
7215     /* Reset the Output Compare and Output Compare N IDLE State */
7216     tmpcr2 &= ~TIM_CR2_OIS3;
7217     tmpcr2 &= ~TIM_CR2_OIS3N;
7218     /* Set the Output Idle state */
7219     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7220     /* Set the Output N Idle state */
7221     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7222   }
7223 #endif /* TIM_CR2_OIS3 */
7224 
7225   /* Write to TIMx CR2 */
7226   TIMx->CR2 = tmpcr2;
7227 
7228   /* Write to TIMx CCMR2 */
7229   TIMx->CCMR2 = tmpccmrx;
7230 
7231   /* Set the Capture Compare Register value */
7232   TIMx->CCR3 = OC_Config->Pulse;
7233 
7234   /* Write to TIMx CCER */
7235   TIMx->CCER = tmpccer;
7236 }
7237 
7238 /**
7239   * @brief  Timer Output Compare 4 configuration
7240   * @param  TIMx to select the TIM peripheral
7241   * @param  OC_Config The output configuration structure
7242   * @retval None
7243   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7244 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7245 {
7246   uint32_t tmpccmrx;
7247   uint32_t tmpccer;
7248   uint32_t tmpcr2;
7249 
7250   /* Disable the Channel 4: Reset the CC4E Bit */
7251   TIMx->CCER &= ~TIM_CCER_CC4E;
7252 
7253   /* Get the TIMx CCER register value */
7254   tmpccer = TIMx->CCER;
7255   /* Get the TIMx CR2 register value */
7256   tmpcr2 =  TIMx->CR2;
7257 
7258   /* Get the TIMx CCMR2 register value */
7259   tmpccmrx = TIMx->CCMR2;
7260 
7261   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7262   tmpccmrx &= ~TIM_CCMR2_OC4M;
7263   tmpccmrx &= ~TIM_CCMR2_CC4S;
7264 
7265   /* Select the Output Compare Mode */
7266   tmpccmrx |= (OC_Config->OCMode << 8U);
7267 
7268   /* Reset the Output Polarity level */
7269   tmpccer &= ~TIM_CCER_CC4P;
7270   /* Set the Output Compare Polarity */
7271   tmpccer |= (OC_Config->OCPolarity << 12U);
7272 
7273 #if defined(TIM_CR2_OIS4)
7274   if (IS_TIM_BREAK_INSTANCE(TIMx))
7275   {
7276     /* Check parameters */
7277     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7278 
7279     /* Reset the Output Compare IDLE State */
7280     tmpcr2 &= ~TIM_CR2_OIS4;
7281 
7282     /* Set the Output Idle state */
7283     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7284   }
7285 #endif /* TIM_CR2_OIS4 */
7286 
7287   /* Write to TIMx CR2 */
7288   TIMx->CR2 = tmpcr2;
7289 
7290   /* Write to TIMx CCMR2 */
7291   TIMx->CCMR2 = tmpccmrx;
7292 
7293   /* Set the Capture Compare Register value */
7294   TIMx->CCR4 = OC_Config->Pulse;
7295 
7296   /* Write to TIMx CCER */
7297   TIMx->CCER = tmpccer;
7298 }
7299 
7300 #if defined(TIM_CCER_CC5E)
7301 /**
7302   * @brief  Timer Output Compare 5 configuration
7303   * @param  TIMx to select the TIM peripheral
7304   * @param  OC_Config The output configuration structure
7305   * @retval None
7306   */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7307 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7308                               const TIM_OC_InitTypeDef *OC_Config)
7309 {
7310   uint32_t tmpccmrx;
7311   uint32_t tmpccer;
7312   uint32_t tmpcr2;
7313 
7314   /* Disable the output: Reset the CCxE Bit */
7315   TIMx->CCER &= ~TIM_CCER_CC5E;
7316 
7317   /* Get the TIMx CCER register value */
7318   tmpccer = TIMx->CCER;
7319   /* Get the TIMx CR2 register value */
7320   tmpcr2 =  TIMx->CR2;
7321   /* Get the TIMx CCMR1 register value */
7322   tmpccmrx = TIMx->CCMR3;
7323 
7324   /* Reset the Output Compare Mode Bits */
7325   tmpccmrx &= ~(TIM_CCMR3_OC5M);
7326   /* Select the Output Compare Mode */
7327   tmpccmrx |= OC_Config->OCMode;
7328 
7329   /* Reset the Output Polarity level */
7330   tmpccer &= ~TIM_CCER_CC5P;
7331   /* Set the Output Compare Polarity */
7332   tmpccer |= (OC_Config->OCPolarity << 16U);
7333 
7334   if (IS_TIM_BREAK_INSTANCE(TIMx))
7335   {
7336     /* Reset the Output Compare IDLE State */
7337     tmpcr2 &= ~TIM_CR2_OIS5;
7338     /* Set the Output Idle state */
7339     tmpcr2 |= (OC_Config->OCIdleState << 8U);
7340   }
7341   /* Write to TIMx CR2 */
7342   TIMx->CR2 = tmpcr2;
7343 
7344   /* Write to TIMx CCMR3 */
7345   TIMx->CCMR3 = tmpccmrx;
7346 
7347   /* Set the Capture Compare Register value */
7348   TIMx->CCR5 = OC_Config->Pulse;
7349 
7350   /* Write to TIMx CCER */
7351   TIMx->CCER = tmpccer;
7352 }
7353 #endif /* TIM_CCER_CC5E */
7354 
7355 #if defined(TIM_CCER_CC6E)
7356 /**
7357   * @brief  Timer Output Compare 6 configuration
7358   * @param  TIMx to select the TIM peripheral
7359   * @param  OC_Config The output configuration structure
7360   * @retval None
7361   */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7362 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7363                               const TIM_OC_InitTypeDef *OC_Config)
7364 {
7365   uint32_t tmpccmrx;
7366   uint32_t tmpccer;
7367   uint32_t tmpcr2;
7368 
7369   /* Disable the output: Reset the CCxE Bit */
7370   TIMx->CCER &= ~TIM_CCER_CC6E;
7371 
7372   /* Get the TIMx CCER register value */
7373   tmpccer = TIMx->CCER;
7374   /* Get the TIMx CR2 register value */
7375   tmpcr2 =  TIMx->CR2;
7376   /* Get the TIMx CCMR1 register value */
7377   tmpccmrx = TIMx->CCMR3;
7378 
7379   /* Reset the Output Compare Mode Bits */
7380   tmpccmrx &= ~(TIM_CCMR3_OC6M);
7381   /* Select the Output Compare Mode */
7382   tmpccmrx |= (OC_Config->OCMode << 8U);
7383 
7384   /* Reset the Output Polarity level */
7385   tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7386   /* Set the Output Compare Polarity */
7387   tmpccer |= (OC_Config->OCPolarity << 20U);
7388 
7389   if (IS_TIM_BREAK_INSTANCE(TIMx))
7390   {
7391     /* Reset the Output Compare IDLE State */
7392     tmpcr2 &= ~TIM_CR2_OIS6;
7393     /* Set the Output Idle state */
7394     tmpcr2 |= (OC_Config->OCIdleState << 10U);
7395   }
7396 
7397   /* Write to TIMx CR2 */
7398   TIMx->CR2 = tmpcr2;
7399 
7400   /* Write to TIMx CCMR3 */
7401   TIMx->CCMR3 = tmpccmrx;
7402 
7403   /* Set the Capture Compare Register value */
7404   TIMx->CCR6 = OC_Config->Pulse;
7405 
7406   /* Write to TIMx CCER */
7407   TIMx->CCER = tmpccer;
7408 }
7409 #endif /* TIM_CCER_CC6E */
7410 
7411 /**
7412   * @brief  Slave Timer configuration function
7413   * @param  htim TIM handle
7414   * @param  sSlaveConfig Slave timer configuration
7415   * @retval None
7416   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7417 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7418                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7419 {
7420   HAL_StatusTypeDef status = HAL_OK;
7421   uint32_t tmpsmcr;
7422   uint32_t tmpccmr1;
7423   uint32_t tmpccer;
7424 
7425   /* Get the TIMx SMCR register value */
7426   tmpsmcr = htim->Instance->SMCR;
7427 
7428   /* Reset the Trigger Selection Bits */
7429   tmpsmcr &= ~TIM_SMCR_TS;
7430   /* Set the Input Trigger source */
7431   tmpsmcr |= sSlaveConfig->InputTrigger;
7432 
7433   /* Reset the slave mode Bits */
7434   tmpsmcr &= ~TIM_SMCR_SMS;
7435   /* Set the slave mode */
7436   tmpsmcr |= sSlaveConfig->SlaveMode;
7437 
7438   /* Write to TIMx SMCR */
7439   htim->Instance->SMCR = tmpsmcr;
7440 
7441   /* Configure the trigger prescaler, filter, and polarity */
7442   switch (sSlaveConfig->InputTrigger)
7443   {
7444     case TIM_TS_ETRF:
7445     {
7446       /* Check the parameters */
7447       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7448       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7449       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7450       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7451       /* Configure the ETR Trigger source */
7452       TIM_ETR_SetConfig(htim->Instance,
7453                         sSlaveConfig->TriggerPrescaler,
7454                         sSlaveConfig->TriggerPolarity,
7455                         sSlaveConfig->TriggerFilter);
7456       break;
7457     }
7458 
7459     case TIM_TS_TI1F_ED:
7460     {
7461       /* Check the parameters */
7462       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7463       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7464 
7465       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7466       {
7467         return HAL_ERROR;
7468       }
7469 
7470       /* Disable the Channel 1: Reset the CC1E Bit */
7471       tmpccer = htim->Instance->CCER;
7472       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7473       tmpccmr1 = htim->Instance->CCMR1;
7474 
7475       /* Set the filter */
7476       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7477       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7478 
7479       /* Write to TIMx CCMR1 and CCER registers */
7480       htim->Instance->CCMR1 = tmpccmr1;
7481       htim->Instance->CCER = tmpccer;
7482       break;
7483     }
7484 
7485     case TIM_TS_TI1FP1:
7486     {
7487       /* Check the parameters */
7488       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7489       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7490       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7491 
7492       /* Configure TI1 Filter and Polarity */
7493       TIM_TI1_ConfigInputStage(htim->Instance,
7494                                sSlaveConfig->TriggerPolarity,
7495                                sSlaveConfig->TriggerFilter);
7496       break;
7497     }
7498 
7499     case TIM_TS_TI2FP2:
7500     {
7501       /* Check the parameters */
7502       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7503       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7504       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7505 
7506       /* Configure TI2 Filter and Polarity */
7507       TIM_TI2_ConfigInputStage(htim->Instance,
7508                                sSlaveConfig->TriggerPolarity,
7509                                sSlaveConfig->TriggerFilter);
7510       break;
7511     }
7512 
7513     case TIM_TS_ITR0:
7514     case TIM_TS_ITR1:
7515     case TIM_TS_ITR2:
7516     case TIM_TS_ITR3:
7517     {
7518       /* Check the parameter */
7519       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7520       break;
7521     }
7522 
7523     default:
7524       status = HAL_ERROR;
7525       break;
7526   }
7527 
7528   return status;
7529 }
7530 
7531 /**
7532   * @brief  Configure the TI1 as Input.
7533   * @param  TIMx to select the TIM peripheral.
7534   * @param  TIM_ICPolarity The Input Polarity.
7535   *          This parameter can be one of the following values:
7536   *            @arg TIM_ICPOLARITY_RISING
7537   *            @arg TIM_ICPOLARITY_FALLING
7538   *            @arg TIM_ICPOLARITY_BOTHEDGE
7539   * @param  TIM_ICSelection specifies the input to be used.
7540   *          This parameter can be one of the following values:
7541   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7542   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7543   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7544   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7545   *          This parameter must be a value between 0x00 and 0x0F.
7546   * @retval None
7547   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7548   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7549   *        protected against un-initialized filter and polarity values.
7550   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7551 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7552                        uint32_t TIM_ICFilter)
7553 {
7554   uint32_t tmpccmr1;
7555   uint32_t tmpccer;
7556 
7557   /* Disable the Channel 1: Reset the CC1E Bit */
7558   TIMx->CCER &= ~TIM_CCER_CC1E;
7559   tmpccmr1 = TIMx->CCMR1;
7560   tmpccer = TIMx->CCER;
7561 
7562   /* Select the Input */
7563   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7564   {
7565     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7566     tmpccmr1 |= TIM_ICSelection;
7567   }
7568   else
7569   {
7570     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7571   }
7572 
7573   /* Set the filter */
7574   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7575   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7576 
7577   /* Select the Polarity and set the CC1E Bit */
7578   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7579   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7580 
7581   /* Write to TIMx CCMR1 and CCER registers */
7582   TIMx->CCMR1 = tmpccmr1;
7583   TIMx->CCER = tmpccer;
7584 }
7585 
7586 /**
7587   * @brief  Configure the Polarity and Filter for TI1.
7588   * @param  TIMx to select the TIM peripheral.
7589   * @param  TIM_ICPolarity The Input Polarity.
7590   *          This parameter can be one of the following values:
7591   *            @arg TIM_ICPOLARITY_RISING
7592   *            @arg TIM_ICPOLARITY_FALLING
7593   *            @arg TIM_ICPOLARITY_BOTHEDGE
7594   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7595   *          This parameter must be a value between 0x00 and 0x0F.
7596   * @retval None
7597   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7598 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7599 {
7600   uint32_t tmpccmr1;
7601   uint32_t tmpccer;
7602 
7603   /* Disable the Channel 1: Reset the CC1E Bit */
7604   tmpccer = TIMx->CCER;
7605   TIMx->CCER &= ~TIM_CCER_CC1E;
7606   tmpccmr1 = TIMx->CCMR1;
7607 
7608   /* Set the filter */
7609   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7610   tmpccmr1 |= (TIM_ICFilter << 4U);
7611 
7612   /* Select the Polarity and set the CC1E Bit */
7613   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7614   tmpccer |= TIM_ICPolarity;
7615 
7616   /* Write to TIMx CCMR1 and CCER registers */
7617   TIMx->CCMR1 = tmpccmr1;
7618   TIMx->CCER = tmpccer;
7619 }
7620 
7621 /**
7622   * @brief  Configure the TI2 as Input.
7623   * @param  TIMx to select the TIM peripheral
7624   * @param  TIM_ICPolarity The Input Polarity.
7625   *          This parameter can be one of the following values:
7626   *            @arg TIM_ICPOLARITY_RISING
7627   *            @arg TIM_ICPOLARITY_FALLING
7628   *            @arg TIM_ICPOLARITY_BOTHEDGE
7629   * @param  TIM_ICSelection specifies the input to be used.
7630   *          This parameter can be one of the following values:
7631   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7632   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7633   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7634   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7635   *          This parameter must be a value between 0x00 and 0x0F.
7636   * @retval None
7637   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7638   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7639   *        protected against un-initialized filter and polarity values.
7640   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7641 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7642                               uint32_t TIM_ICFilter)
7643 {
7644   uint32_t tmpccmr1;
7645   uint32_t tmpccer;
7646 
7647   /* Disable the Channel 2: Reset the CC2E Bit */
7648   TIMx->CCER &= ~TIM_CCER_CC2E;
7649   tmpccmr1 = TIMx->CCMR1;
7650   tmpccer = TIMx->CCER;
7651 
7652   /* Select the Input */
7653   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7654   tmpccmr1 |= (TIM_ICSelection << 8U);
7655 
7656   /* Set the filter */
7657   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7658   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7659 
7660   /* Select the Polarity and set the CC2E Bit */
7661   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7662   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7663 
7664   /* Write to TIMx CCMR1 and CCER registers */
7665   TIMx->CCMR1 = tmpccmr1 ;
7666   TIMx->CCER = tmpccer;
7667 }
7668 
7669 /**
7670   * @brief  Configure the Polarity and Filter for TI2.
7671   * @param  TIMx to select the TIM peripheral.
7672   * @param  TIM_ICPolarity The Input Polarity.
7673   *          This parameter can be one of the following values:
7674   *            @arg TIM_ICPOLARITY_RISING
7675   *            @arg TIM_ICPOLARITY_FALLING
7676   *            @arg TIM_ICPOLARITY_BOTHEDGE
7677   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7678   *          This parameter must be a value between 0x00 and 0x0F.
7679   * @retval None
7680   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7681 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7682 {
7683   uint32_t tmpccmr1;
7684   uint32_t tmpccer;
7685 
7686   /* Disable the Channel 2: Reset the CC2E Bit */
7687   TIMx->CCER &= ~TIM_CCER_CC2E;
7688   tmpccmr1 = TIMx->CCMR1;
7689   tmpccer = TIMx->CCER;
7690 
7691   /* Set the filter */
7692   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7693   tmpccmr1 |= (TIM_ICFilter << 12U);
7694 
7695   /* Select the Polarity and set the CC2E Bit */
7696   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7697   tmpccer |= (TIM_ICPolarity << 4U);
7698 
7699   /* Write to TIMx CCMR1 and CCER registers */
7700   TIMx->CCMR1 = tmpccmr1 ;
7701   TIMx->CCER = tmpccer;
7702 }
7703 
7704 /**
7705   * @brief  Configure the TI3 as Input.
7706   * @param  TIMx to select the TIM peripheral
7707   * @param  TIM_ICPolarity The Input Polarity.
7708   *          This parameter can be one of the following values:
7709   *            @arg TIM_ICPOLARITY_RISING
7710   *            @arg TIM_ICPOLARITY_FALLING
7711   *            @arg TIM_ICPOLARITY_BOTHEDGE
7712   * @param  TIM_ICSelection specifies the input to be used.
7713   *          This parameter can be one of the following values:
7714   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7715   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7716   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7717   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7718   *          This parameter must be a value between 0x00 and 0x0F.
7719   * @retval None
7720   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7721   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7722   *        protected against un-initialized filter and polarity values.
7723   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7724 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7725                               uint32_t TIM_ICFilter)
7726 {
7727   uint32_t tmpccmr2;
7728   uint32_t tmpccer;
7729 
7730   /* Disable the Channel 3: Reset the CC3E Bit */
7731   TIMx->CCER &= ~TIM_CCER_CC3E;
7732   tmpccmr2 = TIMx->CCMR2;
7733   tmpccer = TIMx->CCER;
7734 
7735   /* Select the Input */
7736   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7737   tmpccmr2 |= TIM_ICSelection;
7738 
7739   /* Set the filter */
7740   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7741   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7742 
7743   /* Select the Polarity and set the CC3E Bit */
7744   tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7745   tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7746 
7747   /* Write to TIMx CCMR2 and CCER registers */
7748   TIMx->CCMR2 = tmpccmr2;
7749   TIMx->CCER = tmpccer;
7750 }
7751 
7752 /**
7753   * @brief  Configure the TI4 as Input.
7754   * @param  TIMx to select the TIM peripheral
7755   * @param  TIM_ICPolarity The Input Polarity.
7756   *          This parameter can be one of the following values:
7757   *            @arg TIM_ICPOLARITY_RISING
7758   *            @arg TIM_ICPOLARITY_FALLING
7759   *            @arg TIM_ICPOLARITY_BOTHEDGE
7760   * @param  TIM_ICSelection specifies the input to be used.
7761   *          This parameter can be one of the following values:
7762   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7763   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7764   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7765   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7766   *          This parameter must be a value between 0x00 and 0x0F.
7767   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7768   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7769   *        protected against un-initialized filter and polarity values.
7770   * @retval None
7771   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7772 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7773                               uint32_t TIM_ICFilter)
7774 {
7775   uint32_t tmpccmr2;
7776   uint32_t tmpccer;
7777 
7778   /* Disable the Channel 4: Reset the CC4E Bit */
7779   TIMx->CCER &= ~TIM_CCER_CC4E;
7780   tmpccmr2 = TIMx->CCMR2;
7781   tmpccer = TIMx->CCER;
7782 
7783   /* Select the Input */
7784   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7785   tmpccmr2 |= (TIM_ICSelection << 8U);
7786 
7787   /* Set the filter */
7788   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7789   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7790 
7791   /* Select the Polarity and set the CC4E Bit */
7792   tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7793   tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7794 
7795   /* Write to TIMx CCMR2 and CCER registers */
7796   TIMx->CCMR2 = tmpccmr2;
7797   TIMx->CCER = tmpccer ;
7798 }
7799 
7800 /**
7801   * @brief  Selects the Input Trigger source
7802   * @param  TIMx to select the TIM peripheral
7803   * @param  InputTriggerSource The Input Trigger source.
7804   *          This parameter can be one of the following values:
7805   *            @arg TIM_TS_ITR0: Internal Trigger 0
7806   *            @arg TIM_TS_ITR1: Internal Trigger 1
7807   *            @arg TIM_TS_ITR2: Internal Trigger 2
7808   *            @arg TIM_TS_ITR3: Internal Trigger 3
7809   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7810   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7811   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7812   *            @arg TIM_TS_ETRF: External Trigger input
7813   * @retval None
7814   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7815 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7816 {
7817   uint32_t tmpsmcr;
7818 
7819   /* Get the TIMx SMCR register value */
7820   tmpsmcr = TIMx->SMCR;
7821   /* Reset the TS Bits */
7822   tmpsmcr &= ~TIM_SMCR_TS;
7823   /* Set the Input Trigger source and the slave mode*/
7824   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7825   /* Write to TIMx SMCR */
7826   TIMx->SMCR = tmpsmcr;
7827 }
7828 /**
7829   * @brief  Configures the TIMx External Trigger (ETR).
7830   * @param  TIMx to select the TIM peripheral
7831   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7832   *          This parameter can be one of the following values:
7833   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7834   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7835   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7836   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7837   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7838   *          This parameter can be one of the following values:
7839   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7840   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7841   * @param  ExtTRGFilter External Trigger Filter.
7842   *          This parameter must be a value between 0x00 and 0x0F
7843   * @retval None
7844   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7845 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7846                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7847 {
7848   uint32_t tmpsmcr;
7849 
7850   tmpsmcr = TIMx->SMCR;
7851 
7852   /* Reset the ETR Bits */
7853   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7854 
7855   /* Set the Prescaler, the Filter value and the Polarity */
7856   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7857 
7858   /* Write to TIMx SMCR */
7859   TIMx->SMCR = tmpsmcr;
7860 }
7861 
7862 /**
7863   * @brief  Enables or disables the TIM Capture Compare Channel x.
7864   * @param  TIMx to select the TIM peripheral
7865   * @param  Channel specifies the TIM Channel
7866   *          This parameter can be one of the following values:
7867   *            @arg TIM_CHANNEL_1: TIM Channel 1
7868   *            @arg TIM_CHANNEL_2: TIM Channel 2
7869   *            @arg TIM_CHANNEL_3: TIM Channel 3
7870   *            @arg TIM_CHANNEL_4: TIM Channel 4
7871   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
7872   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
7873   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7874   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7875   * @retval None
7876   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7877 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7878 {
7879   uint32_t tmp;
7880 
7881   /* Check the parameters */
7882   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7883   assert_param(IS_TIM_CHANNELS(Channel));
7884 
7885   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7886 
7887   /* Reset the CCxE Bit */
7888   TIMx->CCER &= ~tmp;
7889 
7890   /* Set or reset the CCxE Bit */
7891   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7892 }
7893 
7894 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7895 /**
7896   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7897   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7898   *                the configuration information for TIM module.
7899   * @retval None
7900   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7901 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7902 {
7903   /* Reset the TIM callback to the legacy weak callbacks */
7904   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7905   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7906   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7907   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7908   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7909   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7910   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7911   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7912   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7913   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7914   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7915   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7916   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7917 #if defined(TIM_BDTR_BK2E)
7918   htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
7919 #endif /* TIM_BDTR_BK2E */
7920 }
7921 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7922 
7923 /**
7924   * @}
7925   */
7926 
7927 #endif /* HAL_TIM_MODULE_ENABLED */
7928 /**
7929   * @}
7930   */
7931 
7932 /**
7933   * @}
7934   */
7935