1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_mat_scale_q15.c
4  * Description:  Multiplies a Q15 matrix by a scalar
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/matrix_functions.h"
30 
31 /**
32   @ingroup groupMatrix
33  */
34 
35 /**
36   @addtogroup MatrixScale
37   @{
38  */
39 
40 /**
41   @brief         Q15 matrix scaling.
42   @param[in]     pSrc        points to input matrix
43   @param[in]     scaleFract  fractional portion of the scale factor
44   @param[in]     shift       number of bits to shift the result by
45   @param[out]    pDst        points to output matrix structure
46   @return        execution status
47                    - \ref ARM_MATH_SUCCESS       : Operation successful
48                    - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
49 
50   @par           Scaling and Overflow Behavior
51                    The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
52                    These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
53  */
54 #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_mat_scale_q15(const arm_matrix_instance_q15 * pSrc,q15_t scaleFract,int32_t shift,arm_matrix_instance_q15 * pDst)55 arm_status arm_mat_scale_q15(
56   const arm_matrix_instance_q15 * pSrc,
57         q15_t                     scaleFract,
58         int32_t                   shift,
59         arm_matrix_instance_q15 * pDst)
60 {
61   arm_status status;                             /* Status of matrix scaling */
62   q15_t *pIn = pSrc->pData;       /* input data matrix pointer */
63   q15_t *pOut = pDst->pData;      /* output data matrix pointer */
64   uint32_t  numSamples;           /* total number of elements in the matrix */
65   uint32_t  blkCnt;               /* loop counters */
66   q15x8_t vecIn, vecOut;
67   q15_t const *pInVec;
68   int32_t totShift = shift + 1;   /* shift to apply after scaling */
69 
70   pInVec = (q15_t const *) pIn;
71 
72   #ifdef ARM_MATH_MATRIX_CHECK
73 
74   /* Check for matrix mismatch condition */
75   if ((pSrc->numRows != pDst->numRows) ||
76       (pSrc->numCols != pDst->numCols)   )
77   {
78     /* Set status as ARM_MATH_SIZE_MISMATCH */
79     status = ARM_MATH_SIZE_MISMATCH;
80   }
81   else
82 
83 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
84 
85   {
86     /*
87      * Total number of samples in the input matrix
88      */
89     numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
90     blkCnt = numSamples >> 3;
91     while (blkCnt > 0U)
92     {
93         /*
94          * C(m,n) = A(m,n) * scale
95          * Scaling and results are stored in the destination buffer.
96          */
97         vecIn = vld1q(pInVec); pInVec += 8;
98 
99         /* multiply input with scaler value */
100         vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
101          /* apply shifting */
102         vecOut = vqshlq_r(vecOut, totShift);
103 
104         vst1q(pOut, vecOut); pOut += 8;
105 
106         /*
107          * Decrement the blockSize loop counter
108          */
109         blkCnt--;
110     }
111     /*
112      * tail
113      * (will be merged thru tail predication)
114      */
115     blkCnt = numSamples & 7;
116     if (blkCnt > 0U)
117     {
118         mve_pred16_t p0 = vctp16q(blkCnt);
119         vecIn = vld1q(pInVec); pInVec += 8;
120         vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
121         vecOut = vqshlq_r(vecOut, totShift);
122         vstrhq_p(pOut, vecOut, p0);
123     }
124      /* Set status as ARM_MATH_SUCCESS */
125     status = ARM_MATH_SUCCESS;
126   }
127 
128   /* Return to application */
129   return (status);
130 }
131 
132 #else
arm_mat_scale_q15(const arm_matrix_instance_q15 * pSrc,q15_t scaleFract,int32_t shift,arm_matrix_instance_q15 * pDst)133 arm_status arm_mat_scale_q15(
134   const arm_matrix_instance_q15 * pSrc,
135         q15_t                     scaleFract,
136         int32_t                   shift,
137         arm_matrix_instance_q15 * pDst)
138 {
139         q15_t *pIn = pSrc->pData;                      /* Input data matrix pointer */
140         q15_t *pOut = pDst->pData;                     /* Output data matrix pointer */
141         uint32_t numSamples;                           /* Total number of elements in the matrix */
142         uint32_t blkCnt;                               /* Loop counter */
143         arm_status status;                             /* Status of matrix scaling */
144         int32_t kShift = 15 - shift;                   /* Total shift to apply after scaling */
145 
146 #if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP)
147         q31_t inA1, inA2;
148         q31_t out1, out2, out3, out4;                  /* Temporary output variables */
149         q15_t in1, in2, in3, in4;                      /* Temporary input variables */
150 #endif
151 
152 #ifdef ARM_MATH_MATRIX_CHECK
153 
154   /* Check for matrix mismatch condition */
155   if ((pSrc->numRows != pDst->numRows) ||
156       (pSrc->numCols != pDst->numCols)   )
157   {
158     /* Set status as ARM_MATH_SIZE_MISMATCH */
159     status = ARM_MATH_SIZE_MISMATCH;
160   }
161   else
162 
163 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
164 
165   {
166     /* Total number of samples in input matrix */
167     numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
168 
169 #if defined (ARM_MATH_LOOPUNROLL)
170 
171     /* Loop unrolling: Compute 4 outputs at a time */
172     blkCnt = numSamples >> 2U;
173 
174     while (blkCnt > 0U)
175     {
176       /* C(m,n) = A(m,n) * k */
177 
178 #if defined (ARM_MATH_DSP)
179       /* read 2 times 2 samples at a time from source */
180       inA1 = read_q15x2_ia ((q15_t **) &pIn);
181       inA2 = read_q15x2_ia ((q15_t **) &pIn);
182 
183       /* Scale inputs and store result in temporary variables
184        * in single cycle by packing the outputs */
185       out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
186       out2 = (q31_t) ((q15_t) (inA1      ) * scaleFract);
187       out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
188       out4 = (q31_t) ((q15_t) (inA2      ) * scaleFract);
189 
190       /* apply shifting */
191       out1 = out1 >> kShift;
192       out2 = out2 >> kShift;
193       out3 = out3 >> kShift;
194       out4 = out4 >> kShift;
195 
196       /* saturate the output */
197       in1 = (q15_t) (__SSAT(out1, 16));
198       in2 = (q15_t) (__SSAT(out2, 16));
199       in3 = (q15_t) (__SSAT(out3, 16));
200       in4 = (q15_t) (__SSAT(out4, 16));
201 
202       /* store result to destination */
203       write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16));
204       write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16));
205 
206 #else
207       *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
208       *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
209       *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
210       *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
211 #endif
212 
213       /* Decrement loop counter */
214       blkCnt--;
215     }
216 
217     /* Loop unrolling: Compute remaining outputs */
218     blkCnt = numSamples % 0x4U;
219 
220 #else
221 
222     /* Initialize blkCnt with number of samples */
223     blkCnt = numSamples;
224 
225 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
226 
227     while (blkCnt > 0U)
228     {
229       /* C(m,n) = A(m,n) * k */
230 
231       /* Scale, saturate and store result in destination buffer. */
232       *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
233 
234       /* Decrement loop counter */
235       blkCnt--;
236     }
237 
238     /* Set status as ARM_MATH_SUCCESS */
239     status = ARM_MATH_SUCCESS;
240   }
241 
242   /* Return to application */
243   return (status);
244 }
245 #endif /* defined(ARM_MATH_MVEI) */
246 
247 /**
248   @} end of MatrixScale group
249  */
250