1 /**************************************************************************//**
2  * @file     cmsis_gcc.h
3  * @brief    CMSIS compiler GCC header file
4  * @version  V5.4.1
5  * @date     27. May 2021
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2021 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36   #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef   __ASM
41   #define __ASM                                  __asm
42 #endif
43 #ifndef   __INLINE
44   #define __INLINE                               inline
45 #endif
46 #ifndef   __STATIC_INLINE
47   #define __STATIC_INLINE                        static inline
48 #endif
49 #ifndef   __STATIC_FORCEINLINE
50   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51 #endif
52 #ifndef   __NO_RETURN
53   #define __NO_RETURN                            __attribute__((__noreturn__))
54 #endif
55 #ifndef   __USED
56   #define __USED                                 __attribute__((used))
57 #endif
58 #ifndef   __WEAK
59   #define __WEAK                                 __attribute__((weak))
60 #endif
61 #ifndef   __PACKED
62   #define __PACKED                               __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_STRUCT
65   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __PACKED_UNION
68   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef   __UNALIGNED_UINT32        /* deprecated */
71   #pragma GCC diagnostic push
72   #pragma GCC diagnostic ignored "-Wpacked"
73   #pragma GCC diagnostic ignored "-Wattributes"
74   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75   #pragma GCC diagnostic pop
76   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef   __UNALIGNED_UINT16_WRITE
79   #pragma GCC diagnostic push
80   #pragma GCC diagnostic ignored "-Wpacked"
81   #pragma GCC diagnostic ignored "-Wattributes"
82   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83   #pragma GCC diagnostic pop
84   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef   __UNALIGNED_UINT16_READ
87   #pragma GCC diagnostic push
88   #pragma GCC diagnostic ignored "-Wpacked"
89   #pragma GCC diagnostic ignored "-Wattributes"
90   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91   #pragma GCC diagnostic pop
92   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef   __UNALIGNED_UINT32_WRITE
95   #pragma GCC diagnostic push
96   #pragma GCC diagnostic ignored "-Wpacked"
97   #pragma GCC diagnostic ignored "-Wattributes"
98   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99   #pragma GCC diagnostic pop
100   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef   __UNALIGNED_UINT32_READ
103   #pragma GCC diagnostic push
104   #pragma GCC diagnostic ignored "-Wpacked"
105   #pragma GCC diagnostic ignored "-Wattributes"
106   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107   #pragma GCC diagnostic pop
108   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef   __ALIGNED
111   #define __ALIGNED(x)                           __attribute__((aligned(x)))
112 #endif
113 #ifndef   __RESTRICT
114   #define __RESTRICT                             __restrict
115 #endif
116 #ifndef   __COMPILER_BARRIER
117   #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
118 #endif
119 
120 /* #########################  Startup and Lowlevel Init  ######################## */
121 
122 #ifndef __PROGRAM_START
123 
124 /**
125   \brief   Initializes data and bss sections
126   \details This default implementations initialized all data and additional bss
127            sections relying on .copy.table and .zero.table specified properly
128            in the used linker script.
129 
130  */
__cmsis_start(void)131 __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
132 {
133   extern void _start(void) __NO_RETURN;
134 
135   typedef struct {
136     uint32_t const* src;
137     uint32_t* dest;
138     uint32_t  wlen;
139   } __copy_table_t;
140 
141   typedef struct {
142     uint32_t* dest;
143     uint32_t  wlen;
144   } __zero_table_t;
145 
146   extern const __copy_table_t __copy_table_start__;
147   extern const __copy_table_t __copy_table_end__;
148   extern const __zero_table_t __zero_table_start__;
149   extern const __zero_table_t __zero_table_end__;
150 
151   for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
152     for(uint32_t i=0u; i<pTable->wlen; ++i) {
153       pTable->dest[i] = pTable->src[i];
154     }
155   }
156 
157   for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
158     for(uint32_t i=0u; i<pTable->wlen; ++i) {
159       pTable->dest[i] = 0u;
160     }
161   }
162 
163   _start();
164 }
165 
166 #define __PROGRAM_START           __cmsis_start
167 #endif
168 
169 #ifndef __INITIAL_SP
170 #define __INITIAL_SP              __StackTop
171 #endif
172 
173 #ifndef __STACK_LIMIT
174 #define __STACK_LIMIT             __StackLimit
175 #endif
176 
177 #ifndef __VECTOR_TABLE
178 #define __VECTOR_TABLE            __Vectors
179 #endif
180 
181 #ifndef __VECTOR_TABLE_ATTRIBUTE
182 #define __VECTOR_TABLE_ATTRIBUTE  __attribute__((used, section(".vectors")))
183 #endif
184 
185 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
186 #ifndef __STACK_SEAL
187 #define __STACK_SEAL              __StackSeal
188 #endif
189 
190 #ifndef __TZ_STACK_SEAL_SIZE
191 #define __TZ_STACK_SEAL_SIZE      8U
192 #endif
193 
194 #ifndef __TZ_STACK_SEAL_VALUE
195 #define __TZ_STACK_SEAL_VALUE     0xFEF5EDA5FEF5EDA5ULL
196 #endif
197 
198 
__TZ_set_STACKSEAL_S(uint32_t * stackTop)199 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
200   *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
201 }
202 #endif
203 
204 
205 /* ##########################  Core Instruction Access  ######################### */
206 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
207   Access to dedicated instructions
208   @{
209 */
210 
211 /* Define macros for porting to both thumb1 and thumb2.
212  * For thumb1, use low register (r0-r7), specified by constraint "l"
213  * Otherwise, use general registers, specified by constraint "r" */
214 #if defined (__thumb__) && !defined (__thumb2__)
215 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
216 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
217 #define __CMSIS_GCC_USE_REG(r) "l" (r)
218 #else
219 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
220 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
221 #define __CMSIS_GCC_USE_REG(r) "r" (r)
222 #endif
223 
224 /**
225   \brief   No Operation
226   \details No Operation does nothing. This instruction can be used for code alignment purposes.
227  */
228 #define __NOP()                             __ASM volatile ("nop")
229 
230 /**
231   \brief   Wait For Interrupt
232   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
233  */
234 #define __WFI()                             __ASM volatile ("wfi":::"memory")
235 
236 
237 /**
238   \brief   Wait For Event
239   \details Wait For Event is a hint instruction that permits the processor to enter
240            a low-power state until one of a number of events occurs.
241  */
242 #define __WFE()                             __ASM volatile ("wfe":::"memory")
243 
244 
245 /**
246   \brief   Send Event
247   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
248  */
249 #define __SEV()                             __ASM volatile ("sev")
250 
251 
252 /**
253   \brief   Instruction Synchronization Barrier
254   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
255            so that all instructions following the ISB are fetched from cache or memory,
256            after the instruction has been completed.
257  */
__ISB(void)258 __STATIC_FORCEINLINE void __ISB(void)
259 {
260   __ASM volatile ("isb 0xF":::"memory");
261 }
262 
263 
264 /**
265   \brief   Data Synchronization Barrier
266   \details Acts as a special kind of Data Memory Barrier.
267            It completes when all explicit memory accesses before this instruction complete.
268  */
__DSB(void)269 __STATIC_FORCEINLINE void __DSB(void)
270 {
271   __ASM volatile ("dsb 0xF":::"memory");
272 }
273 
274 
275 /**
276   \brief   Data Memory Barrier
277   \details Ensures the apparent order of the explicit memory operations before
278            and after the instruction, without ensuring their completion.
279  */
__DMB(void)280 __STATIC_FORCEINLINE void __DMB(void)
281 {
282   __ASM volatile ("dmb 0xF":::"memory");
283 }
284 
285 
286 /**
287   \brief   Reverse byte order (32 bit)
288   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
289   \param [in]    value  Value to reverse
290   \return               Reversed value
291  */
__REV(uint32_t value)292 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
293 {
294 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
295   return __builtin_bswap32(value);
296 #else
297   uint32_t result;
298 
299   __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
300   return result;
301 #endif
302 }
303 
304 
305 /**
306   \brief   Reverse byte order (16 bit)
307   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
308   \param [in]    value  Value to reverse
309   \return               Reversed value
310  */
__REV16(uint32_t value)311 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
312 {
313   uint32_t result;
314 
315   __ASM ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
316   return result;
317 }
318 
319 
320 /**
321   \brief   Reverse byte order (16 bit)
322   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
323   \param [in]    value  Value to reverse
324   \return               Reversed value
325  */
__REVSH(int16_t value)326 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
327 {
328 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
329   return (int16_t)__builtin_bswap16(value);
330 #else
331   int16_t result;
332 
333   __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
334   return result;
335 #endif
336 }
337 
338 
339 /**
340   \brief   Rotate Right in unsigned value (32 bit)
341   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
342   \param [in]    op1  Value to rotate
343   \param [in]    op2  Number of Bits to rotate
344   \return               Rotated value
345  */
__ROR(uint32_t op1,uint32_t op2)346 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
347 {
348   op2 %= 32U;
349   if (op2 == 0U)
350   {
351     return op1;
352   }
353   return (op1 >> op2) | (op1 << (32U - op2));
354 }
355 
356 
357 /**
358   \brief   Breakpoint
359   \details Causes the processor to enter Debug state.
360            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
361   \param [in]    value  is ignored by the processor.
362                  If required, a debugger can use it to store additional information about the breakpoint.
363  */
364 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
365 
366 
367 /**
368   \brief   Reverse bit order of value
369   \details Reverses the bit order of the given value.
370   \param [in]    value  Value to reverse
371   \return               Reversed value
372  */
__RBIT(uint32_t value)373 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
374 {
375   uint32_t result;
376 
377 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
378      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
379      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
380    __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
381 #else
382   uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
383 
384   result = value;                      /* r will be reversed bits of v; first get LSB of v */
385   for (value >>= 1U; value != 0U; value >>= 1U)
386   {
387     result <<= 1U;
388     result |= value & 1U;
389     s--;
390   }
391   result <<= s;                        /* shift when v's highest bits are zero */
392 #endif
393   return result;
394 }
395 
396 
397 /**
398   \brief   Count leading zeros
399   \details Counts the number of leading zeros of a data value.
400   \param [in]  value  Value to count the leading zeros
401   \return             number of leading zeros in value
402  */
__CLZ(uint32_t value)403 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
404 {
405   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
406      __builtin_clz(0) is undefined behaviour, so handle this case specially.
407      This guarantees ARM-compatible results if happening to compile on a non-ARM
408      target, and ensures the compiler doesn't decide to activate any
409      optimisations using the logic "value was passed to __builtin_clz, so it
410      is non-zero".
411      ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
412      single CLZ instruction.
413    */
414   if (value == 0U)
415   {
416     return 32U;
417   }
418   return __builtin_clz(value);
419 }
420 
421 
422 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
423      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
424      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
425      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
426 /**
427   \brief   LDR Exclusive (8 bit)
428   \details Executes a exclusive LDR instruction for 8 bit value.
429   \param [in]    ptr  Pointer to data
430   \return             value of type uint8_t at (*ptr)
431  */
__LDREXB(volatile uint8_t * addr)432 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
433 {
434     uint32_t result;
435 
436 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
437    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
438 #else
439     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
440        accepted by assembler. So has to use following less efficient pattern.
441     */
442    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
443 #endif
444    return ((uint8_t) result);    /* Add explicit type cast here */
445 }
446 
447 
448 /**
449   \brief   LDR Exclusive (16 bit)
450   \details Executes a exclusive LDR instruction for 16 bit values.
451   \param [in]    ptr  Pointer to data
452   \return        value of type uint16_t at (*ptr)
453  */
__LDREXH(volatile uint16_t * addr)454 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
455 {
456     uint32_t result;
457 
458 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
459    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
460 #else
461     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
462        accepted by assembler. So has to use following less efficient pattern.
463     */
464    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
465 #endif
466    return ((uint16_t) result);    /* Add explicit type cast here */
467 }
468 
469 
470 /**
471   \brief   LDR Exclusive (32 bit)
472   \details Executes a exclusive LDR instruction for 32 bit values.
473   \param [in]    ptr  Pointer to data
474   \return        value of type uint32_t at (*ptr)
475  */
__LDREXW(volatile uint32_t * addr)476 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
477 {
478     uint32_t result;
479 
480    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
481    return(result);
482 }
483 
484 
485 /**
486   \brief   STR Exclusive (8 bit)
487   \details Executes a exclusive STR instruction for 8 bit values.
488   \param [in]  value  Value to store
489   \param [in]    ptr  Pointer to location
490   \return          0  Function succeeded
491   \return          1  Function failed
492  */
__STREXB(uint8_t value,volatile uint8_t * addr)493 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
494 {
495    uint32_t result;
496 
497    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
498    return(result);
499 }
500 
501 
502 /**
503   \brief   STR Exclusive (16 bit)
504   \details Executes a exclusive STR instruction for 16 bit values.
505   \param [in]  value  Value to store
506   \param [in]    ptr  Pointer to location
507   \return          0  Function succeeded
508   \return          1  Function failed
509  */
__STREXH(uint16_t value,volatile uint16_t * addr)510 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
511 {
512    uint32_t result;
513 
514    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
515    return(result);
516 }
517 
518 
519 /**
520   \brief   STR Exclusive (32 bit)
521   \details Executes a exclusive STR instruction for 32 bit values.
522   \param [in]  value  Value to store
523   \param [in]    ptr  Pointer to location
524   \return          0  Function succeeded
525   \return          1  Function failed
526  */
__STREXW(uint32_t value,volatile uint32_t * addr)527 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
528 {
529    uint32_t result;
530 
531    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
532    return(result);
533 }
534 
535 
536 /**
537   \brief   Remove the exclusive lock
538   \details Removes the exclusive lock which is created by LDREX.
539  */
__CLREX(void)540 __STATIC_FORCEINLINE void __CLREX(void)
541 {
542   __ASM volatile ("clrex" ::: "memory");
543 }
544 
545 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
546            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
547            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
548            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
549 
550 
551 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
552      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
553      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
554 /**
555   \brief   Signed Saturate
556   \details Saturates a signed value.
557   \param [in]  ARG1  Value to be saturated
558   \param [in]  ARG2  Bit position to saturate to (1..32)
559   \return             Saturated value
560  */
561 #define __SSAT(ARG1, ARG2) \
562 __extension__ \
563 ({                          \
564   int32_t __RES, __ARG1 = (ARG1); \
565   __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
566   __RES; \
567  })
568 
569 
570 /**
571   \brief   Unsigned Saturate
572   \details Saturates an unsigned value.
573   \param [in]  ARG1  Value to be saturated
574   \param [in]  ARG2  Bit position to saturate to (0..31)
575   \return             Saturated value
576  */
577 #define __USAT(ARG1, ARG2) \
578 __extension__ \
579 ({                          \
580   uint32_t __RES, __ARG1 = (ARG1); \
581   __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
582   __RES; \
583  })
584 
585 
586 /**
587   \brief   Rotate Right with Extend (32 bit)
588   \details Moves each bit of a bitstring right by one bit.
589            The carry input is shifted in at the left end of the bitstring.
590   \param [in]    value  Value to rotate
591   \return               Rotated value
592  */
__RRX(uint32_t value)593 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
594 {
595   uint32_t result;
596 
597   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
598   return(result);
599 }
600 
601 
602 /**
603   \brief   LDRT Unprivileged (8 bit)
604   \details Executes a Unprivileged LDRT instruction for 8 bit value.
605   \param [in]    ptr  Pointer to data
606   \return             value of type uint8_t at (*ptr)
607  */
__LDRBT(volatile uint8_t * ptr)608 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
609 {
610     uint32_t result;
611 
612 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
613    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
614 #else
615     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
616        accepted by assembler. So has to use following less efficient pattern.
617     */
618    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
619 #endif
620    return ((uint8_t) result);    /* Add explicit type cast here */
621 }
622 
623 
624 /**
625   \brief   LDRT Unprivileged (16 bit)
626   \details Executes a Unprivileged LDRT instruction for 16 bit values.
627   \param [in]    ptr  Pointer to data
628   \return        value of type uint16_t at (*ptr)
629  */
__LDRHT(volatile uint16_t * ptr)630 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
631 {
632     uint32_t result;
633 
634 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
635    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
636 #else
637     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
638        accepted by assembler. So has to use following less efficient pattern.
639     */
640    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
641 #endif
642    return ((uint16_t) result);    /* Add explicit type cast here */
643 }
644 
645 
646 /**
647   \brief   LDRT Unprivileged (32 bit)
648   \details Executes a Unprivileged LDRT instruction for 32 bit values.
649   \param [in]    ptr  Pointer to data
650   \return        value of type uint32_t at (*ptr)
651  */
__LDRT(volatile uint32_t * ptr)652 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
653 {
654     uint32_t result;
655 
656    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
657    return(result);
658 }
659 
660 
661 /**
662   \brief   STRT Unprivileged (8 bit)
663   \details Executes a Unprivileged STRT instruction for 8 bit values.
664   \param [in]  value  Value to store
665   \param [in]    ptr  Pointer to location
666  */
__STRBT(uint8_t value,volatile uint8_t * ptr)667 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
668 {
669    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
670 }
671 
672 
673 /**
674   \brief   STRT Unprivileged (16 bit)
675   \details Executes a Unprivileged STRT instruction for 16 bit values.
676   \param [in]  value  Value to store
677   \param [in]    ptr  Pointer to location
678  */
__STRHT(uint16_t value,volatile uint16_t * ptr)679 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
680 {
681    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
682 }
683 
684 
685 /**
686   \brief   STRT Unprivileged (32 bit)
687   \details Executes a Unprivileged STRT instruction for 32 bit values.
688   \param [in]  value  Value to store
689   \param [in]    ptr  Pointer to location
690  */
__STRT(uint32_t value,volatile uint32_t * ptr)691 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
692 {
693    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
694 }
695 
696 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
697            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
698            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
699 
700 /**
701   \brief   Signed Saturate
702   \details Saturates a signed value.
703   \param [in]  value  Value to be saturated
704   \param [in]    sat  Bit position to saturate to (1..32)
705   \return             Saturated value
706  */
__SSAT(int32_t val,uint32_t sat)707 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
708 {
709   if ((sat >= 1U) && (sat <= 32U))
710   {
711     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
712     const int32_t min = -1 - max ;
713     if (val > max)
714     {
715       return max;
716     }
717     else if (val < min)
718     {
719       return min;
720     }
721   }
722   return val;
723 }
724 
725 /**
726   \brief   Unsigned Saturate
727   \details Saturates an unsigned value.
728   \param [in]  value  Value to be saturated
729   \param [in]    sat  Bit position to saturate to (0..31)
730   \return             Saturated value
731  */
__USAT(int32_t val,uint32_t sat)732 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
733 {
734   if (sat <= 31U)
735   {
736     const uint32_t max = ((1U << sat) - 1U);
737     if (val > (int32_t)max)
738     {
739       return max;
740     }
741     else if (val < 0)
742     {
743       return 0U;
744     }
745   }
746   return (uint32_t)val;
747 }
748 
749 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
750            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
751            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
752 
753 
754 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
755      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
756 /**
757   \brief   Load-Acquire (8 bit)
758   \details Executes a LDAB instruction for 8 bit value.
759   \param [in]    ptr  Pointer to data
760   \return             value of type uint8_t at (*ptr)
761  */
__LDAB(volatile uint8_t * ptr)762 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
763 {
764     uint32_t result;
765 
766    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
767    return ((uint8_t) result);
768 }
769 
770 
771 /**
772   \brief   Load-Acquire (16 bit)
773   \details Executes a LDAH instruction for 16 bit values.
774   \param [in]    ptr  Pointer to data
775   \return        value of type uint16_t at (*ptr)
776  */
__LDAH(volatile uint16_t * ptr)777 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
778 {
779     uint32_t result;
780 
781    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
782    return ((uint16_t) result);
783 }
784 
785 
786 /**
787   \brief   Load-Acquire (32 bit)
788   \details Executes a LDA instruction for 32 bit values.
789   \param [in]    ptr  Pointer to data
790   \return        value of type uint32_t at (*ptr)
791  */
__LDA(volatile uint32_t * ptr)792 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
793 {
794     uint32_t result;
795 
796    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
797    return(result);
798 }
799 
800 
801 /**
802   \brief   Store-Release (8 bit)
803   \details Executes a STLB instruction for 8 bit values.
804   \param [in]  value  Value to store
805   \param [in]    ptr  Pointer to location
806  */
__STLB(uint8_t value,volatile uint8_t * ptr)807 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
808 {
809    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
810 }
811 
812 
813 /**
814   \brief   Store-Release (16 bit)
815   \details Executes a STLH instruction for 16 bit values.
816   \param [in]  value  Value to store
817   \param [in]    ptr  Pointer to location
818  */
__STLH(uint16_t value,volatile uint16_t * ptr)819 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
820 {
821    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
822 }
823 
824 
825 /**
826   \brief   Store-Release (32 bit)
827   \details Executes a STL instruction for 32 bit values.
828   \param [in]  value  Value to store
829   \param [in]    ptr  Pointer to location
830  */
__STL(uint32_t value,volatile uint32_t * ptr)831 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
832 {
833    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
834 }
835 
836 
837 /**
838   \brief   Load-Acquire Exclusive (8 bit)
839   \details Executes a LDAB exclusive instruction for 8 bit value.
840   \param [in]    ptr  Pointer to data
841   \return             value of type uint8_t at (*ptr)
842  */
__LDAEXB(volatile uint8_t * ptr)843 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
844 {
845     uint32_t result;
846 
847    __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
848    return ((uint8_t) result);
849 }
850 
851 
852 /**
853   \brief   Load-Acquire Exclusive (16 bit)
854   \details Executes a LDAH exclusive instruction for 16 bit values.
855   \param [in]    ptr  Pointer to data
856   \return        value of type uint16_t at (*ptr)
857  */
__LDAEXH(volatile uint16_t * ptr)858 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
859 {
860     uint32_t result;
861 
862    __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
863    return ((uint16_t) result);
864 }
865 
866 
867 /**
868   \brief   Load-Acquire Exclusive (32 bit)
869   \details Executes a LDA exclusive instruction for 32 bit values.
870   \param [in]    ptr  Pointer to data
871   \return        value of type uint32_t at (*ptr)
872  */
__LDAEX(volatile uint32_t * ptr)873 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
874 {
875     uint32_t result;
876 
877    __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
878    return(result);
879 }
880 
881 
882 /**
883   \brief   Store-Release Exclusive (8 bit)
884   \details Executes a STLB exclusive instruction for 8 bit values.
885   \param [in]  value  Value to store
886   \param [in]    ptr  Pointer to location
887   \return          0  Function succeeded
888   \return          1  Function failed
889  */
__STLEXB(uint8_t value,volatile uint8_t * ptr)890 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
891 {
892    uint32_t result;
893 
894    __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
895    return(result);
896 }
897 
898 
899 /**
900   \brief   Store-Release Exclusive (16 bit)
901   \details Executes a STLH exclusive instruction for 16 bit values.
902   \param [in]  value  Value to store
903   \param [in]    ptr  Pointer to location
904   \return          0  Function succeeded
905   \return          1  Function failed
906  */
__STLEXH(uint16_t value,volatile uint16_t * ptr)907 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
908 {
909    uint32_t result;
910 
911    __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
912    return(result);
913 }
914 
915 
916 /**
917   \brief   Store-Release Exclusive (32 bit)
918   \details Executes a STL exclusive instruction for 32 bit values.
919   \param [in]  value  Value to store
920   \param [in]    ptr  Pointer to location
921   \return          0  Function succeeded
922   \return          1  Function failed
923  */
__STLEX(uint32_t value,volatile uint32_t * ptr)924 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
925 {
926    uint32_t result;
927 
928    __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
929    return(result);
930 }
931 
932 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
933            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
934 
935 /**
936   \brief   likely/unlikely() branch prediction
937   \details Gives hints to the compiler to favor either side of a jump instruction
938   \param [in]  expr   Boolean expression under evaluation
939   \return             The same boolean value
940  */
941 #ifndef unlikely
unlikely(long expr)942 __STATIC_FORCEINLINE long unlikely(long expr)
943 {
944   return __builtin_expect(expr, 0L);
945 }
946 #endif
947 
948 #ifndef likely
likely(long expr)949 __STATIC_FORCEINLINE long likely(long expr)
950 {
951   return __builtin_expect(expr, 1L);
952 }
953 #endif
954 
955 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
956 
957 
958 /* ###########################  Core Function Access  ########################### */
959 /** \ingroup  CMSIS_Core_FunctionInterface
960     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
961   @{
962  */
963 
964 /**
965   \brief   Enable IRQ Interrupts
966   \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
967            Can only be executed in Privileged modes.
968  */
__enable_irq(void)969 __STATIC_FORCEINLINE void __enable_irq(void)
970 {
971   __ASM volatile ("cpsie i" : : : "memory");
972 }
973 
974 
975 /**
976   \brief   Disable IRQ Interrupts
977   \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
978            Can only be executed in Privileged modes.
979  */
__disable_irq(void)980 __STATIC_FORCEINLINE void __disable_irq(void)
981 {
982   __ASM volatile ("cpsid i" : : : "memory");
983 }
984 
985 
986 /**
987   \brief   Get Control Register
988   \details Returns the content of the Control Register.
989   \return               Control Register value
990  */
__get_CONTROL(void)991 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
992 {
993   uint32_t result;
994 
995   __ASM volatile ("MRS %0, control" : "=r" (result) );
996   return(result);
997 }
998 
999 
1000 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1001 /**
1002   \brief   Get Control Register (non-secure)
1003   \details Returns the content of the non-secure Control Register when in secure mode.
1004   \return               non-secure Control Register value
1005  */
__TZ_get_CONTROL_NS(void)1006 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
1007 {
1008   uint32_t result;
1009 
1010   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
1011   return(result);
1012 }
1013 #endif
1014 
1015 
1016 /**
1017   \brief   Set Control Register
1018   \details Writes the given value to the Control Register.
1019   \param [in]    control  Control Register value to set
1020  */
__set_CONTROL(uint32_t control)1021 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
1022 {
1023   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
1024   __ISB();
1025 }
1026 
1027 
1028 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1029 /**
1030   \brief   Set Control Register (non-secure)
1031   \details Writes the given value to the non-secure Control Register when in secure state.
1032   \param [in]    control  Control Register value to set
1033  */
__TZ_set_CONTROL_NS(uint32_t control)1034 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
1035 {
1036   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
1037   __ISB();
1038 }
1039 #endif
1040 
1041 
1042 /**
1043   \brief   Get IPSR Register
1044   \details Returns the content of the IPSR Register.
1045   \return               IPSR Register value
1046  */
__get_IPSR(void)1047 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
1048 {
1049   uint32_t result;
1050 
1051   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
1052   return(result);
1053 }
1054 
1055 
1056 /**
1057   \brief   Get APSR Register
1058   \details Returns the content of the APSR Register.
1059   \return               APSR Register value
1060  */
__get_APSR(void)1061 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
1062 {
1063   uint32_t result;
1064 
1065   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
1066   return(result);
1067 }
1068 
1069 
1070 /**
1071   \brief   Get xPSR Register
1072   \details Returns the content of the xPSR Register.
1073   \return               xPSR Register value
1074  */
__get_xPSR(void)1075 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
1076 {
1077   uint32_t result;
1078 
1079   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
1080   return(result);
1081 }
1082 
1083 
1084 /**
1085   \brief   Get Process Stack Pointer
1086   \details Returns the current value of the Process Stack Pointer (PSP).
1087   \return               PSP Register value
1088  */
__get_PSP(void)1089 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
1090 {
1091   uint32_t result;
1092 
1093   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
1094   return(result);
1095 }
1096 
1097 
1098 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1099 /**
1100   \brief   Get Process Stack Pointer (non-secure)
1101   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
1102   \return               PSP Register value
1103  */
__TZ_get_PSP_NS(void)1104 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
1105 {
1106   uint32_t result;
1107 
1108   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
1109   return(result);
1110 }
1111 #endif
1112 
1113 
1114 /**
1115   \brief   Set Process Stack Pointer
1116   \details Assigns the given value to the Process Stack Pointer (PSP).
1117   \param [in]    topOfProcStack  Process Stack Pointer value to set
1118  */
__set_PSP(uint32_t topOfProcStack)1119 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
1120 {
1121   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
1122 }
1123 
1124 
1125 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1126 /**
1127   \brief   Set Process Stack Pointer (non-secure)
1128   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
1129   \param [in]    topOfProcStack  Process Stack Pointer value to set
1130  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)1131 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
1132 {
1133   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
1134 }
1135 #endif
1136 
1137 
1138 /**
1139   \brief   Get Main Stack Pointer
1140   \details Returns the current value of the Main Stack Pointer (MSP).
1141   \return               MSP Register value
1142  */
__get_MSP(void)1143 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
1144 {
1145   uint32_t result;
1146 
1147   __ASM volatile ("MRS %0, msp" : "=r" (result) );
1148   return(result);
1149 }
1150 
1151 
1152 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1153 /**
1154   \brief   Get Main Stack Pointer (non-secure)
1155   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
1156   \return               MSP Register value
1157  */
__TZ_get_MSP_NS(void)1158 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
1159 {
1160   uint32_t result;
1161 
1162   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
1163   return(result);
1164 }
1165 #endif
1166 
1167 
1168 /**
1169   \brief   Set Main Stack Pointer
1170   \details Assigns the given value to the Main Stack Pointer (MSP).
1171   \param [in]    topOfMainStack  Main Stack Pointer value to set
1172  */
__set_MSP(uint32_t topOfMainStack)1173 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
1174 {
1175   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
1176 }
1177 
1178 
1179 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1180 /**
1181   \brief   Set Main Stack Pointer (non-secure)
1182   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
1183   \param [in]    topOfMainStack  Main Stack Pointer value to set
1184  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)1185 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
1186 {
1187   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
1188 }
1189 #endif
1190 
1191 
1192 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1193 /**
1194   \brief   Get Stack Pointer (non-secure)
1195   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
1196   \return               SP Register value
1197  */
__TZ_get_SP_NS(void)1198 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
1199 {
1200   uint32_t result;
1201 
1202   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
1203   return(result);
1204 }
1205 
1206 
1207 /**
1208   \brief   Set Stack Pointer (non-secure)
1209   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
1210   \param [in]    topOfStack  Stack Pointer value to set
1211  */
__TZ_set_SP_NS(uint32_t topOfStack)1212 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
1213 {
1214   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
1215 }
1216 #endif
1217 
1218 
1219 /**
1220   \brief   Get Priority Mask
1221   \details Returns the current state of the priority mask bit from the Priority Mask Register.
1222   \return               Priority Mask value
1223  */
__get_PRIMASK(void)1224 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
1225 {
1226   uint32_t result;
1227 
1228   __ASM volatile ("MRS %0, primask" : "=r" (result) );
1229   return(result);
1230 }
1231 
1232 
1233 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1234 /**
1235   \brief   Get Priority Mask (non-secure)
1236   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
1237   \return               Priority Mask value
1238  */
__TZ_get_PRIMASK_NS(void)1239 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1240 {
1241   uint32_t result;
1242 
1243   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1244   return(result);
1245 }
1246 #endif
1247 
1248 
1249 /**
1250   \brief   Set Priority Mask
1251   \details Assigns the given value to the Priority Mask Register.
1252   \param [in]    priMask  Priority Mask
1253  */
__set_PRIMASK(uint32_t priMask)1254 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1255 {
1256   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1257 }
1258 
1259 
1260 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1261 /**
1262   \brief   Set Priority Mask (non-secure)
1263   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1264   \param [in]    priMask  Priority Mask
1265  */
__TZ_set_PRIMASK_NS(uint32_t priMask)1266 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1267 {
1268   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1269 }
1270 #endif
1271 
1272 
1273 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1274      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1275      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1276 /**
1277   \brief   Enable FIQ
1278   \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1279            Can only be executed in Privileged modes.
1280  */
__enable_fault_irq(void)1281 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1282 {
1283   __ASM volatile ("cpsie f" : : : "memory");
1284 }
1285 
1286 
1287 /**
1288   \brief   Disable FIQ
1289   \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1290            Can only be executed in Privileged modes.
1291  */
__disable_fault_irq(void)1292 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1293 {
1294   __ASM volatile ("cpsid f" : : : "memory");
1295 }
1296 
1297 
1298 /**
1299   \brief   Get Base Priority
1300   \details Returns the current value of the Base Priority register.
1301   \return               Base Priority register value
1302  */
__get_BASEPRI(void)1303 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1304 {
1305   uint32_t result;
1306 
1307   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1308   return(result);
1309 }
1310 
1311 
1312 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1313 /**
1314   \brief   Get Base Priority (non-secure)
1315   \details Returns the current value of the non-secure Base Priority register when in secure state.
1316   \return               Base Priority register value
1317  */
__TZ_get_BASEPRI_NS(void)1318 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1319 {
1320   uint32_t result;
1321 
1322   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1323   return(result);
1324 }
1325 #endif
1326 
1327 
1328 /**
1329   \brief   Set Base Priority
1330   \details Assigns the given value to the Base Priority register.
1331   \param [in]    basePri  Base Priority value to set
1332  */
__set_BASEPRI(uint32_t basePri)1333 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1334 {
1335   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1336 }
1337 
1338 
1339 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1340 /**
1341   \brief   Set Base Priority (non-secure)
1342   \details Assigns the given value to the non-secure Base Priority register when in secure state.
1343   \param [in]    basePri  Base Priority value to set
1344  */
__TZ_set_BASEPRI_NS(uint32_t basePri)1345 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1346 {
1347   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1348 }
1349 #endif
1350 
1351 
1352 /**
1353   \brief   Set Base Priority with condition
1354   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1355            or the new value increases the BASEPRI priority level.
1356   \param [in]    basePri  Base Priority value to set
1357  */
__set_BASEPRI_MAX(uint32_t basePri)1358 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1359 {
1360   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1361 }
1362 
1363 
1364 /**
1365   \brief   Get Fault Mask
1366   \details Returns the current value of the Fault Mask register.
1367   \return               Fault Mask register value
1368  */
__get_FAULTMASK(void)1369 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1370 {
1371   uint32_t result;
1372 
1373   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1374   return(result);
1375 }
1376 
1377 
1378 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1379 /**
1380   \brief   Get Fault Mask (non-secure)
1381   \details Returns the current value of the non-secure Fault Mask register when in secure state.
1382   \return               Fault Mask register value
1383  */
__TZ_get_FAULTMASK_NS(void)1384 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1385 {
1386   uint32_t result;
1387 
1388   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1389   return(result);
1390 }
1391 #endif
1392 
1393 
1394 /**
1395   \brief   Set Fault Mask
1396   \details Assigns the given value to the Fault Mask register.
1397   \param [in]    faultMask  Fault Mask value to set
1398  */
__set_FAULTMASK(uint32_t faultMask)1399 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1400 {
1401   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1402 }
1403 
1404 
1405 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1406 /**
1407   \brief   Set Fault Mask (non-secure)
1408   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1409   \param [in]    faultMask  Fault Mask value to set
1410  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1411 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1412 {
1413   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1414 }
1415 #endif
1416 
1417 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1418            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1419            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1420 
1421 
1422 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1423      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1424 
1425 /**
1426   \brief   Get Process Stack Pointer Limit
1427   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1428   Stack Pointer Limit register hence zero is returned always in non-secure
1429   mode.
1430 
1431   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1432   \return               PSPLIM Register value
1433  */
__get_PSPLIM(void)1434 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1435 {
1436 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1437     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1438     // without main extensions, the non-secure PSPLIM is RAZ/WI
1439   return 0U;
1440 #else
1441   uint32_t result;
1442   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
1443   return result;
1444 #endif
1445 }
1446 
1447 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1448 /**
1449   \brief   Get Process Stack Pointer Limit (non-secure)
1450   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1451   Stack Pointer Limit register hence zero is returned always.
1452 
1453   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1454   \return               PSPLIM Register value
1455  */
__TZ_get_PSPLIM_NS(void)1456 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1457 {
1458 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1459   // without main extensions, the non-secure PSPLIM is RAZ/WI
1460   return 0U;
1461 #else
1462   uint32_t result;
1463   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
1464   return result;
1465 #endif
1466 }
1467 #endif
1468 
1469 
1470 /**
1471   \brief   Set Process Stack Pointer Limit
1472   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1473   Stack Pointer Limit register hence the write is silently ignored in non-secure
1474   mode.
1475 
1476   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1477   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1478  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1479 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1480 {
1481 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1482     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1483   // without main extensions, the non-secure PSPLIM is RAZ/WI
1484   (void)ProcStackPtrLimit;
1485 #else
1486   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1487 #endif
1488 }
1489 
1490 
1491 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1492 /**
1493   \brief   Set Process Stack Pointer (non-secure)
1494   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1495   Stack Pointer Limit register hence the write is silently ignored.
1496 
1497   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1498   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1499  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1500 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1501 {
1502 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1503   // without main extensions, the non-secure PSPLIM is RAZ/WI
1504   (void)ProcStackPtrLimit;
1505 #else
1506   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1507 #endif
1508 }
1509 #endif
1510 
1511 
1512 /**
1513   \brief   Get Main Stack Pointer Limit
1514   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1515   Stack Pointer Limit register hence zero is returned always in non-secure
1516   mode.
1517 
1518   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1519   \return               MSPLIM Register value
1520  */
__get_MSPLIM(void)1521 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1522 {
1523 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1524     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1525   // without main extensions, the non-secure MSPLIM is RAZ/WI
1526   return 0U;
1527 #else
1528   uint32_t result;
1529   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1530   return result;
1531 #endif
1532 }
1533 
1534 
1535 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1536 /**
1537   \brief   Get Main Stack Pointer Limit (non-secure)
1538   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1539   Stack Pointer Limit register hence zero is returned always.
1540 
1541   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1542   \return               MSPLIM Register value
1543  */
__TZ_get_MSPLIM_NS(void)1544 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1545 {
1546 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1547   // without main extensions, the non-secure MSPLIM is RAZ/WI
1548   return 0U;
1549 #else
1550   uint32_t result;
1551   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1552   return result;
1553 #endif
1554 }
1555 #endif
1556 
1557 
1558 /**
1559   \brief   Set Main Stack Pointer Limit
1560   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1561   Stack Pointer Limit register hence the write is silently ignored in non-secure
1562   mode.
1563 
1564   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1565   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
1566  */
__set_MSPLIM(uint32_t MainStackPtrLimit)1567 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1568 {
1569 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1570     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1571   // without main extensions, the non-secure MSPLIM is RAZ/WI
1572   (void)MainStackPtrLimit;
1573 #else
1574   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1575 #endif
1576 }
1577 
1578 
1579 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1580 /**
1581   \brief   Set Main Stack Pointer Limit (non-secure)
1582   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1583   Stack Pointer Limit register hence the write is silently ignored.
1584 
1585   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1586   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
1587  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1588 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1589 {
1590 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1591   // without main extensions, the non-secure MSPLIM is RAZ/WI
1592   (void)MainStackPtrLimit;
1593 #else
1594   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1595 #endif
1596 }
1597 #endif
1598 
1599 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1600            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1601 
1602 
1603 /**
1604   \brief   Get FPSCR
1605   \details Returns the current value of the Floating Point Status/Control register.
1606   \return               Floating Point Status/Control register value
1607  */
__get_FPSCR(void)1608 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
1609 {
1610 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1611      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1612 #if __has_builtin(__builtin_arm_get_fpscr)
1613 // Re-enable using built-in when GCC has been fixed
1614 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1615   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1616   return __builtin_arm_get_fpscr();
1617 #else
1618   uint32_t result;
1619 
1620   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
1621   return(result);
1622 #endif
1623 #else
1624   return(0U);
1625 #endif
1626 }
1627 
1628 
1629 /**
1630   \brief   Set FPSCR
1631   \details Assigns the given value to the Floating Point Status/Control register.
1632   \param [in]    fpscr  Floating Point Status/Control value to set
1633  */
__set_FPSCR(uint32_t fpscr)1634 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
1635 {
1636 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1637      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1638 #if __has_builtin(__builtin_arm_set_fpscr)
1639 // Re-enable using built-in when GCC has been fixed
1640 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1641   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1642   __builtin_arm_set_fpscr(fpscr);
1643 #else
1644   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
1645 #endif
1646 #else
1647   (void)fpscr;
1648 #endif
1649 }
1650 
1651 
1652 /*@} end of CMSIS_Core_RegAccFunctions */
1653 
1654 
1655 /* ###################  Compiler specific Intrinsics  ########################### */
1656 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1657   Access to dedicated SIMD instructions
1658   @{
1659 */
1660 
1661 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1662 
__SADD8(uint32_t op1,uint32_t op2)1663 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1664 {
1665   uint32_t result;
1666 
1667   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1668   return(result);
1669 }
1670 
__QADD8(uint32_t op1,uint32_t op2)1671 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1672 {
1673   uint32_t result;
1674 
1675   __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1676   return(result);
1677 }
1678 
__SHADD8(uint32_t op1,uint32_t op2)1679 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1680 {
1681   uint32_t result;
1682 
1683   __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1684   return(result);
1685 }
1686 
__UADD8(uint32_t op1,uint32_t op2)1687 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1688 {
1689   uint32_t result;
1690 
1691   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1692   return(result);
1693 }
1694 
__UQADD8(uint32_t op1,uint32_t op2)1695 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1696 {
1697   uint32_t result;
1698 
1699   __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1700   return(result);
1701 }
1702 
__UHADD8(uint32_t op1,uint32_t op2)1703 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1704 {
1705   uint32_t result;
1706 
1707   __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1708   return(result);
1709 }
1710 
1711 
__SSUB8(uint32_t op1,uint32_t op2)1712 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1713 {
1714   uint32_t result;
1715 
1716   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1717   return(result);
1718 }
1719 
__QSUB8(uint32_t op1,uint32_t op2)1720 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1721 {
1722   uint32_t result;
1723 
1724   __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1725   return(result);
1726 }
1727 
__SHSUB8(uint32_t op1,uint32_t op2)1728 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1729 {
1730   uint32_t result;
1731 
1732   __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1733   return(result);
1734 }
1735 
__USUB8(uint32_t op1,uint32_t op2)1736 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1737 {
1738   uint32_t result;
1739 
1740   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1741   return(result);
1742 }
1743 
__UQSUB8(uint32_t op1,uint32_t op2)1744 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1745 {
1746   uint32_t result;
1747 
1748   __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1749   return(result);
1750 }
1751 
__UHSUB8(uint32_t op1,uint32_t op2)1752 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1753 {
1754   uint32_t result;
1755 
1756   __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1757   return(result);
1758 }
1759 
1760 
__SADD16(uint32_t op1,uint32_t op2)1761 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1762 {
1763   uint32_t result;
1764 
1765   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1766   return(result);
1767 }
1768 
__QADD16(uint32_t op1,uint32_t op2)1769 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1770 {
1771   uint32_t result;
1772 
1773   __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1774   return(result);
1775 }
1776 
__SHADD16(uint32_t op1,uint32_t op2)1777 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1778 {
1779   uint32_t result;
1780 
1781   __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1782   return(result);
1783 }
1784 
__UADD16(uint32_t op1,uint32_t op2)1785 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1786 {
1787   uint32_t result;
1788 
1789   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1790   return(result);
1791 }
1792 
__UQADD16(uint32_t op1,uint32_t op2)1793 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1794 {
1795   uint32_t result;
1796 
1797   __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1798   return(result);
1799 }
1800 
__UHADD16(uint32_t op1,uint32_t op2)1801 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1802 {
1803   uint32_t result;
1804 
1805   __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1806   return(result);
1807 }
1808 
__SSUB16(uint32_t op1,uint32_t op2)1809 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1810 {
1811   uint32_t result;
1812 
1813   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1814   return(result);
1815 }
1816 
__QSUB16(uint32_t op1,uint32_t op2)1817 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1818 {
1819   uint32_t result;
1820 
1821   __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1822   return(result);
1823 }
1824 
__SHSUB16(uint32_t op1,uint32_t op2)1825 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1826 {
1827   uint32_t result;
1828 
1829   __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1830   return(result);
1831 }
1832 
__USUB16(uint32_t op1,uint32_t op2)1833 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1834 {
1835   uint32_t result;
1836 
1837   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1838   return(result);
1839 }
1840 
__UQSUB16(uint32_t op1,uint32_t op2)1841 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1842 {
1843   uint32_t result;
1844 
1845   __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1846   return(result);
1847 }
1848 
__UHSUB16(uint32_t op1,uint32_t op2)1849 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1850 {
1851   uint32_t result;
1852 
1853   __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1854   return(result);
1855 }
1856 
__SASX(uint32_t op1,uint32_t op2)1857 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1858 {
1859   uint32_t result;
1860 
1861   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1862   return(result);
1863 }
1864 
__QASX(uint32_t op1,uint32_t op2)1865 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1866 {
1867   uint32_t result;
1868 
1869   __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1870   return(result);
1871 }
1872 
__SHASX(uint32_t op1,uint32_t op2)1873 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1874 {
1875   uint32_t result;
1876 
1877   __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1878   return(result);
1879 }
1880 
__UASX(uint32_t op1,uint32_t op2)1881 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1882 {
1883   uint32_t result;
1884 
1885   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1886   return(result);
1887 }
1888 
__UQASX(uint32_t op1,uint32_t op2)1889 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1890 {
1891   uint32_t result;
1892 
1893   __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1894   return(result);
1895 }
1896 
__UHASX(uint32_t op1,uint32_t op2)1897 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1898 {
1899   uint32_t result;
1900 
1901   __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1902   return(result);
1903 }
1904 
__SSAX(uint32_t op1,uint32_t op2)1905 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1906 {
1907   uint32_t result;
1908 
1909   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1910   return(result);
1911 }
1912 
__QSAX(uint32_t op1,uint32_t op2)1913 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1914 {
1915   uint32_t result;
1916 
1917   __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1918   return(result);
1919 }
1920 
__SHSAX(uint32_t op1,uint32_t op2)1921 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1922 {
1923   uint32_t result;
1924 
1925   __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1926   return(result);
1927 }
1928 
__USAX(uint32_t op1,uint32_t op2)1929 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1930 {
1931   uint32_t result;
1932 
1933   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1934   return(result);
1935 }
1936 
__UQSAX(uint32_t op1,uint32_t op2)1937 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1938 {
1939   uint32_t result;
1940 
1941   __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1942   return(result);
1943 }
1944 
__UHSAX(uint32_t op1,uint32_t op2)1945 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1946 {
1947   uint32_t result;
1948 
1949   __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1950   return(result);
1951 }
1952 
__USAD8(uint32_t op1,uint32_t op2)1953 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1954 {
1955   uint32_t result;
1956 
1957   __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1958   return(result);
1959 }
1960 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1961 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1962 {
1963   uint32_t result;
1964 
1965   __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1966   return(result);
1967 }
1968 
1969 #define __SSAT16(ARG1, ARG2) \
1970 __extension__ \
1971 ({                          \
1972   int32_t __RES, __ARG1 = (ARG1); \
1973   __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1974   __RES; \
1975  })
1976 
1977 #define __USAT16(ARG1, ARG2) \
1978 __extension__ \
1979 ({                          \
1980   uint32_t __RES, __ARG1 = (ARG1); \
1981   __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1982   __RES; \
1983  })
1984 
__UXTB16(uint32_t op1)1985 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1986 {
1987   uint32_t result;
1988 
1989   __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1990   return(result);
1991 }
1992 
__UXTAB16(uint32_t op1,uint32_t op2)1993 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1994 {
1995   uint32_t result;
1996 
1997   __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1998   return(result);
1999 }
2000 
__SXTB16(uint32_t op1)2001 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
2002 {
2003   uint32_t result;
2004 
2005   __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
2006   return(result);
2007 }
2008 
__SXTB16_RORn(uint32_t op1,uint32_t rotate)2009 __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate)
2010 {
2011   uint32_t result;
2012   if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
2013     __ASM volatile ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
2014   } else {
2015     result = __SXTB16(__ROR(op1, rotate)) ;
2016   }
2017   return result;
2018 }
2019 
__SXTAB16(uint32_t op1,uint32_t op2)2020 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
2021 {
2022   uint32_t result;
2023 
2024   __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2025   return(result);
2026 }
2027 
__SXTAB16_RORn(uint32_t op1,uint32_t op2,uint32_t rotate)2028 __STATIC_FORCEINLINE uint32_t __SXTAB16_RORn(uint32_t op1, uint32_t op2, uint32_t rotate)
2029 {
2030   uint32_t result;
2031   if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
2032     __ASM volatile ("sxtab16 %0, %1, %2, ROR %3" : "=r" (result) : "r" (op1) , "r" (op2) , "i" (rotate));
2033   } else {
2034     result = __SXTAB16(op1, __ROR(op2, rotate));
2035   }
2036   return result;
2037 }
2038 
2039 
__SMUAD(uint32_t op1,uint32_t op2)2040 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
2041 {
2042   uint32_t result;
2043 
2044   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2045   return(result);
2046 }
2047 
__SMUADX(uint32_t op1,uint32_t op2)2048 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
2049 {
2050   uint32_t result;
2051 
2052   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2053   return(result);
2054 }
2055 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)2056 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
2057 {
2058   uint32_t result;
2059 
2060   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2061   return(result);
2062 }
2063 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)2064 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
2065 {
2066   uint32_t result;
2067 
2068   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2069   return(result);
2070 }
2071 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)2072 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
2073 {
2074   union llreg_u{
2075     uint32_t w32[2];
2076     uint64_t w64;
2077   } llr;
2078   llr.w64 = acc;
2079 
2080 #ifndef __ARMEB__   /* Little endian */
2081   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2082 #else               /* Big endian */
2083   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2084 #endif
2085 
2086   return(llr.w64);
2087 }
2088 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)2089 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
2090 {
2091   union llreg_u{
2092     uint32_t w32[2];
2093     uint64_t w64;
2094   } llr;
2095   llr.w64 = acc;
2096 
2097 #ifndef __ARMEB__   /* Little endian */
2098   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2099 #else               /* Big endian */
2100   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2101 #endif
2102 
2103   return(llr.w64);
2104 }
2105 
__SMUSD(uint32_t op1,uint32_t op2)2106 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
2107 {
2108   uint32_t result;
2109 
2110   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2111   return(result);
2112 }
2113 
__SMUSDX(uint32_t op1,uint32_t op2)2114 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
2115 {
2116   uint32_t result;
2117 
2118   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2119   return(result);
2120 }
2121 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)2122 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
2123 {
2124   uint32_t result;
2125 
2126   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2127   return(result);
2128 }
2129 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)2130 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
2131 {
2132   uint32_t result;
2133 
2134   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2135   return(result);
2136 }
2137 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)2138 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2139 {
2140   union llreg_u{
2141     uint32_t w32[2];
2142     uint64_t w64;
2143   } llr;
2144   llr.w64 = acc;
2145 
2146 #ifndef __ARMEB__   /* Little endian */
2147   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2148 #else               /* Big endian */
2149   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2150 #endif
2151 
2152   return(llr.w64);
2153 }
2154 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2155 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2156 {
2157   union llreg_u{
2158     uint32_t w32[2];
2159     uint64_t w64;
2160   } llr;
2161   llr.w64 = acc;
2162 
2163 #ifndef __ARMEB__   /* Little endian */
2164   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2165 #else               /* Big endian */
2166   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2167 #endif
2168 
2169   return(llr.w64);
2170 }
2171 
__SEL(uint32_t op1,uint32_t op2)2172 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2173 {
2174   uint32_t result;
2175 
2176   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2177   return(result);
2178 }
2179 
__QADD(int32_t op1,int32_t op2)2180 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2181 {
2182   int32_t result;
2183 
2184   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2185   return(result);
2186 }
2187 
__QSUB(int32_t op1,int32_t op2)2188 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2189 {
2190   int32_t result;
2191 
2192   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2193   return(result);
2194 }
2195 
2196 
2197 #define __PKHBT(ARG1,ARG2,ARG3) \
2198 __extension__ \
2199 ({                          \
2200   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2201   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2202   __RES; \
2203  })
2204 
2205 #define __PKHTB(ARG1,ARG2,ARG3) \
2206 __extension__ \
2207 ({                          \
2208   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2209   if (ARG3 == 0) \
2210     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2211   else \
2212     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2213   __RES; \
2214  })
2215 
2216 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2217 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2218 {
2219  int32_t result;
2220 
2221  __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2222  return(result);
2223 }
2224 
2225 #endif /* (__ARM_FEATURE_DSP == 1) */
2226 /*@} end of group CMSIS_SIMD_intrinsics */
2227 
2228 
2229 #pragma GCC diagnostic pop
2230 
2231 #endif /* __CMSIS_GCC_H */
2232