1 /**
2 ******************************************************************************
3 * @file stm32wbxx_hal_irda.c
4 * @author MCD Application Team
5 * @brief IRDA HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the IrDA (Infrared Data Association) Peripheral
8 * (IRDA)
9 * + Initialization and de-initialization functions
10 * + IO operation functions
11 * + Peripheral State and Errors functions
12 * + Peripheral Control functions
13 *
14 @verbatim
15 ==============================================================================
16 ##### How to use this driver #####
17 ==============================================================================
18 [..]
19 The IRDA HAL driver can be used as follows:
20
21 (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda).
22 (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API
23 in setting the associated USART or UART in IRDA mode:
24 (++) Enable the USARTx/UARTx interface clock.
25 (++) USARTx/UARTx pins configuration:
26 (+++) Enable the clock for the USARTx/UARTx GPIOs.
27 (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input).
28 (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
29 and HAL_IRDA_Receive_IT() APIs):
30 (+++) Configure the USARTx/UARTx interrupt priority.
31 (+++) Enable the NVIC USARTx/UARTx IRQ handle.
32 (+++) The specific IRDA interrupts (Transmission complete interrupt,
33 RXNE interrupt and Error Interrupts) will be managed using the macros
34 __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
35
36 (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
37 and HAL_IRDA_Receive_DMA() APIs):
38 (+++) Declare a DMA handle structure for the Tx/Rx channel.
39 (+++) Enable the DMAx interface clock.
40 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
41 (+++) Configure the DMA Tx/Rx channel.
42 (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
43 (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
44
45 (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
46 the normal or low power mode and the clock prescaler in the hirda handle Init structure.
47
48 (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
49 (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
50 by calling the customized HAL_IRDA_MspInit() API.
51
52 -@@- The specific IRDA interrupts (Transmission complete interrupt,
53 RXNE interrupt and Error Interrupts) will be managed using the macros
54 __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
55
56 (#) Three operation modes are available within this driver :
57
58 *** Polling mode IO operation ***
59 =================================
60 [..]
61 (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit()
62 (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
63
64 *** Interrupt mode IO operation ***
65 ===================================
66 [..]
67 (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT()
68 (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
69 add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
70 (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT()
71 (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
72 add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
73 (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
74 add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
75
76 *** DMA mode IO operation ***
77 ==============================
78 [..]
79 (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA()
80 (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can
81 add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback()
82 (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
83 add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
84 (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA()
85 (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can
86 add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback()
87 (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
88 add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
89 (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
90 add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
91
92 *** IRDA HAL driver macros list ***
93 ====================================
94 [..]
95 Below the list of most used macros in IRDA HAL driver.
96
97 (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral
98 (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
99 (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
100 (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
101 (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
102 (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
103 (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled
104
105 [..]
106 (@) You can refer to the IRDA HAL driver header file for more useful macros
107
108 ##### Callback registration #####
109 ==================================
110
111 [..]
112 The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1
113 allows the user to configure dynamically the driver callbacks.
114
115 [..]
116 Use Function HAL_IRDA_RegisterCallback() to register a user callback.
117 Function HAL_IRDA_RegisterCallback() allows to register following callbacks:
118 (+) TxHalfCpltCallback : Tx Half Complete Callback.
119 (+) TxCpltCallback : Tx Complete Callback.
120 (+) RxHalfCpltCallback : Rx Half Complete Callback.
121 (+) RxCpltCallback : Rx Complete Callback.
122 (+) ErrorCallback : Error Callback.
123 (+) AbortCpltCallback : Abort Complete Callback.
124 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
125 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
126 (+) MspInitCallback : IRDA MspInit.
127 (+) MspDeInitCallback : IRDA MspDeInit.
128 This function takes as parameters the HAL peripheral handle, the Callback ID
129 and a pointer to the user callback function.
130
131 [..]
132 Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default
133 weak (surcharged) function.
134 HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
135 and the Callback ID.
136 This function allows to reset following callbacks:
137 (+) TxHalfCpltCallback : Tx Half Complete Callback.
138 (+) TxCpltCallback : Tx Complete Callback.
139 (+) RxHalfCpltCallback : Rx Half Complete Callback.
140 (+) RxCpltCallback : Rx Complete Callback.
141 (+) ErrorCallback : Error Callback.
142 (+) AbortCpltCallback : Abort Complete Callback.
143 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
144 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
145 (+) MspInitCallback : IRDA MspInit.
146 (+) MspDeInitCallback : IRDA MspDeInit.
147
148 [..]
149 By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
150 all callbacks are set to the corresponding weak (surcharged) functions:
151 examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback().
152 Exception done for MspInit and MspDeInit functions that are respectively
153 reset to the legacy weak (surcharged) functions in the HAL_IRDA_Init()
154 and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
155 If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit()
156 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
157
158 [..]
159 Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only.
160 Exception done MspInit/MspDeInit that can be registered/unregistered
161 in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user)
162 MspInit/DeInit callbacks can be used during the Init/DeInit.
163 In that case first register the MspInit/MspDeInit user callbacks
164 using HAL_IRDA_RegisterCallback() before calling HAL_IRDA_DeInit()
165 or HAL_IRDA_Init() function.
166
167 [..]
168 When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
169 not defined, the callback registration feature is not available
170 and weak (surcharged) callbacks are used.
171
172
173 @endverbatim
174 ******************************************************************************
175 * @attention
176 *
177 * <h2><center>© Copyright (c) 2019 STMicroelectronics.
178 * All rights reserved.</center></h2>
179 *
180 * This software component is licensed by ST under BSD 3-Clause license,
181 * the "License"; You may not use this file except in compliance with the
182 * License. You may obtain a copy of the License at:
183 * opensource.org/licenses/BSD-3-Clause
184 *
185 ******************************************************************************
186 */
187
188 /* Includes ------------------------------------------------------------------*/
189 #include "stm32wbxx_hal.h"
190
191 /** @addtogroup STM32WBxx_HAL_Driver
192 * @{
193 */
194
195 /** @defgroup IRDA IRDA
196 * @brief HAL IRDA module driver
197 * @{
198 */
199
200 #ifdef HAL_IRDA_MODULE_ENABLED
201
202 /* Private typedef -----------------------------------------------------------*/
203 /* Private define ------------------------------------------------------------*/
204 /** @defgroup IRDA_Private_Constants IRDA Private Constants
205 * @{
206 */
207 #define IRDA_TEACK_REACK_TIMEOUT 1000U /*!< IRDA TX or RX enable acknowledge time-out value */
208
209 #define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
210 | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */
211
212 #define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */
213
214 #define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */
215 /**
216 * @}
217 */
218
219 /* Private macros ------------------------------------------------------------*/
220 /** @defgroup IRDA_Private_Macros IRDA Private Macros
221 * @{
222 */
223 /** @brief BRR division operation to set BRR register in 16-bit oversampling mode.
224 * @param __PCLK__ IRDA clock source.
225 * @param __BAUD__ Baud rate set by the user.
226 * @param __PRESCALER__ IRDA clock prescaler value.
227 * @retval Division result
228 */
229 #define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__, __PRESCALER__) ((((__PCLK__)/IRDAPrescTable[(__PRESCALER__)]) + ((__BAUD__)/2U)) / (__BAUD__))
230 /**
231 * @}
232 */
233
234 /* Private variables ---------------------------------------------------------*/
235 /* Private function prototypes -----------------------------------------------*/
236 /** @addtogroup IRDA_Private_Functions
237 * @{
238 */
239 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
240 void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda);
241 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
242 static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
243 static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
244 static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout);
245 static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
246 static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
247 static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
248 static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
249 static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
250 static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
251 static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
252 static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
253 static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
254 static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
255 static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
256 static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
257 static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
258 static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
259 static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
260 /**
261 * @}
262 */
263
264 /* Exported functions --------------------------------------------------------*/
265
266 /** @defgroup IRDA_Exported_Functions IRDA Exported Functions
267 * @{
268 */
269
270 /** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions
271 * @brief Initialization and Configuration functions
272 *
273 @verbatim
274 ==============================================================================
275 ##### Initialization and Configuration functions #####
276 ==============================================================================
277 [..]
278 This subsection provides a set of functions allowing to initialize the USARTx
279 in asynchronous IRDA mode.
280 (+) For the asynchronous mode only these parameters can be configured:
281 (++) Baud Rate
282 (++) Word Length
283 (++) Parity: If the parity is enabled, then the MSB bit of the data written
284 in the data register is transmitted but is changed by the parity bit.
285 (++) Power mode
286 (++) Prescaler setting
287 (++) Receiver/transmitter modes
288
289 [..]
290 The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures
291 (details for the procedures are available in reference manual).
292
293 @endverbatim
294
295 Depending on the frame length defined by the M1 and M0 bits (7-bit,
296 8-bit or 9-bit), the possible IRDA frame formats are listed in the
297 following table.
298
299 Table 1. IRDA frame format.
300 +-----------------------------------------------------------------------+
301 | M1 bit | M0 bit | PCE bit | IRDA frame |
302 |---------|---------|-----------|---------------------------------------|
303 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
304 |---------|---------|-----------|---------------------------------------|
305 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
306 |---------|---------|-----------|---------------------------------------|
307 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
308 |---------|---------|-----------|---------------------------------------|
309 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
310 |---------|---------|-----------|---------------------------------------|
311 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
312 |---------|---------|-----------|---------------------------------------|
313 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
314 +-----------------------------------------------------------------------+
315
316 * @{
317 */
318
319 /**
320 * @brief Initialize the IRDA mode according to the specified
321 * parameters in the IRDA_InitTypeDef and initialize the associated handle.
322 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
323 * the configuration information for the specified IRDA module.
324 * @retval HAL status
325 */
HAL_IRDA_Init(IRDA_HandleTypeDef * hirda)326 HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
327 {
328 /* Check the IRDA handle allocation */
329 if (hirda == NULL)
330 {
331 return HAL_ERROR;
332 }
333
334 /* Check the USART/UART associated to the IRDA handle */
335 assert_param(IS_IRDA_INSTANCE(hirda->Instance));
336
337 if (hirda->gState == HAL_IRDA_STATE_RESET)
338 {
339 /* Allocate lock resource and initialize it */
340 hirda->Lock = HAL_UNLOCKED;
341
342 #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
343 IRDA_InitCallbacksToDefault(hirda);
344
345 if (hirda->MspInitCallback == NULL)
346 {
347 hirda->MspInitCallback = HAL_IRDA_MspInit;
348 }
349
350 /* Init the low level hardware */
351 hirda->MspInitCallback(hirda);
352 #else
353 /* Init the low level hardware : GPIO, CLOCK */
354 HAL_IRDA_MspInit(hirda);
355 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
356 }
357
358 hirda->gState = HAL_IRDA_STATE_BUSY;
359
360 /* Disable the Peripheral to update the configuration registers */
361 __HAL_IRDA_DISABLE(hirda);
362
363 /* Set the IRDA Communication parameters */
364 if (IRDA_SetConfig(hirda) == HAL_ERROR)
365 {
366 return HAL_ERROR;
367 }
368
369 /* In IRDA mode, the following bits must be kept cleared:
370 - LINEN, STOP and CLKEN bits in the USART_CR2 register,
371 - SCEN and HDSEL bits in the USART_CR3 register.*/
372 CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
373 CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
374
375 /* set the UART/USART in IRDA mode */
376 hirda->Instance->CR3 |= USART_CR3_IREN;
377
378 /* Enable the Peripheral */
379 __HAL_IRDA_ENABLE(hirda);
380
381 /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */
382 return (IRDA_CheckIdleState(hirda));
383 }
384
385 /**
386 * @brief DeInitialize the IRDA peripheral.
387 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
388 * the configuration information for the specified IRDA module.
389 * @retval HAL status
390 */
HAL_IRDA_DeInit(IRDA_HandleTypeDef * hirda)391 HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
392 {
393 /* Check the IRDA handle allocation */
394 if (hirda == NULL)
395 {
396 return HAL_ERROR;
397 }
398
399 /* Check the USART/UART associated to the IRDA handle */
400 assert_param(IS_IRDA_INSTANCE(hirda->Instance));
401
402 hirda->gState = HAL_IRDA_STATE_BUSY;
403
404 /* DeInit the low level hardware */
405 #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
406 if (hirda->MspDeInitCallback == NULL)
407 {
408 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
409 }
410 /* DeInit the low level hardware */
411 hirda->MspDeInitCallback(hirda);
412 #else
413 HAL_IRDA_MspDeInit(hirda);
414 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
415 /* Disable the Peripheral */
416 __HAL_IRDA_DISABLE(hirda);
417
418 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
419 hirda->gState = HAL_IRDA_STATE_RESET;
420 hirda->RxState = HAL_IRDA_STATE_RESET;
421
422 /* Process Unlock */
423 __HAL_UNLOCK(hirda);
424
425 return HAL_OK;
426 }
427
428 /**
429 * @brief Initialize the IRDA MSP.
430 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
431 * the configuration information for the specified IRDA module.
432 * @retval None
433 */
HAL_IRDA_MspInit(IRDA_HandleTypeDef * hirda)434 __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
435 {
436 /* Prevent unused argument(s) compilation warning */
437 UNUSED(hirda);
438
439 /* NOTE: This function should not be modified, when the callback is needed,
440 the HAL_IRDA_MspInit can be implemented in the user file
441 */
442 }
443
444 /**
445 * @brief DeInitialize the IRDA MSP.
446 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
447 * the configuration information for the specified IRDA module.
448 * @retval None
449 */
HAL_IRDA_MspDeInit(IRDA_HandleTypeDef * hirda)450 __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
451 {
452 /* Prevent unused argument(s) compilation warning */
453 UNUSED(hirda);
454
455 /* NOTE: This function should not be modified, when the callback is needed,
456 the HAL_IRDA_MspDeInit can be implemented in the user file
457 */
458 }
459
460 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
461 /**
462 * @brief Register a User IRDA Callback
463 * To be used instead of the weak predefined callback
464 * @param hirda irda handle
465 * @param CallbackID ID of the callback to be registered
466 * This parameter can be one of the following values:
467 * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
468 * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
469 * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
470 * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
471 * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
472 * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
473 * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
474 * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
475 * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
476 * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
477 * @param pCallback pointer to the Callback function
478 * @retval HAL status
479 */
HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef * hirda,HAL_IRDA_CallbackIDTypeDef CallbackID,pIRDA_CallbackTypeDef pCallback)480 HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID, pIRDA_CallbackTypeDef pCallback)
481 {
482 HAL_StatusTypeDef status = HAL_OK;
483
484 if (pCallback == NULL)
485 {
486 /* Update the error code */
487 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
488
489 return HAL_ERROR;
490 }
491 /* Process locked */
492 __HAL_LOCK(hirda);
493
494 if (hirda->gState == HAL_IRDA_STATE_READY)
495 {
496 switch (CallbackID)
497 {
498 case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
499 hirda->TxHalfCpltCallback = pCallback;
500 break;
501
502 case HAL_IRDA_TX_COMPLETE_CB_ID :
503 hirda->TxCpltCallback = pCallback;
504 break;
505
506 case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
507 hirda->RxHalfCpltCallback = pCallback;
508 break;
509
510 case HAL_IRDA_RX_COMPLETE_CB_ID :
511 hirda->RxCpltCallback = pCallback;
512 break;
513
514 case HAL_IRDA_ERROR_CB_ID :
515 hirda->ErrorCallback = pCallback;
516 break;
517
518 case HAL_IRDA_ABORT_COMPLETE_CB_ID :
519 hirda->AbortCpltCallback = pCallback;
520 break;
521
522 case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
523 hirda->AbortTransmitCpltCallback = pCallback;
524 break;
525
526 case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
527 hirda->AbortReceiveCpltCallback = pCallback;
528 break;
529
530 case HAL_IRDA_MSPINIT_CB_ID :
531 hirda->MspInitCallback = pCallback;
532 break;
533
534 case HAL_IRDA_MSPDEINIT_CB_ID :
535 hirda->MspDeInitCallback = pCallback;
536 break;
537
538 default :
539 /* Update the error code */
540 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
541
542 /* Return error status */
543 status = HAL_ERROR;
544 break;
545 }
546 }
547 else if (hirda->gState == HAL_IRDA_STATE_RESET)
548 {
549 switch (CallbackID)
550 {
551 case HAL_IRDA_MSPINIT_CB_ID :
552 hirda->MspInitCallback = pCallback;
553 break;
554
555 case HAL_IRDA_MSPDEINIT_CB_ID :
556 hirda->MspDeInitCallback = pCallback;
557 break;
558
559 default :
560 /* Update the error code */
561 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
562
563 /* Return error status */
564 status = HAL_ERROR;
565 break;
566 }
567 }
568 else
569 {
570 /* Update the error code */
571 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
572
573 /* Return error status */
574 status = HAL_ERROR;
575 }
576
577 /* Release Lock */
578 __HAL_UNLOCK(hirda);
579
580 return status;
581 }
582
583 /**
584 * @brief Unregister an IRDA callback
585 * IRDA callback is redirected to the weak predefined callback
586 * @param hirda irda handle
587 * @param CallbackID ID of the callback to be unregistered
588 * This parameter can be one of the following values:
589 * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
590 * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
591 * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
592 * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
593 * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
594 * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
595 * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
596 * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
597 * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
598 * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
599 * @retval HAL status
600 */
HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef * hirda,HAL_IRDA_CallbackIDTypeDef CallbackID)601 HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID)
602 {
603 HAL_StatusTypeDef status = HAL_OK;
604
605 /* Process locked */
606 __HAL_LOCK(hirda);
607
608 if (HAL_IRDA_STATE_READY == hirda->gState)
609 {
610 switch (CallbackID)
611 {
612 case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
613 hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
614 break;
615
616 case HAL_IRDA_TX_COMPLETE_CB_ID :
617 hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
618 break;
619
620 case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
621 hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
622 break;
623
624 case HAL_IRDA_RX_COMPLETE_CB_ID :
625 hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
626 break;
627
628 case HAL_IRDA_ERROR_CB_ID :
629 hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
630 break;
631
632 case HAL_IRDA_ABORT_COMPLETE_CB_ID :
633 hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
634 break;
635
636 case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
637 hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
638 break;
639
640 case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
641 hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
642 break;
643
644 case HAL_IRDA_MSPINIT_CB_ID :
645 hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */
646 break;
647
648 case HAL_IRDA_MSPDEINIT_CB_ID :
649 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */
650 break;
651
652 default :
653 /* Update the error code */
654 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
655
656 /* Return error status */
657 status = HAL_ERROR;
658 break;
659 }
660 }
661 else if (HAL_IRDA_STATE_RESET == hirda->gState)
662 {
663 switch (CallbackID)
664 {
665 case HAL_IRDA_MSPINIT_CB_ID :
666 hirda->MspInitCallback = HAL_IRDA_MspInit;
667 break;
668
669 case HAL_IRDA_MSPDEINIT_CB_ID :
670 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
671 break;
672
673 default :
674 /* Update the error code */
675 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
676
677 /* Return error status */
678 status = HAL_ERROR;
679 break;
680 }
681 }
682 else
683 {
684 /* Update the error code */
685 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
686
687 /* Return error status */
688 status = HAL_ERROR;
689 }
690
691 /* Release Lock */
692 __HAL_UNLOCK(hirda);
693
694 return status;
695 }
696 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
697
698 /**
699 * @}
700 */
701
702 /** @defgroup IRDA_Exported_Functions_Group2 IO operation functions
703 * @brief IRDA Transmit and Receive functions
704 *
705 @verbatim
706 ===============================================================================
707 ##### IO operation functions #####
708 ===============================================================================
709 [..]
710 This subsection provides a set of functions allowing to manage the IRDA data transfers.
711
712 [..]
713 IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
714 on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
715 is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
716 While receiving data, transmission should be avoided as the data to be transmitted
717 could be corrupted.
718
719 (#) There are two modes of transfer:
720 (++) Blocking mode: the communication is performed in polling mode.
721 The HAL status of all data processing is returned by the same function
722 after finishing transfer.
723 (++) Non-Blocking mode: the communication is performed using Interrupts
724 or DMA, these API's return the HAL status.
725 The end of the data processing will be indicated through the
726 dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when
727 using DMA mode.
728 The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks
729 will be executed respectively at the end of the Transmit or Receive process
730 The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected
731
732 (#) Blocking mode APIs are :
733 (++) HAL_IRDA_Transmit()
734 (++) HAL_IRDA_Receive()
735
736 (#) Non Blocking mode APIs with Interrupt are :
737 (++) HAL_IRDA_Transmit_IT()
738 (++) HAL_IRDA_Receive_IT()
739 (++) HAL_IRDA_IRQHandler()
740
741 (#) Non Blocking mode functions with DMA are :
742 (++) HAL_IRDA_Transmit_DMA()
743 (++) HAL_IRDA_Receive_DMA()
744 (++) HAL_IRDA_DMAPause()
745 (++) HAL_IRDA_DMAResume()
746 (++) HAL_IRDA_DMAStop()
747
748 (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
749 (++) HAL_IRDA_TxHalfCpltCallback()
750 (++) HAL_IRDA_TxCpltCallback()
751 (++) HAL_IRDA_RxHalfCpltCallback()
752 (++) HAL_IRDA_RxCpltCallback()
753 (++) HAL_IRDA_ErrorCallback()
754
755 (#) Non-Blocking mode transfers could be aborted using Abort API's :
756 (++) HAL_IRDA_Abort()
757 (++) HAL_IRDA_AbortTransmit()
758 (++) HAL_IRDA_AbortReceive()
759 (++) HAL_IRDA_Abort_IT()
760 (++) HAL_IRDA_AbortTransmit_IT()
761 (++) HAL_IRDA_AbortReceive_IT()
762
763 (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
764 (++) HAL_IRDA_AbortCpltCallback()
765 (++) HAL_IRDA_AbortTransmitCpltCallback()
766 (++) HAL_IRDA_AbortReceiveCpltCallback()
767
768 (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
769 Errors are handled as follows :
770 (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
771 to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
772 Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
773 and HAL_IRDA_ErrorCallback() user callback is executed. Transfer is kept ongoing on IRDA side.
774 If user wants to abort it, Abort services should be called by user.
775 (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
776 This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
777 Error code is set to allow user to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed.
778
779 @endverbatim
780 * @{
781 */
782
783 /**
784 * @brief Send an amount of data in blocking mode.
785 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
786 * the sent data is handled as a set of u16. In this case, Size must reflect the number
787 * of u16 available through pData.
788 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
789 * the configuration information for the specified IRDA module.
790 * @param pData Pointer to data buffer (u8 or u16 data elements).
791 * @param Size Amount of data elements (u8 or u16) to be sent.
792 * @param Timeout Specify timeout value.
793 * @retval HAL status
794 */
HAL_IRDA_Transmit(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size,uint32_t Timeout)795 HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
796 {
797 uint8_t *pdata8bits;
798 uint16_t *pdata16bits;
799 uint32_t tickstart;
800
801 /* Check that a Tx process is not already ongoing */
802 if (hirda->gState == HAL_IRDA_STATE_READY)
803 {
804 if ((pData == NULL) || (Size == 0U))
805 {
806 return HAL_ERROR;
807 }
808
809 /* Process Locked */
810 __HAL_LOCK(hirda);
811
812 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
813 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
814
815 /* Init tickstart for timeout managment*/
816 tickstart = HAL_GetTick();
817
818 hirda->TxXferSize = Size;
819 hirda->TxXferCount = Size;
820
821 /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
822 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
823 {
824 pdata8bits = NULL;
825 pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
826 }
827 else
828 {
829 pdata8bits = pData;
830 pdata16bits = NULL;
831 }
832
833 while (hirda->TxXferCount > 0U)
834 {
835 hirda->TxXferCount--;
836
837 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
838 {
839 return HAL_TIMEOUT;
840 }
841 if (pdata8bits == NULL)
842 {
843 hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
844 pdata16bits++;
845 }
846 else
847 {
848 hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
849 pdata8bits++;
850 }
851 }
852
853 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
854 {
855 return HAL_TIMEOUT;
856 }
857
858 /* At end of Tx process, restore hirda->gState to Ready */
859 hirda->gState = HAL_IRDA_STATE_READY;
860
861 /* Process Unlocked */
862 __HAL_UNLOCK(hirda);
863
864 return HAL_OK;
865 }
866 else
867 {
868 return HAL_BUSY;
869 }
870 }
871
872 /**
873 * @brief Receive an amount of data in blocking mode.
874 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
875 * the received data is handled as a set of u16. In this case, Size must reflect the number
876 * of u16 available through pData.
877 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
878 * the configuration information for the specified IRDA module.
879 * @param pData Pointer to data buffer (u8 or u16 data elements).
880 * @param Size Amount of data elements (u8 or u16) to be received.
881 * @param Timeout Specify timeout value.
882 * @retval HAL status
883 */
HAL_IRDA_Receive(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size,uint32_t Timeout)884 HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
885 {
886 uint8_t *pdata8bits;
887 uint16_t *pdata16bits;
888 uint16_t uhMask;
889 uint32_t tickstart;
890
891 /* Check that a Rx process is not already ongoing */
892 if (hirda->RxState == HAL_IRDA_STATE_READY)
893 {
894 if ((pData == NULL) || (Size == 0U))
895 {
896 return HAL_ERROR;
897 }
898
899 /* Process Locked */
900 __HAL_LOCK(hirda);
901
902 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
903 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
904
905 /* Init tickstart for timeout managment*/
906 tickstart = HAL_GetTick();
907
908 hirda->RxXferSize = Size;
909 hirda->RxXferCount = Size;
910
911 /* Computation of the mask to apply to RDR register
912 of the UART associated to the IRDA */
913 IRDA_MASK_COMPUTATION(hirda);
914 uhMask = hirda->Mask;
915
916 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
917 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
918 {
919 pdata8bits = NULL;
920 pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
921 }
922 else
923 {
924 pdata8bits = pData;
925 pdata16bits = NULL;
926 }
927
928 /* Check data remaining to be received */
929 while (hirda->RxXferCount > 0U)
930 {
931 hirda->RxXferCount--;
932
933 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
934 {
935 return HAL_TIMEOUT;
936 }
937 if (pdata8bits == NULL)
938 {
939 *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask);
940 pdata16bits++;
941 }
942 else
943 {
944 *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask);
945 pdata8bits++;
946 }
947 }
948
949 /* At end of Rx process, restore hirda->RxState to Ready */
950 hirda->RxState = HAL_IRDA_STATE_READY;
951
952 /* Process Unlocked */
953 __HAL_UNLOCK(hirda);
954
955 return HAL_OK;
956 }
957 else
958 {
959 return HAL_BUSY;
960 }
961 }
962
963 /**
964 * @brief Send an amount of data in interrupt mode.
965 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
966 * the sent data is handled as a set of u16. In this case, Size must reflect the number
967 * of u16 available through pData.
968 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
969 * the configuration information for the specified IRDA module.
970 * @param pData Pointer to data buffer (u8 or u16 data elements).
971 * @param Size Amount of data elements (u8 or u16) to be sent.
972 * @retval HAL status
973 */
HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)974 HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
975 {
976 /* Check that a Tx process is not already ongoing */
977 if (hirda->gState == HAL_IRDA_STATE_READY)
978 {
979 if ((pData == NULL) || (Size == 0U))
980 {
981 return HAL_ERROR;
982 }
983
984 /* Process Locked */
985 __HAL_LOCK(hirda);
986
987 hirda->pTxBuffPtr = pData;
988 hirda->TxXferSize = Size;
989 hirda->TxXferCount = Size;
990
991 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
992 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
993
994 /* Process Unlocked */
995 __HAL_UNLOCK(hirda);
996
997 /* Enable the IRDA Transmit Data Register Empty Interrupt */
998 SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
999
1000 return HAL_OK;
1001 }
1002 else
1003 {
1004 return HAL_BUSY;
1005 }
1006 }
1007
1008 /**
1009 * @brief Receive an amount of data in interrupt mode.
1010 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1011 * the received data is handled as a set of u16. In this case, Size must reflect the number
1012 * of u16 available through pData.
1013 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1014 * the configuration information for the specified IRDA module.
1015 * @param pData Pointer to data buffer (u8 or u16 data elements).
1016 * @param Size Amount of data elements (u8 or u16) to be received.
1017 * @retval HAL status
1018 */
HAL_IRDA_Receive_IT(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)1019 HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
1020 {
1021 /* Check that a Rx process is not already ongoing */
1022 if (hirda->RxState == HAL_IRDA_STATE_READY)
1023 {
1024 if ((pData == NULL) || (Size == 0U))
1025 {
1026 return HAL_ERROR;
1027 }
1028
1029 /* Process Locked */
1030 __HAL_LOCK(hirda);
1031
1032 hirda->pRxBuffPtr = pData;
1033 hirda->RxXferSize = Size;
1034 hirda->RxXferCount = Size;
1035
1036 /* Computation of the mask to apply to the RDR register
1037 of the UART associated to the IRDA */
1038 IRDA_MASK_COMPUTATION(hirda);
1039
1040 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1041 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
1042
1043 /* Process Unlocked */
1044 __HAL_UNLOCK(hirda);
1045
1046 /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
1047 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
1048
1049 /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
1050 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1051
1052 return HAL_OK;
1053 }
1054 else
1055 {
1056 return HAL_BUSY;
1057 }
1058 }
1059
1060 /**
1061 * @brief Send an amount of data in DMA mode.
1062 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1063 * the sent data is handled as a set of u16. In this case, Size must reflect the number
1064 * of u16 available through pData.
1065 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1066 * the configuration information for the specified IRDA module.
1067 * @param pData pointer to data buffer (u8 or u16 data elements).
1068 * @param Size Amount of data elements (u8 or u16) to be sent.
1069 * @retval HAL status
1070 */
HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)1071 HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
1072 {
1073 /* Check that a Tx process is not already ongoing */
1074 if (hirda->gState == HAL_IRDA_STATE_READY)
1075 {
1076 if ((pData == NULL) || (Size == 0U))
1077 {
1078 return HAL_ERROR;
1079 }
1080
1081 /* Process Locked */
1082 __HAL_LOCK(hirda);
1083
1084 hirda->pTxBuffPtr = pData;
1085 hirda->TxXferSize = Size;
1086 hirda->TxXferCount = Size;
1087
1088 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1089 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
1090
1091 /* Set the IRDA DMA transfer complete callback */
1092 hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
1093
1094 /* Set the IRDA DMA half transfer complete callback */
1095 hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;
1096
1097 /* Set the DMA error callback */
1098 hirda->hdmatx->XferErrorCallback = IRDA_DMAError;
1099
1100 /* Set the DMA abort callback */
1101 hirda->hdmatx->XferAbortCallback = NULL;
1102
1103 /* Enable the IRDA transmit DMA channel */
1104 if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK)
1105 {
1106 /* Clear the TC flag in the ICR register */
1107 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF);
1108
1109 /* Process Unlocked */
1110 __HAL_UNLOCK(hirda);
1111
1112 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1113 in the USART CR3 register */
1114 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1115
1116 return HAL_OK;
1117 }
1118 else
1119 {
1120 /* Set error code to DMA */
1121 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1122
1123 /* Process Unlocked */
1124 __HAL_UNLOCK(hirda);
1125
1126 /* Restore hirda->gState to ready */
1127 hirda->gState = HAL_IRDA_STATE_READY;
1128
1129 return HAL_ERROR;
1130 }
1131 }
1132 else
1133 {
1134 return HAL_BUSY;
1135 }
1136 }
1137
1138 /**
1139 * @brief Receive an amount of data in DMA mode.
1140 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1141 * the received data is handled as a set of u16. In this case, Size must reflect the number
1142 * of u16 available through pData.
1143 * @note When the IRDA parity is enabled (PCE = 1), the received data contains
1144 * the parity bit (MSB position).
1145 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1146 * the configuration information for the specified IRDA module.
1147 * @param pData Pointer to data buffer (u8 or u16 data elements).
1148 * @param Size Amount of data elements (u8 or u16) to be received.
1149 * @retval HAL status
1150 */
HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)1151 HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
1152 {
1153 /* Check that a Rx process is not already ongoing */
1154 if (hirda->RxState == HAL_IRDA_STATE_READY)
1155 {
1156 if ((pData == NULL) || (Size == 0U))
1157 {
1158 return HAL_ERROR;
1159 }
1160
1161 /* Process Locked */
1162 __HAL_LOCK(hirda);
1163
1164 hirda->pRxBuffPtr = pData;
1165 hirda->RxXferSize = Size;
1166
1167 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1168 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
1169
1170 /* Set the IRDA DMA transfer complete callback */
1171 hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
1172
1173 /* Set the IRDA DMA half transfer complete callback */
1174 hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;
1175
1176 /* Set the DMA error callback */
1177 hirda->hdmarx->XferErrorCallback = IRDA_DMAError;
1178
1179 /* Set the DMA abort callback */
1180 hirda->hdmarx->XferAbortCallback = NULL;
1181
1182 /* Enable the DMA channel */
1183 if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK)
1184 {
1185 /* Process Unlocked */
1186 __HAL_UNLOCK(hirda);
1187
1188 /* Enable the UART Parity Error Interrupt */
1189 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1190
1191 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
1192 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1193
1194 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
1195 in the USART CR3 register */
1196 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1197
1198 return HAL_OK;
1199 }
1200 else
1201 {
1202 /* Set error code to DMA */
1203 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1204
1205 /* Process Unlocked */
1206 __HAL_UNLOCK(hirda);
1207
1208 /* Restore hirda->RxState to ready */
1209 hirda->RxState = HAL_IRDA_STATE_READY;
1210
1211 return HAL_ERROR;
1212 }
1213 }
1214 else
1215 {
1216 return HAL_BUSY;
1217 }
1218 }
1219
1220
1221 /**
1222 * @brief Pause the DMA Transfer.
1223 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1224 * the configuration information for the specified IRDA module.
1225 * @retval HAL status
1226 */
HAL_IRDA_DMAPause(IRDA_HandleTypeDef * hirda)1227 HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
1228 {
1229 /* Process Locked */
1230 __HAL_LOCK(hirda);
1231
1232 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1233 {
1234 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1235 {
1236 /* Disable the IRDA DMA Tx request */
1237 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1238 }
1239 }
1240 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1241 {
1242 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1243 {
1244 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
1245 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1246 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1247
1248 /* Disable the IRDA DMA Rx request */
1249 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1250 }
1251 }
1252
1253 /* Process Unlocked */
1254 __HAL_UNLOCK(hirda);
1255
1256 return HAL_OK;
1257 }
1258
1259 /**
1260 * @brief Resume the DMA Transfer.
1261 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1262 * the configuration information for the specified UART module.
1263 * @retval HAL status
1264 */
HAL_IRDA_DMAResume(IRDA_HandleTypeDef * hirda)1265 HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
1266 {
1267 /* Process Locked */
1268 __HAL_LOCK(hirda);
1269
1270 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1271 {
1272 /* Enable the IRDA DMA Tx request */
1273 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1274 }
1275 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1276 {
1277 /* Clear the Overrun flag before resuming the Rx transfer*/
1278 __HAL_IRDA_CLEAR_OREFLAG(hirda);
1279
1280 /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
1281 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1282 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1283
1284 /* Enable the IRDA DMA Rx request */
1285 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1286 }
1287
1288 /* Process Unlocked */
1289 __HAL_UNLOCK(hirda);
1290
1291 return HAL_OK;
1292 }
1293
1294 /**
1295 * @brief Stop the DMA Transfer.
1296 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1297 * the configuration information for the specified UART module.
1298 * @retval HAL status
1299 */
HAL_IRDA_DMAStop(IRDA_HandleTypeDef * hirda)1300 HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
1301 {
1302 /* The Lock is not implemented on this API to allow the user application
1303 to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() /
1304 HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback:
1305 indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
1306 interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
1307 the stream and the corresponding call back is executed. */
1308
1309 /* Stop IRDA DMA Tx request if ongoing */
1310 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1311 {
1312 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1313 {
1314 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1315
1316 /* Abort the IRDA DMA Tx channel */
1317 if (hirda->hdmatx != NULL)
1318 {
1319 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1320 {
1321 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1322 {
1323 /* Set error code to DMA */
1324 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1325
1326 return HAL_TIMEOUT;
1327 }
1328 }
1329 }
1330
1331 IRDA_EndTxTransfer(hirda);
1332 }
1333 }
1334
1335 /* Stop IRDA DMA Rx request if ongoing */
1336 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1337 {
1338 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1339 {
1340 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1341
1342 /* Abort the IRDA DMA Rx channel */
1343 if (hirda->hdmarx != NULL)
1344 {
1345 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1346 {
1347 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1348 {
1349 /* Set error code to DMA */
1350 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1351
1352 return HAL_TIMEOUT;
1353 }
1354 }
1355 }
1356
1357 IRDA_EndRxTransfer(hirda);
1358 }
1359 }
1360
1361 return HAL_OK;
1362 }
1363
1364 /**
1365 * @brief Abort ongoing transfers (blocking mode).
1366 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1367 * the configuration information for the specified UART module.
1368 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1369 * This procedure performs following operations :
1370 * - Disable IRDA Interrupts (Tx and Rx)
1371 * - Disable the DMA transfer in the peripheral register (if enabled)
1372 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1373 * - Set handle State to READY
1374 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1375 * @retval HAL status
1376 */
HAL_IRDA_Abort(IRDA_HandleTypeDef * hirda)1377 HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
1378 {
1379 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1380 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1381 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1382
1383 /* Disable the IRDA DMA Tx request if enabled */
1384 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1385 {
1386 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1387
1388 /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
1389 if (hirda->hdmatx != NULL)
1390 {
1391 /* Set the IRDA DMA Abort callback to Null.
1392 No call back execution at end of DMA abort procedure */
1393 hirda->hdmatx->XferAbortCallback = NULL;
1394
1395 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1396 {
1397 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1398 {
1399 /* Set error code to DMA */
1400 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1401
1402 return HAL_TIMEOUT;
1403 }
1404 }
1405 }
1406 }
1407
1408 /* Disable the IRDA DMA Rx request if enabled */
1409 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1410 {
1411 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1412
1413 /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
1414 if (hirda->hdmarx != NULL)
1415 {
1416 /* Set the IRDA DMA Abort callback to Null.
1417 No call back execution at end of DMA abort procedure */
1418 hirda->hdmarx->XferAbortCallback = NULL;
1419
1420 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1421 {
1422 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1423 {
1424 /* Set error code to DMA */
1425 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1426
1427 return HAL_TIMEOUT;
1428 }
1429 }
1430 }
1431 }
1432
1433 /* Reset Tx and Rx transfer counters */
1434 hirda->TxXferCount = 0U;
1435 hirda->RxXferCount = 0U;
1436
1437 /* Clear the Error flags in the ICR register */
1438 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1439
1440 /* Restore hirda->gState and hirda->RxState to Ready */
1441 hirda->gState = HAL_IRDA_STATE_READY;
1442 hirda->RxState = HAL_IRDA_STATE_READY;
1443
1444 /* Reset Handle ErrorCode to No Error */
1445 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1446
1447 return HAL_OK;
1448 }
1449
1450 /**
1451 * @brief Abort ongoing Transmit transfer (blocking mode).
1452 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1453 * the configuration information for the specified UART module.
1454 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1455 * This procedure performs following operations :
1456 * - Disable IRDA Interrupts (Tx)
1457 * - Disable the DMA transfer in the peripheral register (if enabled)
1458 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1459 * - Set handle State to READY
1460 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1461 * @retval HAL status
1462 */
HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef * hirda)1463 HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
1464 {
1465 /* Disable TXEIE and TCIE interrupts */
1466 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1467
1468 /* Disable the IRDA DMA Tx request if enabled */
1469 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1470 {
1471 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1472
1473 /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
1474 if (hirda->hdmatx != NULL)
1475 {
1476 /* Set the IRDA DMA Abort callback to Null.
1477 No call back execution at end of DMA abort procedure */
1478 hirda->hdmatx->XferAbortCallback = NULL;
1479
1480 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1481 {
1482 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1483 {
1484 /* Set error code to DMA */
1485 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1486
1487 return HAL_TIMEOUT;
1488 }
1489 }
1490 }
1491 }
1492
1493 /* Reset Tx transfer counter */
1494 hirda->TxXferCount = 0U;
1495
1496 /* Restore hirda->gState to Ready */
1497 hirda->gState = HAL_IRDA_STATE_READY;
1498
1499 return HAL_OK;
1500 }
1501
1502 /**
1503 * @brief Abort ongoing Receive transfer (blocking mode).
1504 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1505 * the configuration information for the specified UART module.
1506 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1507 * This procedure performs following operations :
1508 * - Disable IRDA Interrupts (Rx)
1509 * - Disable the DMA transfer in the peripheral register (if enabled)
1510 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1511 * - Set handle State to READY
1512 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1513 * @retval HAL status
1514 */
HAL_IRDA_AbortReceive(IRDA_HandleTypeDef * hirda)1515 HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
1516 {
1517 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1518 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
1519 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1520
1521 /* Disable the IRDA DMA Rx request if enabled */
1522 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1523 {
1524 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1525
1526 /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
1527 if (hirda->hdmarx != NULL)
1528 {
1529 /* Set the IRDA DMA Abort callback to Null.
1530 No call back execution at end of DMA abort procedure */
1531 hirda->hdmarx->XferAbortCallback = NULL;
1532
1533 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1534 {
1535 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1536 {
1537 /* Set error code to DMA */
1538 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1539
1540 return HAL_TIMEOUT;
1541 }
1542 }
1543 }
1544 }
1545
1546 /* Reset Rx transfer counter */
1547 hirda->RxXferCount = 0U;
1548
1549 /* Clear the Error flags in the ICR register */
1550 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1551
1552 /* Restore hirda->RxState to Ready */
1553 hirda->RxState = HAL_IRDA_STATE_READY;
1554
1555 return HAL_OK;
1556 }
1557
1558 /**
1559 * @brief Abort ongoing transfers (Interrupt mode).
1560 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1561 * the configuration information for the specified UART module.
1562 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1563 * This procedure performs following operations :
1564 * - Disable IRDA Interrupts (Tx and Rx)
1565 * - Disable the DMA transfer in the peripheral register (if enabled)
1566 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1567 * - Set handle State to READY
1568 * - At abort completion, call user abort complete callback
1569 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1570 * considered as completed only when user abort complete callback is executed (not when exiting function).
1571 * @retval HAL status
1572 */
HAL_IRDA_Abort_IT(IRDA_HandleTypeDef * hirda)1573 HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
1574 {
1575 uint32_t abortcplt = 1U;
1576
1577 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1578 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1579 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1580
1581 /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
1582 before any call to DMA Abort functions */
1583 /* DMA Tx Handle is valid */
1584 if (hirda->hdmatx != NULL)
1585 {
1586 /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
1587 Otherwise, set it to NULL */
1588 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1589 {
1590 hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
1591 }
1592 else
1593 {
1594 hirda->hdmatx->XferAbortCallback = NULL;
1595 }
1596 }
1597 /* DMA Rx Handle is valid */
1598 if (hirda->hdmarx != NULL)
1599 {
1600 /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
1601 Otherwise, set it to NULL */
1602 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1603 {
1604 hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
1605 }
1606 else
1607 {
1608 hirda->hdmarx->XferAbortCallback = NULL;
1609 }
1610 }
1611
1612 /* Disable the IRDA DMA Tx request if enabled */
1613 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1614 {
1615 /* Disable DMA Tx at UART level */
1616 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1617
1618 /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
1619 if (hirda->hdmatx != NULL)
1620 {
1621 /* IRDA Tx DMA Abort callback has already been initialised :
1622 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1623
1624 /* Abort DMA TX */
1625 if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
1626 {
1627 hirda->hdmatx->XferAbortCallback = NULL;
1628 }
1629 else
1630 {
1631 abortcplt = 0U;
1632 }
1633 }
1634 }
1635
1636 /* Disable the IRDA DMA Rx request if enabled */
1637 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1638 {
1639 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1640
1641 /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
1642 if (hirda->hdmarx != NULL)
1643 {
1644 /* IRDA Rx DMA Abort callback has already been initialised :
1645 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1646
1647 /* Abort DMA RX */
1648 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
1649 {
1650 hirda->hdmarx->XferAbortCallback = NULL;
1651 abortcplt = 1U;
1652 }
1653 else
1654 {
1655 abortcplt = 0U;
1656 }
1657 }
1658 }
1659
1660 /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
1661 if (abortcplt == 1U)
1662 {
1663 /* Reset Tx and Rx transfer counters */
1664 hirda->TxXferCount = 0U;
1665 hirda->RxXferCount = 0U;
1666
1667 /* Reset errorCode */
1668 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1669
1670 /* Clear the Error flags in the ICR register */
1671 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1672
1673 /* Restore hirda->gState and hirda->RxState to Ready */
1674 hirda->gState = HAL_IRDA_STATE_READY;
1675 hirda->RxState = HAL_IRDA_STATE_READY;
1676
1677 /* As no DMA to be aborted, call directly user Abort complete callback */
1678 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1679 /* Call registered Abort complete callback */
1680 hirda->AbortCpltCallback(hirda);
1681 #else
1682 /* Call legacy weak Abort complete callback */
1683 HAL_IRDA_AbortCpltCallback(hirda);
1684 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1685 }
1686
1687 return HAL_OK;
1688 }
1689
1690 /**
1691 * @brief Abort ongoing Transmit transfer (Interrupt mode).
1692 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1693 * the configuration information for the specified UART module.
1694 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1695 * This procedure performs following operations :
1696 * - Disable IRDA Interrupts (Tx)
1697 * - Disable the DMA transfer in the peripheral register (if enabled)
1698 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1699 * - Set handle State to READY
1700 * - At abort completion, call user abort complete callback
1701 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1702 * considered as completed only when user abort complete callback is executed (not when exiting function).
1703 * @retval HAL status
1704 */
HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef * hirda)1705 HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
1706 {
1707 /* Disable TXEIE and TCIE interrupts */
1708 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1709
1710 /* Disable the IRDA DMA Tx request if enabled */
1711 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1712 {
1713 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1714
1715 /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
1716 if (hirda->hdmatx != NULL)
1717 {
1718 /* Set the IRDA DMA Abort callback :
1719 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1720 hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;
1721
1722 /* Abort DMA TX */
1723 if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
1724 {
1725 /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
1726 hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
1727 }
1728 }
1729 else
1730 {
1731 /* Reset Tx transfer counter */
1732 hirda->TxXferCount = 0U;
1733
1734 /* Restore hirda->gState to Ready */
1735 hirda->gState = HAL_IRDA_STATE_READY;
1736
1737 /* As no DMA to be aborted, call directly user Abort complete callback */
1738 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1739 /* Call registered Abort Transmit Complete Callback */
1740 hirda->AbortTransmitCpltCallback(hirda);
1741 #else
1742 /* Call legacy weak Abort Transmit Complete Callback */
1743 HAL_IRDA_AbortTransmitCpltCallback(hirda);
1744 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1745 }
1746 }
1747 else
1748 {
1749 /* Reset Tx transfer counter */
1750 hirda->TxXferCount = 0U;
1751
1752 /* Restore hirda->gState to Ready */
1753 hirda->gState = HAL_IRDA_STATE_READY;
1754
1755 /* As no DMA to be aborted, call directly user Abort complete callback */
1756 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1757 /* Call registered Abort Transmit Complete Callback */
1758 hirda->AbortTransmitCpltCallback(hirda);
1759 #else
1760 /* Call legacy weak Abort Transmit Complete Callback */
1761 HAL_IRDA_AbortTransmitCpltCallback(hirda);
1762 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1763 }
1764
1765 return HAL_OK;
1766 }
1767
1768 /**
1769 * @brief Abort ongoing Receive transfer (Interrupt mode).
1770 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1771 * the configuration information for the specified UART module.
1772 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1773 * This procedure performs following operations :
1774 * - Disable IRDA Interrupts (Rx)
1775 * - Disable the DMA transfer in the peripheral register (if enabled)
1776 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1777 * - Set handle State to READY
1778 * - At abort completion, call user abort complete callback
1779 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1780 * considered as completed only when user abort complete callback is executed (not when exiting function).
1781 * @retval HAL status
1782 */
HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef * hirda)1783 HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
1784 {
1785 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1786 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
1787 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1788
1789 /* Disable the IRDA DMA Rx request if enabled */
1790 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1791 {
1792 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1793
1794 /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
1795 if (hirda->hdmarx != NULL)
1796 {
1797 /* Set the IRDA DMA Abort callback :
1798 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1799 hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;
1800
1801 /* Abort DMA RX */
1802 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
1803 {
1804 /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
1805 hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
1806 }
1807 }
1808 else
1809 {
1810 /* Reset Rx transfer counter */
1811 hirda->RxXferCount = 0U;
1812
1813 /* Clear the Error flags in the ICR register */
1814 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1815
1816 /* Restore hirda->RxState to Ready */
1817 hirda->RxState = HAL_IRDA_STATE_READY;
1818
1819 /* As no DMA to be aborted, call directly user Abort complete callback */
1820 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1821 /* Call registered Abort Receive Complete Callback */
1822 hirda->AbortReceiveCpltCallback(hirda);
1823 #else
1824 /* Call legacy weak Abort Receive Complete Callback */
1825 HAL_IRDA_AbortReceiveCpltCallback(hirda);
1826 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1827 }
1828 }
1829 else
1830 {
1831 /* Reset Rx transfer counter */
1832 hirda->RxXferCount = 0U;
1833
1834 /* Clear the Error flags in the ICR register */
1835 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1836
1837 /* Restore hirda->RxState to Ready */
1838 hirda->RxState = HAL_IRDA_STATE_READY;
1839
1840 /* As no DMA to be aborted, call directly user Abort complete callback */
1841 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1842 /* Call registered Abort Receive Complete Callback */
1843 hirda->AbortReceiveCpltCallback(hirda);
1844 #else
1845 /* Call legacy weak Abort Receive Complete Callback */
1846 HAL_IRDA_AbortReceiveCpltCallback(hirda);
1847 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1848 }
1849
1850 return HAL_OK;
1851 }
1852
1853 /**
1854 * @brief Handle IRDA interrupt request.
1855 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1856 * the configuration information for the specified IRDA module.
1857 * @retval None
1858 */
HAL_IRDA_IRQHandler(IRDA_HandleTypeDef * hirda)1859 void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
1860 {
1861 uint32_t isrflags = READ_REG(hirda->Instance->ISR);
1862 uint32_t cr1its = READ_REG(hirda->Instance->CR1);
1863 uint32_t cr3its;
1864 uint32_t errorflags;
1865
1866 /* If no error occurs */
1867 errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE));
1868 if (errorflags == 0U)
1869 {
1870 /* IRDA in mode Receiver ---------------------------------------------------*/
1871 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
1872 {
1873 IRDA_Receive_IT(hirda);
1874 return;
1875 }
1876 }
1877
1878 /* If some errors occur */
1879 cr3its = READ_REG(hirda->Instance->CR3);
1880 if ((errorflags != 0U)
1881 && (((cr3its & USART_CR3_EIE) != 0U)
1882 || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U)))
1883 {
1884 /* IRDA parity error interrupt occurred -------------------------------------*/
1885 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
1886 {
1887 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);
1888
1889 hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
1890 }
1891
1892 /* IRDA frame error interrupt occurred --------------------------------------*/
1893 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
1894 {
1895 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);
1896
1897 hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
1898 }
1899
1900 /* IRDA noise error interrupt occurred --------------------------------------*/
1901 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
1902 {
1903 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);
1904
1905 hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
1906 }
1907
1908 /* IRDA Over-Run interrupt occurred -----------------------------------------*/
1909 if (((isrflags & USART_ISR_ORE) != 0U) &&
1910 (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
1911 {
1912 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
1913
1914 hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
1915 }
1916
1917 /* Call IRDA Error Call back function if need be --------------------------*/
1918 if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
1919 {
1920 /* IRDA in mode Receiver ---------------------------------------------------*/
1921 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
1922 {
1923 IRDA_Receive_IT(hirda);
1924 }
1925
1926 /* If Overrun error occurs, or if any error occurs in DMA mode reception,
1927 consider error as blocking */
1928 if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ||
1929 ((hirda->ErrorCode & HAL_IRDA_ERROR_ORE) != 0U))
1930 {
1931 /* Blocking error : transfer is aborted
1932 Set the IRDA state ready to be able to start again the process,
1933 Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
1934 IRDA_EndRxTransfer(hirda);
1935
1936 /* Disable the IRDA DMA Rx request if enabled */
1937 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1938 {
1939 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1940
1941 /* Abort the IRDA DMA Rx channel */
1942 if (hirda->hdmarx != NULL)
1943 {
1944 /* Set the IRDA DMA Abort callback :
1945 will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
1946 hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;
1947
1948 /* Abort DMA RX */
1949 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
1950 {
1951 /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
1952 hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
1953 }
1954 }
1955 else
1956 {
1957 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1958 /* Call registered user error callback */
1959 hirda->ErrorCallback(hirda);
1960 #else
1961 /* Call legacy weak user error callback */
1962 HAL_IRDA_ErrorCallback(hirda);
1963 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1964 }
1965 }
1966 else
1967 {
1968 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1969 /* Call registered user error callback */
1970 hirda->ErrorCallback(hirda);
1971 #else
1972 /* Call legacy weak user error callback */
1973 HAL_IRDA_ErrorCallback(hirda);
1974 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1975 }
1976 }
1977 else
1978 {
1979 /* Non Blocking error : transfer could go on.
1980 Error is notified to user through user error callback */
1981 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1982 /* Call registered user error callback */
1983 hirda->ErrorCallback(hirda);
1984 #else
1985 /* Call legacy weak user error callback */
1986 HAL_IRDA_ErrorCallback(hirda);
1987 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1988 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1989 }
1990 }
1991 return;
1992
1993 } /* End if some error occurs */
1994
1995 /* IRDA in mode Transmitter ------------------------------------------------*/
1996 if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) && ((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U))
1997 {
1998 IRDA_Transmit_IT(hirda);
1999 return;
2000 }
2001
2002 /* IRDA in mode Transmitter (transmission end) -----------------------------*/
2003 if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
2004 {
2005 IRDA_EndTransmit_IT(hirda);
2006 return;
2007 }
2008
2009 }
2010
2011 /**
2012 * @brief Tx Transfer completed callback.
2013 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2014 * the configuration information for the specified IRDA module.
2015 * @retval None
2016 */
HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef * hirda)2017 __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
2018 {
2019 /* Prevent unused argument(s) compilation warning */
2020 UNUSED(hirda);
2021
2022 /* NOTE : This function should not be modified, when the callback is needed,
2023 the HAL_IRDA_TxCpltCallback can be implemented in the user file.
2024 */
2025 }
2026
2027 /**
2028 * @brief Tx Half Transfer completed callback.
2029 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2030 * the configuration information for the specified USART module.
2031 * @retval None
2032 */
HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef * hirda)2033 __weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
2034 {
2035 /* Prevent unused argument(s) compilation warning */
2036 UNUSED(hirda);
2037
2038 /* NOTE : This function should not be modified, when the callback is needed,
2039 the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file.
2040 */
2041 }
2042
2043 /**
2044 * @brief Rx Transfer completed callback.
2045 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2046 * the configuration information for the specified IRDA module.
2047 * @retval None
2048 */
HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef * hirda)2049 __weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
2050 {
2051 /* Prevent unused argument(s) compilation warning */
2052 UNUSED(hirda);
2053
2054 /* NOTE : This function should not be modified, when the callback is needed,
2055 the HAL_IRDA_RxCpltCallback can be implemented in the user file.
2056 */
2057 }
2058
2059 /**
2060 * @brief Rx Half Transfer complete callback.
2061 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2062 * the configuration information for the specified IRDA module.
2063 * @retval None
2064 */
HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef * hirda)2065 __weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
2066 {
2067 /* Prevent unused argument(s) compilation warning */
2068 UNUSED(hirda);
2069
2070 /* NOTE : This function should not be modified, when the callback is needed,
2071 the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file.
2072 */
2073 }
2074
2075 /**
2076 * @brief IRDA error callback.
2077 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2078 * the configuration information for the specified IRDA module.
2079 * @retval None
2080 */
HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef * hirda)2081 __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
2082 {
2083 /* Prevent unused argument(s) compilation warning */
2084 UNUSED(hirda);
2085
2086 /* NOTE : This function should not be modified, when the callback is needed,
2087 the HAL_IRDA_ErrorCallback can be implemented in the user file.
2088 */
2089 }
2090
2091 /**
2092 * @brief IRDA Abort Complete callback.
2093 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2094 * the configuration information for the specified IRDA module.
2095 * @retval None
2096 */
HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef * hirda)2097 __weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
2098 {
2099 /* Prevent unused argument(s) compilation warning */
2100 UNUSED(hirda);
2101
2102 /* NOTE : This function should not be modified, when the callback is needed,
2103 the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
2104 */
2105 }
2106
2107 /**
2108 * @brief IRDA Abort Complete callback.
2109 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2110 * the configuration information for the specified IRDA module.
2111 * @retval None
2112 */
HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef * hirda)2113 __weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
2114 {
2115 /* Prevent unused argument(s) compilation warning */
2116 UNUSED(hirda);
2117
2118 /* NOTE : This function should not be modified, when the callback is needed,
2119 the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
2120 */
2121 }
2122
2123 /**
2124 * @brief IRDA Abort Receive Complete callback.
2125 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2126 * the configuration information for the specified IRDA module.
2127 * @retval None
2128 */
HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef * hirda)2129 __weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
2130 {
2131 /* Prevent unused argument(s) compilation warning */
2132 UNUSED(hirda);
2133
2134 /* NOTE : This function should not be modified, when the callback is needed,
2135 the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
2136 */
2137 }
2138
2139 /**
2140 * @}
2141 */
2142
2143 /** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions
2144 * @brief IRDA State and Errors functions
2145 *
2146 @verbatim
2147 ==============================================================================
2148 ##### Peripheral State and Error functions #####
2149 ==============================================================================
2150 [..]
2151 This subsection provides a set of functions allowing to return the State of IrDA
2152 communication process and also return Peripheral Errors occurred during communication process
2153 (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state
2154 of the IRDA peripheral handle.
2155 (+) HAL_IRDA_GetError() checks in run-time errors that could occur during
2156 communication.
2157
2158 @endverbatim
2159 * @{
2160 */
2161
2162 /**
2163 * @brief Return the IRDA handle state.
2164 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2165 * the configuration information for the specified IRDA module.
2166 * @retval HAL state
2167 */
HAL_IRDA_GetState(IRDA_HandleTypeDef * hirda)2168 HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
2169 {
2170 /* Return IRDA handle state */
2171 uint32_t temp1, temp2;
2172 temp1 = (uint32_t)hirda->gState;
2173 temp2 = (uint32_t)hirda->RxState;
2174
2175 return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
2176 }
2177
2178 /**
2179 * @brief Return the IRDA handle error code.
2180 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2181 * the configuration information for the specified IRDA module.
2182 * @retval IRDA Error Code
2183 */
HAL_IRDA_GetError(IRDA_HandleTypeDef * hirda)2184 uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
2185 {
2186 return hirda->ErrorCode;
2187 }
2188
2189 /**
2190 * @}
2191 */
2192
2193 /**
2194 * @}
2195 */
2196
2197 /** @defgroup IRDA_Private_Functions IRDA Private Functions
2198 * @{
2199 */
2200
2201 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2202 /**
2203 * @brief Initialize the callbacks to their default values.
2204 * @param hirda IRDA handle.
2205 * @retval none
2206 */
IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef * hirda)2207 void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda)
2208 {
2209 /* Init the IRDA Callback settings */
2210 hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
2211 hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
2212 hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
2213 hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
2214 hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
2215 hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
2216 hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2217 hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
2218
2219 }
2220 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2221
2222 /**
2223 * @brief Configure the IRDA peripheral.
2224 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2225 * the configuration information for the specified IRDA module.
2226 * @retval HAL status
2227 */
IRDA_SetConfig(IRDA_HandleTypeDef * hirda)2228 static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
2229 {
2230 uint32_t tmpreg;
2231 IRDA_ClockSourceTypeDef clocksource;
2232 HAL_StatusTypeDef ret = HAL_OK;
2233 static const uint16_t IRDAPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
2234 uint32_t pclk;
2235
2236 /* Check the communication parameters */
2237 assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
2238 assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
2239 assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
2240 assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
2241 assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
2242 assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));
2243 assert_param(IS_IRDA_CLOCKPRESCALER(hirda->Init.ClockPrescaler));
2244
2245 /*-------------------------- USART CR1 Configuration -----------------------*/
2246 /* Configure the IRDA Word Length, Parity and transfer Mode:
2247 Set the M bits according to hirda->Init.WordLength value
2248 Set PCE and PS bits according to hirda->Init.Parity value
2249 Set TE and RE bits according to hirda->Init.Mode value */
2250 tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
2251
2252 MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
2253
2254 /*-------------------------- USART CR3 Configuration -----------------------*/
2255 MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
2256
2257 /*--------------------- USART clock PRESC Configuration ----------------*/
2258 /* Configure
2259 * - IRDA Clock Prescaler: set PRESCALER according to hirda->Init.ClockPrescaler value */
2260 MODIFY_REG(hirda->Instance->PRESC, USART_PRESC_PRESCALER, hirda->Init.ClockPrescaler);
2261
2262 /*-------------------------- USART GTPR Configuration ----------------------*/
2263 MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler);
2264
2265 /*-------------------------- USART BRR Configuration -----------------------*/
2266 IRDA_GETCLOCKSOURCE(hirda, clocksource);
2267 tmpreg = 0U;
2268 switch (clocksource)
2269 {
2270 case IRDA_CLOCKSOURCE_PCLK2:
2271 pclk = HAL_RCC_GetPCLK2Freq();
2272 tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2273 break;
2274 case IRDA_CLOCKSOURCE_HSI:
2275 tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2276 break;
2277 case IRDA_CLOCKSOURCE_SYSCLK:
2278 pclk = HAL_RCC_GetSysClockFreq();
2279 tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2280 break;
2281 case IRDA_CLOCKSOURCE_LSE:
2282 tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2283 break;
2284 default:
2285 ret = HAL_ERROR;
2286 break;
2287 }
2288
2289 /* USARTDIV must be greater than or equal to 0d16 */
2290 if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX))
2291 {
2292 hirda->Instance->BRR = tmpreg;
2293 }
2294 else
2295 {
2296 ret = HAL_ERROR;
2297 }
2298
2299 return ret;
2300 }
2301
2302 /**
2303 * @brief Check the IRDA Idle State.
2304 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2305 * the configuration information for the specified IRDA module.
2306 * @retval HAL status
2307 */
IRDA_CheckIdleState(IRDA_HandleTypeDef * hirda)2308 static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
2309 {
2310 uint32_t tickstart;
2311
2312 /* Initialize the IRDA ErrorCode */
2313 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2314
2315 /* Init tickstart for timeout managment*/
2316 tickstart = HAL_GetTick();
2317
2318 /* Check if the Transmitter is enabled */
2319 if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
2320 {
2321 /* Wait until TEACK flag is set */
2322 if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
2323 {
2324 /* Timeout occurred */
2325 return HAL_TIMEOUT;
2326 }
2327 }
2328 /* Check if the Receiver is enabled */
2329 if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
2330 {
2331 /* Wait until REACK flag is set */
2332 if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
2333 {
2334 /* Timeout occurred */
2335 return HAL_TIMEOUT;
2336 }
2337 }
2338
2339 /* Initialize the IRDA state*/
2340 hirda->gState = HAL_IRDA_STATE_READY;
2341 hirda->RxState = HAL_IRDA_STATE_READY;
2342
2343 /* Process Unlocked */
2344 __HAL_UNLOCK(hirda);
2345
2346 return HAL_OK;
2347 }
2348
2349 /**
2350 * @brief Handle IRDA Communication Timeout.
2351 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2352 * the configuration information for the specified IRDA module.
2353 * @param Flag Specifies the IRDA flag to check.
2354 * @param Status Flag status (SET or RESET)
2355 * @param Tickstart Tick start value
2356 * @param Timeout Timeout duration
2357 * @retval HAL status
2358 */
IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef * hirda,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)2359 static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout)
2360 {
2361 /* Wait until flag is set */
2362 while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
2363 {
2364 /* Check for the Timeout */
2365 if (Timeout != HAL_MAX_DELAY)
2366 {
2367 if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
2368 {
2369 /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
2370 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE));
2371 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2372
2373 hirda->gState = HAL_IRDA_STATE_READY;
2374 hirda->RxState = HAL_IRDA_STATE_READY;
2375
2376 /* Process Unlocked */
2377 __HAL_UNLOCK(hirda);
2378 return HAL_TIMEOUT;
2379 }
2380 }
2381 }
2382 return HAL_OK;
2383 }
2384
2385
2386 /**
2387 * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
2388 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2389 * the configuration information for the specified IRDA module.
2390 * @retval None
2391 */
IRDA_EndTxTransfer(IRDA_HandleTypeDef * hirda)2392 static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
2393 {
2394 /* Disable TXEIE and TCIE interrupts */
2395 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
2396
2397 /* At end of Tx process, restore hirda->gState to Ready */
2398 hirda->gState = HAL_IRDA_STATE_READY;
2399 }
2400
2401
2402 /**
2403 * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
2404 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2405 * the configuration information for the specified IRDA module.
2406 * @retval None
2407 */
IRDA_EndRxTransfer(IRDA_HandleTypeDef * hirda)2408 static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
2409 {
2410 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2411 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
2412 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2413
2414 /* At end of Rx process, restore hirda->RxState to Ready */
2415 hirda->RxState = HAL_IRDA_STATE_READY;
2416 }
2417
2418
2419 /**
2420 * @brief DMA IRDA transmit process complete callback.
2421 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2422 * the configuration information for the specified DMA module.
2423 * @retval None
2424 */
IRDA_DMATransmitCplt(DMA_HandleTypeDef * hdma)2425 static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2426 {
2427 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2428
2429 /* DMA Normal mode */
2430 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2431 {
2432 hirda->TxXferCount = 0U;
2433
2434 /* Disable the DMA transfer for transmit request by resetting the DMAT bit
2435 in the IRDA CR3 register */
2436 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
2437
2438 /* Enable the IRDA Transmit Complete Interrupt */
2439 SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2440 }
2441 /* DMA Circular mode */
2442 else
2443 {
2444 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2445 /* Call registered Tx complete callback */
2446 hirda->TxCpltCallback(hirda);
2447 #else
2448 /* Call legacy weak Tx complete callback */
2449 HAL_IRDA_TxCpltCallback(hirda);
2450 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2451 }
2452
2453 }
2454
2455 /**
2456 * @brief DMA IRDA transmit process half complete callback.
2457 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2458 * the configuration information for the specified DMA module.
2459 * @retval None
2460 */
IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef * hdma)2461 static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
2462 {
2463 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2464
2465 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2466 /* Call registered Tx Half complete callback */
2467 hirda->TxHalfCpltCallback(hirda);
2468 #else
2469 /* Call legacy weak Tx complete callback */
2470 HAL_IRDA_TxHalfCpltCallback(hirda);
2471 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2472 }
2473
2474 /**
2475 * @brief DMA IRDA receive process complete callback.
2476 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2477 * the configuration information for the specified DMA module.
2478 * @retval None
2479 */
IRDA_DMAReceiveCplt(DMA_HandleTypeDef * hdma)2480 static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
2481 {
2482 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2483
2484 /* DMA Normal mode */
2485 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2486 {
2487 hirda->RxXferCount = 0U;
2488
2489 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2490 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
2491 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2492
2493 /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2494 in the IRDA CR3 register */
2495 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
2496
2497 /* At end of Rx process, restore hirda->RxState to Ready */
2498 hirda->RxState = HAL_IRDA_STATE_READY;
2499 }
2500
2501 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2502 /* Call registered Rx complete callback */
2503 hirda->RxCpltCallback(hirda);
2504 #else
2505 /* Call legacy weak Rx complete callback */
2506 HAL_IRDA_RxCpltCallback(hirda);
2507 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2508 }
2509
2510 /**
2511 * @brief DMA IRDA receive process half complete callback.
2512 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2513 * the configuration information for the specified DMA module.
2514 * @retval None
2515 */
IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef * hdma)2516 static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
2517 {
2518 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2519
2520 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2521 /*Call registered Rx Half complete callback*/
2522 hirda->RxHalfCpltCallback(hirda);
2523 #else
2524 /* Call legacy weak Rx Half complete callback */
2525 HAL_IRDA_RxHalfCpltCallback(hirda);
2526 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2527 }
2528
2529 /**
2530 * @brief DMA IRDA communication error callback.
2531 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2532 * the configuration information for the specified DMA module.
2533 * @retval None
2534 */
IRDA_DMAError(DMA_HandleTypeDef * hdma)2535 static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
2536 {
2537 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2538
2539 /* Stop IRDA DMA Tx request if ongoing */
2540 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
2541 {
2542 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
2543 {
2544 hirda->TxXferCount = 0U;
2545 IRDA_EndTxTransfer(hirda);
2546 }
2547 }
2548
2549 /* Stop IRDA DMA Rx request if ongoing */
2550 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
2551 {
2552 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
2553 {
2554 hirda->RxXferCount = 0U;
2555 IRDA_EndRxTransfer(hirda);
2556 }
2557 }
2558
2559 hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
2560 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2561 /* Call registered user error callback */
2562 hirda->ErrorCallback(hirda);
2563 #else
2564 /* Call legacy weak user error callback */
2565 HAL_IRDA_ErrorCallback(hirda);
2566 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2567 }
2568
2569 /**
2570 * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error
2571 * (To be called at end of DMA Abort procedure following error occurrence).
2572 * @param hdma DMA handle.
2573 * @retval None
2574 */
IRDA_DMAAbortOnError(DMA_HandleTypeDef * hdma)2575 static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
2576 {
2577 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2578 hirda->RxXferCount = 0U;
2579 hirda->TxXferCount = 0U;
2580
2581 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2582 /* Call registered user error callback */
2583 hirda->ErrorCallback(hirda);
2584 #else
2585 /* Call legacy weak user error callback */
2586 HAL_IRDA_ErrorCallback(hirda);
2587 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2588 }
2589
2590 /**
2591 * @brief DMA IRDA Tx communication abort callback, when initiated by user
2592 * (To be called at end of DMA Tx Abort procedure following user abort request).
2593 * @note When this callback is executed, User Abort complete call back is called only if no
2594 * Abort still ongoing for Rx DMA Handle.
2595 * @param hdma DMA handle.
2596 * @retval None
2597 */
IRDA_DMATxAbortCallback(DMA_HandleTypeDef * hdma)2598 static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
2599 {
2600 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2601
2602 hirda->hdmatx->XferAbortCallback = NULL;
2603
2604 /* Check if an Abort process is still ongoing */
2605 if (hirda->hdmarx != NULL)
2606 {
2607 if (hirda->hdmarx->XferAbortCallback != NULL)
2608 {
2609 return;
2610 }
2611 }
2612
2613 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2614 hirda->TxXferCount = 0U;
2615 hirda->RxXferCount = 0U;
2616
2617 /* Reset errorCode */
2618 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2619
2620 /* Clear the Error flags in the ICR register */
2621 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2622
2623 /* Restore hirda->gState and hirda->RxState to Ready */
2624 hirda->gState = HAL_IRDA_STATE_READY;
2625 hirda->RxState = HAL_IRDA_STATE_READY;
2626
2627 /* Call user Abort complete callback */
2628 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2629 /* Call registered Abort complete callback */
2630 hirda->AbortCpltCallback(hirda);
2631 #else
2632 /* Call legacy weak Abort complete callback */
2633 HAL_IRDA_AbortCpltCallback(hirda);
2634 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2635 }
2636
2637
2638 /**
2639 * @brief DMA IRDA Rx communication abort callback, when initiated by user
2640 * (To be called at end of DMA Rx Abort procedure following user abort request).
2641 * @note When this callback is executed, User Abort complete call back is called only if no
2642 * Abort still ongoing for Tx DMA Handle.
2643 * @param hdma DMA handle.
2644 * @retval None
2645 */
IRDA_DMARxAbortCallback(DMA_HandleTypeDef * hdma)2646 static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
2647 {
2648 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2649
2650 hirda->hdmarx->XferAbortCallback = NULL;
2651
2652 /* Check if an Abort process is still ongoing */
2653 if (hirda->hdmatx != NULL)
2654 {
2655 if (hirda->hdmatx->XferAbortCallback != NULL)
2656 {
2657 return;
2658 }
2659 }
2660
2661 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2662 hirda->TxXferCount = 0U;
2663 hirda->RxXferCount = 0U;
2664
2665 /* Reset errorCode */
2666 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2667
2668 /* Clear the Error flags in the ICR register */
2669 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2670
2671 /* Restore hirda->gState and hirda->RxState to Ready */
2672 hirda->gState = HAL_IRDA_STATE_READY;
2673 hirda->RxState = HAL_IRDA_STATE_READY;
2674
2675 /* Call user Abort complete callback */
2676 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2677 /* Call registered Abort complete callback */
2678 hirda->AbortCpltCallback(hirda);
2679 #else
2680 /* Call legacy weak Abort complete callback */
2681 HAL_IRDA_AbortCpltCallback(hirda);
2682 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2683 }
2684
2685
2686 /**
2687 * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to
2688 * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
2689 * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
2690 * and leads to user Tx Abort Complete callback execution).
2691 * @param hdma DMA handle.
2692 * @retval None
2693 */
IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)2694 static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2695 {
2696 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2697
2698 hirda->TxXferCount = 0U;
2699
2700 /* Restore hirda->gState to Ready */
2701 hirda->gState = HAL_IRDA_STATE_READY;
2702
2703 /* Call user Abort complete callback */
2704 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2705 /* Call registered Abort Transmit Complete Callback */
2706 hirda->AbortTransmitCpltCallback(hirda);
2707 #else
2708 /* Call legacy weak Abort Transmit Complete Callback */
2709 HAL_IRDA_AbortTransmitCpltCallback(hirda);
2710 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2711 }
2712
2713 /**
2714 * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to
2715 * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
2716 * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
2717 * and leads to user Rx Abort Complete callback execution).
2718 * @param hdma DMA handle.
2719 * @retval None
2720 */
IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)2721 static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2722 {
2723 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2724
2725 hirda->RxXferCount = 0U;
2726
2727 /* Clear the Error flags in the ICR register */
2728 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2729
2730 /* Restore hirda->RxState to Ready */
2731 hirda->RxState = HAL_IRDA_STATE_READY;
2732
2733 /* Call user Abort complete callback */
2734 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2735 /* Call registered Abort Receive Complete Callback */
2736 hirda->AbortReceiveCpltCallback(hirda);
2737 #else
2738 /* Call legacy weak Abort Receive Complete Callback */
2739 HAL_IRDA_AbortReceiveCpltCallback(hirda);
2740 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2741 }
2742
2743 /**
2744 * @brief Send an amount of data in interrupt mode.
2745 * @note Function is called under interruption only, once
2746 * interruptions have been enabled by HAL_IRDA_Transmit_IT().
2747 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2748 * the configuration information for the specified IRDA module.
2749 * @retval None
2750 */
IRDA_Transmit_IT(IRDA_HandleTypeDef * hirda)2751 static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
2752 {
2753 uint16_t *tmp;
2754
2755 /* Check that a Tx process is ongoing */
2756 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
2757 {
2758 if (hirda->TxXferCount == 0U)
2759 {
2760 /* Disable the IRDA Transmit Data Register Empty Interrupt */
2761 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
2762
2763 /* Enable the IRDA Transmit Complete Interrupt */
2764 SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2765 }
2766 else
2767 {
2768 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
2769 {
2770 tmp = (uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */
2771 hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
2772 hirda->pTxBuffPtr += 2U;
2773 }
2774 else
2775 {
2776 hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU);
2777 hirda->pTxBuffPtr++;
2778 }
2779 hirda->TxXferCount--;
2780 }
2781 }
2782 }
2783
2784 /**
2785 * @brief Wrap up transmission in non-blocking mode.
2786 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2787 * the configuration information for the specified IRDA module.
2788 * @retval None
2789 */
IRDA_EndTransmit_IT(IRDA_HandleTypeDef * hirda)2790 static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
2791 {
2792 /* Disable the IRDA Transmit Complete Interrupt */
2793 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2794
2795 /* Tx process is ended, restore hirda->gState to Ready */
2796 hirda->gState = HAL_IRDA_STATE_READY;
2797
2798 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2799 /* Call registered Tx complete callback */
2800 hirda->TxCpltCallback(hirda);
2801 #else
2802 /* Call legacy weak Tx complete callback */
2803 HAL_IRDA_TxCpltCallback(hirda);
2804 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2805 }
2806
2807 /**
2808 * @brief Receive an amount of data in interrupt mode.
2809 * @note Function is called under interruption only, once
2810 * interruptions have been enabled by HAL_IRDA_Receive_IT()
2811 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2812 * the configuration information for the specified IRDA module.
2813 * @retval None
2814 */
IRDA_Receive_IT(IRDA_HandleTypeDef * hirda)2815 static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
2816 {
2817 uint16_t *tmp;
2818 uint16_t uhMask = hirda->Mask;
2819 uint16_t uhdata;
2820
2821 /* Check that a Rx process is ongoing */
2822 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
2823 {
2824 uhdata = (uint16_t) READ_REG(hirda->Instance->RDR);
2825 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
2826 {
2827 tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */
2828 *tmp = (uint16_t)(uhdata & uhMask);
2829 hirda->pRxBuffPtr += 2U;
2830 }
2831 else
2832 {
2833 *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
2834 hirda->pRxBuffPtr++;
2835 }
2836
2837 hirda->RxXferCount--;
2838 if (hirda->RxXferCount == 0U)
2839 {
2840 /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */
2841 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
2842
2843 /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
2844 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2845
2846 /* Rx process is completed, restore hirda->RxState to Ready */
2847 hirda->RxState = HAL_IRDA_STATE_READY;
2848
2849 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2850 /* Call registered Rx complete callback */
2851 hirda->RxCpltCallback(hirda);
2852 #else
2853 /* Call legacy weak Rx complete callback */
2854 HAL_IRDA_RxCpltCallback(hirda);
2855 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2856 }
2857 }
2858 else
2859 {
2860 /* Clear RXNE interrupt flag */
2861 __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
2862 }
2863 }
2864
2865 /**
2866 * @}
2867 */
2868
2869 #endif /* HAL_IRDA_MODULE_ENABLED */
2870 /**
2871 * @}
2872 */
2873
2874 /**
2875 * @}
2876 */
2877
2878 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2879