1 /*
2 * Copyright 2017-2020 NXP
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8 #include "fsl_semc.h"
9
10 /*******************************************************************************
11 * Definitions
12 ******************************************************************************/
13
14 /* Component ID definition, used by tools. */
15 #ifndef FSL_COMPONENT_ID
16 #define FSL_COMPONENT_ID "platform.drivers.semc"
17 #endif
18
19 /*! @brief Define macros for SEMC driver. */
20 #define SEMC_IPCOMMANDDATASIZEBYTEMAX (4U)
21 #define SEMC_IPCOMMANDMAGICKEY (0xA55A)
22 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
23 #define SEMC_IOCR_PINMUXBITWIDTH (0x4UL)
24 #else
25 #define SEMC_IOCR_PINMUXBITWIDTH (0x3UL)
26 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
27 #define SEMC_IOCR_NAND_CE (4UL)
28 #define SEMC_IOCR_NOR_CE (5UL)
29 #define SEMC_IOCR_NOR_CE_A8 (2UL)
30 #define SEMC_IOCR_PSRAM_CE (6UL)
31 #define SEMC_IOCR_PSRAM_CE_A8 (3UL)
32 #define SEMC_IOCR_DBI_CSX (7UL)
33 #define SEMC_IOCR_DBI_CSX_A8 (4UL)
34 #define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE (24U)
35 #define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX (28U)
36 #define SEMC_BMCR0_TYPICAL_WQOS (5U)
37 #define SEMC_BMCR0_TYPICAL_WAGE (8U)
38 #define SEMC_BMCR0_TYPICAL_WSH (0x40U)
39 #define SEMC_BMCR0_TYPICAL_WRWS (0x10U)
40 #define SEMC_BMCR1_TYPICAL_WQOS (5U)
41 #define SEMC_BMCR1_TYPICAL_WAGE (8U)
42 #define SEMC_BMCR1_TYPICAL_WPH (0x60U)
43 #define SEMC_BMCR1_TYPICAL_WBR (0x40U)
44 #define SEMC_BMCR1_TYPICAL_WRWS (0x24U)
45 #define SEMC_STARTADDRESS (0x80000000UL)
46 #define SEMC_ENDADDRESS (0xDFFFFFFFUL)
47 #define SEMC_BR_MEMSIZE_MIN (4U)
48 #define SEMC_BR_MEMSIZE_OFFSET (2U)
49 #define SEMC_BR_MEMSIZE_MAX (4UL * 1024UL * 1024UL)
50 #define SEMC_SDRAM_MODESETCAL_OFFSET (4U)
51 #define SEMC_BR_REG_NUM (9U)
52 #define SEMC_BYTE_NUMBIT (8U)
53 /*******************************************************************************
54 * Prototypes
55 ******************************************************************************/
56 /*!
57 * @brief Get instance number for SEMC module.
58 *
59 * @param base SEMC peripheral base address
60 */
61 static uint32_t SEMC_GetInstance(SEMC_Type *base);
62
63 /*!
64 * @brief Covert the input memory size to internal register set value.
65 *
66 * @param base SEMC peripheral base address
67 * @param size_kbytes SEMC memory size in unit of kbytes.
68 * @param sizeConverted SEMC converted memory size to 0 ~ 0x1F.
69 * @return Execution status.
70 */
71 static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted);
72
73 /*!
74 * @brief Covert the external timing nanosecond to internal clock cycle.
75 *
76 * @param time_ns SEMC external time interval in unit of nanosecond.
77 * @param clkSrc_Hz SEMC clock source frequency.
78 * @return The changed internal clock cycle.
79 */
80 static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz);
81
82 /*!
83 * @brief Configure IP command.
84 *
85 * @param base SEMC peripheral base address.
86 * @param size_bytes SEMC IP command data size.
87 * @return Execution status.
88 */
89 static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes);
90
91 /*!
92 * @brief Check if the IP command has finished.
93 *
94 * @param base SEMC peripheral base address.
95 * @return Execution status.
96 */
97 static status_t SEMC_IsIPCommandDone(SEMC_Type *base);
98
99 /*******************************************************************************
100 * Variables
101 ******************************************************************************/
102
103 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
104 /*! @brief Pointers to SEMC clocks for each instance. */
105 static const clock_ip_name_t s_semcClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_CLOCKS;
106 #if (defined(SEMC_EXSC_CLOCKS))
107 static const clock_ip_name_t s_semcExtClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_EXSC_CLOCKS;
108 #endif /* SEMC_EXSC_CLOCKS */
109 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
110
111 /*! @brief Pointers to SEMC bases for each instance. */
112 static SEMC_Type *const s_semcBases[] = SEMC_BASE_PTRS;
113 /*******************************************************************************
114 * Code
115 ******************************************************************************/
SEMC_GetInstance(SEMC_Type * base)116 static uint32_t SEMC_GetInstance(SEMC_Type *base)
117 {
118 uint32_t instance;
119
120 /* Find the instance index from base address mappings. */
121 for (instance = 0; instance < ARRAY_SIZE(s_semcBases); instance++)
122 {
123 if (s_semcBases[instance] == base)
124 {
125 break;
126 }
127 }
128
129 assert(instance < ARRAY_SIZE(s_semcBases));
130
131 return instance;
132 }
133
SEMC_CovertMemorySize(SEMC_Type * base,uint32_t size_kbytes,uint8_t * sizeConverted)134 static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted)
135 {
136 assert(sizeConverted != NULL);
137 uint32_t memsize;
138 status_t status = kStatus_Success;
139
140 if ((size_kbytes < SEMC_BR_MEMSIZE_MIN) || (size_kbytes > SEMC_BR_MEMSIZE_MAX))
141 {
142 status = kStatus_SEMC_InvalidMemorySize;
143 }
144 else
145 {
146 *sizeConverted = 0U;
147 memsize = size_kbytes / 8U;
148 while (memsize != 0x00U)
149 {
150 memsize >>= 1U;
151 (*sizeConverted)++;
152 }
153 }
154
155 return status;
156 }
157
SEMC_ConvertTiming(uint32_t time_ns,uint32_t clkSrc_Hz)158 static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz)
159 {
160 assert(clkSrc_Hz != 0x00U);
161
162 uint8_t clockCycles = 0;
163 uint32_t tClk_ps;
164
165 clkSrc_Hz /= 1000000U;
166 /* Using ps for high resolution */
167 tClk_ps = 1000000U / clkSrc_Hz;
168
169 while (tClk_ps * clockCycles < time_ns * 1000U)
170 {
171 clockCycles++;
172 }
173
174 return (clockCycles == 0x00U) ? clockCycles : (clockCycles - 0x01U);
175 }
176
SEMC_ConfigureIPCommand(SEMC_Type * base,uint8_t size_bytes)177 static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes)
178 {
179 status_t status = kStatus_Success;
180
181 if ((size_bytes > SEMC_IPCOMMANDDATASIZEBYTEMAX) || (size_bytes == 0x00U))
182 {
183 status = kStatus_SEMC_InvalidIpcmdDataSize;
184 }
185 else
186 {
187 /* Set data size. */
188 /* Note: It is better to set data size as the device data port width when transferring
189 * device command data. But for device memory data transfer, it can be set freely.
190 * Note: If the data size is greater than data port width, for example, datsz = 4, data port = 16bit,
191 * then the 4-byte data transfer will be split into two 2-byte transfers, the slave address
192 * will be switched automatically according to connected device type*/
193 base->IPCR1 = SEMC_IPCR1_DATSZ(size_bytes);
194 /* Clear data size. */
195 base->IPCR2 = 0;
196 /* Set data size. */
197 if (size_bytes < 4U)
198 {
199 base->IPCR2 |= SEMC_IPCR2_BM3_MASK;
200 }
201 if (size_bytes < 3U)
202 {
203 base->IPCR2 |= SEMC_IPCR2_BM2_MASK;
204 }
205 if (size_bytes < 2U)
206 {
207 base->IPCR2 |= SEMC_IPCR2_BM1_MASK;
208 }
209 }
210
211 return status;
212 }
213
SEMC_IsIPCommandDone(SEMC_Type * base)214 static status_t SEMC_IsIPCommandDone(SEMC_Type *base)
215 {
216 status_t status = kStatus_Success;
217
218 /* Poll status bit till command is done*/
219 while ((base->INTR & (uint32_t)SEMC_INTR_IPCMDDONE_MASK) == 0x00U)
220 {
221 };
222
223 /* Clear status bit */
224 base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
225
226 /* Check error status */
227 if ((base->INTR & (uint32_t)SEMC_INTR_IPCMDERR_MASK) != 0x00U)
228 {
229 base->INTR |= SEMC_INTR_IPCMDERR_MASK;
230 status = kStatus_SEMC_IpCommandExecutionError;
231 }
232
233 return status;
234 }
235
236 /*!
237 * brief Gets the SEMC default basic configuration structure.
238 *
239 * The purpose of this API is to get the default SEMC
240 * configure structure for SEMC_Init(). User may use the initialized
241 * structure unchanged in SEMC_Init(), or modify some fields of the
242 * structure before calling SEMC_Init().
243 * Example:
244 code
245 semc_config_t config;
246 SEMC_GetDefaultConfig(&config);
247 endcode
248 * param config The SEMC configuration structure pointer.
249 */
SEMC_GetDefaultConfig(semc_config_t * config)250 void SEMC_GetDefaultConfig(semc_config_t *config)
251 {
252 assert(config != NULL);
253
254 /* Initializes the configure structure to zero. */
255 (void)memset(config, 0, sizeof(*config));
256
257 config->queueWeight.queueaEnable = true;
258 semc_queuea_weight_struct_t *queueaWeight = &(config->queueWeight.queueaWeight.queueaConfig);
259 config->queueWeight.queuebEnable = true;
260 semc_queueb_weight_struct_t *queuebWeight = &(config->queueWeight.queuebWeight.queuebConfig);
261
262 /* Get default settings. */
263 config->dqsMode = kSEMC_Loopbackinternal;
264 config->cmdTimeoutCycles = 0xFF;
265 config->busTimeoutCycles = 0x1F;
266
267 queueaWeight->qos = SEMC_BMCR0_TYPICAL_WQOS;
268 queueaWeight->aging = SEMC_BMCR0_TYPICAL_WAGE;
269 queueaWeight->slaveHitSwith = SEMC_BMCR0_TYPICAL_WSH;
270 queueaWeight->slaveHitNoswitch = SEMC_BMCR0_TYPICAL_WRWS;
271 queuebWeight->qos = SEMC_BMCR1_TYPICAL_WQOS;
272 queuebWeight->aging = SEMC_BMCR1_TYPICAL_WAGE;
273 queuebWeight->slaveHitSwith = SEMC_BMCR1_TYPICAL_WRWS;
274 queuebWeight->weightPagehit = SEMC_BMCR1_TYPICAL_WPH;
275 queuebWeight->bankRotation = SEMC_BMCR1_TYPICAL_WBR;
276 }
277
278 /*!
279 * brief Initializes SEMC.
280 * This function ungates the SEMC clock and initializes SEMC.
281 * This function must be called before calling any other SEMC driver functions.
282 *
283 * param base SEMC peripheral base address.
284 * param configure The SEMC configuration structure pointer.
285 */
SEMC_Init(SEMC_Type * base,semc_config_t * configure)286 void SEMC_Init(SEMC_Type *base, semc_config_t *configure)
287 {
288 assert(configure != NULL);
289
290 uint8_t index = 0;
291
292 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
293 /* Un-gate sdram controller clock. */
294 CLOCK_EnableClock(s_semcClock[SEMC_GetInstance(base)]);
295 #if (defined(SEMC_EXSC_CLOCKS))
296 CLOCK_EnableClock(s_semcExtClock[SEMC_GetInstance(base)]);
297 #endif /* SEMC_EXSC_CLOCKS */
298 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
299
300 /* Initialize all BR to zero due to the default base address set. */
301 for (index = 0; index < SEMC_BR_REG_NUM; index++)
302 {
303 base->BR[index] = 0;
304 }
305
306 /* Software reset for SEMC internal logical . */
307 base->MCR = SEMC_MCR_SWRST_MASK;
308 while ((base->MCR & (uint32_t)SEMC_MCR_SWRST_MASK) != 0x00U)
309 {
310 }
311
312 /* Configure, disable module first. */
313 base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_BTO(configure->busTimeoutCycles) |
314 SEMC_MCR_CTO(configure->cmdTimeoutCycles) | SEMC_MCR_DQSMD(configure->dqsMode);
315
316 if (configure->queueWeight.queueaEnable == true)
317 {
318 /* Configure Queue A for AXI bus access to SDRAM, NAND, NOR, SRAM and DBI slaves.*/
319 base->BMCR0 = (uint32_t)(configure->queueWeight.queueaWeight.queueaValue);
320 }
321 else
322 {
323 base->BMCR0 = 0x00U;
324 }
325
326 if (configure->queueWeight.queuebEnable == true)
327 {
328 /* Configure Queue B for AXI bus access to SDRAM slave. */
329 base->BMCR1 = (uint32_t)(configure->queueWeight.queuebWeight.queuebValue);
330 }
331 else
332 {
333 base->BMCR1 = 0x00U;
334 }
335
336 /* Enable SEMC. */
337 base->MCR &= ~SEMC_MCR_MDIS_MASK;
338 }
339
340 /*!
341 * brief Deinitializes the SEMC module and gates the clock.
342 * This function gates the SEMC clock. As a result, the SEMC
343 * module doesn't work after calling this function.
344 *
345 * param base SEMC peripheral base address.
346 */
SEMC_Deinit(SEMC_Type * base)347 void SEMC_Deinit(SEMC_Type *base)
348 {
349 /* Disable module. Check there is no pending command before disable module. */
350 while ((base->STS0 & (uint32_t)SEMC_STS0_IDLE_MASK) == 0x00U)
351 {
352 ;
353 }
354
355 base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_SWRST_MASK;
356
357 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
358 /* Disable SDRAM clock. */
359 CLOCK_DisableClock(s_semcClock[SEMC_GetInstance(base)]);
360 #if (defined(SEMC_EXSC_CLOCKS))
361 CLOCK_DisableClock(s_semcExtClock[SEMC_GetInstance(base)]);
362 #endif /* SEMC_EXSC_CLOCKS */
363 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
364 }
365
366 /*!
367 * brief Configures SDRAM controller in SEMC.
368 *
369 * param base SEMC peripheral base address.
370 * param cs The chip selection.
371 * param config The sdram configuration.
372 * param clkSrc_Hz The SEMC clock frequency.
373 */
SEMC_ConfigureSDRAM(SEMC_Type * base,semc_sdram_cs_t cs,semc_sdram_config_t * config,uint32_t clkSrc_Hz)374 status_t SEMC_ConfigureSDRAM(SEMC_Type *base, semc_sdram_cs_t cs, semc_sdram_config_t *config, uint32_t clkSrc_Hz)
375 {
376 assert(config != NULL);
377 assert(clkSrc_Hz > 0x00U);
378 assert(config->refreshBurstLen > 0x00U);
379
380 uint8_t memsize;
381 status_t result = kStatus_Success;
382 uint16_t prescale = (uint16_t)(config->tPrescalePeriod_Ns / 16U / (1000000000U / clkSrc_Hz));
383 uint32_t refresh;
384 uint32_t urgentRef;
385 uint32_t idle;
386 uint32_t mode;
387 uint32_t timing;
388
389 if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
390 {
391 return kStatus_SEMC_InvalidBaseAddress;
392 }
393
394 if (config->csxPinMux == kSEMC_MUXA8)
395 {
396 return kStatus_SEMC_InvalidSwPinmuxSelection;
397 }
398
399 if (prescale > 256U)
400 {
401 return kStatus_SEMC_InvalidTimerSetting;
402 }
403
404 refresh = config->refreshPeriod_nsPerRow / config->tPrescalePeriod_Ns;
405 urgentRef = config->refreshUrgThreshold / config->tPrescalePeriod_Ns;
406 idle = config->tIdleTimeout_Ns / config->tPrescalePeriod_Ns;
407
408 uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->csxPinMux));
409
410 /* Base control. */
411 result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
412 if (result != kStatus_Success)
413 {
414 return result;
415 }
416
417 base->BR[cs] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
418
419 #if defined(FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT) && (FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT)
420 if (kSEMC_SdramColunm_8bit == config->columnAddrBitNum)
421 {
422 base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
423 SEMC_SDRAMCR0_COL8(true) | SEMC_SDRAMCR0_CL(config->casLatency);
424 }
425 else
426 #endif /* FSL_FEATURE_SEMC_SDRAM_SUPPORT_COLUMN_ADDRESS_8BIT */
427 {
428 base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
429 SEMC_SDRAMCR0_COL(config->columnAddrBitNum) | SEMC_SDRAMCR0_CL(config->casLatency);
430 }
431
432 /* IOMUX setting. */
433 if (cs != kSEMC_SDRAM_CS0)
434 {
435 base->IOCR = iocReg | ((uint32_t)cs << (uint32_t)config->csxPinMux);
436 }
437
438 base->IOCR &= ~SEMC_IOCR_MUX_A8_MASK;
439
440 #if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
441 uint32_t tempDelayChain = base->DCCR;
442
443 tempDelayChain &= ~(SEMC_DCCR_SDRAMVAL_MASK | SEMC_DCCR_SDRAMEN_MASK);
444 /* Configure delay chain. */
445 base->DCCR = tempDelayChain | SEMC_DCCR_SDRAMVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SDRAMEN_MASK;
446 #endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
447
448 timing = SEMC_SDRAMCR1_PRE2ACT(SEMC_ConvertTiming(config->tPrecharge2Act_Ns, clkSrc_Hz));
449 timing |= SEMC_SDRAMCR1_ACT2RW(SEMC_ConvertTiming(config->tAct2ReadWrite_Ns, clkSrc_Hz));
450 timing |= SEMC_SDRAMCR1_RFRC(SEMC_ConvertTiming(config->tRefreshRecovery_Ns, clkSrc_Hz));
451 timing |= SEMC_SDRAMCR1_WRC(SEMC_ConvertTiming(config->tWriteRecovery_Ns, clkSrc_Hz));
452 timing |= SEMC_SDRAMCR1_CKEOFF(SEMC_ConvertTiming(config->tCkeOff_Ns, clkSrc_Hz));
453 timing |= SEMC_SDRAMCR1_ACT2PRE(SEMC_ConvertTiming(config->tAct2Prechage_Ns, clkSrc_Hz));
454 /* SDRAMCR1 timing setting. */
455 base->SDRAMCR1 = timing;
456
457 timing = SEMC_SDRAMCR2_SRRC(SEMC_ConvertTiming(config->tSelfRefRecovery_Ns, clkSrc_Hz));
458 timing |= SEMC_SDRAMCR2_REF2REF(SEMC_ConvertTiming(config->tRefresh2Refresh_Ns, clkSrc_Hz));
459 timing |= SEMC_SDRAMCR2_ACT2ACT(SEMC_ConvertTiming(config->tAct2Act_Ns, clkSrc_Hz)) | SEMC_SDRAMCR2_ITO(idle);
460 /* SDRAMCR2 timing setting. */
461 base->SDRAMCR2 = timing;
462
463 /* SDRAMCR3 timing setting. */
464 base->SDRAMCR3 = SEMC_SDRAMCR3_REBL((uint32_t)config->refreshBurstLen - 1UL) |
465 /* N * 16 * 1s / clkSrc_Hz = config->tPrescalePeriod_Ns */
466 SEMC_SDRAMCR3_PRESCALE(prescale) | SEMC_SDRAMCR3_RT(refresh - 1UL) | SEMC_SDRAMCR3_UT(urgentRef);
467
468 SEMC->IPCR1 = 0x2U;
469 SEMC->IPCR2 = 0U;
470
471 result =
472 SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_Prechargeall, 0, NULL);
473 if (result != kStatus_Success)
474 {
475 return result;
476 }
477 result =
478 SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
479 if (result != kStatus_Success)
480 {
481 return result;
482 }
483 result =
484 SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
485 if (result != kStatus_Success)
486 {
487 return result;
488 }
489 /* Mode setting value. */
490 mode = (uint32_t)config->burstLen | (((uint32_t)config->casLatency) << SEMC_SDRAM_MODESETCAL_OFFSET);
491 result =
492 SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, (uint32_t)kSEMC_SDRAMCM_Modeset, mode, NULL);
493 if (result != kStatus_Success)
494 {
495 return result;
496 }
497 /* Enables refresh */
498 base->SDRAMCR3 |= SEMC_SDRAMCR3_REN_MASK;
499
500 return kStatus_Success;
501 }
502
503 /*!
504 * brief Configures NAND controller in SEMC.
505 *
506 * param base SEMC peripheral base address.
507 * param config The nand configuration.
508 * param clkSrc_Hz The SEMC clock frequency.
509 */
SEMC_ConfigureNAND(SEMC_Type * base,semc_nand_config_t * config,uint32_t clkSrc_Hz)510 status_t SEMC_ConfigureNAND(SEMC_Type *base, semc_nand_config_t *config, uint32_t clkSrc_Hz)
511 {
512 assert(config != NULL);
513 assert(config->timingConfig != NULL);
514
515 uint8_t memsize;
516 status_t result;
517 uint32_t timing;
518
519 if ((config->axiAddress < SEMC_STARTADDRESS) || (config->axiAddress > SEMC_ENDADDRESS))
520 {
521 return kStatus_SEMC_InvalidBaseAddress;
522 }
523
524 if (config->cePinMux == kSEMC_MUXRDY)
525 {
526 return kStatus_SEMC_InvalidSwPinmuxSelection;
527 }
528
529 /* Disable SEMC module during configuring control registers. */
530 base->MCR |= SEMC_MCR_MDIS_MASK;
531
532 uint32_t iocReg =
533 base->IOCR & (~((SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux) | SEMC_IOCR_MUX_RDY_MASK));
534
535 /* Base control. */
536 if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
537 {
538 base->MCR |= SEMC_MCR_WPOL1_MASK;
539 }
540 else
541 {
542 base->MCR &= ~SEMC_MCR_WPOL1_MASK;
543 }
544 result = SEMC_CovertMemorySize(base, config->axiMemsize_kbytes, &memsize);
545 if (result != kStatus_Success)
546 {
547 return result;
548 }
549 base->BR[4] = (config->axiAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
550
551 result = SEMC_CovertMemorySize(base, config->ipgMemsize_kbytes, &memsize);
552 if (result != kStatus_Success)
553 {
554 return result;
555 }
556 base->BR[8] = (config->ipgAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
557
558 /* IOMUX setting. */
559 if ((uint32_t)config->cePinMux != 0x00U)
560 {
561 base->IOCR = iocReg | (SEMC_IOCR_NAND_CE << (uint32_t)config->cePinMux);
562 }
563 else
564 {
565 base->IOCR = iocReg | (1UL << (uint32_t)config->cePinMux);
566 }
567
568 base->NANDCR0 = SEMC_NANDCR0_PS(config->portSize) | SEMC_NANDCR0_BL(config->burstLen) |
569 SEMC_NANDCR0_EDO(config->edoModeEnabled) | SEMC_NANDCR0_COL(config->columnAddrBitNum);
570
571 timing = SEMC_NANDCR1_CES(SEMC_ConvertTiming(config->timingConfig->tCeSetup_Ns, clkSrc_Hz));
572 timing |= SEMC_NANDCR1_CEH(SEMC_ConvertTiming(config->timingConfig->tCeHold_Ns, clkSrc_Hz));
573 timing |= SEMC_NANDCR1_WEL(SEMC_ConvertTiming(config->timingConfig->tWeLow_Ns, clkSrc_Hz));
574 timing |= SEMC_NANDCR1_WEH(SEMC_ConvertTiming(config->timingConfig->tWeHigh_Ns, clkSrc_Hz));
575 timing |= SEMC_NANDCR1_REL(SEMC_ConvertTiming(config->timingConfig->tReLow_Ns, clkSrc_Hz));
576 timing |= SEMC_NANDCR1_REH(SEMC_ConvertTiming(config->timingConfig->tReHigh_Ns, clkSrc_Hz));
577 timing |= SEMC_NANDCR1_TA(SEMC_ConvertTiming(config->timingConfig->tTurnAround_Ns, clkSrc_Hz));
578 timing |= SEMC_NANDCR1_CEITV(SEMC_ConvertTiming(config->timingConfig->tCeInterval_Ns, clkSrc_Hz));
579 /* NANDCR1 timing setting. */
580 base->NANDCR1 = timing;
581
582 timing = SEMC_NANDCR2_TWHR(SEMC_ConvertTiming(config->timingConfig->tWehigh2Relow_Ns, clkSrc_Hz));
583 timing |= SEMC_NANDCR2_TRHW(SEMC_ConvertTiming(config->timingConfig->tRehigh2Welow_Ns, clkSrc_Hz));
584 timing |= SEMC_NANDCR2_TADL(SEMC_ConvertTiming(config->timingConfig->tAle2WriteStart_Ns, clkSrc_Hz));
585 timing |= SEMC_NANDCR2_TRR(SEMC_ConvertTiming(config->timingConfig->tReady2Relow_Ns, clkSrc_Hz));
586 timing |= SEMC_NANDCR2_TWB(SEMC_ConvertTiming(config->timingConfig->tWehigh2Busy_Ns, clkSrc_Hz));
587
588 /* NANDCR2 timing setting. */
589 base->NANDCR2 = timing;
590
591 /* NANDCR3 timing setting. */
592 base->NANDCR3 = (uint32_t)config->arrayAddrOption;
593
594 /* Enables SEMC module after configuring control registers completely. */
595 base->MCR &= ~SEMC_MCR_MDIS_MASK;
596
597 return kStatus_Success;
598 }
599
600 /*!
601 * brief Configures NOR controller in SEMC.
602 *
603 * param base SEMC peripheral base address.
604 * param config The nor configuration.
605 * param clkSrc_Hz The SEMC clock frequency.
606 */
SEMC_ConfigureNOR(SEMC_Type * base,semc_nor_config_t * config,uint32_t clkSrc_Hz)607 status_t SEMC_ConfigureNOR(SEMC_Type *base, semc_nor_config_t *config, uint32_t clkSrc_Hz)
608 {
609 assert(config != NULL);
610
611 uint8_t memsize;
612 status_t result;
613 uint32_t timing;
614
615 if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
616 {
617 return kStatus_SEMC_InvalidBaseAddress;
618 }
619
620 uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux));
621 uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
622 (SEMC_IOCR_NOR_CE - 1U) :
623 ((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_NOR_CE_A8 : SEMC_IOCR_NOR_CE);
624
625 /* IOMUX setting. */
626 base->IOCR = iocReg | (muxCe << (uint32_t)config->cePinMux);
627 /* Address bit setting. */
628 if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
629 {
630 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1U))
631 {
632 /* Address bit 24 (A24) */
633 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX0_MASK;
634 if (config->cePinMux == kSEMC_MUXCSX0)
635 {
636 return kStatus_SEMC_InvalidSwPinmuxSelection;
637 }
638 }
639 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2U))
640 {
641 /* Address bit 25 (A25) */
642 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX1_MASK;
643 if (config->cePinMux == kSEMC_MUXCSX1)
644 {
645 return kStatus_SEMC_InvalidSwPinmuxSelection;
646 }
647 }
648 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3U))
649 {
650 /* Address bit 26 (A26) */
651 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX2_MASK;
652 if (config->cePinMux == kSEMC_MUXCSX2)
653 {
654 return kStatus_SEMC_InvalidSwPinmuxSelection;
655 }
656 }
657 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4U))
658 {
659 if (config->addr27 == kSEMC_NORA27_MUXCSX3)
660 {
661 /* Address bit 27 (A27) */
662 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX3_MASK;
663 }
664 else if (config->addr27 == kSEMC_NORA27_MUXRDY)
665 {
666 base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
667 }
668 else
669 {
670 return kStatus_SEMC_InvalidSwPinmuxSelection;
671 }
672 if (config->cePinMux == kSEMC_MUXCSX3)
673 {
674 return kStatus_SEMC_InvalidSwPinmuxSelection;
675 }
676 }
677 if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
678 {
679 return kStatus_SEMC_InvalidAddressPortWidth;
680 }
681 }
682
683 /* Base control. */
684 if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
685 {
686 base->MCR |= SEMC_MCR_WPOL0_MASK;
687 }
688 else
689 {
690 base->MCR &= ~SEMC_MCR_WPOL0_MASK;
691 }
692 result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
693 if (result != kStatus_Success)
694 {
695 return result;
696 }
697 base->BR[5] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
698 base->NORCR0 = SEMC_NORCR0_PS(config->portSize) | SEMC_NORCR0_BL(config->burstLen) |
699 SEMC_NORCR0_AM(config->addrMode) | SEMC_NORCR0_ADVP(config->advActivePolarity) |
700 SEMC_NORCR0_COL(config->columnAddrBitNum);
701
702 #if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
703 uint32_t tempDelayChain = base->DCCR;
704
705 tempDelayChain &= ~(SEMC_DCCR_NORVAL_MASK | SEMC_DCCR_NOREN_MASK);
706 /* Configure delay chain. */
707 base->DCCR = tempDelayChain | SEMC_DCCR_NORVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_NOREN_MASK;
708 #endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
709
710 timing = SEMC_NORCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
711 timing |= SEMC_NORCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
712 timing |= SEMC_NORCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
713 timing |= SEMC_NORCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
714 timing |= SEMC_NORCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
715 timing |= SEMC_NORCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
716 timing |= SEMC_NORCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
717 timing |= SEMC_NORCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
718
719 /* NORCR1 timing setting. */
720 base->NORCR1 = timing;
721
722 timing = SEMC_NORCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
723 #if defined(FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME)
724 timing |= SEMC_NORCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
725 #endif /* FSL_FEATURE_SEMC_HAS_NOR_WDS_TIME */
726 #if defined(FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME) && (FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME)
727 timing |= SEMC_NORCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz));
728 #endif /* FSL_FEATURE_SEMC_HAS_NOR_WDH_TIME */
729 timing |= SEMC_NORCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
730 timing |= SEMC_NORCR2_AWDH((uint32_t)SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 0x01UL);
731 timing |= SEMC_NORCR2_LC(config->latencyCount) | SEMC_NORCR2_RD((uint32_t)config->readCycle - 0x01UL);
732
733 /* NORCR2 timing setting. */
734 base->NORCR2 = timing;
735
736 return SEMC_ConfigureIPCommand(base, ((uint8_t)config->portSize + 1U));
737 }
738
739 /*!
740 * brief Configures SRAM controller in SEMC, which can be used only for specific chip selection CS0.
741 *
742 * param base SEMC peripheral base address.
743 * param config The sram configuration.
744 * param clkSrc_Hz The SEMC clock frequency.
745 */
SEMC_ConfigureSRAM(SEMC_Type * base,semc_sram_config_t * config,uint32_t clkSrc_Hz)746 status_t SEMC_ConfigureSRAM(SEMC_Type *base, semc_sram_config_t *config, uint32_t clkSrc_Hz)
747 {
748 return SEMC_ConfigureSRAMWithChipSelection(base, kSEMC_SRAM_CS0, config, clkSrc_Hz);
749 }
750
751 /*!
752 * brief Configures SRAM controller in SEMC, which can be used up to four chip selections CS0/CS1/CS2/CS3..
753 *
754 * param base SEMC peripheral base address.
755 * param cs The chip selection.
756 * param config The sram configuration.
757 * param clkSrc_Hz The SEMC clock frequency.
758 */
SEMC_ConfigureSRAMWithChipSelection(SEMC_Type * base,semc_sram_cs_t cs,semc_sram_config_t * config,uint32_t clkSrc_Hz)759 status_t SEMC_ConfigureSRAMWithChipSelection(SEMC_Type *base,
760 semc_sram_cs_t cs,
761 semc_sram_config_t *config,
762 uint32_t clkSrc_Hz)
763 {
764 assert(config != NULL);
765
766 uint32_t tempBRVal;
767 uint32_t timing;
768 uint8_t memsize;
769 status_t result = kStatus_Success;
770
771 if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
772 {
773 return kStatus_SEMC_InvalidBaseAddress;
774 }
775
776 uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->cePinMux));
777
778 uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
779 (SEMC_IOCR_PSRAM_CE - 1U) :
780 ((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_PSRAM_CE_A8 : SEMC_IOCR_PSRAM_CE);
781
782 /* IOMUX setting. */
783 base->IOCR = iocReg | (muxCe << (uint32_t)config->cePinMux);
784 /* Address bit setting. */
785 if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
786 {
787 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1U))
788 {
789 /* Address bit 24 (A24) */
790 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX0_MASK;
791 if (config->cePinMux == kSEMC_MUXCSX0)
792 {
793 return kStatus_SEMC_InvalidSwPinmuxSelection;
794 }
795 }
796 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2U))
797 {
798 /* Address bit 25 (A25) */
799 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX1_MASK;
800 if (config->cePinMux == kSEMC_MUXCSX1)
801 {
802 return kStatus_SEMC_InvalidSwPinmuxSelection;
803 }
804 }
805 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3U))
806 {
807 /* Address bit 26 (A26) */
808 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX2_MASK;
809 if (config->cePinMux == kSEMC_MUXCSX2)
810 {
811 return kStatus_SEMC_InvalidSwPinmuxSelection;
812 }
813 }
814 if (config->addrPortWidth >= (SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4U))
815 {
816 if (config->addr27 == kSEMC_NORA27_MUXCSX3)
817 {
818 /* Address bit 27 (A27) */
819 base->IOCR &= ~(uint32_t)SEMC_IOCR_MUX_CSX3_MASK;
820 }
821 else if (config->addr27 == kSEMC_NORA27_MUXRDY)
822 {
823 base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
824 }
825 else
826 {
827 return kStatus_SEMC_InvalidSwPinmuxSelection;
828 }
829
830 if (config->cePinMux == kSEMC_MUXCSX3)
831 {
832 return kStatus_SEMC_InvalidSwPinmuxSelection;
833 }
834 }
835 if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
836 {
837 return kStatus_SEMC_InvalidAddressPortWidth;
838 }
839 }
840 /* Base control. */
841 result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
842 if (result != kStatus_Success)
843 {
844 return result;
845 }
846
847 tempBRVal = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
848
849 uint32_t tempCtrlVal;
850
851 switch (cs)
852 {
853 case kSEMC_SRAM_CS0:
854 base->BR[6] = tempBRVal;
855 break;
856 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
857 case kSEMC_SRAM_CS1:
858 base->BR9 = tempBRVal;
859 break;
860 case kSEMC_SRAM_CS2:
861 base->BR10 = tempBRVal;
862 break;
863 case kSEMC_SRAM_CS3:
864 base->BR11 = tempBRVal;
865 break;
866 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
867 default:
868 assert(NULL);
869 break;
870 }
871
872 /* PSRAM0 SRAMCRx timing setting. */
873 if (kSEMC_SRAM_CS0 == cs)
874 {
875 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
876 /* Ready/wait(WAITEN and WAITSP) feature is only for async mode. */
877 if (kSEMC_AsyncMode == config->syncMode)
878 {
879 tempCtrlVal = SEMC_SRAMCR0_PS(config->portSize) |
880 #if defined(SEMC_SRAMCR4_SYNCEN_MASK) && (SEMC_SRAMCR4_SYNCEN_MASK)
881 SEMC_SRAMCR4_SYNCEN(config->syncMode) |
882 #endif /* SEMC_SRAMCR4_SYNCEN_MASK */
883 #if defined(SEMC_SRAMCR0_WAITEN_MASK) && (SEMC_SRAMCR0_WAITEN_MASK)
884 SEMC_SRAMCR0_WAITEN(config->waitEnable) |
885 #endif /* SEMC_SRAMCR0_WAITEN_MASK */
886 #if defined(SEMC_SRAMCR0_WAITSP_MASK) && (SEMC_SRAMCR0_WAITSP_MASK)
887 SEMC_SRAMCR0_WAITSP(config->waitSample) |
888 #endif /* SEMC_SRAMCR0_WAITSP_MASK */
889 SEMC_SRAMCR0_BL(config->burstLen) | SEMC_SRAMCR0_AM(config->addrMode) |
890 SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
891 #if defined(SEMC_SRAMCR4_ADVH_MASK) && (SEMC_SRAMCR4_ADVH_MASK)
892 SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
893 #endif /* SEMC_SRAMCR4_ADVH_MASK */
894 SEMC_SRAMCR0_COL_MASK;
895 }
896 else
897 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
898 {
899 tempCtrlVal = SEMC_SRAMCR0_PS(config->portSize) |
900 #if defined(SEMC_SRAMCR4_SYNCEN_MASK) && (SEMC_SRAMCR4_SYNCEN_MASK)
901 SEMC_SRAMCR4_SYNCEN(config->syncMode) |
902 #endif /* SEMC_SRAMCR4_SYNCEN_MASK */
903 SEMC_SRAMCR0_BL(config->burstLen) | SEMC_SRAMCR0_AM(config->addrMode) |
904 SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
905 #if defined(SEMC_SRAMCR4_ADVH_MASK) && (SEMC_SRAMCR4_ADVH_MASK)
906 SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
907 #endif /* SEMC_SRAMCR4_ADVH_MASK */
908 SEMC_SRAMCR0_COL_MASK;
909 }
910
911 base->SRAMCR0 = tempCtrlVal;
912 }
913 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
914 /* PSRAM1~PSRAM3 SRAMCRx timing setting. */
915 else
916 {
917 /* Ready/wait(WAITEN and WAITSP) feature is only for async mode. */
918 if (kSEMC_AsyncMode == config->syncMode)
919 {
920 tempCtrlVal = SEMC_SRAMCR4_PS(config->portSize) | SEMC_SRAMCR4_SYNCEN(config->syncMode) |
921 SEMC_SRAMCR4_WAITEN(config->waitEnable) | SEMC_SRAMCR4_WAITSP(config->waitSample) |
922 SEMC_SRAMCR4_BL(config->burstLen) | SEMC_SRAMCR4_AM(config->addrMode) |
923 SEMC_SRAMCR4_ADVP(config->advActivePolarity) | SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
924 SEMC_SRAMCR4_COL_MASK;
925 }
926 else
927 {
928 tempCtrlVal = SEMC_SRAMCR4_PS(config->portSize) | SEMC_SRAMCR4_SYNCEN(config->syncMode) |
929 SEMC_SRAMCR4_BL(config->burstLen) | SEMC_SRAMCR4_AM(config->addrMode) |
930 SEMC_SRAMCR4_ADVP(config->advActivePolarity) | SEMC_SRAMCR4_ADVH(config->advLevelCtrl) |
931 SEMC_SRAMCR4_COL_MASK;
932 }
933
934 base->SRAMCR4 = tempCtrlVal;
935 }
936 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
937
938 #if defined(FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL) && (FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL)
939 uint32_t tempDelayChain = base->DCCR;
940
941 /* Configure delay chain. */
942 switch (cs)
943 {
944 case kSEMC_SRAM_CS0:
945 tempDelayChain &= ~(SEMC_DCCR_SRAM0VAL_MASK | SEMC_DCCR_SRAM0EN_MASK);
946 base->DCCR =
947 tempDelayChain | SEMC_DCCR_SRAM0VAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SRAM0EN_MASK;
948 break;
949 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
950 case kSEMC_SRAM_CS1:
951 SUPPRESS_FALL_THROUGH_WARNING();
952 case kSEMC_SRAM_CS2:
953 SUPPRESS_FALL_THROUGH_WARNING();
954 case kSEMC_SRAM_CS3:
955 tempDelayChain &= ~(SEMC_DCCR_SRAMXVAL_MASK | SEMC_DCCR_SRAMXEN_MASK);
956 base->DCCR =
957 tempDelayChain | SEMC_DCCR_SRAMXVAL((uint32_t)config->delayChain - 0x01U) | SEMC_DCCR_SRAMXEN_MASK;
958 break;
959 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
960 default:
961 assert(NULL);
962 break;
963 }
964 #endif /* FSL_FEATURE_SEMC_HAS_DELAY_CHAIN_CONTROL */
965
966 if (kSEMC_SRAM_CS0 == cs)
967 {
968 timing = SEMC_SRAMCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
969 timing |= SEMC_SRAMCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
970 timing |= SEMC_SRAMCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
971 timing |= SEMC_SRAMCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
972 timing |= SEMC_SRAMCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
973 timing |= SEMC_SRAMCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
974 timing |= SEMC_SRAMCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
975 timing |= SEMC_SRAMCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
976
977 /* SRAMCR1 timing setting. */
978 base->SRAMCR1 = timing;
979
980 timing = SEMC_SRAMCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
981 timing |= SEMC_SRAMCR2_WDH((uint32_t)SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz) + 1UL);
982 timing |= SEMC_SRAMCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
983 timing |= SEMC_SRAMCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz));
984 timing |= SEMC_SRAMCR2_LC(config->latencyCount) | SEMC_SRAMCR2_RD((uint32_t)config->readCycle - 1UL);
985 timing |= SEMC_SRAMCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
986 #if defined(FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME)
987 timing |= SEMC_SRAMCR2_RDH((uint32_t)SEMC_ConvertTiming(config->readHoldTime_Ns, clkSrc_Hz) + 0x01U);
988 #endif /* FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME */
989
990 /* SRAMCR2 timing setting. */
991 base->SRAMCR2 = timing;
992 }
993 #if defined(FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT) && (FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT > 0x01U)
994 else
995 {
996 timing = SEMC_SRAMCR5_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz));
997 timing |= SEMC_SRAMCR5_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz));
998 timing |= SEMC_SRAMCR5_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz));
999 timing |= SEMC_SRAMCR5_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz));
1000 timing |= SEMC_SRAMCR5_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz));
1001 timing |= SEMC_SRAMCR5_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz));
1002 timing |= SEMC_SRAMCR5_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz));
1003 timing |= SEMC_SRAMCR5_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
1004
1005 /* SRAMCR5 timing setting. */
1006 base->SRAMCR5 = timing;
1007
1008 timing = SEMC_SRAMCR6_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz));
1009 timing |= SEMC_SRAMCR6_WDH((uint32_t)SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz) + 1UL);
1010 timing |= SEMC_SRAMCR6_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz));
1011 timing |= SEMC_SRAMCR6_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz));
1012 timing |= SEMC_SRAMCR6_LC(config->latencyCount) | SEMC_SRAMCR2_RD((uint32_t)config->readCycle - 1UL);
1013 timing |= SEMC_SRAMCR6_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
1014 #if defined(FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME) && (FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME)
1015 timing |= SEMC_SRAMCR6_RDH((uint32_t)SEMC_ConvertTiming(config->readHoldTime_Ns, clkSrc_Hz) + 0x01U);
1016 #endif /* FSL_FEATURE_SEMC_HAS_SRAM_RDH_TIME */
1017
1018 /* SRAMCR6 timing setting. */
1019 base->SRAMCR6 = timing;
1020 }
1021 #endif /* FSL_FEATURE_SEMC_SUPPORT_SRAM_COUNT */
1022
1023 return result;
1024 }
1025
1026 /*!
1027 * brief Configures DBI controller in SEMC.
1028 *
1029 * param base SEMC peripheral base address.
1030 * param config The dbi configuration.
1031 * param clkSrc_Hz The SEMC clock frequency.
1032 */
SEMC_ConfigureDBI(SEMC_Type * base,semc_dbi_config_t * config,uint32_t clkSrc_Hz)1033 status_t SEMC_ConfigureDBI(SEMC_Type *base, semc_dbi_config_t *config, uint32_t clkSrc_Hz)
1034 {
1035 assert(config != NULL);
1036
1037 uint8_t memsize;
1038 status_t result;
1039 uint32_t timing;
1040
1041 if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
1042 {
1043 return kStatus_SEMC_InvalidBaseAddress;
1044 }
1045
1046 uint32_t iocReg = base->IOCR & (~(SEMC_IOCR_PINMUXBITWIDTH << (uint32_t)config->csxPinMux));
1047 uint32_t muxCsx = (config->csxPinMux == kSEMC_MUXRDY) ?
1048 (SEMC_IOCR_DBI_CSX - 1U) :
1049 ((config->csxPinMux == kSEMC_MUXA8) ? SEMC_IOCR_DBI_CSX_A8 : SEMC_IOCR_DBI_CSX);
1050
1051 /* IOMUX setting. */
1052 base->IOCR = iocReg | (muxCsx << (uint32_t)config->csxPinMux);
1053 /* Base control. */
1054 result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
1055 if (result != kStatus_Success)
1056 {
1057 return result;
1058 }
1059 base->BR[7] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
1060
1061 /* DBICR0 timing setting. */
1062 base->DBICR0 =
1063 SEMC_DBICR0_PS(config->portSize) | SEMC_DBICR0_BL(config->burstLen) | SEMC_DBICR0_COL(config->columnAddrBitNum);
1064
1065 timing = SEMC_DBICR1_CES(SEMC_ConvertTiming(config->tCsxSetup_Ns, clkSrc_Hz));
1066 timing |= SEMC_DBICR1_CEH(SEMC_ConvertTiming(config->tCsxHold_Ns, clkSrc_Hz));
1067 timing |= SEMC_DBICR1_WEL(SEMC_ConvertTiming(config->tWexLow_Ns, clkSrc_Hz));
1068 timing |= SEMC_DBICR1_WEH(SEMC_ConvertTiming(config->tWexHigh_Ns, clkSrc_Hz));
1069 timing |= SEMC_DBICR1_REL(SEMC_ConvertTiming(config->tRdxLow_Ns, clkSrc_Hz));
1070 timing |= SEMC_DBICR1_REH(SEMC_ConvertTiming(config->tRdxHigh_Ns, clkSrc_Hz));
1071 #if defined(SEMC_DBICR1_CEITV_MASK)
1072 timing |= SEMC_DBICR1_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
1073 #endif /* SEMC_DBICR1_CEITV_MASK */
1074
1075 /* DBICR1 timing setting. */
1076 base->DBICR1 = timing;
1077
1078 #if defined(SEMC_DBICR2_CEITV_MASK)
1079 timing = SEMC_DBICR2_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
1080
1081 /* DBICR2 timing setting. */
1082 base->DBICR2 = timing;
1083 #endif /* SEMC_DBICR2_CEITV_MASK */
1084
1085 return SEMC_ConfigureIPCommand(base, ((uint8_t)config->portSize + 1U));
1086 }
1087
1088 /*!
1089 * brief SEMC IP command access.
1090 *
1091 * param base SEMC peripheral base address.
1092 * param type SEMC memory type. refer to "semc_mem_type_t"
1093 * param address SEMC device address.
1094 * param command SEMC IP command.
1095 * For NAND device, we should use the SEMC_BuildNandIPCommand to get the right nand command.
1096 * For NOR/DBI device, take refer to "semc_ipcmd_nor_dbi_t".
1097 * For SRAM device, take refer to "semc_ipcmd_sram_t".
1098 * For SDRAM device, take refer to "semc_ipcmd_sdram_t".
1099 * param write Data for write access.
1100 * param read Data pointer for read data out.
1101 */
SEMC_SendIPCommand(SEMC_Type * base,semc_mem_type_t type,uint32_t address,uint32_t command,uint32_t write,uint32_t * read)1102 status_t SEMC_SendIPCommand(
1103 SEMC_Type *base, semc_mem_type_t type, uint32_t address, uint32_t command, uint32_t write, uint32_t *read)
1104 {
1105 uint32_t cmdMode;
1106 bool readCmd = false;
1107 bool writeCmd = false;
1108 status_t result;
1109
1110 /* Clear status bit */
1111 base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
1112 /* Set address. */
1113 base->IPCR0 = address;
1114
1115 /* Check command mode. */
1116 cmdMode = (uint32_t)command & 0x0FU;
1117 switch (type)
1118 {
1119 case kSEMC_MemType_NAND:
1120 readCmd = (cmdMode == (uint32_t)kSEMC_NANDCM_CommandAddressRead) ||
1121 (cmdMode == (uint32_t)kSEMC_NANDCM_CommandRead) || (cmdMode == (uint32_t)kSEMC_NANDCM_Read);
1122 writeCmd = (cmdMode == (uint32_t)kSEMC_NANDCM_CommandAddressWrite) ||
1123 (cmdMode == (uint32_t)kSEMC_NANDCM_CommandWrite) || (cmdMode == (uint32_t)kSEMC_NANDCM_Write);
1124 break;
1125 case kSEMC_MemType_NOR:
1126 case kSEMC_MemType_8080:
1127 readCmd = (cmdMode == (uint32_t)kSEMC_NORDBICM_Read);
1128 writeCmd = (cmdMode == (uint32_t)kSEMC_NORDBICM_Write);
1129 break;
1130 case kSEMC_MemType_SRAM:
1131 readCmd = (cmdMode == (uint32_t)kSEMC_SRAMCM_ArrayRead) || (cmdMode == (uint32_t)kSEMC_SRAMCM_RegRead);
1132 writeCmd = (cmdMode == (uint32_t)kSEMC_SRAMCM_ArrayWrite) || (cmdMode == (uint32_t)kSEMC_SRAMCM_RegWrite);
1133 break;
1134 case kSEMC_MemType_SDRAM:
1135 readCmd = (cmdMode == (uint32_t)kSEMC_SDRAMCM_Read);
1136 writeCmd = (cmdMode == (uint32_t)kSEMC_SDRAMCM_Write) || (cmdMode == (uint32_t)kSEMC_SDRAMCM_Modeset);
1137 break;
1138 default:
1139 assert(false);
1140 break;
1141 }
1142
1143 if (writeCmd)
1144 {
1145 /* Set data. */
1146 base->IPTXDAT = write;
1147 }
1148
1149 /* Set command code. */
1150 base->IPCMD = command | SEMC_IPCMD_KEY(SEMC_IPCOMMANDMAGICKEY);
1151 /* Wait for command done. */
1152 result = SEMC_IsIPCommandDone(base);
1153 if (result != kStatus_Success)
1154 {
1155 return result;
1156 }
1157
1158 if (readCmd)
1159 {
1160 /* Get the read data */
1161 *read = base->IPRXDAT;
1162 }
1163
1164 return kStatus_Success;
1165 }
1166
1167 /*!
1168 * brief SEMC NAND device memory write through IP command.
1169 *
1170 * param base SEMC peripheral base address.
1171 * param address SEMC NAND device address.
1172 * param data Data for write access.
1173 * param size_bytes Data length.
1174 */
SEMC_IPCommandNandWrite(SEMC_Type * base,uint32_t address,uint8_t * data,uint32_t size_bytes)1175 status_t SEMC_IPCommandNandWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
1176 {
1177 assert(data != NULL);
1178
1179 status_t result = kStatus_Success;
1180 uint16_t ipCmd;
1181 uint32_t tempData = 0;
1182
1183 /* Write command built */
1184 ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Write);
1185 while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
1186 {
1187 /* Configure IP command data size. */
1188 (void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
1189 result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, *(uint32_t *)(void *)data, NULL);
1190 if (result != kStatus_Success)
1191 {
1192 break;
1193 }
1194
1195 data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
1196 size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
1197 }
1198
1199 if ((result == kStatus_Success) && (size_bytes != 0x00U))
1200 {
1201 (void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
1202
1203 while (size_bytes != 0x00U)
1204 {
1205 size_bytes--;
1206 tempData <<= SEMC_BYTE_NUMBIT;
1207 tempData |= data[size_bytes];
1208 }
1209
1210 result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, tempData, NULL);
1211 }
1212
1213 return result;
1214 }
1215
1216 /*!
1217 * brief SEMC NAND device memory read through IP command.
1218 *
1219 * param base SEMC peripheral base address.
1220 * param address SEMC NAND device address.
1221 * param data Data pointer for data read out.
1222 * param size_bytes Data length.
1223 */
SEMC_IPCommandNandRead(SEMC_Type * base,uint32_t address,uint8_t * data,uint32_t size_bytes)1224 status_t SEMC_IPCommandNandRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
1225 {
1226 assert(data != NULL);
1227
1228 status_t result = kStatus_Success;
1229 uint16_t ipCmd;
1230 uint32_t tempData = 0;
1231
1232 /* Configure IP command data size. */
1233 (void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
1234 /* Read command built */
1235 ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Read);
1236
1237 while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
1238 {
1239 result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, (uint32_t *)(void *)data);
1240 if (result != kStatus_Success)
1241 {
1242 break;
1243 }
1244
1245 data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
1246 size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
1247 }
1248
1249 if ((result == kStatus_Success) && (size_bytes != 0x00U))
1250 {
1251 (void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
1252 result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, &tempData);
1253
1254 while (size_bytes != 0x00U)
1255 {
1256 size_bytes--;
1257 *(data + size_bytes) = (uint8_t)((tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU);
1258 }
1259 }
1260
1261 return result;
1262 }
1263
1264 /*!
1265 * brief SEMC NOR device memory read through IP command.
1266 *
1267 * param base SEMC peripheral base address.
1268 * param address SEMC NOR device address.
1269 * param data Data pointer for data read out.
1270 * param size_bytes Data length.
1271 */
SEMC_IPCommandNorRead(SEMC_Type * base,uint32_t address,uint8_t * data,uint32_t size_bytes)1272 status_t SEMC_IPCommandNorRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
1273 {
1274 assert(data != NULL);
1275
1276 uint32_t tempData = 0;
1277 status_t result = kStatus_Success;
1278 uint8_t dataSize = (uint8_t)base->NORCR0 & SEMC_NORCR0_PS_MASK;
1279
1280 /* Configure IP command data size. */
1281 (void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
1282
1283 while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
1284 {
1285 result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint32_t)kSEMC_NORDBICM_Read, 0,
1286 (uint32_t *)(void *)data);
1287 if (result != kStatus_Success)
1288 {
1289 break;
1290 }
1291
1292 data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
1293 size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
1294 }
1295
1296 if ((result == kStatus_Success) && (size_bytes != 0x00U))
1297 {
1298 (void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
1299 result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Read, 0, &tempData);
1300 while (size_bytes != 0x00U)
1301 {
1302 size_bytes--;
1303 *(data + size_bytes) = (uint8_t)((tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU);
1304 }
1305 }
1306
1307 (void)SEMC_ConfigureIPCommand(base, dataSize);
1308 return result;
1309 }
1310
1311 /*!
1312 * brief SEMC NOR device memory write through IP command.
1313 *
1314 * param base SEMC peripheral base address.
1315 * param address SEMC NOR device address.
1316 * param data Data for write access.
1317 * param size_bytes Data length.
1318 */
SEMC_IPCommandNorWrite(SEMC_Type * base,uint32_t address,uint8_t * data,uint32_t size_bytes)1319 status_t SEMC_IPCommandNorWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
1320 {
1321 assert(data != NULL);
1322
1323 uint32_t tempData = 0;
1324 status_t result = kStatus_Success;
1325 uint8_t dataSize = (uint8_t)base->NORCR0 & SEMC_NORCR0_PS_MASK;
1326
1327 /* Write command built */
1328 while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
1329 {
1330 /* Configure IP command data size. */
1331 (void)SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
1332 result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Write,
1333 *(uint32_t *)(void *)data, NULL);
1334 if (result != kStatus_Success)
1335 {
1336 break;
1337 }
1338 size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
1339 data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
1340 }
1341
1342 if ((result == kStatus_Success) && (size_bytes != 0x00U))
1343 {
1344 (void)SEMC_ConfigureIPCommand(base, (uint8_t)size_bytes);
1345
1346 while (size_bytes != 0x00U)
1347 {
1348 tempData |= ((uint32_t) * (data + size_bytes - 1U) << ((size_bytes - 1U) * SEMC_BYTE_NUMBIT));
1349 size_bytes--;
1350 }
1351
1352 result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, (uint16_t)kSEMC_NORDBICM_Write, tempData, NULL);
1353 }
1354 (void)SEMC_ConfigureIPCommand(base, dataSize);
1355
1356 return result;
1357 }
1358