1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_dot_prod_q15.c
4  * Description:  Q15 dot product
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/basic_math_functions.h"
30 
31 /**
32   @ingroup groupMath
33  */
34 
35 /**
36   @addtogroup BasicDotProd
37   @{
38  */
39 
40 /**
41   @brief         Dot product of Q15 vectors.
42   @param[in]     pSrcA      points to the first input vector
43   @param[in]     pSrcB      points to the second input vector
44   @param[in]     blockSize  number of samples in each vector
45   @param[out]    result     output result returned here
46   @return        none
47 
48   @par           Scaling and Overflow Behavior
49                    The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these
50                    results are added to a 64-bit accumulator in 34.30 format.
51                    Nonsaturating additions are used and given that there are 33 guard bits in the accumulator
52                    there is no risk of overflow.
53                    The return result is in 34.30 format.
54  */
55 #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
56 
57 #include "arm_helium_utils.h"
58 
arm_dot_prod_q15(const q15_t * pSrcA,const q15_t * pSrcB,uint32_t blockSize,q63_t * result)59 void arm_dot_prod_q15(
60     const q15_t * pSrcA,
61     const q15_t * pSrcB,
62     uint32_t blockSize,
63     q63_t * result)
64 {
65     uint32_t  blkCnt;           /* loop counters */
66     q15x8_t vecA;
67     q15x8_t vecB;
68     q63_t     sum = 0LL;
69 
70     /* Compute 8 outputs at a time */
71     blkCnt = blockSize >> 3;
72     while (blkCnt > 0U)
73     {
74         /*
75          * C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1]
76          * Calculate dot product and then store the result in a temporary buffer.
77          */
78         vecA = vld1q(pSrcA);
79         vecB = vld1q(pSrcB);
80         sum = vmlaldavaq(sum, vecA, vecB);
81         /*
82          * Decrement the blockSize loop counter
83          */
84         blkCnt--;
85         /*
86          * advance vector source and destination pointers
87          */
88         pSrcA += 8;
89         pSrcB += 8;
90     }
91     /*
92      * tail
93      */
94     blkCnt = blockSize & 7;
95     if (blkCnt > 0U)
96     {
97         mve_pred16_t p0 = vctp16q(blkCnt);
98         vecA = vld1q(pSrcA);
99         vecB = vld1q(pSrcB);
100         sum = vmlaldavaq_p(sum, vecA, vecB, p0);
101     }
102 
103     *result = sum;
104 }
105 
106 #else
arm_dot_prod_q15(const q15_t * pSrcA,const q15_t * pSrcB,uint32_t blockSize,q63_t * result)107 void arm_dot_prod_q15(
108   const q15_t * pSrcA,
109   const q15_t * pSrcB,
110         uint32_t blockSize,
111         q63_t * result)
112 {
113         uint32_t blkCnt;                               /* Loop counter */
114         q63_t sum = 0;                                 /* Temporary return variable */
115 
116 #if defined (ARM_MATH_LOOPUNROLL)
117 
118   /* Loop unrolling: Compute 4 outputs at a time */
119   blkCnt = blockSize >> 2U;
120 
121   while (blkCnt > 0U)
122   {
123     /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
124 
125 #if defined (ARM_MATH_DSP)
126     /* Calculate dot product and store result in a temporary buffer. */
127     sum = __SMLALD(read_q15x2_ia ((q15_t **) &pSrcA), read_q15x2_ia ((q15_t **) &pSrcB), sum);
128     sum = __SMLALD(read_q15x2_ia ((q15_t **) &pSrcA), read_q15x2_ia ((q15_t **) &pSrcB), sum);
129 #else
130     sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++);
131     sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++);
132     sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++);
133     sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++);
134 #endif
135 
136     /* Decrement loop counter */
137     blkCnt--;
138   }
139 
140   /* Loop unrolling: Compute remaining outputs */
141   blkCnt = blockSize % 0x4U;
142 
143 #else
144 
145   /* Initialize blkCnt with number of samples */
146   blkCnt = blockSize;
147 
148 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
149 
150   while (blkCnt > 0U)
151   {
152     /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
153 
154     /* Calculate dot product and store result in a temporary buffer. */
155 //#if defined (ARM_MATH_DSP)
156 //    sum  = __SMLALD(*pSrcA++, *pSrcB++, sum);
157 //#else
158     sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++);
159 //#endif
160 
161     /* Decrement loop counter */
162     blkCnt--;
163   }
164 
165   /* Store result in destination buffer in 34.30 format */
166   *result = sum;
167 }
168 #endif /* defined(ARM_MATH_MVEI) */
169 
170 /**
171   @} end of BasicDotProd group
172  */
173