1 /*
2 * Copyright 2017 - 2021, 2024 NXP
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8 #include "fsl_clock.h"
9 /* Component ID definition, used by tools. */
10 #ifndef FSL_COMPONENT_ID
11 #define FSL_COMPONENT_ID "platform.drivers.clock"
12 #endif
13
14 /*******************************************************************************
15 * Definitions
16 ******************************************************************************/
17 /* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to
18 achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected
19 in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */
20 #if __FPU_USED
21
22 #if (defined(__ICCARM__))
23
24 #if (__ARMVFP__ >= __ARMFPV5__) && \
25 (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
26 typedef double clock_64b_t;
27 #else
28 typedef uint64_t clock_64b_t;
29 #endif
30
31 #elif (defined(__GNUC__))
32
33 #if (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
34 typedef double clock_64b_t;
35 #else
36 typedef uint64_t clock_64b_t;
37 #endif
38
39 #elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
40
41 #if defined __TARGET_FPU_FPV5_D16
42 typedef double clock_64b_t;
43 #else
44 typedef uint64_t clock_64b_t;
45 #endif
46
47 #else
48 typedef uint64_t clock_64b_t;
49 #endif
50
51 #else
52 typedef uint64_t clock_64b_t;
53 #endif
54
55 /*******************************************************************************
56 * Variables
57 ******************************************************************************/
58
59 /* External XTAL (OSC) clock frequency. */
60 volatile uint32_t g_xtalFreq;
61 /* External RTC XTAL clock frequency. */
62 volatile uint32_t g_rtcXtalFreq;
63
64 /*******************************************************************************
65 * Prototypes
66 ******************************************************************************/
67
68 /*!
69 * @brief Get the periph clock frequency.
70 *
71 * @return Periph clock frequency in Hz.
72 */
73 static uint32_t CLOCK_GetPeriphClkFreq(void);
74
75 /*!
76 * @brief Get the frequency of PLL USB1 software clock.
77 *
78 * @return The frequency of PLL USB1 software clock.
79 */
80 static uint32_t CLOCK_GetPllUsb1SWFreq(void);
81
82 /*******************************************************************************
83 * Code
84 ******************************************************************************/
85
CLOCK_GetPeriphClkFreq(void)86 static uint32_t CLOCK_GetPeriphClkFreq(void)
87 {
88 uint32_t freq;
89
90 /* Periph_clk2_clk ---> Periph_clk */
91 if ((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK) != 0U)
92 {
93 switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
94 {
95 /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
96 case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
97 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
98 break;
99
100 /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
101 case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
102 freq = CLOCK_GetOscFreq();
103 break;
104
105 case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
106 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
107 break;
108
109 case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
110 default:
111 freq = 0U;
112 break;
113 }
114
115 freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
116 }
117 /* Pre_Periph_clk ---> Periph_clk */
118 else
119 {
120 switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
121 {
122 /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
123 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
124 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
125 break;
126
127 /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
128 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
129 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
130 break;
131
132 /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
133 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
134 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
135 break;
136
137 /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
138 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
139 freq = CLOCK_GetPllFreq(kCLOCK_PllArm) /
140 (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
141 break;
142
143 default:
144 freq = 0U;
145 break;
146 }
147 }
148
149 return freq;
150 }
151
CLOCK_GetPllUsb1SWFreq(void)152 static uint32_t CLOCK_GetPllUsb1SWFreq(void)
153 {
154 uint32_t freq;
155
156 switch ((CCM->CCSR & CCM_CCSR_PLL3_SW_CLK_SEL_MASK) >> CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT)
157 {
158 case 0:
159 {
160 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
161 break;
162 }
163 case 1:
164 {
165 freq = 24000000UL;
166 break;
167 }
168 default:
169 freq = 0UL;
170 break;
171 }
172
173 return freq;
174 }
175
176 /*!
177 * brief Initialize the external 24MHz clock.
178 *
179 * This function supports two modes:
180 * 1. Use external crystal oscillator.
181 * 2. Bypass the external crystal oscillator, using input source clock directly.
182 *
183 * After this function, please call ref CLOCK_SetXtal0Freq to inform clock driver
184 * the external clock frequency.
185 *
186 * param bypassXtalOsc Pass in true to bypass the external crystal oscillator.
187 * note This device does not support bypass external crystal oscillator, so
188 * the input parameter should always be false.
189 */
CLOCK_InitExternalClk(bool bypassXtalOsc)190 void CLOCK_InitExternalClk(bool bypassXtalOsc)
191 {
192 /* This device does not support bypass XTAL OSC. */
193 assert(!bypassXtalOsc);
194
195 CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
196 while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0U)
197 {
198 }
199 CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
200 while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0UL)
201 {
202 }
203 CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
204 }
205
206 /*!
207 * brief Deinitialize the external 24MHz clock.
208 *
209 * This function disables the external 24MHz clock.
210 *
211 * After this function, please call ref CLOCK_SetXtal0Freq to set external clock
212 * frequency to 0.
213 */
CLOCK_DeinitExternalClk(void)214 void CLOCK_DeinitExternalClk(void)
215 {
216 CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
217 }
218
219 /*!
220 * brief Switch the OSC.
221 *
222 * This function switches the OSC source for SoC.
223 *
224 * param osc OSC source to switch to.
225 */
CLOCK_SwitchOsc(clock_osc_t osc)226 void CLOCK_SwitchOsc(clock_osc_t osc)
227 {
228 if (osc == kCLOCK_RcOsc)
229 {
230 XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
231 }
232 else
233 {
234 XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
235 }
236 }
237
238 /*!
239 * brief Initialize the RC oscillator 24MHz clock.
240 */
CLOCK_InitRcOsc24M(void)241 void CLOCK_InitRcOsc24M(void)
242 {
243 XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
244 }
245
246 /*!
247 * brief Power down the RCOSC 24M clock.
248 */
CLOCK_DeinitRcOsc24M(void)249 void CLOCK_DeinitRcOsc24M(void)
250 {
251 XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
252 }
253
254 /*!
255 * brief Gets the AHB clock frequency.
256 *
257 * return The AHB clock frequency value in hertz.
258 */
CLOCK_GetAhbFreq(void)259 uint32_t CLOCK_GetAhbFreq(void)
260 {
261 return CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
262 }
263
264 /*!
265 * brief Gets the SEMC clock frequency.
266 *
267 * return The SEMC clock frequency value in hertz.
268 */
CLOCK_GetSemcFreq(void)269 uint32_t CLOCK_GetSemcFreq(void)
270 {
271 uint32_t freq;
272
273 /* SEMC alternative clock ---> SEMC Clock */
274 if ((CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK) != 0U)
275 {
276 /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
277 if ((CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK) != 0U)
278 {
279 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
280 }
281 /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
282 else
283 {
284 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
285 }
286 }
287 /* Periph_clk ---> SEMC Clock */
288 else
289 {
290 freq = CLOCK_GetPeriphClkFreq();
291 }
292
293 freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
294
295 return freq;
296 }
297
298 /*!
299 * brief Gets the IPG clock frequency.
300 *
301 * return The IPG clock frequency value in hertz.
302 */
CLOCK_GetIpgFreq(void)303 uint32_t CLOCK_GetIpgFreq(void)
304 {
305 return CLOCK_GetAhbFreq() / (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
306 }
307
CLOCK_GetPerClkFreq(void)308 uint32_t CLOCK_GetPerClkFreq(void)
309 {
310 uint32_t freq;
311
312 /* Osc_clk ---> PER Clock*/
313 if ((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK) != 0U)
314 {
315 freq = CLOCK_GetOscFreq();
316 }
317 /* Periph_clk ---> AHB Clock ---> IPG Clock ---> PER Clock */
318 else
319 {
320 freq = CLOCK_GetIpgFreq();
321 }
322
323 freq /= (((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_PODF_MASK) >> CCM_CSCMR1_PERCLK_PODF_SHIFT) + 1U);
324
325 return freq;
326 }
327
328 /*!
329 * brief Gets the clock frequency for a specific clock name.
330 *
331 * This function checks the current clock configurations and then calculates
332 * the clock frequency for a specific clock name defined in clock_name_t.
333 *
334 * param clockName Clock names defined in clock_name_t
335 * return Clock frequency value in hertz
336 */
CLOCK_GetFreq(clock_name_t name)337 uint32_t CLOCK_GetFreq(clock_name_t name)
338 {
339 uint32_t freq;
340
341 switch (name)
342 {
343 case kCLOCK_CpuClk:
344 case kCLOCK_AhbClk:
345 freq = CLOCK_GetAhbFreq();
346 break;
347
348 case kCLOCK_SemcClk:
349 freq = CLOCK_GetSemcFreq();
350 break;
351
352 case kCLOCK_IpgClk:
353 freq = CLOCK_GetIpgFreq();
354 break;
355
356 case kCLOCK_PerClk:
357 freq = CLOCK_GetPerClkFreq();
358 break;
359
360 case kCLOCK_OscClk:
361 freq = CLOCK_GetOscFreq();
362 break;
363 case kCLOCK_RtcClk:
364 freq = CLOCK_GetRtcFreq();
365 break;
366 case kCLOCK_ArmPllClk:
367 freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
368 break;
369 case kCLOCK_Usb1PllClk:
370 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
371 break;
372 case kCLOCK_Usb1PllPfd0Clk:
373 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
374 break;
375 case kCLOCK_Usb1PllPfd1Clk:
376 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
377 break;
378 case kCLOCK_Usb1PllPfd2Clk:
379 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
380 break;
381 case kCLOCK_Usb1PllPfd3Clk:
382 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
383 break;
384 case kCLOCK_Usb1SwClk:
385 freq = CLOCK_GetPllUsb1SWFreq();
386 break;
387 case kCLOCK_Usb1Sw120MClk:
388 freq = CLOCK_GetPllUsb1SWFreq() / 4UL;
389 break;
390 case kCLOCK_Usb1Sw60MClk:
391 freq = CLOCK_GetPllUsb1SWFreq() / 8UL;
392 break;
393 case kCLOCK_Usb1Sw80MClk:
394 freq = CLOCK_GetPllUsb1SWFreq() / 6UL;
395 break;
396 case kCLOCK_Usb2PllClk:
397 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
398 break;
399 case kCLOCK_SysPllClk:
400 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
401 break;
402 case kCLOCK_SysPllPfd0Clk:
403 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
404 break;
405 case kCLOCK_SysPllPfd1Clk:
406 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
407 break;
408 case kCLOCK_SysPllPfd2Clk:
409 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
410 break;
411 case kCLOCK_SysPllPfd3Clk:
412 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
413 break;
414 case kCLOCK_EnetPll0Clk:
415 freq = CLOCK_GetPllFreq(kCLOCK_PllEnet);
416 break;
417 case kCLOCK_EnetPll1Clk:
418 freq = CLOCK_GetPllFreq(kCLOCK_PllEnet25M);
419 break;
420 case kCLOCK_AudioPllClk:
421 freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
422 break;
423 case kCLOCK_VideoPllClk:
424 freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
425 break;
426 default:
427 freq = 0U;
428 break;
429 }
430
431 return freq;
432 }
433
434 /*!
435 * brief Gets the frequency of selected clock root.
436 *
437 * param clockRoot The clock root used to get the frequency, please refer to @ref clock_root_t.
438 * return The frequency of selected clock root.
439 */
CLOCK_GetClockRootFreq(clock_root_t clockRoot)440 uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot)
441 {
442 static const clock_name_t clockRootSourceArray[][6] = CLOCK_ROOT_SOUCE;
443 static const clock_mux_t clockRootMuxTupleArray[] = CLOCK_ROOT_MUX_TUPLE;
444 static const clock_div_t clockRootDivTupleArray[][2] = CLOCK_ROOT_DIV_TUPLE;
445 uint32_t freq = 0UL;
446 clock_mux_t clockRootMuxTuple = clockRootMuxTupleArray[(uint8_t)clockRoot];
447 clock_div_t clockRootPreDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][0];
448 clock_div_t clockRootPostDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][1];
449 uint32_t clockRootMuxValue = (CCM_TUPLE_REG(CCM, clockRootMuxTuple) & CCM_TUPLE_MASK(clockRootMuxTuple)) >>
450 CCM_TUPLE_SHIFT(clockRootMuxTuple);
451 clock_name_t clockSourceName;
452
453 clockSourceName = clockRootSourceArray[(uint8_t)clockRoot][clockRootMuxValue];
454
455 assert(clockSourceName != kCLOCK_NoneName);
456
457 freq = CLOCK_GetFreq(clockSourceName);
458
459 if (clockRootPreDivTuple != kCLOCK_NonePreDiv)
460 {
461 freq /= ((CCM_TUPLE_REG(CCM, clockRootPreDivTuple) & CCM_TUPLE_MASK(clockRootPreDivTuple)) >>
462 CCM_TUPLE_SHIFT(clockRootPreDivTuple)) +
463 1UL;
464 }
465
466 freq /= ((CCM_TUPLE_REG(CCM, clockRootPostDivTuple) & CCM_TUPLE_MASK(clockRootPostDivTuple)) >>
467 CCM_TUPLE_SHIFT(clockRootPostDivTuple)) +
468 1UL;
469
470 return freq;
471 }
472
473 /*! brief Enable USB HS clock.
474 *
475 * This function only enables the access to USB HS prepheral, upper layer
476 * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
477 * clock to use USB HS.
478 *
479 * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
480 * param freq USB HS does not care about the clock source, so this parameter is ignored.
481 * retval true The clock is set successfully.
482 * retval false The clock source is invalid to get proper USB HS clock.
483 */
CLOCK_EnableUsbhs0Clock(clock_usb_src_t src,uint32_t freq)484 bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
485 {
486 uint32_t i;
487 CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
488 USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
489
490 /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
491 for (i = 0; i < 400000U; i++)
492 {
493 __ASM("nop");
494 }
495 PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) |
496 (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
497 return true;
498 }
499
500 /*! brief Enable USB HS clock.
501 *
502 * This function only enables the access to USB HS prepheral, upper layer
503 * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
504 * clock to use USB HS.
505 *
506 * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
507 * param freq USB HS does not care about the clock source, so this parameter is ignored.
508 * retval true The clock is set successfully.
509 * retval false The clock source is invalid to get proper USB HS clock.
510 */
CLOCK_EnableUsbhs1Clock(clock_usb_src_t src,uint32_t freq)511 bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
512 {
513 uint32_t i = 0;
514 CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
515 USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
516
517 /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
518 for (i = 0; i < 400000U; i++)
519 {
520 __ASM("nop");
521 }
522 PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) |
523 (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
524 return true;
525 }
526
527 /*! brief Enable USB HS PHY PLL clock.
528 *
529 * This function enables the internal 480MHz USB PHY PLL clock.
530 *
531 * param src USB HS PHY PLL clock source.
532 * param freq The frequency specified by src.
533 * retval true The clock is set successfully.
534 * retval false The clock source is invalid to get proper USB HS clock.
535 */
CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src,uint32_t freq)536 bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
537 {
538 static const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
539 if ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_ENABLE_MASK) != 0U)
540 {
541 CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
542 }
543 else
544 {
545 CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
546 }
547 USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
548 USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
549
550 USBPHY1->PWD = 0;
551 USBPHY1->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
552 USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK;
553 return true;
554 }
555
556 /*! brief Disable USB HS PHY PLL clock.
557 *
558 * This function disables USB HS PHY PLL clock.
559 */
CLOCK_DisableUsbhs0PhyPllClock(void)560 void CLOCK_DisableUsbhs0PhyPllClock(void)
561 {
562 CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
563 USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
564 }
565
566 /*!
567 * brief Initialize the ARM PLL.
568 *
569 * This function initialize the ARM PLL with specific settings
570 *
571 * param config configuration to set to PLL.
572 */
CLOCK_InitArmPll(const clock_arm_pll_config_t * config)573 void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
574 {
575 /* Bypass PLL first */
576 CCM_ANALOG->PLL_ARM = (CCM_ANALOG->PLL_ARM & (~CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_MASK)) |
577 CCM_ANALOG_PLL_ARM_BYPASS_MASK | CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC(config->src);
578
579 CCM_ANALOG->PLL_ARM =
580 (CCM_ANALOG->PLL_ARM & (~(CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK | CCM_ANALOG_PLL_ARM_POWERDOWN_MASK))) |
581 CCM_ANALOG_PLL_ARM_ENABLE_MASK | CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);
582
583 while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0UL)
584 {
585 }
586
587 /* Disable Bypass */
588 CCM_ANALOG->PLL_ARM &= ~CCM_ANALOG_PLL_ARM_BYPASS_MASK;
589 }
590
591 /*!
592 * brief De-initialize the ARM PLL.
593 */
CLOCK_DeinitArmPll(void)594 void CLOCK_DeinitArmPll(void)
595 {
596 CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
597 }
598
599 /*!
600 * brief Initialize the System PLL.
601 *
602 * This function initializes the System PLL with specific settings
603 *
604 * param config Configuration to set to PLL.
605 */
CLOCK_InitSysPll(const clock_sys_pll_config_t * config)606 void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
607 {
608 /* Bypass PLL first */
609 CCM_ANALOG->PLL_SYS = (CCM_ANALOG->PLL_SYS & (~CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK)) |
610 CCM_ANALOG_PLL_SYS_BYPASS_MASK | CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC(config->src);
611
612 CCM_ANALOG->PLL_SYS =
613 (CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) |
614 CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
615
616 /* Initialize the fractional mode */
617 CCM_ANALOG->PLL_SYS_NUM = CCM_ANALOG_PLL_SYS_NUM_A(config->numerator);
618 CCM_ANALOG->PLL_SYS_DENOM = CCM_ANALOG_PLL_SYS_DENOM_B(config->denominator);
619
620 /* Initialize the spread spectrum mode */
621 CCM_ANALOG->PLL_SYS_SS = CCM_ANALOG_PLL_SYS_SS_STEP(config->ss_step) |
622 CCM_ANALOG_PLL_SYS_SS_ENABLE(config->ss_enable) |
623 CCM_ANALOG_PLL_SYS_SS_STOP(config->ss_stop);
624
625 while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0UL)
626 {
627 }
628
629 /* Disable Bypass */
630 CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK;
631 }
632
633 /*!
634 * brief De-initialize the System PLL.
635 */
CLOCK_DeinitSysPll(void)636 void CLOCK_DeinitSysPll(void)
637 {
638 CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
639 }
640
641 /*!
642 * brief Initialize the USB1 PLL.
643 *
644 * This function initializes the USB1 PLL with specific settings
645 *
646 * param config Configuration to set to PLL.
647 */
CLOCK_InitUsb1Pll(const clock_usb_pll_config_t * config)648 void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
649 {
650 /* Bypass PLL first */
651 CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK)) |
652 CCM_ANALOG_PLL_USB1_BYPASS_MASK | CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC(config->src);
653
654 CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK)) |
655 CCM_ANALOG_PLL_USB1_ENABLE_MASK | CCM_ANALOG_PLL_USB1_POWER_MASK |
656 CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);
657
658 while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0UL)
659 {
660 }
661
662 /* Disable Bypass */
663 CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK;
664 }
665
666 /*!
667 * brief Deinitialize the USB1 PLL.
668 */
CLOCK_DeinitUsb1Pll(void)669 void CLOCK_DeinitUsb1Pll(void)
670 {
671 CCM_ANALOG->PLL_USB1 = 0U;
672 }
673
674 /*!
675 * brief Initialize the USB2 PLL.
676 *
677 * This function initializes the USB2 PLL with specific settings
678 *
679 * param config Configuration to set to PLL.
680 */
CLOCK_InitUsb2Pll(const clock_usb_pll_config_t * config)681 void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
682 {
683 /* Bypass PLL first */
684 CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC_MASK)) |
685 CCM_ANALOG_PLL_USB2_BYPASS_MASK | CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC(config->src);
686
687 CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK)) |
688 CCM_ANALOG_PLL_USB2_ENABLE_MASK | CCM_ANALOG_PLL_USB2_POWER_MASK |
689 CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);
690
691 while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0UL)
692 {
693 }
694
695 /* Disable Bypass */
696 CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_BYPASS_MASK;
697 }
698
699 /*!
700 * brief Deinitialize the USB2 PLL.
701 */
CLOCK_DeinitUsb2Pll(void)702 void CLOCK_DeinitUsb2Pll(void)
703 {
704 CCM_ANALOG->PLL_USB2 = 0U;
705 }
706
707 /*!
708 * brief Initializes the Audio PLL.
709 *
710 * This function initializes the Audio PLL with specific settings
711 *
712 * param config Configuration to set to PLL.
713 */
CLOCK_InitAudioPll(const clock_audio_pll_config_t * config)714 void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
715 {
716 uint32_t pllAudio;
717 uint32_t misc2 = 0;
718
719 /* Bypass PLL first */
720 CCM_ANALOG->PLL_AUDIO = (CCM_ANALOG->PLL_AUDIO & (~CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC_MASK)) |
721 CCM_ANALOG_PLL_AUDIO_BYPASS_MASK | CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC(config->src);
722
723 CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
724 CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);
725
726 /*
727 * Set post divider:
728 *
729 * ------------------------------------------------------------------------
730 * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] |
731 * ------------------------------------------------------------------------
732 * | 1 | 2 | 0 |
733 * ------------------------------------------------------------------------
734 * | 2 | 1 | 0 |
735 * ------------------------------------------------------------------------
736 * | 4 | 2 | 3 |
737 * ------------------------------------------------------------------------
738 * | 8 | 1 | 3 |
739 * ------------------------------------------------------------------------
740 * | 16 | 0 | 3 |
741 * ------------------------------------------------------------------------
742 */
743 pllAudio =
744 (CCM_ANALOG->PLL_AUDIO & (~(CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK | CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK))) |
745 CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);
746
747 switch (config->postDivider)
748 {
749 case 16:
750 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
751 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
752 break;
753
754 case 8:
755 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
756 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
757 break;
758
759 case 4:
760 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
761 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
762 break;
763
764 case 2:
765 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
766 break;
767
768 default:
769 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
770 break;
771 }
772
773 CCM_ANALOG->MISC2 =
774 (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK)) | misc2;
775
776 CCM_ANALOG->PLL_AUDIO = pllAudio;
777
778 while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0UL)
779 {
780 }
781
782 /* Disable Bypass */
783 CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK;
784 }
785
786 /*!
787 * brief De-initialize the Audio PLL.
788 */
CLOCK_DeinitAudioPll(void)789 void CLOCK_DeinitAudioPll(void)
790 {
791 CCM_ANALOG->PLL_AUDIO = (uint32_t)CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
792 }
793
794 /*!
795 * brief Initialize the video PLL.
796 *
797 * This function configures the Video PLL with specific settings
798 *
799 * param config configuration to set to PLL.
800 */
CLOCK_InitVideoPll(const clock_video_pll_config_t * config)801 void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
802 {
803 uint32_t pllVideo;
804 uint32_t misc2 = 0;
805
806 /* Bypass PLL first */
807 CCM_ANALOG->PLL_VIDEO = (CCM_ANALOG->PLL_VIDEO & (~CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC_MASK)) |
808 CCM_ANALOG_PLL_VIDEO_BYPASS_MASK | CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC(config->src);
809
810 CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
811 CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);
812
813 /*
814 * Set post divider:
815 *
816 * ------------------------------------------------------------------------
817 * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT] | MISC2[VIDEO_DIV] |
818 * ------------------------------------------------------------------------
819 * | 1 | 2 | 0 |
820 * ------------------------------------------------------------------------
821 * | 2 | 1 | 0 |
822 * ------------------------------------------------------------------------
823 * | 4 | 2 | 3 |
824 * ------------------------------------------------------------------------
825 * | 8 | 1 | 3 |
826 * ------------------------------------------------------------------------
827 * | 16 | 0 | 3 |
828 * ------------------------------------------------------------------------
829 */
830 pllVideo =
831 (CCM_ANALOG->PLL_VIDEO & (~(CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK | CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK))) |
832 CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);
833
834 switch (config->postDivider)
835 {
836 case 16:
837 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
838 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
839 break;
840
841 case 8:
842 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
843 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
844 break;
845
846 case 4:
847 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
848 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
849 break;
850
851 case 2:
852 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
853 break;
854
855 default:
856 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
857 break;
858 }
859
860 CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;
861
862 CCM_ANALOG->PLL_VIDEO = pllVideo;
863
864 while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0UL)
865 {
866 }
867
868 /* Disable Bypass */
869 CCM_ANALOG->PLL_VIDEO &= ~CCM_ANALOG_PLL_VIDEO_BYPASS_MASK;
870 }
871
872 /*!
873 * brief De-initialize the Video PLL.
874 */
CLOCK_DeinitVideoPll(void)875 void CLOCK_DeinitVideoPll(void)
876 {
877 CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
878 }
879
880 /*!
881 * brief Initialize the ENET PLL.
882 *
883 * This function initializes the ENET PLL with specific settings.
884 *
885 * param config Configuration to set to PLL.
886 */
CLOCK_InitEnetPll(const clock_enet_pll_config_t * config)887 void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
888 {
889 uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider);
890
891 CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK)) |
892 CCM_ANALOG_PLL_ENET_BYPASS_MASK | CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(config->src);
893
894 if (config->enableClkOutput)
895 {
896 enet_pll |= CCM_ANALOG_PLL_ENET_ENABLE_MASK;
897 }
898
899 if (config->enableClkOutput25M)
900 {
901 enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
902 }
903
904 CCM_ANALOG->PLL_ENET =
905 (CCM_ANALOG->PLL_ENET & (~(CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK))) |
906 enet_pll;
907
908 /* Wait for stable */
909 while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0UL)
910 {
911 }
912
913 /* Disable Bypass */
914 CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
915 }
916
917 /*!
918 * brief Deinitialize the ENET PLL.
919 *
920 * This function disables the ENET PLL.
921 */
CLOCK_DeinitEnetPll(void)922 void CLOCK_DeinitEnetPll(void)
923 {
924 CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
925 }
926
927 /*!
928 * brief Get current PLL output frequency.
929 *
930 * This function get current output frequency of specific PLL
931 *
932 * param pll pll name to get frequency.
933 * return The PLL output frequency in hertz.
934 */
CLOCK_GetPllFreq(clock_pll_t pll)935 uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
936 {
937 uint32_t freq;
938 uint32_t divSelect;
939 clock_64b_t freqTmp;
940
941 static const uint32_t enetRefClkFreq[] = {
942 25000000U, /* 25M */
943 50000000U, /* 50M */
944 100000000U, /* 100M */
945 125000000U /* 125M */
946 };
947
948 /* check if PLL is enabled */
949 if (!CLOCK_IsPllEnabled(CCM_ANALOG, pll))
950 {
951 return 0U;
952 }
953
954 /* get pll reference clock */
955 freq = CLOCK_GetPllBypassRefClk(CCM_ANALOG, pll);
956
957 /* check if pll is bypassed */
958 if (CLOCK_IsPllBypassed(CCM_ANALOG, pll))
959 {
960 return freq;
961 }
962
963 switch (pll)
964 {
965 case kCLOCK_PllArm:
966 freq = ((freq * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
967 CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >>
968 1U);
969 break;
970 case kCLOCK_PllSys:
971 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
972 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_SYS_NUM)));
973 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_SYS_DENOM));
974
975 if ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) != 0U)
976 {
977 freq *= 22U;
978 }
979 else
980 {
981 freq *= 20U;
982 }
983
984 freq += (uint32_t)freqTmp;
985 break;
986
987 case kCLOCK_PllUsb1:
988 freq = (freq * (((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) != 0UL) ? 22U : 20U));
989 break;
990
991 case kCLOCK_PllAudio:
992 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
993 divSelect =
994 (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
995
996 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_NUM)));
997 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
998
999 freq = freq * divSelect + (uint32_t)freqTmp;
1000
1001 /* AUDIO PLL output = PLL output frequency / POSTDIV. */
1002
1003 /*
1004 * Post divider:
1005 *
1006 * PLL_AUDIO[POST_DIV_SELECT]:
1007 * 0x00: 4
1008 * 0x01: 2
1009 * 0x02: 1
1010 *
1011 * MISC2[AUDO_DIV]:
1012 * 0x00: 1
1013 * 0x01: 2
1014 * 0x02: 1
1015 * 0x03: 4
1016 */
1017 switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
1018 {
1019 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
1020 freq = freq >> 2U;
1021 break;
1022
1023 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
1024 freq = freq >> 1U;
1025 break;
1026
1027 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2U):
1028 freq = freq >> 0U;
1029 break;
1030
1031 default:
1032 assert(false);
1033 break;
1034 }
1035
1036 switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
1037 {
1038 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
1039 freq >>= 2U;
1040 break;
1041
1042 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
1043 freq >>= 1U;
1044 break;
1045
1046 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
1047 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
1048 freq >>= 0U;
1049 break;
1050
1051 default:
1052 assert(false);
1053 break;
1054 }
1055 break;
1056
1057 case kCLOCK_PllVideo:
1058 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
1059 divSelect =
1060 (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
1061
1062 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_NUM)));
1063 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_DENOM));
1064 freq = freq * divSelect + (uint32_t)freqTmp;
1065
1066 /* VIDEO PLL output = PLL output frequency / POSTDIV. */
1067
1068 /*
1069 * Post divider:
1070 *
1071 * PLL_VIDEO[POST_DIV_SELECT]:
1072 * 0x00: 4
1073 * 0x01: 2
1074 * 0x02: 1
1075 *
1076 * MISC2[VIDEO_DIV]:
1077 * 0x00: 1
1078 * 0x01: 2
1079 * 0x02: 1
1080 * 0x03: 4
1081 */
1082 switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
1083 {
1084 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
1085 freq = freq >> 2U;
1086 break;
1087
1088 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
1089 freq = freq >> 1U;
1090 break;
1091
1092 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2U):
1093 freq = freq >> 0U;
1094 break;
1095
1096 default:
1097 assert(false);
1098 break;
1099 }
1100
1101 switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
1102 {
1103 case CCM_ANALOG_MISC2_VIDEO_DIV(3U):
1104 freq >>= 2U;
1105 break;
1106
1107 case CCM_ANALOG_MISC2_VIDEO_DIV(1U):
1108 freq >>= 1U;
1109 break;
1110
1111 case CCM_ANALOG_MISC2_VIDEO_DIV(0U):
1112 case CCM_ANALOG_MISC2_VIDEO_DIV(2U):
1113 freq >>= 0U;
1114 break;
1115
1116 default:
1117 assert(false);
1118 break;
1119 }
1120 break;
1121 case kCLOCK_PllEnet:
1122 divSelect =
1123 (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ENET_DIV_SELECT_SHIFT;
1124 freq = enetRefClkFreq[divSelect];
1125 break;
1126
1127 case kCLOCK_PllEnet25M:
1128 /* ref_enetpll1 if fixed at 25MHz. */
1129 freq = 25000000UL;
1130 break;
1131
1132 case kCLOCK_PllUsb2:
1133 freq = (freq * (((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) != 0U) ? 22U : 20U));
1134 break;
1135 default:
1136 freq = 0U;
1137 break;
1138 }
1139
1140 return freq;
1141 }
1142
1143 /*!
1144 * brief Initialize the System PLL PFD.
1145 *
1146 * This function initializes the System PLL PFD. During new value setting,
1147 * the clock output is disabled to prevent glitch.
1148 *
1149 * param pfd Which PFD clock to enable.
1150 * param pfdFrac The PFD FRAC value.
1151 * note It is recommended that PFD settings are kept between 12-35.
1152 */
CLOCK_InitSysPfd(clock_pfd_t pfd,uint8_t pfdFrac)1153 void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
1154 {
1155 uint32_t pfdIndex = (uint32_t)pfd;
1156 uint32_t pfd528;
1157
1158 pfd528 = CCM_ANALOG->PFD_528 &
1159 ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK)
1160 << (8UL * pfdIndex)));
1161
1162 /* Disable the clock output first. */
1163 CCM_ANALOG->PFD_528 = pfd528 | ((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
1164
1165 /* Set the new value and enable output. */
1166 CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
1167 }
1168
1169 /*!
1170 * brief De-initialize the System PLL PFD.
1171 *
1172 * This function disables the System PLL PFD.
1173 *
1174 * param pfd Which PFD clock to disable.
1175 */
CLOCK_DeinitSysPfd(clock_pfd_t pfd)1176 void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
1177 {
1178 CCM_ANALOG->PFD_528 |= (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8U * (uint8_t)pfd);
1179 }
1180
1181 /*!
1182 * brief Check if Sys PFD is enabled
1183 *
1184 * param pfd PFD control name
1185 * return PFD bypass status.
1186 * - true: power on.
1187 * - false: power off.
1188 */
CLOCK_IsSysPfdEnabled(clock_pfd_t pfd)1189 bool CLOCK_IsSysPfdEnabled(clock_pfd_t pfd)
1190 {
1191 return ((CCM_ANALOG->PFD_528 & (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd)) == 0U);
1192 }
1193
1194 /*!
1195 * brief Initialize the USB1 PLL PFD.
1196 *
1197 * This function initializes the USB1 PLL PFD. During new value setting,
1198 * the clock output is disabled to prevent glitch.
1199 *
1200 * param pfd Which PFD clock to enable.
1201 * param pfdFrac The PFD FRAC value.
1202 * note It is recommended that PFD settings are kept between 12-35.
1203 */
CLOCK_InitUsb1Pfd(clock_pfd_t pfd,uint8_t pfdFrac)1204 void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
1205 {
1206 uint32_t pfdIndex = (uint32_t)pfd;
1207 uint32_t pfd480;
1208
1209 pfd480 = CCM_ANALOG->PFD_480 &
1210 ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK)
1211 << (8UL * pfdIndex)));
1212
1213 /* Disable the clock output first. */
1214 CCM_ANALOG->PFD_480 = pfd480 | ((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
1215
1216 /* Set the new value and enable output. */
1217 CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
1218 }
1219
1220 /*!
1221 * brief De-initialize the USB1 PLL PFD.
1222 *
1223 * This function disables the USB1 PLL PFD.
1224 *
1225 * param pfd Which PFD clock to disable.
1226 */
CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)1227 void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
1228 {
1229 CCM_ANALOG->PFD_480 |= (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd);
1230 }
1231
1232 /*!
1233 * brief Check if Usb1 PFD is enabled
1234 *
1235 * param pfd PFD control name.
1236 * return PFD bypass status.
1237 * - true: power on.
1238 * - false: power off.
1239 */
CLOCK_IsUsb1PfdEnabled(clock_pfd_t pfd)1240 bool CLOCK_IsUsb1PfdEnabled(clock_pfd_t pfd)
1241 {
1242 return ((CCM_ANALOG->PFD_480 & (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd)) == 0U);
1243 }
1244
1245 /*!
1246 * brief Get current System PLL PFD output frequency.
1247 *
1248 * This function get current output frequency of specific System PLL PFD
1249 *
1250 * param pfd pfd name to get frequency.
1251 * return The PFD output frequency in hertz.
1252 */
CLOCK_GetSysPfdFreq(clock_pfd_t pfd)1253 uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
1254 {
1255 uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
1256 uint64_t tmp64 = (uint64_t)freq * 18UL;
1257
1258 switch (pfd)
1259 {
1260 case kCLOCK_Pfd0:
1261 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT));
1262 break;
1263
1264 case kCLOCK_Pfd1:
1265 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT));
1266 break;
1267
1268 case kCLOCK_Pfd2:
1269 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT));
1270 break;
1271
1272 case kCLOCK_Pfd3:
1273 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT));
1274 break;
1275
1276 default:
1277 freq = 0U;
1278 break;
1279 }
1280
1281 return freq;
1282 }
1283
1284 /*!
1285 * brief Get current USB1 PLL PFD output frequency.
1286 *
1287 * This function get current output frequency of specific USB1 PLL PFD
1288 *
1289 * param pfd pfd name to get frequency.
1290 * return The PFD output frequency in hertz.
1291 */
CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)1292 uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
1293 {
1294 uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
1295 uint64_t tmp64 = (uint64_t)freq * 18UL;
1296
1297 switch (pfd)
1298 {
1299 case kCLOCK_Pfd0:
1300 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT));
1301 break;
1302
1303 case kCLOCK_Pfd1:
1304 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT));
1305 break;
1306
1307 case kCLOCK_Pfd2:
1308 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT));
1309 break;
1310
1311 case kCLOCK_Pfd3:
1312 freq = (uint32_t)(tmp64 / (uint64_t)((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT));
1313 break;
1314
1315 default:
1316 freq = 0U;
1317 break;
1318 }
1319
1320 return freq;
1321 }
1322
1323 /*! brief Enable USB HS PHY PLL clock.
1324 *
1325 * This function enables the internal 480MHz USB PHY PLL clock.
1326 *
1327 * param src USB HS PHY PLL clock source.
1328 * param freq The frequency specified by src.
1329 * retval true The clock is set successfully.
1330 * retval false The clock source is invalid to get proper USB HS clock.
1331 */
CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src,uint32_t freq)1332 bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
1333 {
1334 static const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
1335 CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
1336 USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
1337 USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
1338
1339 USBPHY2->PWD = 0;
1340 USBPHY2->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
1341 USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK;
1342
1343 return true;
1344 }
1345
1346 /*! brief Disable USB HS PHY PLL clock.
1347 *
1348 * This function disables USB HS PHY PLL clock.
1349 */
CLOCK_DisableUsbhs1PhyPllClock(void)1350 void CLOCK_DisableUsbhs1PhyPllClock(void)
1351 {
1352 CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK;
1353 USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
1354 }
1355
1356 /*!
1357 * brief Set the clock source and the divider of the clock output1.
1358 *
1359 * param selection The clock source to be output, please refer to clock_output1_selection_t.
1360 * param divider The divider of the output clock signal, please refer to clock_output_divider_t.
1361 */
CLOCK_SetClockOutput1(clock_output1_selection_t selection,clock_output_divider_t divider)1362 void CLOCK_SetClockOutput1(clock_output1_selection_t selection, clock_output_divider_t divider)
1363 {
1364 uint32_t tmp32;
1365
1366 tmp32 = CCM->CCOSR;
1367 if (selection == kCLOCK_DisableClockOutput1)
1368 {
1369 tmp32 &= ~CCM_CCOSR_CLKO1_EN_MASK;
1370 }
1371 else
1372 {
1373 tmp32 |= CCM_CCOSR_CLKO1_EN_MASK;
1374 tmp32 &= ~(CCM_CCOSR_CLKO1_SEL_MASK | CCM_CCOSR_CLKO1_DIV_MASK);
1375 tmp32 |= CCM_CCOSR_CLKO1_SEL(selection) | CCM_CCOSR_CLKO1_DIV(divider);
1376 }
1377 CCM->CCOSR = tmp32;
1378 }
1379
1380 /*!
1381 * brief Set the clock source and the divider of the clock output2.
1382 *
1383 * param selection The clock source to be output, please refer to clock_output2_selection_t.
1384 * param divider The divider of the output clock signal, please refer to clock_output_divider_t.
1385 */
CLOCK_SetClockOutput2(clock_output2_selection_t selection,clock_output_divider_t divider)1386 void CLOCK_SetClockOutput2(clock_output2_selection_t selection, clock_output_divider_t divider)
1387 {
1388 uint32_t tmp32;
1389
1390 tmp32 = CCM->CCOSR;
1391 if (selection == kCLOCK_DisableClockOutput2)
1392 {
1393 tmp32 &= CCM_CCOSR_CLKO2_EN_MASK;
1394 }
1395 else
1396 {
1397 tmp32 |= CCM_CCOSR_CLKO2_EN_MASK;
1398 tmp32 &= ~(CCM_CCOSR_CLKO2_SEL_MASK | CCM_CCOSR_CLKO2_DIV_MASK);
1399 tmp32 |= CCM_CCOSR_CLKO2_SEL(selection) | CCM_CCOSR_CLKO2_DIV(divider);
1400 }
1401
1402 CCM->CCOSR = tmp32;
1403 }
1404
1405 /*!
1406 * brief Get the frequency of clock output1 clock signal.
1407 *
1408 * return The frequency of clock output1 clock signal.
1409 */
CLOCK_GetClockOutCLKO1Freq(void)1410 uint32_t CLOCK_GetClockOutCLKO1Freq(void)
1411 {
1412 uint32_t freq = 0U;
1413 uint32_t tmp32;
1414
1415 tmp32 = CCM->CCOSR;
1416
1417 if ((tmp32 & CCM_CCOSR_CLKO1_EN_MASK) != 0UL)
1418 {
1419 switch ((tmp32 & CCM_CCOSR_CLKO1_SEL_MASK) >> CCM_CCOSR_CLKO1_SEL_SHIFT)
1420 {
1421 case (uint32_t)kCLOCK_OutputPllUsb1:
1422 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 2U;
1423 break;
1424 case (uint32_t)kCLOCK_OutputPllSys:
1425 freq = CLOCK_GetPllFreq(kCLOCK_PllSys) / 2U;
1426 break;
1427 case (uint32_t)kCLOCK_OutputPllVideo:
1428 freq = CLOCK_GetPllFreq(kCLOCK_PllVideo) / 2U;
1429 break;
1430 case (uint32_t)kCLOCK_OutputSemcClk:
1431 freq = CLOCK_GetSemcFreq();
1432 break;
1433 case (uint32_t)kCLOCK_OutputLcdifPixClk:
1434 freq = CLOCK_GetClockRootFreq(kCLOCK_LcdifClkRoot);
1435 break;
1436 case (uint32_t)kCLOCK_OutputAhbClk:
1437 freq = CLOCK_GetAhbFreq();
1438 break;
1439 case (uint32_t)kCLOCK_OutputIpgClk:
1440 freq = CLOCK_GetIpgFreq();
1441 break;
1442 case (uint32_t)kCLOCK_OutputPerClk:
1443 freq = CLOCK_GetPerClkFreq();
1444 break;
1445 case (uint32_t)kCLOCK_OutputCkilSyncClk:
1446 freq = CLOCK_GetRtcFreq();
1447 break;
1448 case (uint32_t)kCLOCK_OutputPll4MainClk:
1449 freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
1450 break;
1451 default:
1452 /* This branch should never be hit. */
1453 break;
1454 }
1455
1456 freq /= (((tmp32 & CCM_CCOSR_CLKO1_DIV_MASK) >> CCM_CCOSR_CLKO1_DIV_SHIFT) + 1U);
1457 }
1458 else
1459 {
1460 freq = 0UL;
1461 }
1462
1463 return freq;
1464 }
1465
1466 /*!
1467 * brief Get the frequency of clock output2 clock signal.
1468 *
1469 * return The frequency of clock output2 clock signal.
1470 */
CLOCK_GetClockOutClkO2Freq(void)1471 uint32_t CLOCK_GetClockOutClkO2Freq(void)
1472 {
1473 uint32_t freq = 0U;
1474 uint32_t tmp32;
1475
1476 tmp32 = CCM->CCOSR;
1477
1478 if ((tmp32 & CCM_CCOSR_CLKO2_EN_MASK) != 0UL)
1479 {
1480 switch ((tmp32 & CCM_CCOSR_CLKO2_SEL_MASK) >> CCM_CCOSR_CLKO2_SEL_SHIFT)
1481 {
1482 case (uint32_t)kCLOCK_OutputUsdhc1Clk:
1483 freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc1ClkRoot);
1484 break;
1485 case (uint32_t)kCLOCK_OutputLpi2cClk:
1486 freq = CLOCK_GetClockRootFreq(kCLOCK_Lpi2cClkRoot);
1487 break;
1488 case (uint32_t)kCLOCK_OutputCsiClk:
1489 freq = CLOCK_GetClockRootFreq(kCLOCK_CsiClkRoot);
1490 break;
1491 case (uint32_t)kCLOCK_OutputOscClk:
1492 freq = CLOCK_GetOscFreq();
1493 break;
1494 case (uint32_t)kCLOCK_OutputUsdhc2Clk:
1495 freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc2ClkRoot);
1496 break;
1497 case (uint32_t)kCLOCK_OutputSai1Clk:
1498 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai1ClkRoot);
1499 break;
1500 case (uint32_t)kCLOCK_OutputSai2Clk:
1501 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai2ClkRoot);
1502 break;
1503 case (uint32_t)kCLOCK_OutputSai3Clk:
1504 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai3ClkRoot);
1505 break;
1506 case (uint32_t)kCLOCK_OutputCanClk:
1507 freq = CLOCK_GetClockRootFreq(kCLOCK_CanClkRoot);
1508 break;
1509 case (uint32_t)kCLOCK_OutputFlexspiClk:
1510 freq = CLOCK_GetClockRootFreq(kCLOCK_FlexspiClkRoot);
1511 break;
1512 case (uint32_t)kCLOCK_OutputUartClk:
1513 freq = CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot);
1514 break;
1515 case (uint32_t)kCLOCK_OutputSpdif0Clk:
1516 freq = CLOCK_GetClockRootFreq(kCLOCK_SpdifClkRoot);
1517 break;
1518 default:
1519 /* This branch should never be hit. */
1520 break;
1521 }
1522
1523 freq /= (((tmp32 & CCM_CCOSR_CLKO2_DIV_MASK) >> CCM_CCOSR_CLKO2_DIV_SHIFT) + 1U);
1524 }
1525 else
1526 {
1527 freq = 0UL;
1528 }
1529
1530 return freq;
1531 }
1532