1 /**
2 ******************************************************************************
3 * @file stm32f7xx_ll_spi.h
4 * @author MCD Application Team
5 * @brief Header file of SPI LL module.
6 ******************************************************************************
7 * @attention
8 *
9 * <h2><center>© Copyright (c) 2017 STMicroelectronics.
10 * All rights reserved.</center></h2>
11 *
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
16 *
17 ******************************************************************************
18 */
19
20 /* Define to prevent recursive inclusion -------------------------------------*/
21 #ifndef STM32F7xx_LL_SPI_H
22 #define STM32F7xx_LL_SPI_H
23
24 #ifdef __cplusplus
25 extern "C" {
26 #endif
27
28 /* Includes ------------------------------------------------------------------*/
29 #include "stm32f7xx.h"
30
31 /** @addtogroup STM32F7xx_LL_Driver
32 * @{
33 */
34
35 #if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)
36
37 /** @defgroup SPI_LL SPI
38 * @{
39 */
40
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44
45 /* Exported types ------------------------------------------------------------*/
46 #if defined(USE_FULL_LL_DRIVER)
47 /** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
48 * @{
49 */
50
51 /**
52 * @brief SPI Init structures definition
53 */
54 typedef struct
55 {
56 uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
57 This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
58
59 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
60
61 uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
62 This parameter can be a value of @ref SPI_LL_EC_MODE.
63
64 This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
65
66 uint32_t DataWidth; /*!< Specifies the SPI data width.
67 This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
68
69 This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
70
71 uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
72 This parameter can be a value of @ref SPI_LL_EC_POLARITY.
73
74 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
75
76 uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
77 This parameter can be a value of @ref SPI_LL_EC_PHASE.
78
79 This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
80
81 uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
82 This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
83
84 This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
85
86 uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
87 This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
88 @note The communication clock is derived from the master clock. The slave clock does not need to be set.
89
90 This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
91
92 uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
93 This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
94
95 This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
96
97 uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
98 This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
99
100 This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
101
102 uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
103 This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
104
105 This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
106
107 } LL_SPI_InitTypeDef;
108
109 /**
110 * @}
111 */
112 #endif /* USE_FULL_LL_DRIVER */
113
114 /* Exported constants --------------------------------------------------------*/
115 /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
116 * @{
117 */
118
119 /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
120 * @brief Flags defines which can be used with LL_SPI_ReadReg function
121 * @{
122 */
123 #define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */
124 #define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */
125 #define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */
126 #define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */
127 #define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */
128 #define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */
129 #define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */
130 /**
131 * @}
132 */
133
134 /** @defgroup SPI_LL_EC_IT IT Defines
135 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
136 * @{
137 */
138 #define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
139 #define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
140 #define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */
141 /**
142 * @}
143 */
144
145 /** @defgroup SPI_LL_EC_MODE Operation Mode
146 * @{
147 */
148 #define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */
149 #define LL_SPI_MODE_SLAVE 0x00000000U /*!< Slave configuration */
150 /**
151 * @}
152 */
153
154 /** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
155 * @{
156 */
157 #define LL_SPI_PROTOCOL_MOTOROLA 0x00000000U /*!< Motorola mode. Used as default value */
158 #define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */
159 /**
160 * @}
161 */
162
163 /** @defgroup SPI_LL_EC_PHASE Clock Phase
164 * @{
165 */
166 #define LL_SPI_PHASE_1EDGE 0x00000000U /*!< First clock transition is the first data capture edge */
167 #define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */
168 /**
169 * @}
170 */
171
172 /** @defgroup SPI_LL_EC_POLARITY Clock Polarity
173 * @{
174 */
175 #define LL_SPI_POLARITY_LOW 0x00000000U /*!< Clock to 0 when idle */
176 #define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */
177 /**
178 * @}
179 */
180
181 /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
182 * @{
183 */
184 #define LL_SPI_BAUDRATEPRESCALER_DIV2 0x00000000U /*!< BaudRate control equal to fPCLK/2 */
185 #define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */
186 #define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */
187 #define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */
188 #define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */
189 #define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */
190 #define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */
191 #define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */
192 /**
193 * @}
194 */
195
196 /** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
197 * @{
198 */
199 #define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */
200 #define LL_SPI_MSB_FIRST 0x00000000U /*!< Data is transmitted/received with the MSB first */
201 /**
202 * @}
203 */
204
205 /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
206 * @{
207 */
208 #define LL_SPI_FULL_DUPLEX 0x00000000U /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
209 #define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */
210 #define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */
211 #define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */
212 /**
213 * @}
214 */
215
216 /** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
217 * @{
218 */
219 #define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */
220 #define LL_SPI_NSS_HARD_INPUT 0x00000000U /*!< NSS pin used in Input. Only used in Master mode */
221 #define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
222 /**
223 * @}
224 */
225
226 /** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
227 * @{
228 */
229 #define LL_SPI_DATAWIDTH_4BIT (SPI_CR2_DS_0 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 4 bits */
230 #define LL_SPI_DATAWIDTH_5BIT (SPI_CR2_DS_2) /*!< Data length for SPI transfer: 5 bits */
231 #define LL_SPI_DATAWIDTH_6BIT (SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 6 bits */
232 #define LL_SPI_DATAWIDTH_7BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 7 bits */
233 #define LL_SPI_DATAWIDTH_8BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 8 bits */
234 #define LL_SPI_DATAWIDTH_9BIT (SPI_CR2_DS_3) /*!< Data length for SPI transfer: 9 bits */
235 #define LL_SPI_DATAWIDTH_10BIT (SPI_CR2_DS_3 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 10 bits */
236 #define LL_SPI_DATAWIDTH_11BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 11 bits */
237 #define LL_SPI_DATAWIDTH_12BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 12 bits */
238 #define LL_SPI_DATAWIDTH_13BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2) /*!< Data length for SPI transfer: 13 bits */
239 #define LL_SPI_DATAWIDTH_14BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 14 bits */
240 #define LL_SPI_DATAWIDTH_15BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 15 bits */
241 #define LL_SPI_DATAWIDTH_16BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 16 bits */
242 /**
243 * @}
244 */
245 #if defined(USE_FULL_LL_DRIVER)
246
247 /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
248 * @{
249 */
250 #define LL_SPI_CRCCALCULATION_DISABLE 0x00000000U /*!< CRC calculation disabled */
251 #define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */
252 /**
253 * @}
254 */
255 #endif /* USE_FULL_LL_DRIVER */
256
257 /** @defgroup SPI_LL_EC_CRC_LENGTH CRC Length
258 * @{
259 */
260 #define LL_SPI_CRC_8BIT 0x00000000U /*!< 8-bit CRC length */
261 #define LL_SPI_CRC_16BIT (SPI_CR1_CRCL) /*!< 16-bit CRC length */
262 /**
263 * @}
264 */
265
266 /** @defgroup SPI_LL_EC_RX_FIFO_TH RX FIFO Threshold
267 * @{
268 */
269 #define LL_SPI_RX_FIFO_TH_HALF 0x00000000U /*!< RXNE event is generated if FIFO level is greater than or equal to 1/2 (16-bit) */
270 #define LL_SPI_RX_FIFO_TH_QUARTER (SPI_CR2_FRXTH) /*!< RXNE event is generated if FIFO level is greater than or equal to 1/4 (8-bit) */
271 /**
272 * @}
273 */
274
275 /** @defgroup SPI_LL_EC_RX_FIFO RX FIFO Level
276 * @{
277 */
278 #define LL_SPI_RX_FIFO_EMPTY 0x00000000U /*!< FIFO reception empty */
279 #define LL_SPI_RX_FIFO_QUARTER_FULL (SPI_SR_FRLVL_0) /*!< FIFO reception 1/4 */
280 #define LL_SPI_RX_FIFO_HALF_FULL (SPI_SR_FRLVL_1) /*!< FIFO reception 1/2 */
281 #define LL_SPI_RX_FIFO_FULL (SPI_SR_FRLVL_1 | SPI_SR_FRLVL_0) /*!< FIFO reception full */
282 /**
283 * @}
284 */
285
286 /** @defgroup SPI_LL_EC_TX_FIFO TX FIFO Level
287 * @{
288 */
289 #define LL_SPI_TX_FIFO_EMPTY 0x00000000U /*!< FIFO transmission empty */
290 #define LL_SPI_TX_FIFO_QUARTER_FULL (SPI_SR_FTLVL_0) /*!< FIFO transmission 1/4 */
291 #define LL_SPI_TX_FIFO_HALF_FULL (SPI_SR_FTLVL_1) /*!< FIFO transmission 1/2 */
292 #define LL_SPI_TX_FIFO_FULL (SPI_SR_FTLVL_1 | SPI_SR_FTLVL_0) /*!< FIFO transmission full */
293 /**
294 * @}
295 */
296
297 /** @defgroup SPI_LL_EC_DMA_PARITY DMA Parity
298 * @{
299 */
300 #define LL_SPI_DMA_PARITY_EVEN 0x00000000U /*!< Select DMA parity Even */
301 #define LL_SPI_DMA_PARITY_ODD 0x00000001U /*!< Select DMA parity Odd */
302
303 /**
304 * @}
305 */
306
307 /**
308 * @}
309 */
310
311 /* Exported macro ------------------------------------------------------------*/
312 /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
313 * @{
314 */
315
316 /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
317 * @{
318 */
319
320 /**
321 * @brief Write a value in SPI register
322 * @param __INSTANCE__ SPI Instance
323 * @param __REG__ Register to be written
324 * @param __VALUE__ Value to be written in the register
325 * @retval None
326 */
327 #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
328
329 /**
330 * @brief Read a value in SPI register
331 * @param __INSTANCE__ SPI Instance
332 * @param __REG__ Register to be read
333 * @retval Register value
334 */
335 #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
336 /**
337 * @}
338 */
339
340 /**
341 * @}
342 */
343
344 /* Exported functions --------------------------------------------------------*/
345 /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
346 * @{
347 */
348
349 /** @defgroup SPI_LL_EF_Configuration Configuration
350 * @{
351 */
352
353 /**
354 * @brief Enable SPI peripheral
355 * @rmtoll CR1 SPE LL_SPI_Enable
356 * @param SPIx SPI Instance
357 * @retval None
358 */
LL_SPI_Enable(SPI_TypeDef * SPIx)359 __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
360 {
361 SET_BIT(SPIx->CR1, SPI_CR1_SPE);
362 }
363
364 /**
365 * @brief Disable SPI peripheral
366 * @note When disabling the SPI, follow the procedure described in the Reference Manual.
367 * @rmtoll CR1 SPE LL_SPI_Disable
368 * @param SPIx SPI Instance
369 * @retval None
370 */
LL_SPI_Disable(SPI_TypeDef * SPIx)371 __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
372 {
373 CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
374 }
375
376 /**
377 * @brief Check if SPI peripheral is enabled
378 * @rmtoll CR1 SPE LL_SPI_IsEnabled
379 * @param SPIx SPI Instance
380 * @retval State of bit (1 or 0).
381 */
LL_SPI_IsEnabled(SPI_TypeDef * SPIx)382 __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
383 {
384 return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL);
385 }
386
387 /**
388 * @brief Set SPI operation mode to Master or Slave
389 * @note This bit should not be changed when communication is ongoing.
390 * @rmtoll CR1 MSTR LL_SPI_SetMode\n
391 * CR1 SSI LL_SPI_SetMode
392 * @param SPIx SPI Instance
393 * @param Mode This parameter can be one of the following values:
394 * @arg @ref LL_SPI_MODE_MASTER
395 * @arg @ref LL_SPI_MODE_SLAVE
396 * @retval None
397 */
LL_SPI_SetMode(SPI_TypeDef * SPIx,uint32_t Mode)398 __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
399 {
400 MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
401 }
402
403 /**
404 * @brief Get SPI operation mode (Master or Slave)
405 * @rmtoll CR1 MSTR LL_SPI_GetMode\n
406 * CR1 SSI LL_SPI_GetMode
407 * @param SPIx SPI Instance
408 * @retval Returned value can be one of the following values:
409 * @arg @ref LL_SPI_MODE_MASTER
410 * @arg @ref LL_SPI_MODE_SLAVE
411 */
LL_SPI_GetMode(SPI_TypeDef * SPIx)412 __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
413 {
414 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
415 }
416
417 /**
418 * @brief Set serial protocol used
419 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
420 * @rmtoll CR2 FRF LL_SPI_SetStandard
421 * @param SPIx SPI Instance
422 * @param Standard This parameter can be one of the following values:
423 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
424 * @arg @ref LL_SPI_PROTOCOL_TI
425 * @retval None
426 */
LL_SPI_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)427 __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
428 {
429 MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
430 }
431
432 /**
433 * @brief Get serial protocol used
434 * @rmtoll CR2 FRF LL_SPI_GetStandard
435 * @param SPIx SPI Instance
436 * @retval Returned value can be one of the following values:
437 * @arg @ref LL_SPI_PROTOCOL_MOTOROLA
438 * @arg @ref LL_SPI_PROTOCOL_TI
439 */
LL_SPI_GetStandard(SPI_TypeDef * SPIx)440 __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
441 {
442 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
443 }
444
445 /**
446 * @brief Set clock phase
447 * @note This bit should not be changed when communication is ongoing.
448 * This bit is not used in SPI TI mode.
449 * @rmtoll CR1 CPHA LL_SPI_SetClockPhase
450 * @param SPIx SPI Instance
451 * @param ClockPhase This parameter can be one of the following values:
452 * @arg @ref LL_SPI_PHASE_1EDGE
453 * @arg @ref LL_SPI_PHASE_2EDGE
454 * @retval None
455 */
LL_SPI_SetClockPhase(SPI_TypeDef * SPIx,uint32_t ClockPhase)456 __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
457 {
458 MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
459 }
460
461 /**
462 * @brief Get clock phase
463 * @rmtoll CR1 CPHA LL_SPI_GetClockPhase
464 * @param SPIx SPI Instance
465 * @retval Returned value can be one of the following values:
466 * @arg @ref LL_SPI_PHASE_1EDGE
467 * @arg @ref LL_SPI_PHASE_2EDGE
468 */
LL_SPI_GetClockPhase(SPI_TypeDef * SPIx)469 __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
470 {
471 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
472 }
473
474 /**
475 * @brief Set clock polarity
476 * @note This bit should not be changed when communication is ongoing.
477 * This bit is not used in SPI TI mode.
478 * @rmtoll CR1 CPOL LL_SPI_SetClockPolarity
479 * @param SPIx SPI Instance
480 * @param ClockPolarity This parameter can be one of the following values:
481 * @arg @ref LL_SPI_POLARITY_LOW
482 * @arg @ref LL_SPI_POLARITY_HIGH
483 * @retval None
484 */
LL_SPI_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)485 __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
486 {
487 MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
488 }
489
490 /**
491 * @brief Get clock polarity
492 * @rmtoll CR1 CPOL LL_SPI_GetClockPolarity
493 * @param SPIx SPI Instance
494 * @retval Returned value can be one of the following values:
495 * @arg @ref LL_SPI_POLARITY_LOW
496 * @arg @ref LL_SPI_POLARITY_HIGH
497 */
LL_SPI_GetClockPolarity(SPI_TypeDef * SPIx)498 __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
499 {
500 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
501 }
502
503 /**
504 * @brief Set baud rate prescaler
505 * @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
506 * @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler
507 * @param SPIx SPI Instance
508 * @param BaudRate This parameter can be one of the following values:
509 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
510 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
511 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
512 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
513 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
514 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
515 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
516 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
517 * @retval None
518 */
LL_SPI_SetBaudRatePrescaler(SPI_TypeDef * SPIx,uint32_t BaudRate)519 __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
520 {
521 MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
522 }
523
524 /**
525 * @brief Get baud rate prescaler
526 * @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler
527 * @param SPIx SPI Instance
528 * @retval Returned value can be one of the following values:
529 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
530 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
531 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
532 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
533 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
534 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
535 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
536 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
537 */
LL_SPI_GetBaudRatePrescaler(SPI_TypeDef * SPIx)538 __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
539 {
540 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
541 }
542
543 /**
544 * @brief Set transfer bit order
545 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
546 * @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder
547 * @param SPIx SPI Instance
548 * @param BitOrder This parameter can be one of the following values:
549 * @arg @ref LL_SPI_LSB_FIRST
550 * @arg @ref LL_SPI_MSB_FIRST
551 * @retval None
552 */
LL_SPI_SetTransferBitOrder(SPI_TypeDef * SPIx,uint32_t BitOrder)553 __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
554 {
555 MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
556 }
557
558 /**
559 * @brief Get transfer bit order
560 * @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder
561 * @param SPIx SPI Instance
562 * @retval Returned value can be one of the following values:
563 * @arg @ref LL_SPI_LSB_FIRST
564 * @arg @ref LL_SPI_MSB_FIRST
565 */
LL_SPI_GetTransferBitOrder(SPI_TypeDef * SPIx)566 __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
567 {
568 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
569 }
570
571 /**
572 * @brief Set transfer direction mode
573 * @note For Half-Duplex mode, Rx Direction is set by default.
574 * In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
575 * @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n
576 * CR1 BIDIMODE LL_SPI_SetTransferDirection\n
577 * CR1 BIDIOE LL_SPI_SetTransferDirection
578 * @param SPIx SPI Instance
579 * @param TransferDirection This parameter can be one of the following values:
580 * @arg @ref LL_SPI_FULL_DUPLEX
581 * @arg @ref LL_SPI_SIMPLEX_RX
582 * @arg @ref LL_SPI_HALF_DUPLEX_RX
583 * @arg @ref LL_SPI_HALF_DUPLEX_TX
584 * @retval None
585 */
LL_SPI_SetTransferDirection(SPI_TypeDef * SPIx,uint32_t TransferDirection)586 __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
587 {
588 MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
589 }
590
591 /**
592 * @brief Get transfer direction mode
593 * @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n
594 * CR1 BIDIMODE LL_SPI_GetTransferDirection\n
595 * CR1 BIDIOE LL_SPI_GetTransferDirection
596 * @param SPIx SPI Instance
597 * @retval Returned value can be one of the following values:
598 * @arg @ref LL_SPI_FULL_DUPLEX
599 * @arg @ref LL_SPI_SIMPLEX_RX
600 * @arg @ref LL_SPI_HALF_DUPLEX_RX
601 * @arg @ref LL_SPI_HALF_DUPLEX_TX
602 */
LL_SPI_GetTransferDirection(SPI_TypeDef * SPIx)603 __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
604 {
605 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
606 }
607
608 /**
609 * @brief Set frame data width
610 * @rmtoll CR2 DS LL_SPI_SetDataWidth
611 * @param SPIx SPI Instance
612 * @param DataWidth This parameter can be one of the following values:
613 * @arg @ref LL_SPI_DATAWIDTH_4BIT
614 * @arg @ref LL_SPI_DATAWIDTH_5BIT
615 * @arg @ref LL_SPI_DATAWIDTH_6BIT
616 * @arg @ref LL_SPI_DATAWIDTH_7BIT
617 * @arg @ref LL_SPI_DATAWIDTH_8BIT
618 * @arg @ref LL_SPI_DATAWIDTH_9BIT
619 * @arg @ref LL_SPI_DATAWIDTH_10BIT
620 * @arg @ref LL_SPI_DATAWIDTH_11BIT
621 * @arg @ref LL_SPI_DATAWIDTH_12BIT
622 * @arg @ref LL_SPI_DATAWIDTH_13BIT
623 * @arg @ref LL_SPI_DATAWIDTH_14BIT
624 * @arg @ref LL_SPI_DATAWIDTH_15BIT
625 * @arg @ref LL_SPI_DATAWIDTH_16BIT
626 * @retval None
627 */
LL_SPI_SetDataWidth(SPI_TypeDef * SPIx,uint32_t DataWidth)628 __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
629 {
630 MODIFY_REG(SPIx->CR2, SPI_CR2_DS, DataWidth);
631 }
632
633 /**
634 * @brief Get frame data width
635 * @rmtoll CR2 DS LL_SPI_GetDataWidth
636 * @param SPIx SPI Instance
637 * @retval Returned value can be one of the following values:
638 * @arg @ref LL_SPI_DATAWIDTH_4BIT
639 * @arg @ref LL_SPI_DATAWIDTH_5BIT
640 * @arg @ref LL_SPI_DATAWIDTH_6BIT
641 * @arg @ref LL_SPI_DATAWIDTH_7BIT
642 * @arg @ref LL_SPI_DATAWIDTH_8BIT
643 * @arg @ref LL_SPI_DATAWIDTH_9BIT
644 * @arg @ref LL_SPI_DATAWIDTH_10BIT
645 * @arg @ref LL_SPI_DATAWIDTH_11BIT
646 * @arg @ref LL_SPI_DATAWIDTH_12BIT
647 * @arg @ref LL_SPI_DATAWIDTH_13BIT
648 * @arg @ref LL_SPI_DATAWIDTH_14BIT
649 * @arg @ref LL_SPI_DATAWIDTH_15BIT
650 * @arg @ref LL_SPI_DATAWIDTH_16BIT
651 */
LL_SPI_GetDataWidth(SPI_TypeDef * SPIx)652 __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
653 {
654 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_DS));
655 }
656
657 /**
658 * @brief Set threshold of RXFIFO that triggers an RXNE event
659 * @rmtoll CR2 FRXTH LL_SPI_SetRxFIFOThreshold
660 * @param SPIx SPI Instance
661 * @param Threshold This parameter can be one of the following values:
662 * @arg @ref LL_SPI_RX_FIFO_TH_HALF
663 * @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
664 * @retval None
665 */
LL_SPI_SetRxFIFOThreshold(SPI_TypeDef * SPIx,uint32_t Threshold)666 __STATIC_INLINE void LL_SPI_SetRxFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
667 {
668 MODIFY_REG(SPIx->CR2, SPI_CR2_FRXTH, Threshold);
669 }
670
671 /**
672 * @brief Get threshold of RXFIFO that triggers an RXNE event
673 * @rmtoll CR2 FRXTH LL_SPI_GetRxFIFOThreshold
674 * @param SPIx SPI Instance
675 * @retval Returned value can be one of the following values:
676 * @arg @ref LL_SPI_RX_FIFO_TH_HALF
677 * @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
678 */
LL_SPI_GetRxFIFOThreshold(SPI_TypeDef * SPIx)679 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOThreshold(SPI_TypeDef *SPIx)
680 {
681 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRXTH));
682 }
683
684 /**
685 * @}
686 */
687
688 /** @defgroup SPI_LL_EF_CRC_Management CRC Management
689 * @{
690 */
691
692 /**
693 * @brief Enable CRC
694 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
695 * @rmtoll CR1 CRCEN LL_SPI_EnableCRC
696 * @param SPIx SPI Instance
697 * @retval None
698 */
LL_SPI_EnableCRC(SPI_TypeDef * SPIx)699 __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
700 {
701 SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
702 }
703
704 /**
705 * @brief Disable CRC
706 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
707 * @rmtoll CR1 CRCEN LL_SPI_DisableCRC
708 * @param SPIx SPI Instance
709 * @retval None
710 */
LL_SPI_DisableCRC(SPI_TypeDef * SPIx)711 __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
712 {
713 CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
714 }
715
716 /**
717 * @brief Check if CRC is enabled
718 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
719 * @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC
720 * @param SPIx SPI Instance
721 * @retval State of bit (1 or 0).
722 */
LL_SPI_IsEnabledCRC(SPI_TypeDef * SPIx)723 __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
724 {
725 return ((READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN)) ? 1UL : 0UL);
726 }
727
728 /**
729 * @brief Set CRC Length
730 * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
731 * @rmtoll CR1 CRCL LL_SPI_SetCRCWidth
732 * @param SPIx SPI Instance
733 * @param CRCLength This parameter can be one of the following values:
734 * @arg @ref LL_SPI_CRC_8BIT
735 * @arg @ref LL_SPI_CRC_16BIT
736 * @retval None
737 */
LL_SPI_SetCRCWidth(SPI_TypeDef * SPIx,uint32_t CRCLength)738 __STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength)
739 {
740 MODIFY_REG(SPIx->CR1, SPI_CR1_CRCL, CRCLength);
741 }
742
743 /**
744 * @brief Get CRC Length
745 * @rmtoll CR1 CRCL LL_SPI_GetCRCWidth
746 * @param SPIx SPI Instance
747 * @retval Returned value can be one of the following values:
748 * @arg @ref LL_SPI_CRC_8BIT
749 * @arg @ref LL_SPI_CRC_16BIT
750 */
LL_SPI_GetCRCWidth(SPI_TypeDef * SPIx)751 __STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx)
752 {
753 return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CRCL));
754 }
755
756 /**
757 * @brief Set CRCNext to transfer CRC on the line
758 * @note This bit has to be written as soon as the last data is written in the SPIx_DR register.
759 * @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext
760 * @param SPIx SPI Instance
761 * @retval None
762 */
LL_SPI_SetCRCNext(SPI_TypeDef * SPIx)763 __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
764 {
765 SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
766 }
767
768 /**
769 * @brief Set polynomial for CRC calculation
770 * @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial
771 * @param SPIx SPI Instance
772 * @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
773 * @retval None
774 */
LL_SPI_SetCRCPolynomial(SPI_TypeDef * SPIx,uint32_t CRCPoly)775 __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
776 {
777 WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
778 }
779
780 /**
781 * @brief Get polynomial for CRC calculation
782 * @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial
783 * @param SPIx SPI Instance
784 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
785 */
LL_SPI_GetCRCPolynomial(SPI_TypeDef * SPIx)786 __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
787 {
788 return (uint32_t)(READ_REG(SPIx->CRCPR));
789 }
790
791 /**
792 * @brief Get Rx CRC
793 * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC
794 * @param SPIx SPI Instance
795 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
796 */
LL_SPI_GetRxCRC(SPI_TypeDef * SPIx)797 __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
798 {
799 return (uint32_t)(READ_REG(SPIx->RXCRCR));
800 }
801
802 /**
803 * @brief Get Tx CRC
804 * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC
805 * @param SPIx SPI Instance
806 * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
807 */
LL_SPI_GetTxCRC(SPI_TypeDef * SPIx)808 __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
809 {
810 return (uint32_t)(READ_REG(SPIx->TXCRCR));
811 }
812
813 /**
814 * @}
815 */
816
817 /** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
818 * @{
819 */
820
821 /**
822 * @brief Set NSS mode
823 * @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
824 * @rmtoll CR1 SSM LL_SPI_SetNSSMode\n
825 * @rmtoll CR2 SSOE LL_SPI_SetNSSMode
826 * @param SPIx SPI Instance
827 * @param NSS This parameter can be one of the following values:
828 * @arg @ref LL_SPI_NSS_SOFT
829 * @arg @ref LL_SPI_NSS_HARD_INPUT
830 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
831 * @retval None
832 */
LL_SPI_SetNSSMode(SPI_TypeDef * SPIx,uint32_t NSS)833 __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
834 {
835 MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS);
836 MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
837 }
838
839 /**
840 * @brief Get NSS mode
841 * @rmtoll CR1 SSM LL_SPI_GetNSSMode\n
842 * @rmtoll CR2 SSOE LL_SPI_GetNSSMode
843 * @param SPIx SPI Instance
844 * @retval Returned value can be one of the following values:
845 * @arg @ref LL_SPI_NSS_SOFT
846 * @arg @ref LL_SPI_NSS_HARD_INPUT
847 * @arg @ref LL_SPI_NSS_HARD_OUTPUT
848 */
LL_SPI_GetNSSMode(SPI_TypeDef * SPIx)849 __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
850 {
851 uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
852 uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U);
853 return (Ssm | Ssoe);
854 }
855
856 /**
857 * @brief Enable NSS pulse management
858 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
859 * @rmtoll CR2 NSSP LL_SPI_EnableNSSPulseMgt
860 * @param SPIx SPI Instance
861 * @retval None
862 */
LL_SPI_EnableNSSPulseMgt(SPI_TypeDef * SPIx)863 __STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx)
864 {
865 SET_BIT(SPIx->CR2, SPI_CR2_NSSP);
866 }
867
868 /**
869 * @brief Disable NSS pulse management
870 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
871 * @rmtoll CR2 NSSP LL_SPI_DisableNSSPulseMgt
872 * @param SPIx SPI Instance
873 * @retval None
874 */
LL_SPI_DisableNSSPulseMgt(SPI_TypeDef * SPIx)875 __STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx)
876 {
877 CLEAR_BIT(SPIx->CR2, SPI_CR2_NSSP);
878 }
879
880 /**
881 * @brief Check if NSS pulse is enabled
882 * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
883 * @rmtoll CR2 NSSP LL_SPI_IsEnabledNSSPulse
884 * @param SPIx SPI Instance
885 * @retval State of bit (1 or 0).
886 */
LL_SPI_IsEnabledNSSPulse(SPI_TypeDef * SPIx)887 __STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx)
888 {
889 return ((READ_BIT(SPIx->CR2, SPI_CR2_NSSP) == (SPI_CR2_NSSP)) ? 1UL : 0UL);
890 }
891
892 /**
893 * @}
894 */
895
896 /** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
897 * @{
898 */
899
900 /**
901 * @brief Check if Rx buffer is not empty
902 * @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE
903 * @param SPIx SPI Instance
904 * @retval State of bit (1 or 0).
905 */
LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)906 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
907 {
908 return ((READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)) ? 1UL : 0UL);
909 }
910
911 /**
912 * @brief Check if Tx buffer is empty
913 * @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE
914 * @param SPIx SPI Instance
915 * @retval State of bit (1 or 0).
916 */
LL_SPI_IsActiveFlag_TXE(SPI_TypeDef * SPIx)917 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
918 {
919 return ((READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)) ? 1UL : 0UL);
920 }
921
922 /**
923 * @brief Get CRC error flag
924 * @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR
925 * @param SPIx SPI Instance
926 * @retval State of bit (1 or 0).
927 */
LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef * SPIx)928 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
929 {
930 return ((READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR)) ? 1UL : 0UL);
931 }
932
933 /**
934 * @brief Get mode fault error flag
935 * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF
936 * @param SPIx SPI Instance
937 * @retval State of bit (1 or 0).
938 */
LL_SPI_IsActiveFlag_MODF(SPI_TypeDef * SPIx)939 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
940 {
941 return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL);
942 }
943
944 /**
945 * @brief Get overrun error flag
946 * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR
947 * @param SPIx SPI Instance
948 * @retval State of bit (1 or 0).
949 */
LL_SPI_IsActiveFlag_OVR(SPI_TypeDef * SPIx)950 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
951 {
952 return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL);
953 }
954
955 /**
956 * @brief Get busy flag
957 * @note The BSY flag is cleared under any one of the following conditions:
958 * -When the SPI is correctly disabled
959 * -When a fault is detected in Master mode (MODF bit set to 1)
960 * -In Master mode, when it finishes a data transmission and no new data is ready to be
961 * sent
962 * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
963 * each data transfer.
964 * @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY
965 * @param SPIx SPI Instance
966 * @retval State of bit (1 or 0).
967 */
LL_SPI_IsActiveFlag_BSY(SPI_TypeDef * SPIx)968 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
969 {
970 return ((READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)) ? 1UL : 0UL);
971 }
972
973 /**
974 * @brief Get frame format error flag
975 * @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE
976 * @param SPIx SPI Instance
977 * @retval State of bit (1 or 0).
978 */
LL_SPI_IsActiveFlag_FRE(SPI_TypeDef * SPIx)979 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
980 {
981 return ((READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE)) ? 1UL : 0UL);
982 }
983
984 /**
985 * @brief Get FIFO reception Level
986 * @rmtoll SR FRLVL LL_SPI_GetRxFIFOLevel
987 * @param SPIx SPI Instance
988 * @retval Returned value can be one of the following values:
989 * @arg @ref LL_SPI_RX_FIFO_EMPTY
990 * @arg @ref LL_SPI_RX_FIFO_QUARTER_FULL
991 * @arg @ref LL_SPI_RX_FIFO_HALF_FULL
992 * @arg @ref LL_SPI_RX_FIFO_FULL
993 */
LL_SPI_GetRxFIFOLevel(SPI_TypeDef * SPIx)994 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOLevel(SPI_TypeDef *SPIx)
995 {
996 return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FRLVL));
997 }
998
999 /**
1000 * @brief Get FIFO Transmission Level
1001 * @rmtoll SR FTLVL LL_SPI_GetTxFIFOLevel
1002 * @param SPIx SPI Instance
1003 * @retval Returned value can be one of the following values:
1004 * @arg @ref LL_SPI_TX_FIFO_EMPTY
1005 * @arg @ref LL_SPI_TX_FIFO_QUARTER_FULL
1006 * @arg @ref LL_SPI_TX_FIFO_HALF_FULL
1007 * @arg @ref LL_SPI_TX_FIFO_FULL
1008 */
LL_SPI_GetTxFIFOLevel(SPI_TypeDef * SPIx)1009 __STATIC_INLINE uint32_t LL_SPI_GetTxFIFOLevel(SPI_TypeDef *SPIx)
1010 {
1011 return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FTLVL));
1012 }
1013
1014 /**
1015 * @brief Clear CRC error flag
1016 * @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR
1017 * @param SPIx SPI Instance
1018 * @retval None
1019 */
LL_SPI_ClearFlag_CRCERR(SPI_TypeDef * SPIx)1020 __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
1021 {
1022 CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
1023 }
1024
1025 /**
1026 * @brief Clear mode fault error flag
1027 * @note Clearing this flag is done by a read access to the SPIx_SR
1028 * register followed by a write access to the SPIx_CR1 register
1029 * @rmtoll SR MODF LL_SPI_ClearFlag_MODF
1030 * @param SPIx SPI Instance
1031 * @retval None
1032 */
LL_SPI_ClearFlag_MODF(SPI_TypeDef * SPIx)1033 __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
1034 {
1035 __IO uint32_t tmpreg_sr;
1036 tmpreg_sr = SPIx->SR;
1037 (void) tmpreg_sr;
1038 CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
1039 }
1040
1041 /**
1042 * @brief Clear overrun error flag
1043 * @note Clearing this flag is done by a read access to the SPIx_DR
1044 * register followed by a read access to the SPIx_SR register
1045 * @rmtoll SR OVR LL_SPI_ClearFlag_OVR
1046 * @param SPIx SPI Instance
1047 * @retval None
1048 */
LL_SPI_ClearFlag_OVR(SPI_TypeDef * SPIx)1049 __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
1050 {
1051 __IO uint32_t tmpreg;
1052 tmpreg = SPIx->DR;
1053 (void) tmpreg;
1054 tmpreg = SPIx->SR;
1055 (void) tmpreg;
1056 }
1057
1058 /**
1059 * @brief Clear frame format error flag
1060 * @note Clearing this flag is done by reading SPIx_SR register
1061 * @rmtoll SR FRE LL_SPI_ClearFlag_FRE
1062 * @param SPIx SPI Instance
1063 * @retval None
1064 */
LL_SPI_ClearFlag_FRE(SPI_TypeDef * SPIx)1065 __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
1066 {
1067 __IO uint32_t tmpreg;
1068 tmpreg = SPIx->SR;
1069 (void) tmpreg;
1070 }
1071
1072 /**
1073 * @}
1074 */
1075
1076 /** @defgroup SPI_LL_EF_IT_Management Interrupt Management
1077 * @{
1078 */
1079
1080 /**
1081 * @brief Enable error interrupt
1082 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1083 * @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR
1084 * @param SPIx SPI Instance
1085 * @retval None
1086 */
LL_SPI_EnableIT_ERR(SPI_TypeDef * SPIx)1087 __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
1088 {
1089 SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1090 }
1091
1092 /**
1093 * @brief Enable Rx buffer not empty interrupt
1094 * @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE
1095 * @param SPIx SPI Instance
1096 * @retval None
1097 */
LL_SPI_EnableIT_RXNE(SPI_TypeDef * SPIx)1098 __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
1099 {
1100 SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1101 }
1102
1103 /**
1104 * @brief Enable Tx buffer empty interrupt
1105 * @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE
1106 * @param SPIx SPI Instance
1107 * @retval None
1108 */
LL_SPI_EnableIT_TXE(SPI_TypeDef * SPIx)1109 __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
1110 {
1111 SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1112 }
1113
1114 /**
1115 * @brief Disable error interrupt
1116 * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1117 * @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR
1118 * @param SPIx SPI Instance
1119 * @retval None
1120 */
LL_SPI_DisableIT_ERR(SPI_TypeDef * SPIx)1121 __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
1122 {
1123 CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1124 }
1125
1126 /**
1127 * @brief Disable Rx buffer not empty interrupt
1128 * @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE
1129 * @param SPIx SPI Instance
1130 * @retval None
1131 */
LL_SPI_DisableIT_RXNE(SPI_TypeDef * SPIx)1132 __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
1133 {
1134 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1135 }
1136
1137 /**
1138 * @brief Disable Tx buffer empty interrupt
1139 * @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE
1140 * @param SPIx SPI Instance
1141 * @retval None
1142 */
LL_SPI_DisableIT_TXE(SPI_TypeDef * SPIx)1143 __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
1144 {
1145 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1146 }
1147
1148 /**
1149 * @brief Check if error interrupt is enabled
1150 * @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR
1151 * @param SPIx SPI Instance
1152 * @retval State of bit (1 or 0).
1153 */
LL_SPI_IsEnabledIT_ERR(SPI_TypeDef * SPIx)1154 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
1155 {
1156 return ((READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)) ? 1UL : 0UL);
1157 }
1158
1159 /**
1160 * @brief Check if Rx buffer not empty interrupt is enabled
1161 * @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE
1162 * @param SPIx SPI Instance
1163 * @retval State of bit (1 or 0).
1164 */
LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)1165 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
1166 {
1167 return ((READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)) ? 1UL : 0UL);
1168 }
1169
1170 /**
1171 * @brief Check if Tx buffer empty interrupt
1172 * @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE
1173 * @param SPIx SPI Instance
1174 * @retval State of bit (1 or 0).
1175 */
LL_SPI_IsEnabledIT_TXE(SPI_TypeDef * SPIx)1176 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
1177 {
1178 return ((READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)) ? 1UL : 0UL);
1179 }
1180
1181 /**
1182 * @}
1183 */
1184
1185 /** @defgroup SPI_LL_EF_DMA_Management DMA Management
1186 * @{
1187 */
1188
1189 /**
1190 * @brief Enable DMA Rx
1191 * @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX
1192 * @param SPIx SPI Instance
1193 * @retval None
1194 */
LL_SPI_EnableDMAReq_RX(SPI_TypeDef * SPIx)1195 __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
1196 {
1197 SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1198 }
1199
1200 /**
1201 * @brief Disable DMA Rx
1202 * @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX
1203 * @param SPIx SPI Instance
1204 * @retval None
1205 */
LL_SPI_DisableDMAReq_RX(SPI_TypeDef * SPIx)1206 __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
1207 {
1208 CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1209 }
1210
1211 /**
1212 * @brief Check if DMA Rx is enabled
1213 * @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX
1214 * @param SPIx SPI Instance
1215 * @retval State of bit (1 or 0).
1216 */
LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)1217 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
1218 {
1219 return ((READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)) ? 1UL : 0UL);
1220 }
1221
1222 /**
1223 * @brief Enable DMA Tx
1224 * @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX
1225 * @param SPIx SPI Instance
1226 * @retval None
1227 */
LL_SPI_EnableDMAReq_TX(SPI_TypeDef * SPIx)1228 __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
1229 {
1230 SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1231 }
1232
1233 /**
1234 * @brief Disable DMA Tx
1235 * @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX
1236 * @param SPIx SPI Instance
1237 * @retval None
1238 */
LL_SPI_DisableDMAReq_TX(SPI_TypeDef * SPIx)1239 __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
1240 {
1241 CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1242 }
1243
1244 /**
1245 * @brief Check if DMA Tx is enabled
1246 * @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX
1247 * @param SPIx SPI Instance
1248 * @retval State of bit (1 or 0).
1249 */
LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)1250 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
1251 {
1252 return ((READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)) ? 1UL : 0UL);
1253 }
1254
1255 /**
1256 * @brief Set parity of Last DMA reception
1257 * @rmtoll CR2 LDMARX LL_SPI_SetDMAParity_RX
1258 * @param SPIx SPI Instance
1259 * @param Parity This parameter can be one of the following values:
1260 * @arg @ref LL_SPI_DMA_PARITY_ODD
1261 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1262 * @retval None
1263 */
LL_SPI_SetDMAParity_RX(SPI_TypeDef * SPIx,uint32_t Parity)1264 __STATIC_INLINE void LL_SPI_SetDMAParity_RX(SPI_TypeDef *SPIx, uint32_t Parity)
1265 {
1266 MODIFY_REG(SPIx->CR2, SPI_CR2_LDMARX, (Parity << SPI_CR2_LDMARX_Pos));
1267 }
1268
1269 /**
1270 * @brief Get parity configuration for Last DMA reception
1271 * @rmtoll CR2 LDMARX LL_SPI_GetDMAParity_RX
1272 * @param SPIx SPI Instance
1273 * @retval Returned value can be one of the following values:
1274 * @arg @ref LL_SPI_DMA_PARITY_ODD
1275 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1276 */
LL_SPI_GetDMAParity_RX(SPI_TypeDef * SPIx)1277 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_RX(SPI_TypeDef *SPIx)
1278 {
1279 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMARX) >> SPI_CR2_LDMARX_Pos);
1280 }
1281
1282 /**
1283 * @brief Set parity of Last DMA transmission
1284 * @rmtoll CR2 LDMATX LL_SPI_SetDMAParity_TX
1285 * @param SPIx SPI Instance
1286 * @param Parity This parameter can be one of the following values:
1287 * @arg @ref LL_SPI_DMA_PARITY_ODD
1288 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1289 * @retval None
1290 */
LL_SPI_SetDMAParity_TX(SPI_TypeDef * SPIx,uint32_t Parity)1291 __STATIC_INLINE void LL_SPI_SetDMAParity_TX(SPI_TypeDef *SPIx, uint32_t Parity)
1292 {
1293 MODIFY_REG(SPIx->CR2, SPI_CR2_LDMATX, (Parity << SPI_CR2_LDMATX_Pos));
1294 }
1295
1296 /**
1297 * @brief Get parity configuration for Last DMA transmission
1298 * @rmtoll CR2 LDMATX LL_SPI_GetDMAParity_TX
1299 * @param SPIx SPI Instance
1300 * @retval Returned value can be one of the following values:
1301 * @arg @ref LL_SPI_DMA_PARITY_ODD
1302 * @arg @ref LL_SPI_DMA_PARITY_EVEN
1303 */
LL_SPI_GetDMAParity_TX(SPI_TypeDef * SPIx)1304 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_TX(SPI_TypeDef *SPIx)
1305 {
1306 return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMATX) >> SPI_CR2_LDMATX_Pos);
1307 }
1308
1309 /**
1310 * @brief Get the data register address used for DMA transfer
1311 * @rmtoll DR DR LL_SPI_DMA_GetRegAddr
1312 * @param SPIx SPI Instance
1313 * @retval Address of data register
1314 */
LL_SPI_DMA_GetRegAddr(SPI_TypeDef * SPIx)1315 __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
1316 {
1317 return (uint32_t) &(SPIx->DR);
1318 }
1319
1320 /**
1321 * @}
1322 */
1323
1324 /** @defgroup SPI_LL_EF_DATA_Management DATA Management
1325 * @{
1326 */
1327
1328 /**
1329 * @brief Read 8-Bits in the data register
1330 * @rmtoll DR DR LL_SPI_ReceiveData8
1331 * @param SPIx SPI Instance
1332 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
1333 */
LL_SPI_ReceiveData8(SPI_TypeDef * SPIx)1334 __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
1335 {
1336 return (uint8_t)(READ_REG(SPIx->DR));
1337 }
1338
1339 /**
1340 * @brief Read 16-Bits in the data register
1341 * @rmtoll DR DR LL_SPI_ReceiveData16
1342 * @param SPIx SPI Instance
1343 * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1344 */
LL_SPI_ReceiveData16(SPI_TypeDef * SPIx)1345 __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
1346 {
1347 return (uint16_t)(READ_REG(SPIx->DR));
1348 }
1349
1350 /**
1351 * @brief Write 8-Bits in the data register
1352 * @rmtoll DR DR LL_SPI_TransmitData8
1353 * @param SPIx SPI Instance
1354 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFF
1355 * @retval None
1356 */
LL_SPI_TransmitData8(SPI_TypeDef * SPIx,uint8_t TxData)1357 __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
1358 {
1359 #if defined (__GNUC__)
1360 __IO uint8_t *spidr = ((__IO uint8_t *)&SPIx->DR);
1361 *spidr = TxData;
1362 #else
1363 *((__IO uint8_t *)&SPIx->DR) = TxData;
1364 #endif /* __GNUC__ */
1365 }
1366
1367 /**
1368 * @brief Write 16-Bits in the data register
1369 * @rmtoll DR DR LL_SPI_TransmitData16
1370 * @param SPIx SPI Instance
1371 * @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1372 * @retval None
1373 */
LL_SPI_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)1374 __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
1375 {
1376 #if defined (__GNUC__)
1377 __IO uint16_t *spidr = ((__IO uint16_t *)&SPIx->DR);
1378 *spidr = TxData;
1379 #else
1380 SPIx->DR = TxData;
1381 #endif /* __GNUC__ */
1382 }
1383
1384 /**
1385 * @}
1386 */
1387 #if defined(USE_FULL_LL_DRIVER)
1388 /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
1389 * @{
1390 */
1391
1392 ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
1393 ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
1394 void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
1395
1396 /**
1397 * @}
1398 */
1399 #endif /* USE_FULL_LL_DRIVER */
1400 /**
1401 * @}
1402 */
1403
1404 /**
1405 * @}
1406 */
1407
1408 /** @defgroup I2S_LL I2S
1409 * @{
1410 */
1411
1412 /* Private variables ---------------------------------------------------------*/
1413 /* Private constants ---------------------------------------------------------*/
1414 /* Private macros ------------------------------------------------------------*/
1415
1416 /* Exported types ------------------------------------------------------------*/
1417 #if defined(USE_FULL_LL_DRIVER)
1418 /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
1419 * @{
1420 */
1421
1422 /**
1423 * @brief I2S Init structure definition
1424 */
1425
1426 typedef struct
1427 {
1428 uint32_t Mode; /*!< Specifies the I2S operating mode.
1429 This parameter can be a value of @ref I2S_LL_EC_MODE
1430
1431 This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
1432
1433 uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
1434 This parameter can be a value of @ref I2S_LL_EC_STANDARD
1435
1436 This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
1437
1438
1439 uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
1440 This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
1441
1442 This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
1443
1444
1445 uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
1446 This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
1447
1448 This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
1449
1450
1451 uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
1452 This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
1453
1454 Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
1455 and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
1456
1457
1458 uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
1459 This parameter can be a value of @ref I2S_LL_EC_POLARITY
1460
1461 This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
1462
1463 } LL_I2S_InitTypeDef;
1464
1465 /**
1466 * @}
1467 */
1468 #endif /*USE_FULL_LL_DRIVER*/
1469
1470 /* Exported constants --------------------------------------------------------*/
1471 /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
1472 * @{
1473 */
1474
1475 /** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
1476 * @brief Flags defines which can be used with LL_I2S_ReadReg function
1477 * @{
1478 */
1479 #define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */
1480 #define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */
1481 #define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */
1482 #define LL_I2S_SR_UDR SPI_SR_UDR /*!< Underrun flag */
1483 #define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */
1484 #define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */
1485 /**
1486 * @}
1487 */
1488
1489 /** @defgroup SPI_LL_EC_IT IT Defines
1490 * @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
1491 * @{
1492 */
1493 #define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
1494 #define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
1495 #define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */
1496 /**
1497 * @}
1498 */
1499
1500 /** @defgroup I2S_LL_EC_DATA_FORMAT Data format
1501 * @{
1502 */
1503 #define LL_I2S_DATAFORMAT_16B 0x00000000U /*!< Data length 16 bits, Channel length 16bit */
1504 #define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel length 32bit */
1505 #define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel length 32bit */
1506 #define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel length 32bit */
1507 /**
1508 * @}
1509 */
1510
1511 /** @defgroup I2S_LL_EC_POLARITY Clock Polarity
1512 * @{
1513 */
1514 #define LL_I2S_POLARITY_LOW 0x00000000U /*!< Clock steady state is low level */
1515 #define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */
1516 /**
1517 * @}
1518 */
1519
1520 /** @defgroup I2S_LL_EC_STANDARD I2s Standard
1521 * @{
1522 */
1523 #define LL_I2S_STANDARD_PHILIPS 0x00000000U /*!< I2S standard philips */
1524 #define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */
1525 #define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */
1526 #define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */
1527 #define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */
1528 /**
1529 * @}
1530 */
1531
1532 /** @defgroup I2S_LL_EC_MODE Operation Mode
1533 * @{
1534 */
1535 #define LL_I2S_MODE_SLAVE_TX 0x00000000U /*!< Slave Tx configuration */
1536 #define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */
1537 #define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */
1538 #define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
1539 /**
1540 * @}
1541 */
1542
1543 /** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
1544 * @{
1545 */
1546 #define LL_I2S_PRESCALER_PARITY_EVEN 0x00000000U /*!< Odd factor: Real divider value is = I2SDIV * 2 */
1547 #define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
1548 /**
1549 * @}
1550 */
1551
1552 #if defined(USE_FULL_LL_DRIVER)
1553
1554 /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
1555 * @{
1556 */
1557 #define LL_I2S_MCLK_OUTPUT_DISABLE 0x00000000U /*!< Master clock output is disabled */
1558 #define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */
1559 /**
1560 * @}
1561 */
1562
1563 /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
1564 * @{
1565 */
1566
1567 #define LL_I2S_AUDIOFREQ_192K 192000U /*!< Audio Frequency configuration 192000 Hz */
1568 #define LL_I2S_AUDIOFREQ_96K 96000U /*!< Audio Frequency configuration 96000 Hz */
1569 #define LL_I2S_AUDIOFREQ_48K 48000U /*!< Audio Frequency configuration 48000 Hz */
1570 #define LL_I2S_AUDIOFREQ_44K 44100U /*!< Audio Frequency configuration 44100 Hz */
1571 #define LL_I2S_AUDIOFREQ_32K 32000U /*!< Audio Frequency configuration 32000 Hz */
1572 #define LL_I2S_AUDIOFREQ_22K 22050U /*!< Audio Frequency configuration 22050 Hz */
1573 #define LL_I2S_AUDIOFREQ_16K 16000U /*!< Audio Frequency configuration 16000 Hz */
1574 #define LL_I2S_AUDIOFREQ_11K 11025U /*!< Audio Frequency configuration 11025 Hz */
1575 #define LL_I2S_AUDIOFREQ_8K 8000U /*!< Audio Frequency configuration 8000 Hz */
1576 #define LL_I2S_AUDIOFREQ_DEFAULT 2U /*!< Audio Freq not specified. Register I2SDIV = 2 */
1577 /**
1578 * @}
1579 */
1580 #endif /* USE_FULL_LL_DRIVER */
1581
1582 /**
1583 * @}
1584 */
1585
1586 /* Exported macro ------------------------------------------------------------*/
1587 /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
1588 * @{
1589 */
1590
1591 /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
1592 * @{
1593 */
1594
1595 /**
1596 * @brief Write a value in I2S register
1597 * @param __INSTANCE__ I2S Instance
1598 * @param __REG__ Register to be written
1599 * @param __VALUE__ Value to be written in the register
1600 * @retval None
1601 */
1602 #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
1603
1604 /**
1605 * @brief Read a value in I2S register
1606 * @param __INSTANCE__ I2S Instance
1607 * @param __REG__ Register to be read
1608 * @retval Register value
1609 */
1610 #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
1611 /**
1612 * @}
1613 */
1614
1615 /**
1616 * @}
1617 */
1618
1619
1620 /* Exported functions --------------------------------------------------------*/
1621
1622 /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
1623 * @{
1624 */
1625
1626 /** @defgroup I2S_LL_EF_Configuration Configuration
1627 * @{
1628 */
1629
1630 /**
1631 * @brief Select I2S mode and Enable I2S peripheral
1632 * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n
1633 * I2SCFGR I2SE LL_I2S_Enable
1634 * @param SPIx SPI Instance
1635 * @retval None
1636 */
LL_I2S_Enable(SPI_TypeDef * SPIx)1637 __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
1638 {
1639 SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1640 }
1641
1642 /**
1643 * @brief Disable I2S peripheral
1644 * @rmtoll I2SCFGR I2SE LL_I2S_Disable
1645 * @param SPIx SPI Instance
1646 * @retval None
1647 */
LL_I2S_Disable(SPI_TypeDef * SPIx)1648 __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
1649 {
1650 CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1651 }
1652
1653 /**
1654 * @brief Check if I2S peripheral is enabled
1655 * @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled
1656 * @param SPIx SPI Instance
1657 * @retval State of bit (1 or 0).
1658 */
LL_I2S_IsEnabled(SPI_TypeDef * SPIx)1659 __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
1660 {
1661 return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE)) ? 1UL : 0UL);
1662 }
1663
1664 /**
1665 * @brief Set I2S data frame length
1666 * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n
1667 * I2SCFGR CHLEN LL_I2S_SetDataFormat
1668 * @param SPIx SPI Instance
1669 * @param DataFormat This parameter can be one of the following values:
1670 * @arg @ref LL_I2S_DATAFORMAT_16B
1671 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1672 * @arg @ref LL_I2S_DATAFORMAT_24B
1673 * @arg @ref LL_I2S_DATAFORMAT_32B
1674 * @retval None
1675 */
LL_I2S_SetDataFormat(SPI_TypeDef * SPIx,uint32_t DataFormat)1676 __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
1677 {
1678 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
1679 }
1680
1681 /**
1682 * @brief Get I2S data frame length
1683 * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n
1684 * I2SCFGR CHLEN LL_I2S_GetDataFormat
1685 * @param SPIx SPI Instance
1686 * @retval Returned value can be one of the following values:
1687 * @arg @ref LL_I2S_DATAFORMAT_16B
1688 * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1689 * @arg @ref LL_I2S_DATAFORMAT_24B
1690 * @arg @ref LL_I2S_DATAFORMAT_32B
1691 */
LL_I2S_GetDataFormat(SPI_TypeDef * SPIx)1692 __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
1693 {
1694 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
1695 }
1696
1697 /**
1698 * @brief Set I2S clock polarity
1699 * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity
1700 * @param SPIx SPI Instance
1701 * @param ClockPolarity This parameter can be one of the following values:
1702 * @arg @ref LL_I2S_POLARITY_LOW
1703 * @arg @ref LL_I2S_POLARITY_HIGH
1704 * @retval None
1705 */
LL_I2S_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)1706 __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
1707 {
1708 SET_BIT(SPIx->I2SCFGR, ClockPolarity);
1709 }
1710
1711 /**
1712 * @brief Get I2S clock polarity
1713 * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity
1714 * @param SPIx SPI Instance
1715 * @retval Returned value can be one of the following values:
1716 * @arg @ref LL_I2S_POLARITY_LOW
1717 * @arg @ref LL_I2S_POLARITY_HIGH
1718 */
LL_I2S_GetClockPolarity(SPI_TypeDef * SPIx)1719 __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
1720 {
1721 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
1722 }
1723
1724 /**
1725 * @brief Set I2S standard protocol
1726 * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n
1727 * I2SCFGR PCMSYNC LL_I2S_SetStandard
1728 * @param SPIx SPI Instance
1729 * @param Standard This parameter can be one of the following values:
1730 * @arg @ref LL_I2S_STANDARD_PHILIPS
1731 * @arg @ref LL_I2S_STANDARD_MSB
1732 * @arg @ref LL_I2S_STANDARD_LSB
1733 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1734 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1735 * @retval None
1736 */
LL_I2S_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)1737 __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
1738 {
1739 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
1740 }
1741
1742 /**
1743 * @brief Get I2S standard protocol
1744 * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n
1745 * I2SCFGR PCMSYNC LL_I2S_GetStandard
1746 * @param SPIx SPI Instance
1747 * @retval Returned value can be one of the following values:
1748 * @arg @ref LL_I2S_STANDARD_PHILIPS
1749 * @arg @ref LL_I2S_STANDARD_MSB
1750 * @arg @ref LL_I2S_STANDARD_LSB
1751 * @arg @ref LL_I2S_STANDARD_PCM_SHORT
1752 * @arg @ref LL_I2S_STANDARD_PCM_LONG
1753 */
LL_I2S_GetStandard(SPI_TypeDef * SPIx)1754 __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
1755 {
1756 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
1757 }
1758
1759 /**
1760 * @brief Set I2S transfer mode
1761 * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode
1762 * @param SPIx SPI Instance
1763 * @param Mode This parameter can be one of the following values:
1764 * @arg @ref LL_I2S_MODE_SLAVE_TX
1765 * @arg @ref LL_I2S_MODE_SLAVE_RX
1766 * @arg @ref LL_I2S_MODE_MASTER_TX
1767 * @arg @ref LL_I2S_MODE_MASTER_RX
1768 * @retval None
1769 */
LL_I2S_SetTransferMode(SPI_TypeDef * SPIx,uint32_t Mode)1770 __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
1771 {
1772 MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
1773 }
1774
1775 /**
1776 * @brief Get I2S transfer mode
1777 * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode
1778 * @param SPIx SPI Instance
1779 * @retval Returned value can be one of the following values:
1780 * @arg @ref LL_I2S_MODE_SLAVE_TX
1781 * @arg @ref LL_I2S_MODE_SLAVE_RX
1782 * @arg @ref LL_I2S_MODE_MASTER_TX
1783 * @arg @ref LL_I2S_MODE_MASTER_RX
1784 */
LL_I2S_GetTransferMode(SPI_TypeDef * SPIx)1785 __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
1786 {
1787 return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
1788 }
1789
1790 /**
1791 * @brief Set I2S linear prescaler
1792 * @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear
1793 * @param SPIx SPI Instance
1794 * @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1795 * @retval None
1796 */
LL_I2S_SetPrescalerLinear(SPI_TypeDef * SPIx,uint8_t PrescalerLinear)1797 __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
1798 {
1799 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
1800 }
1801
1802 /**
1803 * @brief Get I2S linear prescaler
1804 * @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear
1805 * @param SPIx SPI Instance
1806 * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1807 */
LL_I2S_GetPrescalerLinear(SPI_TypeDef * SPIx)1808 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
1809 {
1810 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
1811 }
1812
1813 /**
1814 * @brief Set I2S parity prescaler
1815 * @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity
1816 * @param SPIx SPI Instance
1817 * @param PrescalerParity This parameter can be one of the following values:
1818 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1819 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1820 * @retval None
1821 */
LL_I2S_SetPrescalerParity(SPI_TypeDef * SPIx,uint32_t PrescalerParity)1822 __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
1823 {
1824 MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
1825 }
1826
1827 /**
1828 * @brief Get I2S parity prescaler
1829 * @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity
1830 * @param SPIx SPI Instance
1831 * @retval Returned value can be one of the following values:
1832 * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1833 * @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1834 */
LL_I2S_GetPrescalerParity(SPI_TypeDef * SPIx)1835 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
1836 {
1837 return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
1838 }
1839
1840 /**
1841 * @brief Enable the master clock output (Pin MCK)
1842 * @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock
1843 * @param SPIx SPI Instance
1844 * @retval None
1845 */
LL_I2S_EnableMasterClock(SPI_TypeDef * SPIx)1846 __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
1847 {
1848 SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1849 }
1850
1851 /**
1852 * @brief Disable the master clock output (Pin MCK)
1853 * @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock
1854 * @param SPIx SPI Instance
1855 * @retval None
1856 */
LL_I2S_DisableMasterClock(SPI_TypeDef * SPIx)1857 __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
1858 {
1859 CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1860 }
1861
1862 /**
1863 * @brief Check if the master clock output (Pin MCK) is enabled
1864 * @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock
1865 * @param SPIx SPI Instance
1866 * @retval State of bit (1 or 0).
1867 */
LL_I2S_IsEnabledMasterClock(SPI_TypeDef * SPIx)1868 __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
1869 {
1870 return ((READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE)) ? 1UL : 0UL);
1871 }
1872
1873 #if defined(SPI_I2SCFGR_ASTRTEN)
1874 /**
1875 * @brief Enable asynchronous start
1876 * @rmtoll I2SCFGR ASTRTEN LL_I2S_EnableAsyncStart
1877 * @param SPIx SPI Instance
1878 * @retval None
1879 */
LL_I2S_EnableAsyncStart(SPI_TypeDef * SPIx)1880 __STATIC_INLINE void LL_I2S_EnableAsyncStart(SPI_TypeDef *SPIx)
1881 {
1882 SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
1883 }
1884
1885 /**
1886 * @brief Disable asynchronous start
1887 * @rmtoll I2SCFGR ASTRTEN LL_I2S_DisableAsyncStart
1888 * @param SPIx SPI Instance
1889 * @retval None
1890 */
LL_I2S_DisableAsyncStart(SPI_TypeDef * SPIx)1891 __STATIC_INLINE void LL_I2S_DisableAsyncStart(SPI_TypeDef *SPIx)
1892 {
1893 CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
1894 }
1895
1896 /**
1897 * @brief Check if asynchronous start is enabled
1898 * @rmtoll I2SCFGR ASTRTEN LL_I2S_IsEnabledAsyncStart
1899 * @param SPIx SPI Instance
1900 * @retval State of bit (1 or 0).
1901 */
LL_I2S_IsEnabledAsyncStart(SPI_TypeDef * SPIx)1902 __STATIC_INLINE uint32_t LL_I2S_IsEnabledAsyncStart(SPI_TypeDef *SPIx)
1903 {
1904 return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN) == (SPI_I2SCFGR_ASTRTEN)) ? 1UL : 0UL);
1905 }
1906 #endif /* SPI_I2SCFGR_ASTRTEN */
1907
1908 /**
1909 * @}
1910 */
1911
1912 /** @defgroup I2S_LL_EF_FLAG FLAG Management
1913 * @{
1914 */
1915
1916 /**
1917 * @brief Check if Rx buffer is not empty
1918 * @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE
1919 * @param SPIx SPI Instance
1920 * @retval State of bit (1 or 0).
1921 */
LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)1922 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
1923 {
1924 return LL_SPI_IsActiveFlag_RXNE(SPIx);
1925 }
1926
1927 /**
1928 * @brief Check if Tx buffer is empty
1929 * @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE
1930 * @param SPIx SPI Instance
1931 * @retval State of bit (1 or 0).
1932 */
LL_I2S_IsActiveFlag_TXE(SPI_TypeDef * SPIx)1933 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
1934 {
1935 return LL_SPI_IsActiveFlag_TXE(SPIx);
1936 }
1937
1938 /**
1939 * @brief Get busy flag
1940 * @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY
1941 * @param SPIx SPI Instance
1942 * @retval State of bit (1 or 0).
1943 */
LL_I2S_IsActiveFlag_BSY(SPI_TypeDef * SPIx)1944 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
1945 {
1946 return LL_SPI_IsActiveFlag_BSY(SPIx);
1947 }
1948
1949 /**
1950 * @brief Get overrun error flag
1951 * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR
1952 * @param SPIx SPI Instance
1953 * @retval State of bit (1 or 0).
1954 */
LL_I2S_IsActiveFlag_OVR(SPI_TypeDef * SPIx)1955 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
1956 {
1957 return LL_SPI_IsActiveFlag_OVR(SPIx);
1958 }
1959
1960 /**
1961 * @brief Get underrun error flag
1962 * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR
1963 * @param SPIx SPI Instance
1964 * @retval State of bit (1 or 0).
1965 */
LL_I2S_IsActiveFlag_UDR(SPI_TypeDef * SPIx)1966 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
1967 {
1968 return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL);
1969 }
1970
1971 /**
1972 * @brief Get frame format error flag
1973 * @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE
1974 * @param SPIx SPI Instance
1975 * @retval State of bit (1 or 0).
1976 */
LL_I2S_IsActiveFlag_FRE(SPI_TypeDef * SPIx)1977 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
1978 {
1979 return LL_SPI_IsActiveFlag_FRE(SPIx);
1980 }
1981
1982 /**
1983 * @brief Get channel side flag.
1984 * @note 0: Channel Left has to be transmitted or has been received\n
1985 * 1: Channel Right has to be transmitted or has been received\n
1986 * It has no significance in PCM mode.
1987 * @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE
1988 * @param SPIx SPI Instance
1989 * @retval State of bit (1 or 0).
1990 */
LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef * SPIx)1991 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
1992 {
1993 return ((READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE)) ? 1UL : 0UL);
1994 }
1995
1996 /**
1997 * @brief Clear overrun error flag
1998 * @rmtoll SR OVR LL_I2S_ClearFlag_OVR
1999 * @param SPIx SPI Instance
2000 * @retval None
2001 */
LL_I2S_ClearFlag_OVR(SPI_TypeDef * SPIx)2002 __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
2003 {
2004 LL_SPI_ClearFlag_OVR(SPIx);
2005 }
2006
2007 /**
2008 * @brief Clear underrun error flag
2009 * @rmtoll SR UDR LL_I2S_ClearFlag_UDR
2010 * @param SPIx SPI Instance
2011 * @retval None
2012 */
LL_I2S_ClearFlag_UDR(SPI_TypeDef * SPIx)2013 __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
2014 {
2015 __IO uint32_t tmpreg;
2016 tmpreg = SPIx->SR;
2017 (void)tmpreg;
2018 }
2019
2020 /**
2021 * @brief Clear frame format error flag
2022 * @rmtoll SR FRE LL_I2S_ClearFlag_FRE
2023 * @param SPIx SPI Instance
2024 * @retval None
2025 */
LL_I2S_ClearFlag_FRE(SPI_TypeDef * SPIx)2026 __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
2027 {
2028 LL_SPI_ClearFlag_FRE(SPIx);
2029 }
2030
2031 /**
2032 * @}
2033 */
2034
2035 /** @defgroup I2S_LL_EF_IT Interrupt Management
2036 * @{
2037 */
2038
2039 /**
2040 * @brief Enable error IT
2041 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2042 * @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR
2043 * @param SPIx SPI Instance
2044 * @retval None
2045 */
LL_I2S_EnableIT_ERR(SPI_TypeDef * SPIx)2046 __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
2047 {
2048 LL_SPI_EnableIT_ERR(SPIx);
2049 }
2050
2051 /**
2052 * @brief Enable Rx buffer not empty IT
2053 * @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE
2054 * @param SPIx SPI Instance
2055 * @retval None
2056 */
LL_I2S_EnableIT_RXNE(SPI_TypeDef * SPIx)2057 __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
2058 {
2059 LL_SPI_EnableIT_RXNE(SPIx);
2060 }
2061
2062 /**
2063 * @brief Enable Tx buffer empty IT
2064 * @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE
2065 * @param SPIx SPI Instance
2066 * @retval None
2067 */
LL_I2S_EnableIT_TXE(SPI_TypeDef * SPIx)2068 __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
2069 {
2070 LL_SPI_EnableIT_TXE(SPIx);
2071 }
2072
2073 /**
2074 * @brief Disable error IT
2075 * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2076 * @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR
2077 * @param SPIx SPI Instance
2078 * @retval None
2079 */
LL_I2S_DisableIT_ERR(SPI_TypeDef * SPIx)2080 __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
2081 {
2082 LL_SPI_DisableIT_ERR(SPIx);
2083 }
2084
2085 /**
2086 * @brief Disable Rx buffer not empty IT
2087 * @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE
2088 * @param SPIx SPI Instance
2089 * @retval None
2090 */
LL_I2S_DisableIT_RXNE(SPI_TypeDef * SPIx)2091 __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
2092 {
2093 LL_SPI_DisableIT_RXNE(SPIx);
2094 }
2095
2096 /**
2097 * @brief Disable Tx buffer empty IT
2098 * @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE
2099 * @param SPIx SPI Instance
2100 * @retval None
2101 */
LL_I2S_DisableIT_TXE(SPI_TypeDef * SPIx)2102 __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
2103 {
2104 LL_SPI_DisableIT_TXE(SPIx);
2105 }
2106
2107 /**
2108 * @brief Check if ERR IT is enabled
2109 * @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR
2110 * @param SPIx SPI Instance
2111 * @retval State of bit (1 or 0).
2112 */
LL_I2S_IsEnabledIT_ERR(SPI_TypeDef * SPIx)2113 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
2114 {
2115 return LL_SPI_IsEnabledIT_ERR(SPIx);
2116 }
2117
2118 /**
2119 * @brief Check if RXNE IT is enabled
2120 * @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE
2121 * @param SPIx SPI Instance
2122 * @retval State of bit (1 or 0).
2123 */
LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)2124 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
2125 {
2126 return LL_SPI_IsEnabledIT_RXNE(SPIx);
2127 }
2128
2129 /**
2130 * @brief Check if TXE IT is enabled
2131 * @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE
2132 * @param SPIx SPI Instance
2133 * @retval State of bit (1 or 0).
2134 */
LL_I2S_IsEnabledIT_TXE(SPI_TypeDef * SPIx)2135 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
2136 {
2137 return LL_SPI_IsEnabledIT_TXE(SPIx);
2138 }
2139
2140 /**
2141 * @}
2142 */
2143
2144 /** @defgroup I2S_LL_EF_DMA DMA Management
2145 * @{
2146 */
2147
2148 /**
2149 * @brief Enable DMA Rx
2150 * @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX
2151 * @param SPIx SPI Instance
2152 * @retval None
2153 */
LL_I2S_EnableDMAReq_RX(SPI_TypeDef * SPIx)2154 __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
2155 {
2156 LL_SPI_EnableDMAReq_RX(SPIx);
2157 }
2158
2159 /**
2160 * @brief Disable DMA Rx
2161 * @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX
2162 * @param SPIx SPI Instance
2163 * @retval None
2164 */
LL_I2S_DisableDMAReq_RX(SPI_TypeDef * SPIx)2165 __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
2166 {
2167 LL_SPI_DisableDMAReq_RX(SPIx);
2168 }
2169
2170 /**
2171 * @brief Check if DMA Rx is enabled
2172 * @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX
2173 * @param SPIx SPI Instance
2174 * @retval State of bit (1 or 0).
2175 */
LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)2176 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
2177 {
2178 return LL_SPI_IsEnabledDMAReq_RX(SPIx);
2179 }
2180
2181 /**
2182 * @brief Enable DMA Tx
2183 * @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX
2184 * @param SPIx SPI Instance
2185 * @retval None
2186 */
LL_I2S_EnableDMAReq_TX(SPI_TypeDef * SPIx)2187 __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
2188 {
2189 LL_SPI_EnableDMAReq_TX(SPIx);
2190 }
2191
2192 /**
2193 * @brief Disable DMA Tx
2194 * @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX
2195 * @param SPIx SPI Instance
2196 * @retval None
2197 */
LL_I2S_DisableDMAReq_TX(SPI_TypeDef * SPIx)2198 __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
2199 {
2200 LL_SPI_DisableDMAReq_TX(SPIx);
2201 }
2202
2203 /**
2204 * @brief Check if DMA Tx is enabled
2205 * @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX
2206 * @param SPIx SPI Instance
2207 * @retval State of bit (1 or 0).
2208 */
LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)2209 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
2210 {
2211 return LL_SPI_IsEnabledDMAReq_TX(SPIx);
2212 }
2213
2214 /**
2215 * @}
2216 */
2217
2218 /** @defgroup I2S_LL_EF_DATA DATA Management
2219 * @{
2220 */
2221
2222 /**
2223 * @brief Read 16-Bits in data register
2224 * @rmtoll DR DR LL_I2S_ReceiveData16
2225 * @param SPIx SPI Instance
2226 * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2227 */
LL_I2S_ReceiveData16(SPI_TypeDef * SPIx)2228 __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
2229 {
2230 return LL_SPI_ReceiveData16(SPIx);
2231 }
2232
2233 /**
2234 * @brief Write 16-Bits in data register
2235 * @rmtoll DR DR LL_I2S_TransmitData16
2236 * @param SPIx SPI Instance
2237 * @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2238 * @retval None
2239 */
LL_I2S_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)2240 __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
2241 {
2242 LL_SPI_TransmitData16(SPIx, TxData);
2243 }
2244
2245 /**
2246 * @}
2247 */
2248
2249 #if defined(USE_FULL_LL_DRIVER)
2250 /** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
2251 * @{
2252 */
2253
2254 ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
2255 ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
2256 void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
2257 void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
2258
2259 /**
2260 * @}
2261 */
2262 #endif /* USE_FULL_LL_DRIVER */
2263
2264 /**
2265 * @}
2266 */
2267
2268 /**
2269 * @}
2270 */
2271
2272 #endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */
2273
2274 /**
2275 * @}
2276 */
2277
2278 #ifdef __cplusplus
2279 }
2280 #endif
2281
2282 #endif /* STM32F7xx_LL_SPI_H */
2283
2284 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2285