1 /**
2   ******************************************************************************
3   * @file    stm32f7xx_ll_spi.h
4   * @author  MCD Application Team
5   * @brief   Header file of SPI LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
10   * All rights reserved.</center></h2>
11   *
12   * This software component is licensed by ST under BSD 3-Clause license,
13   * the "License"; You may not use this file except in compliance with the
14   * License. You may obtain a copy of the License at:
15   *                        opensource.org/licenses/BSD-3-Clause
16   *
17   ******************************************************************************
18   */
19 
20 /* Define to prevent recursive inclusion -------------------------------------*/
21 #ifndef STM32F7xx_LL_SPI_H
22 #define STM32F7xx_LL_SPI_H
23 
24 #ifdef __cplusplus
25 extern "C" {
26 #endif
27 
28 /* Includes ------------------------------------------------------------------*/
29 #include "stm32f7xx.h"
30 
31 /** @addtogroup STM32F7xx_LL_Driver
32   * @{
33   */
34 
35 #if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)
36 
37 /** @defgroup SPI_LL SPI
38   * @{
39   */
40 
41 /* Private types -------------------------------------------------------------*/
42 /* Private variables ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 
45 /* Exported types ------------------------------------------------------------*/
46 #if defined(USE_FULL_LL_DRIVER)
47 /** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
48   * @{
49   */
50 
51 /**
52   * @brief  SPI Init structures definition
53   */
54 typedef struct
55 {
56   uint32_t TransferDirection;       /*!< Specifies the SPI unidirectional or bidirectional data mode.
57                                          This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
58 
59                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
60 
61   uint32_t Mode;                    /*!< Specifies the SPI mode (Master/Slave).
62                                          This parameter can be a value of @ref SPI_LL_EC_MODE.
63 
64                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
65 
66   uint32_t DataWidth;               /*!< Specifies the SPI data width.
67                                          This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
68 
69                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
70 
71   uint32_t ClockPolarity;           /*!< Specifies the serial clock steady state.
72                                          This parameter can be a value of @ref SPI_LL_EC_POLARITY.
73 
74                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
75 
76   uint32_t ClockPhase;              /*!< Specifies the clock active edge for the bit capture.
77                                          This parameter can be a value of @ref SPI_LL_EC_PHASE.
78 
79                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
80 
81   uint32_t NSS;                     /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
82                                          This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
83 
84                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
85 
86   uint32_t BaudRate;                /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
87                                          This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
88                                          @note The communication clock is derived from the master clock. The slave clock does not need to be set.
89 
90                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
91 
92   uint32_t BitOrder;                /*!< Specifies whether data transfers start from MSB or LSB bit.
93                                          This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
94 
95                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
96 
97   uint32_t CRCCalculation;          /*!< Specifies if the CRC calculation is enabled or not.
98                                          This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
99 
100                                          This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
101 
102   uint32_t CRCPoly;                 /*!< Specifies the polynomial used for the CRC calculation.
103                                          This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
104 
105                                          This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
106 
107 } LL_SPI_InitTypeDef;
108 
109 /**
110   * @}
111   */
112 #endif /* USE_FULL_LL_DRIVER */
113 
114 /* Exported constants --------------------------------------------------------*/
115 /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
116   * @{
117   */
118 
119 /** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
120   * @brief    Flags defines which can be used with LL_SPI_ReadReg function
121   * @{
122   */
123 #define LL_SPI_SR_RXNE                     SPI_SR_RXNE               /*!< Rx buffer not empty flag         */
124 #define LL_SPI_SR_TXE                      SPI_SR_TXE                /*!< Tx buffer empty flag             */
125 #define LL_SPI_SR_BSY                      SPI_SR_BSY                /*!< Busy flag                        */
126 #define LL_SPI_SR_CRCERR                   SPI_SR_CRCERR             /*!< CRC error flag                   */
127 #define LL_SPI_SR_MODF                     SPI_SR_MODF               /*!< Mode fault flag                  */
128 #define LL_SPI_SR_OVR                      SPI_SR_OVR                /*!< Overrun flag                     */
129 #define LL_SPI_SR_FRE                      SPI_SR_FRE                /*!< TI mode frame format error flag  */
130 /**
131   * @}
132   */
133 
134 /** @defgroup SPI_LL_EC_IT IT Defines
135   * @brief    IT defines which can be used with LL_SPI_ReadReg and  LL_SPI_WriteReg functions
136   * @{
137   */
138 #define LL_SPI_CR2_RXNEIE                  SPI_CR2_RXNEIE            /*!< Rx buffer not empty interrupt enable */
139 #define LL_SPI_CR2_TXEIE                   SPI_CR2_TXEIE             /*!< Tx buffer empty interrupt enable     */
140 #define LL_SPI_CR2_ERRIE                   SPI_CR2_ERRIE             /*!< Error interrupt enable               */
141 /**
142   * @}
143   */
144 
145 /** @defgroup SPI_LL_EC_MODE Operation Mode
146   * @{
147   */
148 #define LL_SPI_MODE_MASTER                 (SPI_CR1_MSTR | SPI_CR1_SSI)    /*!< Master configuration  */
149 #define LL_SPI_MODE_SLAVE                  0x00000000U                     /*!< Slave configuration   */
150 /**
151   * @}
152   */
153 
154 /** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
155   * @{
156   */
157 #define LL_SPI_PROTOCOL_MOTOROLA           0x00000000U               /*!< Motorola mode. Used as default value */
158 #define LL_SPI_PROTOCOL_TI                 (SPI_CR2_FRF)             /*!< TI mode                              */
159 /**
160   * @}
161   */
162 
163 /** @defgroup SPI_LL_EC_PHASE Clock Phase
164   * @{
165   */
166 #define LL_SPI_PHASE_1EDGE                 0x00000000U               /*!< First clock transition is the first data capture edge  */
167 #define LL_SPI_PHASE_2EDGE                 (SPI_CR1_CPHA)            /*!< Second clock transition is the first data capture edge */
168 /**
169   * @}
170   */
171 
172 /** @defgroup SPI_LL_EC_POLARITY Clock Polarity
173   * @{
174   */
175 #define LL_SPI_POLARITY_LOW                0x00000000U               /*!< Clock to 0 when idle */
176 #define LL_SPI_POLARITY_HIGH               (SPI_CR1_CPOL)            /*!< Clock to 1 when idle */
177 /**
178   * @}
179   */
180 
181 /** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
182   * @{
183   */
184 #define LL_SPI_BAUDRATEPRESCALER_DIV2      0x00000000U                                    /*!< BaudRate control equal to fPCLK/2   */
185 #define LL_SPI_BAUDRATEPRESCALER_DIV4      (SPI_CR1_BR_0)                                 /*!< BaudRate control equal to fPCLK/4   */
186 #define LL_SPI_BAUDRATEPRESCALER_DIV8      (SPI_CR1_BR_1)                                 /*!< BaudRate control equal to fPCLK/8   */
187 #define LL_SPI_BAUDRATEPRESCALER_DIV16     (SPI_CR1_BR_1 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/16  */
188 #define LL_SPI_BAUDRATEPRESCALER_DIV32     (SPI_CR1_BR_2)                                 /*!< BaudRate control equal to fPCLK/32  */
189 #define LL_SPI_BAUDRATEPRESCALER_DIV64     (SPI_CR1_BR_2 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/64  */
190 #define LL_SPI_BAUDRATEPRESCALER_DIV128    (SPI_CR1_BR_2 | SPI_CR1_BR_1)                  /*!< BaudRate control equal to fPCLK/128 */
191 #define LL_SPI_BAUDRATEPRESCALER_DIV256    (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)   /*!< BaudRate control equal to fPCLK/256 */
192 /**
193   * @}
194   */
195 
196 /** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
197   * @{
198   */
199 #define LL_SPI_LSB_FIRST                   (SPI_CR1_LSBFIRST)        /*!< Data is transmitted/received with the LSB first */
200 #define LL_SPI_MSB_FIRST                   0x00000000U               /*!< Data is transmitted/received with the MSB first */
201 /**
202   * @}
203   */
204 
205 /** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
206   * @{
207   */
208 #define LL_SPI_FULL_DUPLEX                 0x00000000U                          /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
209 #define LL_SPI_SIMPLEX_RX                  (SPI_CR1_RXONLY)                     /*!< Simplex Rx mode.  Rx transfer only on 1 line    */
210 #define LL_SPI_HALF_DUPLEX_RX              (SPI_CR1_BIDIMODE)                   /*!< Half-Duplex Rx mode. Rx transfer on 1 line      */
211 #define LL_SPI_HALF_DUPLEX_TX              (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE)  /*!< Half-Duplex Tx mode. Tx transfer on 1 line      */
212 /**
213   * @}
214   */
215 
216 /** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
217   * @{
218   */
219 #define LL_SPI_NSS_SOFT                    (SPI_CR1_SSM)                     /*!< NSS managed internally. NSS pin not used and free              */
220 #define LL_SPI_NSS_HARD_INPUT              0x00000000U                       /*!< NSS pin used in Input. Only used in Master mode                */
221 #define LL_SPI_NSS_HARD_OUTPUT             (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
222 /**
223   * @}
224   */
225 
226 /** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
227   * @{
228   */
229 #define LL_SPI_DATAWIDTH_4BIT              (SPI_CR2_DS_0 | SPI_CR2_DS_1)                               /*!< Data length for SPI transfer:  4 bits */
230 #define LL_SPI_DATAWIDTH_5BIT              (SPI_CR2_DS_2)                                              /*!< Data length for SPI transfer:  5 bits */
231 #define LL_SPI_DATAWIDTH_6BIT              (SPI_CR2_DS_2 | SPI_CR2_DS_0)                               /*!< Data length for SPI transfer:  6 bits */
232 #define LL_SPI_DATAWIDTH_7BIT              (SPI_CR2_DS_2 | SPI_CR2_DS_1)                               /*!< Data length for SPI transfer:  7 bits */
233 #define LL_SPI_DATAWIDTH_8BIT              (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0)                /*!< Data length for SPI transfer:  8 bits */
234 #define LL_SPI_DATAWIDTH_9BIT              (SPI_CR2_DS_3)                                              /*!< Data length for SPI transfer:  9 bits */
235 #define LL_SPI_DATAWIDTH_10BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_0)                               /*!< Data length for SPI transfer: 10 bits */
236 #define LL_SPI_DATAWIDTH_11BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_1)                               /*!< Data length for SPI transfer: 11 bits */
237 #define LL_SPI_DATAWIDTH_12BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_1 | SPI_CR2_DS_0)                /*!< Data length for SPI transfer: 12 bits */
238 #define LL_SPI_DATAWIDTH_13BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_2)                               /*!< Data length for SPI transfer: 13 bits */
239 #define LL_SPI_DATAWIDTH_14BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_0)                /*!< Data length for SPI transfer: 14 bits */
240 #define LL_SPI_DATAWIDTH_15BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1)                /*!< Data length for SPI transfer: 15 bits */
241 #define LL_SPI_DATAWIDTH_16BIT             (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 16 bits */
242 /**
243   * @}
244   */
245 #if defined(USE_FULL_LL_DRIVER)
246 
247 /** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
248   * @{
249   */
250 #define LL_SPI_CRCCALCULATION_DISABLE      0x00000000U               /*!< CRC calculation disabled */
251 #define LL_SPI_CRCCALCULATION_ENABLE       (SPI_CR1_CRCEN)           /*!< CRC calculation enabled  */
252 /**
253   * @}
254   */
255 #endif /* USE_FULL_LL_DRIVER */
256 
257 /** @defgroup SPI_LL_EC_CRC_LENGTH CRC Length
258   * @{
259   */
260 #define LL_SPI_CRC_8BIT                    0x00000000U               /*!<  8-bit CRC length */
261 #define LL_SPI_CRC_16BIT                   (SPI_CR1_CRCL)            /*!< 16-bit CRC length */
262 /**
263   * @}
264   */
265 
266 /** @defgroup SPI_LL_EC_RX_FIFO_TH RX FIFO Threshold
267   * @{
268   */
269 #define LL_SPI_RX_FIFO_TH_HALF             0x00000000U               /*!< RXNE event is generated if FIFO level is greater than or equal to 1/2 (16-bit) */
270 #define LL_SPI_RX_FIFO_TH_QUARTER          (SPI_CR2_FRXTH)           /*!< RXNE event is generated if FIFO level is greater than or equal to 1/4 (8-bit)  */
271 /**
272   * @}
273   */
274 
275 /** @defgroup SPI_LL_EC_RX_FIFO RX FIFO Level
276   * @{
277   */
278 #define LL_SPI_RX_FIFO_EMPTY               0x00000000U                       /*!< FIFO reception empty */
279 #define LL_SPI_RX_FIFO_QUARTER_FULL        (SPI_SR_FRLVL_0)                  /*!< FIFO reception 1/4   */
280 #define LL_SPI_RX_FIFO_HALF_FULL           (SPI_SR_FRLVL_1)                  /*!< FIFO reception 1/2   */
281 #define LL_SPI_RX_FIFO_FULL                (SPI_SR_FRLVL_1 | SPI_SR_FRLVL_0) /*!< FIFO reception full  */
282 /**
283   * @}
284   */
285 
286 /** @defgroup SPI_LL_EC_TX_FIFO TX FIFO Level
287   * @{
288   */
289 #define LL_SPI_TX_FIFO_EMPTY               0x00000000U                       /*!< FIFO transmission empty */
290 #define LL_SPI_TX_FIFO_QUARTER_FULL        (SPI_SR_FTLVL_0)                  /*!< FIFO transmission 1/4   */
291 #define LL_SPI_TX_FIFO_HALF_FULL           (SPI_SR_FTLVL_1)                  /*!< FIFO transmission 1/2   */
292 #define LL_SPI_TX_FIFO_FULL                (SPI_SR_FTLVL_1 | SPI_SR_FTLVL_0) /*!< FIFO transmission full  */
293 /**
294   * @}
295   */
296 
297 /** @defgroup SPI_LL_EC_DMA_PARITY DMA Parity
298   * @{
299   */
300 #define LL_SPI_DMA_PARITY_EVEN             0x00000000U   /*!< Select DMA parity Even */
301 #define LL_SPI_DMA_PARITY_ODD              0x00000001U   /*!< Select DMA parity Odd  */
302 
303 /**
304   * @}
305   */
306 
307 /**
308   * @}
309   */
310 
311 /* Exported macro ------------------------------------------------------------*/
312 /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
313   * @{
314   */
315 
316 /** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
317   * @{
318   */
319 
320 /**
321   * @brief  Write a value in SPI register
322   * @param  __INSTANCE__ SPI Instance
323   * @param  __REG__ Register to be written
324   * @param  __VALUE__ Value to be written in the register
325   * @retval None
326   */
327 #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
328 
329 /**
330   * @brief  Read a value in SPI register
331   * @param  __INSTANCE__ SPI Instance
332   * @param  __REG__ Register to be read
333   * @retval Register value
334   */
335 #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
336 /**
337   * @}
338   */
339 
340 /**
341   * @}
342   */
343 
344 /* Exported functions --------------------------------------------------------*/
345 /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
346   * @{
347   */
348 
349 /** @defgroup SPI_LL_EF_Configuration Configuration
350   * @{
351   */
352 
353 /**
354   * @brief  Enable SPI peripheral
355   * @rmtoll CR1          SPE           LL_SPI_Enable
356   * @param  SPIx SPI Instance
357   * @retval None
358   */
LL_SPI_Enable(SPI_TypeDef * SPIx)359 __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
360 {
361   SET_BIT(SPIx->CR1, SPI_CR1_SPE);
362 }
363 
364 /**
365   * @brief  Disable SPI peripheral
366   * @note   When disabling the SPI, follow the procedure described in the Reference Manual.
367   * @rmtoll CR1          SPE           LL_SPI_Disable
368   * @param  SPIx SPI Instance
369   * @retval None
370   */
LL_SPI_Disable(SPI_TypeDef * SPIx)371 __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
372 {
373   CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
374 }
375 
376 /**
377   * @brief  Check if SPI peripheral is enabled
378   * @rmtoll CR1          SPE           LL_SPI_IsEnabled
379   * @param  SPIx SPI Instance
380   * @retval State of bit (1 or 0).
381   */
LL_SPI_IsEnabled(SPI_TypeDef * SPIx)382 __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
383 {
384   return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL);
385 }
386 
387 /**
388   * @brief  Set SPI operation mode to Master or Slave
389   * @note   This bit should not be changed when communication is ongoing.
390   * @rmtoll CR1          MSTR          LL_SPI_SetMode\n
391   *         CR1          SSI           LL_SPI_SetMode
392   * @param  SPIx SPI Instance
393   * @param  Mode This parameter can be one of the following values:
394   *         @arg @ref LL_SPI_MODE_MASTER
395   *         @arg @ref LL_SPI_MODE_SLAVE
396   * @retval None
397   */
LL_SPI_SetMode(SPI_TypeDef * SPIx,uint32_t Mode)398 __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
399 {
400   MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
401 }
402 
403 /**
404   * @brief  Get SPI operation mode (Master or Slave)
405   * @rmtoll CR1          MSTR          LL_SPI_GetMode\n
406   *         CR1          SSI           LL_SPI_GetMode
407   * @param  SPIx SPI Instance
408   * @retval Returned value can be one of the following values:
409   *         @arg @ref LL_SPI_MODE_MASTER
410   *         @arg @ref LL_SPI_MODE_SLAVE
411   */
LL_SPI_GetMode(SPI_TypeDef * SPIx)412 __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
413 {
414   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
415 }
416 
417 /**
418   * @brief  Set serial protocol used
419   * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
420   * @rmtoll CR2          FRF           LL_SPI_SetStandard
421   * @param  SPIx SPI Instance
422   * @param  Standard This parameter can be one of the following values:
423   *         @arg @ref LL_SPI_PROTOCOL_MOTOROLA
424   *         @arg @ref LL_SPI_PROTOCOL_TI
425   * @retval None
426   */
LL_SPI_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)427 __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
428 {
429   MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
430 }
431 
432 /**
433   * @brief  Get serial protocol used
434   * @rmtoll CR2          FRF           LL_SPI_GetStandard
435   * @param  SPIx SPI Instance
436   * @retval Returned value can be one of the following values:
437   *         @arg @ref LL_SPI_PROTOCOL_MOTOROLA
438   *         @arg @ref LL_SPI_PROTOCOL_TI
439   */
LL_SPI_GetStandard(SPI_TypeDef * SPIx)440 __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
441 {
442   return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
443 }
444 
445 /**
446   * @brief  Set clock phase
447   * @note   This bit should not be changed when communication is ongoing.
448   *         This bit is not used in SPI TI mode.
449   * @rmtoll CR1          CPHA          LL_SPI_SetClockPhase
450   * @param  SPIx SPI Instance
451   * @param  ClockPhase This parameter can be one of the following values:
452   *         @arg @ref LL_SPI_PHASE_1EDGE
453   *         @arg @ref LL_SPI_PHASE_2EDGE
454   * @retval None
455   */
LL_SPI_SetClockPhase(SPI_TypeDef * SPIx,uint32_t ClockPhase)456 __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
457 {
458   MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
459 }
460 
461 /**
462   * @brief  Get clock phase
463   * @rmtoll CR1          CPHA          LL_SPI_GetClockPhase
464   * @param  SPIx SPI Instance
465   * @retval Returned value can be one of the following values:
466   *         @arg @ref LL_SPI_PHASE_1EDGE
467   *         @arg @ref LL_SPI_PHASE_2EDGE
468   */
LL_SPI_GetClockPhase(SPI_TypeDef * SPIx)469 __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
470 {
471   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
472 }
473 
474 /**
475   * @brief  Set clock polarity
476   * @note   This bit should not be changed when communication is ongoing.
477   *         This bit is not used in SPI TI mode.
478   * @rmtoll CR1          CPOL          LL_SPI_SetClockPolarity
479   * @param  SPIx SPI Instance
480   * @param  ClockPolarity This parameter can be one of the following values:
481   *         @arg @ref LL_SPI_POLARITY_LOW
482   *         @arg @ref LL_SPI_POLARITY_HIGH
483   * @retval None
484   */
LL_SPI_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)485 __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
486 {
487   MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
488 }
489 
490 /**
491   * @brief  Get clock polarity
492   * @rmtoll CR1          CPOL          LL_SPI_GetClockPolarity
493   * @param  SPIx SPI Instance
494   * @retval Returned value can be one of the following values:
495   *         @arg @ref LL_SPI_POLARITY_LOW
496   *         @arg @ref LL_SPI_POLARITY_HIGH
497   */
LL_SPI_GetClockPolarity(SPI_TypeDef * SPIx)498 __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
499 {
500   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
501 }
502 
503 /**
504   * @brief  Set baud rate prescaler
505   * @note   These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
506   * @rmtoll CR1          BR            LL_SPI_SetBaudRatePrescaler
507   * @param  SPIx SPI Instance
508   * @param  BaudRate This parameter can be one of the following values:
509   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
510   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
511   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
512   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
513   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
514   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
515   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
516   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
517   * @retval None
518   */
LL_SPI_SetBaudRatePrescaler(SPI_TypeDef * SPIx,uint32_t BaudRate)519 __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
520 {
521   MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
522 }
523 
524 /**
525   * @brief  Get baud rate prescaler
526   * @rmtoll CR1          BR            LL_SPI_GetBaudRatePrescaler
527   * @param  SPIx SPI Instance
528   * @retval Returned value can be one of the following values:
529   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
530   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
531   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
532   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
533   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
534   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
535   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
536   *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
537   */
LL_SPI_GetBaudRatePrescaler(SPI_TypeDef * SPIx)538 __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
539 {
540   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
541 }
542 
543 /**
544   * @brief  Set transfer bit order
545   * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
546   * @rmtoll CR1          LSBFIRST      LL_SPI_SetTransferBitOrder
547   * @param  SPIx SPI Instance
548   * @param  BitOrder This parameter can be one of the following values:
549   *         @arg @ref LL_SPI_LSB_FIRST
550   *         @arg @ref LL_SPI_MSB_FIRST
551   * @retval None
552   */
LL_SPI_SetTransferBitOrder(SPI_TypeDef * SPIx,uint32_t BitOrder)553 __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
554 {
555   MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
556 }
557 
558 /**
559   * @brief  Get transfer bit order
560   * @rmtoll CR1          LSBFIRST      LL_SPI_GetTransferBitOrder
561   * @param  SPIx SPI Instance
562   * @retval Returned value can be one of the following values:
563   *         @arg @ref LL_SPI_LSB_FIRST
564   *         @arg @ref LL_SPI_MSB_FIRST
565   */
LL_SPI_GetTransferBitOrder(SPI_TypeDef * SPIx)566 __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
567 {
568   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
569 }
570 
571 /**
572   * @brief  Set transfer direction mode
573   * @note   For Half-Duplex mode, Rx Direction is set by default.
574   *         In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
575   * @rmtoll CR1          RXONLY        LL_SPI_SetTransferDirection\n
576   *         CR1          BIDIMODE      LL_SPI_SetTransferDirection\n
577   *         CR1          BIDIOE        LL_SPI_SetTransferDirection
578   * @param  SPIx SPI Instance
579   * @param  TransferDirection This parameter can be one of the following values:
580   *         @arg @ref LL_SPI_FULL_DUPLEX
581   *         @arg @ref LL_SPI_SIMPLEX_RX
582   *         @arg @ref LL_SPI_HALF_DUPLEX_RX
583   *         @arg @ref LL_SPI_HALF_DUPLEX_TX
584   * @retval None
585   */
LL_SPI_SetTransferDirection(SPI_TypeDef * SPIx,uint32_t TransferDirection)586 __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
587 {
588   MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
589 }
590 
591 /**
592   * @brief  Get transfer direction mode
593   * @rmtoll CR1          RXONLY        LL_SPI_GetTransferDirection\n
594   *         CR1          BIDIMODE      LL_SPI_GetTransferDirection\n
595   *         CR1          BIDIOE        LL_SPI_GetTransferDirection
596   * @param  SPIx SPI Instance
597   * @retval Returned value can be one of the following values:
598   *         @arg @ref LL_SPI_FULL_DUPLEX
599   *         @arg @ref LL_SPI_SIMPLEX_RX
600   *         @arg @ref LL_SPI_HALF_DUPLEX_RX
601   *         @arg @ref LL_SPI_HALF_DUPLEX_TX
602   */
LL_SPI_GetTransferDirection(SPI_TypeDef * SPIx)603 __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
604 {
605   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
606 }
607 
608 /**
609   * @brief  Set frame data width
610   * @rmtoll CR2          DS            LL_SPI_SetDataWidth
611   * @param  SPIx SPI Instance
612   * @param  DataWidth This parameter can be one of the following values:
613   *         @arg @ref LL_SPI_DATAWIDTH_4BIT
614   *         @arg @ref LL_SPI_DATAWIDTH_5BIT
615   *         @arg @ref LL_SPI_DATAWIDTH_6BIT
616   *         @arg @ref LL_SPI_DATAWIDTH_7BIT
617   *         @arg @ref LL_SPI_DATAWIDTH_8BIT
618   *         @arg @ref LL_SPI_DATAWIDTH_9BIT
619   *         @arg @ref LL_SPI_DATAWIDTH_10BIT
620   *         @arg @ref LL_SPI_DATAWIDTH_11BIT
621   *         @arg @ref LL_SPI_DATAWIDTH_12BIT
622   *         @arg @ref LL_SPI_DATAWIDTH_13BIT
623   *         @arg @ref LL_SPI_DATAWIDTH_14BIT
624   *         @arg @ref LL_SPI_DATAWIDTH_15BIT
625   *         @arg @ref LL_SPI_DATAWIDTH_16BIT
626   * @retval None
627   */
LL_SPI_SetDataWidth(SPI_TypeDef * SPIx,uint32_t DataWidth)628 __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
629 {
630   MODIFY_REG(SPIx->CR2, SPI_CR2_DS, DataWidth);
631 }
632 
633 /**
634   * @brief  Get frame data width
635   * @rmtoll CR2          DS            LL_SPI_GetDataWidth
636   * @param  SPIx SPI Instance
637   * @retval Returned value can be one of the following values:
638   *         @arg @ref LL_SPI_DATAWIDTH_4BIT
639   *         @arg @ref LL_SPI_DATAWIDTH_5BIT
640   *         @arg @ref LL_SPI_DATAWIDTH_6BIT
641   *         @arg @ref LL_SPI_DATAWIDTH_7BIT
642   *         @arg @ref LL_SPI_DATAWIDTH_8BIT
643   *         @arg @ref LL_SPI_DATAWIDTH_9BIT
644   *         @arg @ref LL_SPI_DATAWIDTH_10BIT
645   *         @arg @ref LL_SPI_DATAWIDTH_11BIT
646   *         @arg @ref LL_SPI_DATAWIDTH_12BIT
647   *         @arg @ref LL_SPI_DATAWIDTH_13BIT
648   *         @arg @ref LL_SPI_DATAWIDTH_14BIT
649   *         @arg @ref LL_SPI_DATAWIDTH_15BIT
650   *         @arg @ref LL_SPI_DATAWIDTH_16BIT
651   */
LL_SPI_GetDataWidth(SPI_TypeDef * SPIx)652 __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
653 {
654   return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_DS));
655 }
656 
657 /**
658   * @brief  Set threshold of RXFIFO that triggers an RXNE event
659   * @rmtoll CR2          FRXTH         LL_SPI_SetRxFIFOThreshold
660   * @param  SPIx SPI Instance
661   * @param  Threshold This parameter can be one of the following values:
662   *         @arg @ref LL_SPI_RX_FIFO_TH_HALF
663   *         @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
664   * @retval None
665   */
LL_SPI_SetRxFIFOThreshold(SPI_TypeDef * SPIx,uint32_t Threshold)666 __STATIC_INLINE void LL_SPI_SetRxFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
667 {
668   MODIFY_REG(SPIx->CR2, SPI_CR2_FRXTH, Threshold);
669 }
670 
671 /**
672   * @brief  Get threshold of RXFIFO that triggers an RXNE event
673   * @rmtoll CR2          FRXTH         LL_SPI_GetRxFIFOThreshold
674   * @param  SPIx SPI Instance
675   * @retval Returned value can be one of the following values:
676   *         @arg @ref LL_SPI_RX_FIFO_TH_HALF
677   *         @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
678   */
LL_SPI_GetRxFIFOThreshold(SPI_TypeDef * SPIx)679 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOThreshold(SPI_TypeDef *SPIx)
680 {
681   return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRXTH));
682 }
683 
684 /**
685   * @}
686   */
687 
688 /** @defgroup SPI_LL_EF_CRC_Management CRC Management
689   * @{
690   */
691 
692 /**
693   * @brief  Enable CRC
694   * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
695   * @rmtoll CR1          CRCEN         LL_SPI_EnableCRC
696   * @param  SPIx SPI Instance
697   * @retval None
698   */
LL_SPI_EnableCRC(SPI_TypeDef * SPIx)699 __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
700 {
701   SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
702 }
703 
704 /**
705   * @brief  Disable CRC
706   * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
707   * @rmtoll CR1          CRCEN         LL_SPI_DisableCRC
708   * @param  SPIx SPI Instance
709   * @retval None
710   */
LL_SPI_DisableCRC(SPI_TypeDef * SPIx)711 __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
712 {
713   CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
714 }
715 
716 /**
717   * @brief  Check if CRC is enabled
718   * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
719   * @rmtoll CR1          CRCEN         LL_SPI_IsEnabledCRC
720   * @param  SPIx SPI Instance
721   * @retval State of bit (1 or 0).
722   */
LL_SPI_IsEnabledCRC(SPI_TypeDef * SPIx)723 __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
724 {
725   return ((READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN)) ? 1UL : 0UL);
726 }
727 
728 /**
729   * @brief  Set CRC Length
730   * @note   This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
731   * @rmtoll CR1          CRCL          LL_SPI_SetCRCWidth
732   * @param  SPIx SPI Instance
733   * @param  CRCLength This parameter can be one of the following values:
734   *         @arg @ref LL_SPI_CRC_8BIT
735   *         @arg @ref LL_SPI_CRC_16BIT
736   * @retval None
737   */
LL_SPI_SetCRCWidth(SPI_TypeDef * SPIx,uint32_t CRCLength)738 __STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength)
739 {
740   MODIFY_REG(SPIx->CR1, SPI_CR1_CRCL, CRCLength);
741 }
742 
743 /**
744   * @brief  Get CRC Length
745   * @rmtoll CR1          CRCL          LL_SPI_GetCRCWidth
746   * @param  SPIx SPI Instance
747   * @retval Returned value can be one of the following values:
748   *         @arg @ref LL_SPI_CRC_8BIT
749   *         @arg @ref LL_SPI_CRC_16BIT
750   */
LL_SPI_GetCRCWidth(SPI_TypeDef * SPIx)751 __STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx)
752 {
753   return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CRCL));
754 }
755 
756 /**
757   * @brief  Set CRCNext to transfer CRC on the line
758   * @note   This bit has to be written as soon as the last data is written in the SPIx_DR register.
759   * @rmtoll CR1          CRCNEXT       LL_SPI_SetCRCNext
760   * @param  SPIx SPI Instance
761   * @retval None
762   */
LL_SPI_SetCRCNext(SPI_TypeDef * SPIx)763 __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
764 {
765   SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
766 }
767 
768 /**
769   * @brief  Set polynomial for CRC calculation
770   * @rmtoll CRCPR        CRCPOLY       LL_SPI_SetCRCPolynomial
771   * @param  SPIx SPI Instance
772   * @param  CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
773   * @retval None
774   */
LL_SPI_SetCRCPolynomial(SPI_TypeDef * SPIx,uint32_t CRCPoly)775 __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
776 {
777   WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
778 }
779 
780 /**
781   * @brief  Get polynomial for CRC calculation
782   * @rmtoll CRCPR        CRCPOLY       LL_SPI_GetCRCPolynomial
783   * @param  SPIx SPI Instance
784   * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
785   */
LL_SPI_GetCRCPolynomial(SPI_TypeDef * SPIx)786 __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
787 {
788   return (uint32_t)(READ_REG(SPIx->CRCPR));
789 }
790 
791 /**
792   * @brief  Get Rx CRC
793   * @rmtoll RXCRCR       RXCRC         LL_SPI_GetRxCRC
794   * @param  SPIx SPI Instance
795   * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
796   */
LL_SPI_GetRxCRC(SPI_TypeDef * SPIx)797 __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
798 {
799   return (uint32_t)(READ_REG(SPIx->RXCRCR));
800 }
801 
802 /**
803   * @brief  Get Tx CRC
804   * @rmtoll TXCRCR       TXCRC         LL_SPI_GetTxCRC
805   * @param  SPIx SPI Instance
806   * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
807   */
LL_SPI_GetTxCRC(SPI_TypeDef * SPIx)808 __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
809 {
810   return (uint32_t)(READ_REG(SPIx->TXCRCR));
811 }
812 
813 /**
814   * @}
815   */
816 
817 /** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
818   * @{
819   */
820 
821 /**
822   * @brief  Set NSS mode
823   * @note   LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
824   * @rmtoll CR1          SSM           LL_SPI_SetNSSMode\n
825   * @rmtoll CR2          SSOE          LL_SPI_SetNSSMode
826   * @param  SPIx SPI Instance
827   * @param  NSS This parameter can be one of the following values:
828   *         @arg @ref LL_SPI_NSS_SOFT
829   *         @arg @ref LL_SPI_NSS_HARD_INPUT
830   *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
831   * @retval None
832   */
LL_SPI_SetNSSMode(SPI_TypeDef * SPIx,uint32_t NSS)833 __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
834 {
835   MODIFY_REG(SPIx->CR1, SPI_CR1_SSM,  NSS);
836   MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
837 }
838 
839 /**
840   * @brief  Get NSS mode
841   * @rmtoll CR1          SSM           LL_SPI_GetNSSMode\n
842   * @rmtoll CR2          SSOE          LL_SPI_GetNSSMode
843   * @param  SPIx SPI Instance
844   * @retval Returned value can be one of the following values:
845   *         @arg @ref LL_SPI_NSS_SOFT
846   *         @arg @ref LL_SPI_NSS_HARD_INPUT
847   *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
848   */
LL_SPI_GetNSSMode(SPI_TypeDef * SPIx)849 __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
850 {
851   uint32_t Ssm  = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
852   uint32_t Ssoe = (READ_BIT(SPIx->CR2,  SPI_CR2_SSOE) << 16U);
853   return (Ssm | Ssoe);
854 }
855 
856 /**
857   * @brief  Enable NSS pulse management
858   * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
859   * @rmtoll CR2          NSSP          LL_SPI_EnableNSSPulseMgt
860   * @param  SPIx SPI Instance
861   * @retval None
862   */
LL_SPI_EnableNSSPulseMgt(SPI_TypeDef * SPIx)863 __STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx)
864 {
865   SET_BIT(SPIx->CR2, SPI_CR2_NSSP);
866 }
867 
868 /**
869   * @brief  Disable NSS pulse management
870   * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
871   * @rmtoll CR2          NSSP          LL_SPI_DisableNSSPulseMgt
872   * @param  SPIx SPI Instance
873   * @retval None
874   */
LL_SPI_DisableNSSPulseMgt(SPI_TypeDef * SPIx)875 __STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx)
876 {
877   CLEAR_BIT(SPIx->CR2, SPI_CR2_NSSP);
878 }
879 
880 /**
881   * @brief  Check if NSS pulse is enabled
882   * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
883   * @rmtoll CR2          NSSP          LL_SPI_IsEnabledNSSPulse
884   * @param  SPIx SPI Instance
885   * @retval State of bit (1 or 0).
886   */
LL_SPI_IsEnabledNSSPulse(SPI_TypeDef * SPIx)887 __STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx)
888 {
889   return ((READ_BIT(SPIx->CR2, SPI_CR2_NSSP) == (SPI_CR2_NSSP)) ? 1UL : 0UL);
890 }
891 
892 /**
893   * @}
894   */
895 
896 /** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
897   * @{
898   */
899 
900 /**
901   * @brief  Check if Rx buffer is not empty
902   * @rmtoll SR           RXNE          LL_SPI_IsActiveFlag_RXNE
903   * @param  SPIx SPI Instance
904   * @retval State of bit (1 or 0).
905   */
LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)906 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
907 {
908   return ((READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)) ? 1UL : 0UL);
909 }
910 
911 /**
912   * @brief  Check if Tx buffer is empty
913   * @rmtoll SR           TXE           LL_SPI_IsActiveFlag_TXE
914   * @param  SPIx SPI Instance
915   * @retval State of bit (1 or 0).
916   */
LL_SPI_IsActiveFlag_TXE(SPI_TypeDef * SPIx)917 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
918 {
919   return ((READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)) ? 1UL : 0UL);
920 }
921 
922 /**
923   * @brief  Get CRC error flag
924   * @rmtoll SR           CRCERR        LL_SPI_IsActiveFlag_CRCERR
925   * @param  SPIx SPI Instance
926   * @retval State of bit (1 or 0).
927   */
LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef * SPIx)928 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
929 {
930   return ((READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR)) ? 1UL : 0UL);
931 }
932 
933 /**
934   * @brief  Get mode fault error flag
935   * @rmtoll SR           MODF          LL_SPI_IsActiveFlag_MODF
936   * @param  SPIx SPI Instance
937   * @retval State of bit (1 or 0).
938   */
LL_SPI_IsActiveFlag_MODF(SPI_TypeDef * SPIx)939 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
940 {
941   return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL);
942 }
943 
944 /**
945   * @brief  Get overrun error flag
946   * @rmtoll SR           OVR           LL_SPI_IsActiveFlag_OVR
947   * @param  SPIx SPI Instance
948   * @retval State of bit (1 or 0).
949   */
LL_SPI_IsActiveFlag_OVR(SPI_TypeDef * SPIx)950 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
951 {
952   return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL);
953 }
954 
955 /**
956   * @brief  Get busy flag
957   * @note   The BSY flag is cleared under any one of the following conditions:
958   * -When the SPI is correctly disabled
959   * -When a fault is detected in Master mode (MODF bit set to 1)
960   * -In Master mode, when it finishes a data transmission and no new data is ready to be
961   * sent
962   * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
963   * each data transfer.
964   * @rmtoll SR           BSY           LL_SPI_IsActiveFlag_BSY
965   * @param  SPIx SPI Instance
966   * @retval State of bit (1 or 0).
967   */
LL_SPI_IsActiveFlag_BSY(SPI_TypeDef * SPIx)968 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
969 {
970   return ((READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)) ? 1UL : 0UL);
971 }
972 
973 /**
974   * @brief  Get frame format error flag
975   * @rmtoll SR           FRE           LL_SPI_IsActiveFlag_FRE
976   * @param  SPIx SPI Instance
977   * @retval State of bit (1 or 0).
978   */
LL_SPI_IsActiveFlag_FRE(SPI_TypeDef * SPIx)979 __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
980 {
981   return ((READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE)) ? 1UL : 0UL);
982 }
983 
984 /**
985   * @brief  Get FIFO reception Level
986   * @rmtoll SR           FRLVL         LL_SPI_GetRxFIFOLevel
987   * @param  SPIx SPI Instance
988   * @retval Returned value can be one of the following values:
989   *         @arg @ref LL_SPI_RX_FIFO_EMPTY
990   *         @arg @ref LL_SPI_RX_FIFO_QUARTER_FULL
991   *         @arg @ref LL_SPI_RX_FIFO_HALF_FULL
992   *         @arg @ref LL_SPI_RX_FIFO_FULL
993   */
LL_SPI_GetRxFIFOLevel(SPI_TypeDef * SPIx)994 __STATIC_INLINE uint32_t LL_SPI_GetRxFIFOLevel(SPI_TypeDef *SPIx)
995 {
996   return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FRLVL));
997 }
998 
999 /**
1000   * @brief  Get FIFO Transmission Level
1001   * @rmtoll SR           FTLVL         LL_SPI_GetTxFIFOLevel
1002   * @param  SPIx SPI Instance
1003   * @retval Returned value can be one of the following values:
1004   *         @arg @ref LL_SPI_TX_FIFO_EMPTY
1005   *         @arg @ref LL_SPI_TX_FIFO_QUARTER_FULL
1006   *         @arg @ref LL_SPI_TX_FIFO_HALF_FULL
1007   *         @arg @ref LL_SPI_TX_FIFO_FULL
1008   */
LL_SPI_GetTxFIFOLevel(SPI_TypeDef * SPIx)1009 __STATIC_INLINE uint32_t LL_SPI_GetTxFIFOLevel(SPI_TypeDef *SPIx)
1010 {
1011   return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FTLVL));
1012 }
1013 
1014 /**
1015   * @brief  Clear CRC error flag
1016   * @rmtoll SR           CRCERR        LL_SPI_ClearFlag_CRCERR
1017   * @param  SPIx SPI Instance
1018   * @retval None
1019   */
LL_SPI_ClearFlag_CRCERR(SPI_TypeDef * SPIx)1020 __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
1021 {
1022   CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
1023 }
1024 
1025 /**
1026   * @brief  Clear mode fault error flag
1027   * @note   Clearing this flag is done by a read access to the SPIx_SR
1028   *         register followed by a write access to the SPIx_CR1 register
1029   * @rmtoll SR           MODF          LL_SPI_ClearFlag_MODF
1030   * @param  SPIx SPI Instance
1031   * @retval None
1032   */
LL_SPI_ClearFlag_MODF(SPI_TypeDef * SPIx)1033 __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
1034 {
1035   __IO uint32_t tmpreg_sr;
1036   tmpreg_sr = SPIx->SR;
1037   (void) tmpreg_sr;
1038   CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
1039 }
1040 
1041 /**
1042   * @brief  Clear overrun error flag
1043   * @note   Clearing this flag is done by a read access to the SPIx_DR
1044   *         register followed by a read access to the SPIx_SR register
1045   * @rmtoll SR           OVR           LL_SPI_ClearFlag_OVR
1046   * @param  SPIx SPI Instance
1047   * @retval None
1048   */
LL_SPI_ClearFlag_OVR(SPI_TypeDef * SPIx)1049 __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
1050 {
1051   __IO uint32_t tmpreg;
1052   tmpreg = SPIx->DR;
1053   (void) tmpreg;
1054   tmpreg = SPIx->SR;
1055   (void) tmpreg;
1056 }
1057 
1058 /**
1059   * @brief  Clear frame format error flag
1060   * @note   Clearing this flag is done by reading SPIx_SR register
1061   * @rmtoll SR           FRE           LL_SPI_ClearFlag_FRE
1062   * @param  SPIx SPI Instance
1063   * @retval None
1064   */
LL_SPI_ClearFlag_FRE(SPI_TypeDef * SPIx)1065 __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
1066 {
1067   __IO uint32_t tmpreg;
1068   tmpreg = SPIx->SR;
1069   (void) tmpreg;
1070 }
1071 
1072 /**
1073   * @}
1074   */
1075 
1076 /** @defgroup SPI_LL_EF_IT_Management Interrupt Management
1077   * @{
1078   */
1079 
1080 /**
1081   * @brief  Enable error interrupt
1082   * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1083   * @rmtoll CR2          ERRIE         LL_SPI_EnableIT_ERR
1084   * @param  SPIx SPI Instance
1085   * @retval None
1086   */
LL_SPI_EnableIT_ERR(SPI_TypeDef * SPIx)1087 __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
1088 {
1089   SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1090 }
1091 
1092 /**
1093   * @brief  Enable Rx buffer not empty interrupt
1094   * @rmtoll CR2          RXNEIE        LL_SPI_EnableIT_RXNE
1095   * @param  SPIx SPI Instance
1096   * @retval None
1097   */
LL_SPI_EnableIT_RXNE(SPI_TypeDef * SPIx)1098 __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
1099 {
1100   SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1101 }
1102 
1103 /**
1104   * @brief  Enable Tx buffer empty interrupt
1105   * @rmtoll CR2          TXEIE         LL_SPI_EnableIT_TXE
1106   * @param  SPIx SPI Instance
1107   * @retval None
1108   */
LL_SPI_EnableIT_TXE(SPI_TypeDef * SPIx)1109 __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
1110 {
1111   SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1112 }
1113 
1114 /**
1115   * @brief  Disable error interrupt
1116   * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
1117   * @rmtoll CR2          ERRIE         LL_SPI_DisableIT_ERR
1118   * @param  SPIx SPI Instance
1119   * @retval None
1120   */
LL_SPI_DisableIT_ERR(SPI_TypeDef * SPIx)1121 __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
1122 {
1123   CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
1124 }
1125 
1126 /**
1127   * @brief  Disable Rx buffer not empty interrupt
1128   * @rmtoll CR2          RXNEIE        LL_SPI_DisableIT_RXNE
1129   * @param  SPIx SPI Instance
1130   * @retval None
1131   */
LL_SPI_DisableIT_RXNE(SPI_TypeDef * SPIx)1132 __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
1133 {
1134   CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
1135 }
1136 
1137 /**
1138   * @brief  Disable Tx buffer empty interrupt
1139   * @rmtoll CR2          TXEIE         LL_SPI_DisableIT_TXE
1140   * @param  SPIx SPI Instance
1141   * @retval None
1142   */
LL_SPI_DisableIT_TXE(SPI_TypeDef * SPIx)1143 __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
1144 {
1145   CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
1146 }
1147 
1148 /**
1149   * @brief  Check if error interrupt is enabled
1150   * @rmtoll CR2          ERRIE         LL_SPI_IsEnabledIT_ERR
1151   * @param  SPIx SPI Instance
1152   * @retval State of bit (1 or 0).
1153   */
LL_SPI_IsEnabledIT_ERR(SPI_TypeDef * SPIx)1154 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
1155 {
1156   return ((READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)) ? 1UL : 0UL);
1157 }
1158 
1159 /**
1160   * @brief  Check if Rx buffer not empty interrupt is enabled
1161   * @rmtoll CR2          RXNEIE        LL_SPI_IsEnabledIT_RXNE
1162   * @param  SPIx SPI Instance
1163   * @retval State of bit (1 or 0).
1164   */
LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)1165 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
1166 {
1167   return ((READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)) ? 1UL : 0UL);
1168 }
1169 
1170 /**
1171   * @brief  Check if Tx buffer empty interrupt
1172   * @rmtoll CR2          TXEIE         LL_SPI_IsEnabledIT_TXE
1173   * @param  SPIx SPI Instance
1174   * @retval State of bit (1 or 0).
1175   */
LL_SPI_IsEnabledIT_TXE(SPI_TypeDef * SPIx)1176 __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
1177 {
1178   return ((READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)) ? 1UL : 0UL);
1179 }
1180 
1181 /**
1182   * @}
1183   */
1184 
1185 /** @defgroup SPI_LL_EF_DMA_Management DMA Management
1186   * @{
1187   */
1188 
1189 /**
1190   * @brief  Enable DMA Rx
1191   * @rmtoll CR2          RXDMAEN       LL_SPI_EnableDMAReq_RX
1192   * @param  SPIx SPI Instance
1193   * @retval None
1194   */
LL_SPI_EnableDMAReq_RX(SPI_TypeDef * SPIx)1195 __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
1196 {
1197   SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1198 }
1199 
1200 /**
1201   * @brief  Disable DMA Rx
1202   * @rmtoll CR2          RXDMAEN       LL_SPI_DisableDMAReq_RX
1203   * @param  SPIx SPI Instance
1204   * @retval None
1205   */
LL_SPI_DisableDMAReq_RX(SPI_TypeDef * SPIx)1206 __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
1207 {
1208   CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
1209 }
1210 
1211 /**
1212   * @brief  Check if DMA Rx is enabled
1213   * @rmtoll CR2          RXDMAEN       LL_SPI_IsEnabledDMAReq_RX
1214   * @param  SPIx SPI Instance
1215   * @retval State of bit (1 or 0).
1216   */
LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)1217 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
1218 {
1219   return ((READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)) ? 1UL : 0UL);
1220 }
1221 
1222 /**
1223   * @brief  Enable DMA Tx
1224   * @rmtoll CR2          TXDMAEN       LL_SPI_EnableDMAReq_TX
1225   * @param  SPIx SPI Instance
1226   * @retval None
1227   */
LL_SPI_EnableDMAReq_TX(SPI_TypeDef * SPIx)1228 __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
1229 {
1230   SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1231 }
1232 
1233 /**
1234   * @brief  Disable DMA Tx
1235   * @rmtoll CR2          TXDMAEN       LL_SPI_DisableDMAReq_TX
1236   * @param  SPIx SPI Instance
1237   * @retval None
1238   */
LL_SPI_DisableDMAReq_TX(SPI_TypeDef * SPIx)1239 __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
1240 {
1241   CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
1242 }
1243 
1244 /**
1245   * @brief  Check if DMA Tx is enabled
1246   * @rmtoll CR2          TXDMAEN       LL_SPI_IsEnabledDMAReq_TX
1247   * @param  SPIx SPI Instance
1248   * @retval State of bit (1 or 0).
1249   */
LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)1250 __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
1251 {
1252   return ((READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)) ? 1UL : 0UL);
1253 }
1254 
1255 /**
1256   * @brief  Set parity of  Last DMA reception
1257   * @rmtoll CR2          LDMARX        LL_SPI_SetDMAParity_RX
1258   * @param  SPIx SPI Instance
1259   * @param  Parity This parameter can be one of the following values:
1260   *         @arg @ref LL_SPI_DMA_PARITY_ODD
1261   *         @arg @ref LL_SPI_DMA_PARITY_EVEN
1262   * @retval None
1263   */
LL_SPI_SetDMAParity_RX(SPI_TypeDef * SPIx,uint32_t Parity)1264 __STATIC_INLINE void LL_SPI_SetDMAParity_RX(SPI_TypeDef *SPIx, uint32_t Parity)
1265 {
1266   MODIFY_REG(SPIx->CR2, SPI_CR2_LDMARX, (Parity << SPI_CR2_LDMARX_Pos));
1267 }
1268 
1269 /**
1270   * @brief  Get parity configuration for  Last DMA reception
1271   * @rmtoll CR2          LDMARX        LL_SPI_GetDMAParity_RX
1272   * @param  SPIx SPI Instance
1273   * @retval Returned value can be one of the following values:
1274   *         @arg @ref LL_SPI_DMA_PARITY_ODD
1275   *         @arg @ref LL_SPI_DMA_PARITY_EVEN
1276   */
LL_SPI_GetDMAParity_RX(SPI_TypeDef * SPIx)1277 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_RX(SPI_TypeDef *SPIx)
1278 {
1279   return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMARX) >> SPI_CR2_LDMARX_Pos);
1280 }
1281 
1282 /**
1283   * @brief  Set parity of  Last DMA transmission
1284   * @rmtoll CR2          LDMATX        LL_SPI_SetDMAParity_TX
1285   * @param  SPIx SPI Instance
1286   * @param  Parity This parameter can be one of the following values:
1287   *         @arg @ref LL_SPI_DMA_PARITY_ODD
1288   *         @arg @ref LL_SPI_DMA_PARITY_EVEN
1289   * @retval None
1290   */
LL_SPI_SetDMAParity_TX(SPI_TypeDef * SPIx,uint32_t Parity)1291 __STATIC_INLINE void LL_SPI_SetDMAParity_TX(SPI_TypeDef *SPIx, uint32_t Parity)
1292 {
1293   MODIFY_REG(SPIx->CR2, SPI_CR2_LDMATX, (Parity << SPI_CR2_LDMATX_Pos));
1294 }
1295 
1296 /**
1297   * @brief  Get parity configuration for Last DMA transmission
1298   * @rmtoll CR2          LDMATX        LL_SPI_GetDMAParity_TX
1299   * @param  SPIx SPI Instance
1300   * @retval Returned value can be one of the following values:
1301   *         @arg @ref LL_SPI_DMA_PARITY_ODD
1302   *         @arg @ref LL_SPI_DMA_PARITY_EVEN
1303   */
LL_SPI_GetDMAParity_TX(SPI_TypeDef * SPIx)1304 __STATIC_INLINE uint32_t LL_SPI_GetDMAParity_TX(SPI_TypeDef *SPIx)
1305 {
1306   return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMATX) >> SPI_CR2_LDMATX_Pos);
1307 }
1308 
1309 /**
1310   * @brief  Get the data register address used for DMA transfer
1311   * @rmtoll DR           DR            LL_SPI_DMA_GetRegAddr
1312   * @param  SPIx SPI Instance
1313   * @retval Address of data register
1314   */
LL_SPI_DMA_GetRegAddr(SPI_TypeDef * SPIx)1315 __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
1316 {
1317   return (uint32_t) &(SPIx->DR);
1318 }
1319 
1320 /**
1321   * @}
1322   */
1323 
1324 /** @defgroup SPI_LL_EF_DATA_Management DATA Management
1325   * @{
1326   */
1327 
1328 /**
1329   * @brief  Read 8-Bits in the data register
1330   * @rmtoll DR           DR            LL_SPI_ReceiveData8
1331   * @param  SPIx SPI Instance
1332   * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
1333   */
LL_SPI_ReceiveData8(SPI_TypeDef * SPIx)1334 __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
1335 {
1336   return (uint8_t)(READ_REG(SPIx->DR));
1337 }
1338 
1339 /**
1340   * @brief  Read 16-Bits in the data register
1341   * @rmtoll DR           DR            LL_SPI_ReceiveData16
1342   * @param  SPIx SPI Instance
1343   * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1344   */
LL_SPI_ReceiveData16(SPI_TypeDef * SPIx)1345 __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
1346 {
1347   return (uint16_t)(READ_REG(SPIx->DR));
1348 }
1349 
1350 /**
1351   * @brief  Write 8-Bits in the data register
1352   * @rmtoll DR           DR            LL_SPI_TransmitData8
1353   * @param  SPIx SPI Instance
1354   * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFF
1355   * @retval None
1356   */
LL_SPI_TransmitData8(SPI_TypeDef * SPIx,uint8_t TxData)1357 __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
1358 {
1359 #if defined (__GNUC__)
1360   __IO uint8_t *spidr = ((__IO uint8_t *)&SPIx->DR);
1361   *spidr = TxData;
1362 #else
1363   *((__IO uint8_t *)&SPIx->DR) = TxData;
1364 #endif /* __GNUC__ */
1365 }
1366 
1367 /**
1368   * @brief  Write 16-Bits in the data register
1369   * @rmtoll DR           DR            LL_SPI_TransmitData16
1370   * @param  SPIx SPI Instance
1371   * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
1372   * @retval None
1373   */
LL_SPI_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)1374 __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
1375 {
1376 #if defined (__GNUC__)
1377   __IO uint16_t *spidr = ((__IO uint16_t *)&SPIx->DR);
1378   *spidr = TxData;
1379 #else
1380   SPIx->DR = TxData;
1381 #endif /* __GNUC__ */
1382 }
1383 
1384 /**
1385   * @}
1386   */
1387 #if defined(USE_FULL_LL_DRIVER)
1388 /** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
1389   * @{
1390   */
1391 
1392 ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
1393 ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
1394 void        LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
1395 
1396 /**
1397   * @}
1398   */
1399 #endif /* USE_FULL_LL_DRIVER */
1400 /**
1401   * @}
1402   */
1403 
1404 /**
1405   * @}
1406   */
1407 
1408 /** @defgroup I2S_LL I2S
1409   * @{
1410   */
1411 
1412 /* Private variables ---------------------------------------------------------*/
1413 /* Private constants ---------------------------------------------------------*/
1414 /* Private macros ------------------------------------------------------------*/
1415 
1416 /* Exported types ------------------------------------------------------------*/
1417 #if defined(USE_FULL_LL_DRIVER)
1418 /** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
1419   * @{
1420   */
1421 
1422 /**
1423   * @brief  I2S Init structure definition
1424   */
1425 
1426 typedef struct
1427 {
1428   uint32_t Mode;                    /*!< Specifies the I2S operating mode.
1429                                          This parameter can be a value of @ref I2S_LL_EC_MODE
1430 
1431                                          This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
1432 
1433   uint32_t Standard;                /*!< Specifies the standard used for the I2S communication.
1434                                          This parameter can be a value of @ref I2S_LL_EC_STANDARD
1435 
1436                                          This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
1437 
1438 
1439   uint32_t DataFormat;              /*!< Specifies the data format for the I2S communication.
1440                                          This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
1441 
1442                                          This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
1443 
1444 
1445   uint32_t MCLKOutput;              /*!< Specifies whether the I2S MCLK output is enabled or not.
1446                                          This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
1447 
1448                                          This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
1449 
1450 
1451   uint32_t AudioFreq;               /*!< Specifies the frequency selected for the I2S communication.
1452                                          This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
1453 
1454                                          Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
1455                                          and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
1456 
1457 
1458   uint32_t ClockPolarity;           /*!< Specifies the idle state of the I2S clock.
1459                                          This parameter can be a value of @ref I2S_LL_EC_POLARITY
1460 
1461                                          This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
1462 
1463 } LL_I2S_InitTypeDef;
1464 
1465 /**
1466   * @}
1467   */
1468 #endif /*USE_FULL_LL_DRIVER*/
1469 
1470 /* Exported constants --------------------------------------------------------*/
1471 /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
1472   * @{
1473   */
1474 
1475 /** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
1476   * @brief    Flags defines which can be used with LL_I2S_ReadReg function
1477   * @{
1478   */
1479 #define LL_I2S_SR_RXNE                     LL_SPI_SR_RXNE            /*!< Rx buffer not empty flag         */
1480 #define LL_I2S_SR_TXE                      LL_SPI_SR_TXE             /*!< Tx buffer empty flag             */
1481 #define LL_I2S_SR_BSY                      LL_SPI_SR_BSY             /*!< Busy flag                        */
1482 #define LL_I2S_SR_UDR                      SPI_SR_UDR                /*!< Underrun flag                    */
1483 #define LL_I2S_SR_OVR                      LL_SPI_SR_OVR             /*!< Overrun flag                     */
1484 #define LL_I2S_SR_FRE                      LL_SPI_SR_FRE             /*!< TI mode frame format error flag  */
1485 /**
1486   * @}
1487   */
1488 
1489 /** @defgroup SPI_LL_EC_IT IT Defines
1490   * @brief    IT defines which can be used with LL_SPI_ReadReg and  LL_SPI_WriteReg functions
1491   * @{
1492   */
1493 #define LL_I2S_CR2_RXNEIE                  LL_SPI_CR2_RXNEIE         /*!< Rx buffer not empty interrupt enable */
1494 #define LL_I2S_CR2_TXEIE                   LL_SPI_CR2_TXEIE          /*!< Tx buffer empty interrupt enable     */
1495 #define LL_I2S_CR2_ERRIE                   LL_SPI_CR2_ERRIE          /*!< Error interrupt enable               */
1496 /**
1497   * @}
1498   */
1499 
1500 /** @defgroup I2S_LL_EC_DATA_FORMAT Data format
1501   * @{
1502   */
1503 #define LL_I2S_DATAFORMAT_16B              0x00000000U                                   /*!< Data length 16 bits, Channel length 16bit */
1504 #define LL_I2S_DATAFORMAT_16B_EXTENDED     (SPI_I2SCFGR_CHLEN)                           /*!< Data length 16 bits, Channel length 32bit */
1505 #define LL_I2S_DATAFORMAT_24B              (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0)    /*!< Data length 24 bits, Channel length 32bit */
1506 #define LL_I2S_DATAFORMAT_32B              (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1)    /*!< Data length 16 bits, Channel length 32bit */
1507 /**
1508   * @}
1509   */
1510 
1511 /** @defgroup I2S_LL_EC_POLARITY Clock Polarity
1512   * @{
1513   */
1514 #define LL_I2S_POLARITY_LOW                0x00000000U               /*!< Clock steady state is low level  */
1515 #define LL_I2S_POLARITY_HIGH               (SPI_I2SCFGR_CKPOL)       /*!< Clock steady state is high level */
1516 /**
1517   * @}
1518   */
1519 
1520 /** @defgroup I2S_LL_EC_STANDARD I2s Standard
1521   * @{
1522   */
1523 #define LL_I2S_STANDARD_PHILIPS            0x00000000U                                                         /*!< I2S standard philips                      */
1524 #define LL_I2S_STANDARD_MSB                (SPI_I2SCFGR_I2SSTD_0)                                              /*!< MSB justified standard (left justified)   */
1525 #define LL_I2S_STANDARD_LSB                (SPI_I2SCFGR_I2SSTD_1)                                              /*!< LSB justified standard (right justified)  */
1526 #define LL_I2S_STANDARD_PCM_SHORT          (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1)                       /*!< PCM standard, short frame synchronization */
1527 #define LL_I2S_STANDARD_PCM_LONG           (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization  */
1528 /**
1529   * @}
1530   */
1531 
1532 /** @defgroup I2S_LL_EC_MODE Operation Mode
1533   * @{
1534   */
1535 #define LL_I2S_MODE_SLAVE_TX               0x00000000U                                   /*!< Slave Tx configuration  */
1536 #define LL_I2S_MODE_SLAVE_RX               (SPI_I2SCFGR_I2SCFG_0)                        /*!< Slave Rx configuration  */
1537 #define LL_I2S_MODE_MASTER_TX              (SPI_I2SCFGR_I2SCFG_1)                        /*!< Master Tx configuration */
1538 #define LL_I2S_MODE_MASTER_RX              (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
1539 /**
1540   * @}
1541   */
1542 
1543 /** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
1544   * @{
1545   */
1546 #define LL_I2S_PRESCALER_PARITY_EVEN       0x00000000U               /*!< Odd factor: Real divider value is =  I2SDIV * 2    */
1547 #define LL_I2S_PRESCALER_PARITY_ODD        (SPI_I2SPR_ODD >> 8U)     /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
1548 /**
1549   * @}
1550   */
1551 
1552 #if defined(USE_FULL_LL_DRIVER)
1553 
1554 /** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
1555   * @{
1556   */
1557 #define LL_I2S_MCLK_OUTPUT_DISABLE         0x00000000U               /*!< Master clock output is disabled */
1558 #define LL_I2S_MCLK_OUTPUT_ENABLE          (SPI_I2SPR_MCKOE)         /*!< Master clock output is enabled  */
1559 /**
1560   * @}
1561   */
1562 
1563 /** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
1564   * @{
1565   */
1566 
1567 #define LL_I2S_AUDIOFREQ_192K              192000U       /*!< Audio Frequency configuration 192000 Hz       */
1568 #define LL_I2S_AUDIOFREQ_96K               96000U        /*!< Audio Frequency configuration  96000 Hz       */
1569 #define LL_I2S_AUDIOFREQ_48K               48000U        /*!< Audio Frequency configuration  48000 Hz       */
1570 #define LL_I2S_AUDIOFREQ_44K               44100U        /*!< Audio Frequency configuration  44100 Hz       */
1571 #define LL_I2S_AUDIOFREQ_32K               32000U        /*!< Audio Frequency configuration  32000 Hz       */
1572 #define LL_I2S_AUDIOFREQ_22K               22050U        /*!< Audio Frequency configuration  22050 Hz       */
1573 #define LL_I2S_AUDIOFREQ_16K               16000U        /*!< Audio Frequency configuration  16000 Hz       */
1574 #define LL_I2S_AUDIOFREQ_11K               11025U        /*!< Audio Frequency configuration  11025 Hz       */
1575 #define LL_I2S_AUDIOFREQ_8K                8000U         /*!< Audio Frequency configuration   8000 Hz       */
1576 #define LL_I2S_AUDIOFREQ_DEFAULT           2U            /*!< Audio Freq not specified. Register I2SDIV = 2 */
1577 /**
1578   * @}
1579   */
1580 #endif /* USE_FULL_LL_DRIVER */
1581 
1582 /**
1583   * @}
1584   */
1585 
1586 /* Exported macro ------------------------------------------------------------*/
1587 /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
1588   * @{
1589   */
1590 
1591 /** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
1592   * @{
1593   */
1594 
1595 /**
1596   * @brief  Write a value in I2S register
1597   * @param  __INSTANCE__ I2S Instance
1598   * @param  __REG__ Register to be written
1599   * @param  __VALUE__ Value to be written in the register
1600   * @retval None
1601   */
1602 #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
1603 
1604 /**
1605   * @brief  Read a value in I2S register
1606   * @param  __INSTANCE__ I2S Instance
1607   * @param  __REG__ Register to be read
1608   * @retval Register value
1609   */
1610 #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
1611 /**
1612   * @}
1613   */
1614 
1615 /**
1616   * @}
1617   */
1618 
1619 
1620 /* Exported functions --------------------------------------------------------*/
1621 
1622 /** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
1623   * @{
1624   */
1625 
1626 /** @defgroup I2S_LL_EF_Configuration Configuration
1627   * @{
1628   */
1629 
1630 /**
1631   * @brief  Select I2S mode and Enable I2S peripheral
1632   * @rmtoll I2SCFGR      I2SMOD        LL_I2S_Enable\n
1633   *         I2SCFGR      I2SE          LL_I2S_Enable
1634   * @param  SPIx SPI Instance
1635   * @retval None
1636   */
LL_I2S_Enable(SPI_TypeDef * SPIx)1637 __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
1638 {
1639   SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1640 }
1641 
1642 /**
1643   * @brief  Disable I2S peripheral
1644   * @rmtoll I2SCFGR      I2SE          LL_I2S_Disable
1645   * @param  SPIx SPI Instance
1646   * @retval None
1647   */
LL_I2S_Disable(SPI_TypeDef * SPIx)1648 __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
1649 {
1650   CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
1651 }
1652 
1653 /**
1654   * @brief  Check if I2S peripheral is enabled
1655   * @rmtoll I2SCFGR      I2SE          LL_I2S_IsEnabled
1656   * @param  SPIx SPI Instance
1657   * @retval State of bit (1 or 0).
1658   */
LL_I2S_IsEnabled(SPI_TypeDef * SPIx)1659 __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
1660 {
1661   return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE)) ? 1UL : 0UL);
1662 }
1663 
1664 /**
1665   * @brief  Set I2S data frame length
1666   * @rmtoll I2SCFGR      DATLEN        LL_I2S_SetDataFormat\n
1667   *         I2SCFGR      CHLEN         LL_I2S_SetDataFormat
1668   * @param  SPIx SPI Instance
1669   * @param  DataFormat This parameter can be one of the following values:
1670   *         @arg @ref LL_I2S_DATAFORMAT_16B
1671   *         @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1672   *         @arg @ref LL_I2S_DATAFORMAT_24B
1673   *         @arg @ref LL_I2S_DATAFORMAT_32B
1674   * @retval None
1675   */
LL_I2S_SetDataFormat(SPI_TypeDef * SPIx,uint32_t DataFormat)1676 __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
1677 {
1678   MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
1679 }
1680 
1681 /**
1682   * @brief  Get I2S data frame length
1683   * @rmtoll I2SCFGR      DATLEN        LL_I2S_GetDataFormat\n
1684   *         I2SCFGR      CHLEN         LL_I2S_GetDataFormat
1685   * @param  SPIx SPI Instance
1686   * @retval Returned value can be one of the following values:
1687   *         @arg @ref LL_I2S_DATAFORMAT_16B
1688   *         @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
1689   *         @arg @ref LL_I2S_DATAFORMAT_24B
1690   *         @arg @ref LL_I2S_DATAFORMAT_32B
1691   */
LL_I2S_GetDataFormat(SPI_TypeDef * SPIx)1692 __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
1693 {
1694   return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
1695 }
1696 
1697 /**
1698   * @brief  Set I2S clock polarity
1699   * @rmtoll I2SCFGR      CKPOL         LL_I2S_SetClockPolarity
1700   * @param  SPIx SPI Instance
1701   * @param  ClockPolarity This parameter can be one of the following values:
1702   *         @arg @ref LL_I2S_POLARITY_LOW
1703   *         @arg @ref LL_I2S_POLARITY_HIGH
1704   * @retval None
1705   */
LL_I2S_SetClockPolarity(SPI_TypeDef * SPIx,uint32_t ClockPolarity)1706 __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
1707 {
1708   SET_BIT(SPIx->I2SCFGR, ClockPolarity);
1709 }
1710 
1711 /**
1712   * @brief  Get I2S clock polarity
1713   * @rmtoll I2SCFGR      CKPOL         LL_I2S_GetClockPolarity
1714   * @param  SPIx SPI Instance
1715   * @retval Returned value can be one of the following values:
1716   *         @arg @ref LL_I2S_POLARITY_LOW
1717   *         @arg @ref LL_I2S_POLARITY_HIGH
1718   */
LL_I2S_GetClockPolarity(SPI_TypeDef * SPIx)1719 __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
1720 {
1721   return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
1722 }
1723 
1724 /**
1725   * @brief  Set I2S standard protocol
1726   * @rmtoll I2SCFGR      I2SSTD        LL_I2S_SetStandard\n
1727   *         I2SCFGR      PCMSYNC       LL_I2S_SetStandard
1728   * @param  SPIx SPI Instance
1729   * @param  Standard This parameter can be one of the following values:
1730   *         @arg @ref LL_I2S_STANDARD_PHILIPS
1731   *         @arg @ref LL_I2S_STANDARD_MSB
1732   *         @arg @ref LL_I2S_STANDARD_LSB
1733   *         @arg @ref LL_I2S_STANDARD_PCM_SHORT
1734   *         @arg @ref LL_I2S_STANDARD_PCM_LONG
1735   * @retval None
1736   */
LL_I2S_SetStandard(SPI_TypeDef * SPIx,uint32_t Standard)1737 __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
1738 {
1739   MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
1740 }
1741 
1742 /**
1743   * @brief  Get I2S standard protocol
1744   * @rmtoll I2SCFGR      I2SSTD        LL_I2S_GetStandard\n
1745   *         I2SCFGR      PCMSYNC       LL_I2S_GetStandard
1746   * @param  SPIx SPI Instance
1747   * @retval Returned value can be one of the following values:
1748   *         @arg @ref LL_I2S_STANDARD_PHILIPS
1749   *         @arg @ref LL_I2S_STANDARD_MSB
1750   *         @arg @ref LL_I2S_STANDARD_LSB
1751   *         @arg @ref LL_I2S_STANDARD_PCM_SHORT
1752   *         @arg @ref LL_I2S_STANDARD_PCM_LONG
1753   */
LL_I2S_GetStandard(SPI_TypeDef * SPIx)1754 __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
1755 {
1756   return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
1757 }
1758 
1759 /**
1760   * @brief  Set I2S transfer mode
1761   * @rmtoll I2SCFGR      I2SCFG        LL_I2S_SetTransferMode
1762   * @param  SPIx SPI Instance
1763   * @param  Mode This parameter can be one of the following values:
1764   *         @arg @ref LL_I2S_MODE_SLAVE_TX
1765   *         @arg @ref LL_I2S_MODE_SLAVE_RX
1766   *         @arg @ref LL_I2S_MODE_MASTER_TX
1767   *         @arg @ref LL_I2S_MODE_MASTER_RX
1768   * @retval None
1769   */
LL_I2S_SetTransferMode(SPI_TypeDef * SPIx,uint32_t Mode)1770 __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
1771 {
1772   MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
1773 }
1774 
1775 /**
1776   * @brief  Get I2S transfer mode
1777   * @rmtoll I2SCFGR      I2SCFG        LL_I2S_GetTransferMode
1778   * @param  SPIx SPI Instance
1779   * @retval Returned value can be one of the following values:
1780   *         @arg @ref LL_I2S_MODE_SLAVE_TX
1781   *         @arg @ref LL_I2S_MODE_SLAVE_RX
1782   *         @arg @ref LL_I2S_MODE_MASTER_TX
1783   *         @arg @ref LL_I2S_MODE_MASTER_RX
1784   */
LL_I2S_GetTransferMode(SPI_TypeDef * SPIx)1785 __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
1786 {
1787   return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
1788 }
1789 
1790 /**
1791   * @brief  Set I2S linear prescaler
1792   * @rmtoll I2SPR        I2SDIV        LL_I2S_SetPrescalerLinear
1793   * @param  SPIx SPI Instance
1794   * @param  PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1795   * @retval None
1796   */
LL_I2S_SetPrescalerLinear(SPI_TypeDef * SPIx,uint8_t PrescalerLinear)1797 __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
1798 {
1799   MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
1800 }
1801 
1802 /**
1803   * @brief  Get I2S linear prescaler
1804   * @rmtoll I2SPR        I2SDIV        LL_I2S_GetPrescalerLinear
1805   * @param  SPIx SPI Instance
1806   * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
1807   */
LL_I2S_GetPrescalerLinear(SPI_TypeDef * SPIx)1808 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
1809 {
1810   return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
1811 }
1812 
1813 /**
1814   * @brief  Set I2S parity prescaler
1815   * @rmtoll I2SPR        ODD           LL_I2S_SetPrescalerParity
1816   * @param  SPIx SPI Instance
1817   * @param  PrescalerParity This parameter can be one of the following values:
1818   *         @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1819   *         @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1820   * @retval None
1821   */
LL_I2S_SetPrescalerParity(SPI_TypeDef * SPIx,uint32_t PrescalerParity)1822 __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
1823 {
1824   MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
1825 }
1826 
1827 /**
1828   * @brief  Get I2S parity prescaler
1829   * @rmtoll I2SPR        ODD           LL_I2S_GetPrescalerParity
1830   * @param  SPIx SPI Instance
1831   * @retval Returned value can be one of the following values:
1832   *         @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
1833   *         @arg @ref LL_I2S_PRESCALER_PARITY_ODD
1834   */
LL_I2S_GetPrescalerParity(SPI_TypeDef * SPIx)1835 __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
1836 {
1837   return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
1838 }
1839 
1840 /**
1841   * @brief  Enable the master clock output (Pin MCK)
1842   * @rmtoll I2SPR        MCKOE         LL_I2S_EnableMasterClock
1843   * @param  SPIx SPI Instance
1844   * @retval None
1845   */
LL_I2S_EnableMasterClock(SPI_TypeDef * SPIx)1846 __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
1847 {
1848   SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1849 }
1850 
1851 /**
1852   * @brief  Disable the master clock output (Pin MCK)
1853   * @rmtoll I2SPR        MCKOE         LL_I2S_DisableMasterClock
1854   * @param  SPIx SPI Instance
1855   * @retval None
1856   */
LL_I2S_DisableMasterClock(SPI_TypeDef * SPIx)1857 __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
1858 {
1859   CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
1860 }
1861 
1862 /**
1863   * @brief  Check if the master clock output (Pin MCK) is enabled
1864   * @rmtoll I2SPR        MCKOE         LL_I2S_IsEnabledMasterClock
1865   * @param  SPIx SPI Instance
1866   * @retval State of bit (1 or 0).
1867   */
LL_I2S_IsEnabledMasterClock(SPI_TypeDef * SPIx)1868 __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
1869 {
1870   return ((READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE)) ? 1UL : 0UL);
1871 }
1872 
1873 #if defined(SPI_I2SCFGR_ASTRTEN)
1874 /**
1875   * @brief  Enable asynchronous start
1876   * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_EnableAsyncStart
1877   * @param  SPIx SPI Instance
1878   * @retval None
1879   */
LL_I2S_EnableAsyncStart(SPI_TypeDef * SPIx)1880 __STATIC_INLINE void LL_I2S_EnableAsyncStart(SPI_TypeDef *SPIx)
1881 {
1882   SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
1883 }
1884 
1885 /**
1886   * @brief  Disable  asynchronous start
1887   * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_DisableAsyncStart
1888   * @param  SPIx SPI Instance
1889   * @retval None
1890   */
LL_I2S_DisableAsyncStart(SPI_TypeDef * SPIx)1891 __STATIC_INLINE void LL_I2S_DisableAsyncStart(SPI_TypeDef *SPIx)
1892 {
1893   CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN);
1894 }
1895 
1896 /**
1897   * @brief  Check if asynchronous start is enabled
1898   * @rmtoll I2SCFGR      ASTRTEN       LL_I2S_IsEnabledAsyncStart
1899   * @param  SPIx SPI Instance
1900   * @retval State of bit (1 or 0).
1901   */
LL_I2S_IsEnabledAsyncStart(SPI_TypeDef * SPIx)1902 __STATIC_INLINE uint32_t LL_I2S_IsEnabledAsyncStart(SPI_TypeDef *SPIx)
1903 {
1904   return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN) == (SPI_I2SCFGR_ASTRTEN)) ? 1UL : 0UL);
1905 }
1906 #endif /* SPI_I2SCFGR_ASTRTEN */
1907 
1908 /**
1909   * @}
1910   */
1911 
1912 /** @defgroup I2S_LL_EF_FLAG FLAG Management
1913   * @{
1914   */
1915 
1916 /**
1917   * @brief  Check if Rx buffer is not empty
1918   * @rmtoll SR           RXNE          LL_I2S_IsActiveFlag_RXNE
1919   * @param  SPIx SPI Instance
1920   * @retval State of bit (1 or 0).
1921   */
LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef * SPIx)1922 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
1923 {
1924   return LL_SPI_IsActiveFlag_RXNE(SPIx);
1925 }
1926 
1927 /**
1928   * @brief  Check if Tx buffer is empty
1929   * @rmtoll SR           TXE           LL_I2S_IsActiveFlag_TXE
1930   * @param  SPIx SPI Instance
1931   * @retval State of bit (1 or 0).
1932   */
LL_I2S_IsActiveFlag_TXE(SPI_TypeDef * SPIx)1933 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
1934 {
1935   return LL_SPI_IsActiveFlag_TXE(SPIx);
1936 }
1937 
1938 /**
1939   * @brief  Get busy flag
1940   * @rmtoll SR           BSY           LL_I2S_IsActiveFlag_BSY
1941   * @param  SPIx SPI Instance
1942   * @retval State of bit (1 or 0).
1943   */
LL_I2S_IsActiveFlag_BSY(SPI_TypeDef * SPIx)1944 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
1945 {
1946   return LL_SPI_IsActiveFlag_BSY(SPIx);
1947 }
1948 
1949 /**
1950   * @brief  Get overrun error flag
1951   * @rmtoll SR           OVR           LL_I2S_IsActiveFlag_OVR
1952   * @param  SPIx SPI Instance
1953   * @retval State of bit (1 or 0).
1954   */
LL_I2S_IsActiveFlag_OVR(SPI_TypeDef * SPIx)1955 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
1956 {
1957   return LL_SPI_IsActiveFlag_OVR(SPIx);
1958 }
1959 
1960 /**
1961   * @brief  Get underrun error flag
1962   * @rmtoll SR           UDR           LL_I2S_IsActiveFlag_UDR
1963   * @param  SPIx SPI Instance
1964   * @retval State of bit (1 or 0).
1965   */
LL_I2S_IsActiveFlag_UDR(SPI_TypeDef * SPIx)1966 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
1967 {
1968   return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL);
1969 }
1970 
1971 /**
1972   * @brief  Get frame format error flag
1973   * @rmtoll SR           FRE           LL_I2S_IsActiveFlag_FRE
1974   * @param  SPIx SPI Instance
1975   * @retval State of bit (1 or 0).
1976   */
LL_I2S_IsActiveFlag_FRE(SPI_TypeDef * SPIx)1977 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
1978 {
1979   return LL_SPI_IsActiveFlag_FRE(SPIx);
1980 }
1981 
1982 /**
1983   * @brief  Get channel side flag.
1984   * @note   0: Channel Left has to be transmitted or has been received\n
1985   *         1: Channel Right has to be transmitted or has been received\n
1986   *         It has no significance in PCM mode.
1987   * @rmtoll SR           CHSIDE        LL_I2S_IsActiveFlag_CHSIDE
1988   * @param  SPIx SPI Instance
1989   * @retval State of bit (1 or 0).
1990   */
LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef * SPIx)1991 __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
1992 {
1993   return ((READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE)) ? 1UL : 0UL);
1994 }
1995 
1996 /**
1997   * @brief  Clear overrun error flag
1998   * @rmtoll SR           OVR           LL_I2S_ClearFlag_OVR
1999   * @param  SPIx SPI Instance
2000   * @retval None
2001   */
LL_I2S_ClearFlag_OVR(SPI_TypeDef * SPIx)2002 __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
2003 {
2004   LL_SPI_ClearFlag_OVR(SPIx);
2005 }
2006 
2007 /**
2008   * @brief  Clear underrun error flag
2009   * @rmtoll SR           UDR           LL_I2S_ClearFlag_UDR
2010   * @param  SPIx SPI Instance
2011   * @retval None
2012   */
LL_I2S_ClearFlag_UDR(SPI_TypeDef * SPIx)2013 __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
2014 {
2015   __IO uint32_t tmpreg;
2016   tmpreg = SPIx->SR;
2017   (void)tmpreg;
2018 }
2019 
2020 /**
2021   * @brief  Clear frame format error flag
2022   * @rmtoll SR           FRE           LL_I2S_ClearFlag_FRE
2023   * @param  SPIx SPI Instance
2024   * @retval None
2025   */
LL_I2S_ClearFlag_FRE(SPI_TypeDef * SPIx)2026 __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
2027 {
2028   LL_SPI_ClearFlag_FRE(SPIx);
2029 }
2030 
2031 /**
2032   * @}
2033   */
2034 
2035 /** @defgroup I2S_LL_EF_IT Interrupt Management
2036   * @{
2037   */
2038 
2039 /**
2040   * @brief  Enable error IT
2041   * @note   This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2042   * @rmtoll CR2          ERRIE         LL_I2S_EnableIT_ERR
2043   * @param  SPIx SPI Instance
2044   * @retval None
2045   */
LL_I2S_EnableIT_ERR(SPI_TypeDef * SPIx)2046 __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
2047 {
2048   LL_SPI_EnableIT_ERR(SPIx);
2049 }
2050 
2051 /**
2052   * @brief  Enable Rx buffer not empty IT
2053   * @rmtoll CR2          RXNEIE        LL_I2S_EnableIT_RXNE
2054   * @param  SPIx SPI Instance
2055   * @retval None
2056   */
LL_I2S_EnableIT_RXNE(SPI_TypeDef * SPIx)2057 __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
2058 {
2059   LL_SPI_EnableIT_RXNE(SPIx);
2060 }
2061 
2062 /**
2063   * @brief  Enable Tx buffer empty IT
2064   * @rmtoll CR2          TXEIE         LL_I2S_EnableIT_TXE
2065   * @param  SPIx SPI Instance
2066   * @retval None
2067   */
LL_I2S_EnableIT_TXE(SPI_TypeDef * SPIx)2068 __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
2069 {
2070   LL_SPI_EnableIT_TXE(SPIx);
2071 }
2072 
2073 /**
2074   * @brief  Disable error IT
2075   * @note   This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
2076   * @rmtoll CR2          ERRIE         LL_I2S_DisableIT_ERR
2077   * @param  SPIx SPI Instance
2078   * @retval None
2079   */
LL_I2S_DisableIT_ERR(SPI_TypeDef * SPIx)2080 __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
2081 {
2082   LL_SPI_DisableIT_ERR(SPIx);
2083 }
2084 
2085 /**
2086   * @brief  Disable Rx buffer not empty IT
2087   * @rmtoll CR2          RXNEIE        LL_I2S_DisableIT_RXNE
2088   * @param  SPIx SPI Instance
2089   * @retval None
2090   */
LL_I2S_DisableIT_RXNE(SPI_TypeDef * SPIx)2091 __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
2092 {
2093   LL_SPI_DisableIT_RXNE(SPIx);
2094 }
2095 
2096 /**
2097   * @brief  Disable Tx buffer empty IT
2098   * @rmtoll CR2          TXEIE         LL_I2S_DisableIT_TXE
2099   * @param  SPIx SPI Instance
2100   * @retval None
2101   */
LL_I2S_DisableIT_TXE(SPI_TypeDef * SPIx)2102 __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
2103 {
2104   LL_SPI_DisableIT_TXE(SPIx);
2105 }
2106 
2107 /**
2108   * @brief  Check if ERR IT is enabled
2109   * @rmtoll CR2          ERRIE         LL_I2S_IsEnabledIT_ERR
2110   * @param  SPIx SPI Instance
2111   * @retval State of bit (1 or 0).
2112   */
LL_I2S_IsEnabledIT_ERR(SPI_TypeDef * SPIx)2113 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
2114 {
2115   return LL_SPI_IsEnabledIT_ERR(SPIx);
2116 }
2117 
2118 /**
2119   * @brief  Check if RXNE IT is enabled
2120   * @rmtoll CR2          RXNEIE        LL_I2S_IsEnabledIT_RXNE
2121   * @param  SPIx SPI Instance
2122   * @retval State of bit (1 or 0).
2123   */
LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef * SPIx)2124 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
2125 {
2126   return LL_SPI_IsEnabledIT_RXNE(SPIx);
2127 }
2128 
2129 /**
2130   * @brief  Check if TXE IT is enabled
2131   * @rmtoll CR2          TXEIE         LL_I2S_IsEnabledIT_TXE
2132   * @param  SPIx SPI Instance
2133   * @retval State of bit (1 or 0).
2134   */
LL_I2S_IsEnabledIT_TXE(SPI_TypeDef * SPIx)2135 __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
2136 {
2137   return LL_SPI_IsEnabledIT_TXE(SPIx);
2138 }
2139 
2140 /**
2141   * @}
2142   */
2143 
2144 /** @defgroup I2S_LL_EF_DMA DMA Management
2145   * @{
2146   */
2147 
2148 /**
2149   * @brief  Enable DMA Rx
2150   * @rmtoll CR2          RXDMAEN       LL_I2S_EnableDMAReq_RX
2151   * @param  SPIx SPI Instance
2152   * @retval None
2153   */
LL_I2S_EnableDMAReq_RX(SPI_TypeDef * SPIx)2154 __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
2155 {
2156   LL_SPI_EnableDMAReq_RX(SPIx);
2157 }
2158 
2159 /**
2160   * @brief  Disable DMA Rx
2161   * @rmtoll CR2          RXDMAEN       LL_I2S_DisableDMAReq_RX
2162   * @param  SPIx SPI Instance
2163   * @retval None
2164   */
LL_I2S_DisableDMAReq_RX(SPI_TypeDef * SPIx)2165 __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
2166 {
2167   LL_SPI_DisableDMAReq_RX(SPIx);
2168 }
2169 
2170 /**
2171   * @brief  Check if DMA Rx is enabled
2172   * @rmtoll CR2          RXDMAEN       LL_I2S_IsEnabledDMAReq_RX
2173   * @param  SPIx SPI Instance
2174   * @retval State of bit (1 or 0).
2175   */
LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef * SPIx)2176 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
2177 {
2178   return LL_SPI_IsEnabledDMAReq_RX(SPIx);
2179 }
2180 
2181 /**
2182   * @brief  Enable DMA Tx
2183   * @rmtoll CR2          TXDMAEN       LL_I2S_EnableDMAReq_TX
2184   * @param  SPIx SPI Instance
2185   * @retval None
2186   */
LL_I2S_EnableDMAReq_TX(SPI_TypeDef * SPIx)2187 __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
2188 {
2189   LL_SPI_EnableDMAReq_TX(SPIx);
2190 }
2191 
2192 /**
2193   * @brief  Disable DMA Tx
2194   * @rmtoll CR2          TXDMAEN       LL_I2S_DisableDMAReq_TX
2195   * @param  SPIx SPI Instance
2196   * @retval None
2197   */
LL_I2S_DisableDMAReq_TX(SPI_TypeDef * SPIx)2198 __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
2199 {
2200   LL_SPI_DisableDMAReq_TX(SPIx);
2201 }
2202 
2203 /**
2204   * @brief  Check if DMA Tx is enabled
2205   * @rmtoll CR2          TXDMAEN       LL_I2S_IsEnabledDMAReq_TX
2206   * @param  SPIx SPI Instance
2207   * @retval State of bit (1 or 0).
2208   */
LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef * SPIx)2209 __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
2210 {
2211   return LL_SPI_IsEnabledDMAReq_TX(SPIx);
2212 }
2213 
2214 /**
2215   * @}
2216   */
2217 
2218 /** @defgroup I2S_LL_EF_DATA DATA Management
2219   * @{
2220   */
2221 
2222 /**
2223   * @brief  Read 16-Bits in data register
2224   * @rmtoll DR           DR            LL_I2S_ReceiveData16
2225   * @param  SPIx SPI Instance
2226   * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2227   */
LL_I2S_ReceiveData16(SPI_TypeDef * SPIx)2228 __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
2229 {
2230   return LL_SPI_ReceiveData16(SPIx);
2231 }
2232 
2233 /**
2234   * @brief  Write 16-Bits in data register
2235   * @rmtoll DR           DR            LL_I2S_TransmitData16
2236   * @param  SPIx SPI Instance
2237   * @param  TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
2238   * @retval None
2239   */
LL_I2S_TransmitData16(SPI_TypeDef * SPIx,uint16_t TxData)2240 __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
2241 {
2242   LL_SPI_TransmitData16(SPIx, TxData);
2243 }
2244 
2245 /**
2246   * @}
2247   */
2248 
2249 #if defined(USE_FULL_LL_DRIVER)
2250 /** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
2251   * @{
2252   */
2253 
2254 ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
2255 ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
2256 void        LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
2257 void        LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
2258 
2259 /**
2260   * @}
2261   */
2262 #endif /* USE_FULL_LL_DRIVER */
2263 
2264 /**
2265   * @}
2266   */
2267 
2268 /**
2269   * @}
2270   */
2271 
2272 #endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */
2273 
2274 /**
2275   * @}
2276   */
2277 
2278 #ifdef __cplusplus
2279 }
2280 #endif
2281 
2282 #endif /* STM32F7xx_LL_SPI_H */
2283 
2284 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
2285