1 /*
2 * Copyright (c) 2017 - 2024, Nordic Semiconductor ASA
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice, this
11 * list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived from this
19 * software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #ifndef NRF_USBD_H__
35 #define NRF_USBD_H__
36
37 #include <nrfx.h>
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 /**
44 * @defgroup nrf_usbd_hal USBD HAL
45 * @{
46 * @ingroup nrf_usbd
47 * @brief Hardware access layer for managing the Universal Serial Bus Device (USBD)
48 * peripheral.
49 */
50
51 /** @brief USBD tasks. */
52 typedef enum
53 {
54 NRF_USBD_TASK_STARTEPIN0 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[0] ), /**< Captures the EPIN[0].PTR, EPIN[0].MAXCNT, and EPIN[0].CONFIG registers values, and enables control endpoint IN 0 to respond to traffic from host. */
55 NRF_USBD_TASK_STARTEPIN1 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[1] ), /**< Captures the EPIN[1].PTR, EPIN[1].MAXCNT, and EPIN[1].CONFIG registers values, and enables data endpoint IN 1 to respond to traffic from host. */
56 NRF_USBD_TASK_STARTEPIN2 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[2] ), /**< Captures the EPIN[2].PTR, EPIN[2].MAXCNT, and EPIN[2].CONFIG registers values, and enables data endpoint IN 2 to respond to traffic from host. */
57 NRF_USBD_TASK_STARTEPIN3 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[3] ), /**< Captures the EPIN[3].PTR, EPIN[3].MAXCNT, and EPIN[3].CONFIG registers values, and enables data endpoint IN 3 to respond to traffic from host. */
58 NRF_USBD_TASK_STARTEPIN4 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[4] ), /**< Captures the EPIN[4].PTR, EPIN[4].MAXCNT, and EPIN[4].CONFIG registers values, and enables data endpoint IN 4 to respond to traffic from host. */
59 NRF_USBD_TASK_STARTEPIN5 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[5] ), /**< Captures the EPIN[5].PTR, EPIN[5].MAXCNT, and EPIN[5].CONFIG registers values, and enables data endpoint IN 5 to respond to traffic from host. */
60 NRF_USBD_TASK_STARTEPIN6 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[6] ), /**< Captures the EPIN[6].PTR, EPIN[6].MAXCNT, and EPIN[6].CONFIG registers values, and enables data endpoint IN 6 to respond to traffic from host. */
61 NRF_USBD_TASK_STARTEPIN7 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[7] ), /**< Captures the EPIN[7].PTR, EPIN[7].MAXCNT, and EPIN[7].CONFIG registers values, and enables data endpoint IN 7 to respond to traffic from host. */
62 NRF_USBD_TASK_STARTISOIN = offsetof(NRF_USBD_Type, TASKS_STARTISOIN ), /**< Captures the ISOIN.PTR, ISOIN.MAXCNT, and ISOIN.CONFIG registers values, and enables sending data on ISO endpoint 8. */
63 NRF_USBD_TASK_STARTEPOUT0 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[0]), /**< Captures the EPOUT[0].PTR, EPOUT[0].MAXCNT, and EPOUT[0].CONFIG registers values, and enables control endpoint 0 to respond to traffic from host. */
64 NRF_USBD_TASK_STARTEPOUT1 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[1]), /**< Captures the EPOUT[1].PTR, EPOUT[1].MAXCNT, and EPOUT[1].CONFIG registers values, and enables data endpoint 1 to respond to traffic from host. */
65 NRF_USBD_TASK_STARTEPOUT2 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[2]), /**< Captures the EPOUT[2].PTR, EPOUT[2].MAXCNT, and EPOUT[2].CONFIG registers values, and enables data endpoint 2 to respond to traffic from host. */
66 NRF_USBD_TASK_STARTEPOUT3 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[3]), /**< Captures the EPOUT[3].PTR, EPOUT[3].MAXCNT, and EPOUT[3].CONFIG registers values, and enables data endpoint 3 to respond to traffic from host. */
67 NRF_USBD_TASK_STARTEPOUT4 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[4]), /**< Captures the EPOUT[4].PTR, EPOUT[4].MAXCNT, and EPOUT[4].CONFIG registers values, and enables data endpoint 4 to respond to traffic from host. */
68 NRF_USBD_TASK_STARTEPOUT5 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[5]), /**< Captures the EPOUT[5].PTR, EPOUT[5].MAXCNT, and EPOUT[5].CONFIG registers values, and enables data endpoint 5 to respond to traffic from host. */
69 NRF_USBD_TASK_STARTEPOUT6 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[6]), /**< Captures the EPOUT[6].PTR, EPOUT[6].MAXCNT, and EPOUT[6].CONFIG registers values, and enables data endpoint 6 to respond to traffic from host. */
70 NRF_USBD_TASK_STARTEPOUT7 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[7]), /**< Captures the EPOUT[7].PTR, EPOUT[7].MAXCNT, and EPOUT[7].CONFIG registers values, and enables data endpoint 7 to respond to traffic from host. */
71 NRF_USBD_TASK_STARTISOOUT = offsetof(NRF_USBD_Type, TASKS_STARTISOOUT ), /**< Captures the ISOOUT.PTR, ISOOUT.MAXCNT, and ISOOUT.CONFIG registers values, and enables receiving of data on ISO endpoint 8. */
72 NRF_USBD_TASK_EP0RCVOUT = offsetof(NRF_USBD_Type, TASKS_EP0RCVOUT ), /**< Allows OUT data stage on the control endpoint 0. */
73 NRF_USBD_TASK_EP0STATUS = offsetof(NRF_USBD_Type, TASKS_EP0STATUS ), /**< Allows status stage on the control endpoint 0. */
74 NRF_USBD_TASK_EP0STALL = offsetof(NRF_USBD_Type, TASKS_EP0STALL ), /**< STALLs data and status stage on the control endpoint 0. */
75 NRF_USBD_TASK_DRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMDRIVE ), /**< Forces D+ and D-lines to the state defined in the DPDMVALUE register. */
76 NRF_USBD_TASK_NODRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMNODRIVE ), /**< Stops forcing D+ and D- lines to any state (USB engine takes control). */
77 }nrf_usbd_task_t;
78
79 /** @brief USBD events. */
80 typedef enum
81 {
82 NRF_USBD_EVENT_USBRESET = offsetof(NRF_USBD_Type, EVENTS_USBRESET ), /**< Signals that a USB reset condition is detected on the USB lines. */
83 NRF_USBD_EVENT_STARTED = offsetof(NRF_USBD_Type, EVENTS_STARTED ), /**< Confirms that the EPIN[n].PTR, EPIN[n].MAXCNT, EPIN[n].CONFIG, or EPOUT[n].PTR, EPOUT[n].MAXCNT, and EPOUT[n].CONFIG registers have been captured on all endpoints reported in the EPSTATUS register. */
84 NRF_USBD_EVENT_ENDEPIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[0] ), /**< The whole EPIN[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */
85 NRF_USBD_EVENT_ENDEPIN1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[1] ), /**< The whole EPIN[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */
86 NRF_USBD_EVENT_ENDEPIN2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[2] ), /**< The whole EPIN[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */
87 NRF_USBD_EVENT_ENDEPIN3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[3] ), /**< The whole EPIN[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */
88 NRF_USBD_EVENT_ENDEPIN4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[4] ), /**< The whole EPIN[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */
89 NRF_USBD_EVENT_ENDEPIN5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[5] ), /**< The whole EPIN[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */
90 NRF_USBD_EVENT_ENDEPIN6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[6] ), /**< The whole EPIN[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */
91 NRF_USBD_EVENT_ENDEPIN7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[7] ), /**< The whole EPIN[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */
92 NRF_USBD_EVENT_EP0DATADONE = offsetof(NRF_USBD_Type, EVENTS_EP0DATADONE), /**< An acknowledged data transfer has taken place on the control endpoint. */
93 NRF_USBD_EVENT_ENDISOIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOIN ), /**< The whole ISOIN buffer has been consumed. The RAM buffer can be accessed safely by software. */
94 NRF_USBD_EVENT_ENDEPOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[0]), /**< The whole EPOUT[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */
95 NRF_USBD_EVENT_ENDEPOUT1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[1]), /**< The whole EPOUT[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */
96 NRF_USBD_EVENT_ENDEPOUT2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[2]), /**< The whole EPOUT[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */
97 NRF_USBD_EVENT_ENDEPOUT3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[3]), /**< The whole EPOUT[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */
98 NRF_USBD_EVENT_ENDEPOUT4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[4]), /**< The whole EPOUT[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */
99 NRF_USBD_EVENT_ENDEPOUT5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[5]), /**< The whole EPOUT[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */
100 NRF_USBD_EVENT_ENDEPOUT6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[6]), /**< The whole EPOUT[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */
101 NRF_USBD_EVENT_ENDEPOUT7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[7]), /**< The whole EPOUT[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */
102 NRF_USBD_EVENT_ENDISOOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOOUT ), /**< The whole ISOOUT buffer has been consumed. The RAM buffer can be accessed safely by software. */
103 NRF_USBD_EVENT_SOF = offsetof(NRF_USBD_Type, EVENTS_SOF ), /**< Signals that a SOF (start of frame) condition has been detected on the USB lines. */
104 NRF_USBD_EVENT_USBEVENT = offsetof(NRF_USBD_Type, EVENTS_USBEVENT ), /**< An event or an error not covered by the specified events has occurred, check EVENTCAUSE register to find the cause. */
105 NRF_USBD_EVENT_EP0SETUP = offsetof(NRF_USBD_Type, EVENTS_EP0SETUP ), /**< A valid SETUP token has been received (and acknowledged) on the control endpoint. */
106 NRF_USBD_EVENT_DATAEP = offsetof(NRF_USBD_Type, EVENTS_EPDATA ), /**< A data transfer has occurred on a data endpoint, indicated by the EPDATASTATUS register. */
107 }nrf_usbd_event_t;
108
109 /** @brief USBD shorts. */
110 typedef enum
111 {
112 NRF_USBD_SHORT_EP0DATADONE_STARTEPIN0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPIN0_Msk , /**< Shortcut between EP0DATADONE event and STARTEPIN0 task. */
113 NRF_USBD_SHORT_EP0DATADONE_STARTEPOUT0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPOUT0_Msk, /**< Shortcut between EP0DATADONE event and STARTEPOUT0 task. */
114 NRF_USBD_SHORT_EP0DATADONE_EP0STATUS_MASK = USBD_SHORTS_EP0DATADONE_EP0STATUS_Msk , /**< Shortcut between EP0DATADONE event and EP0STATUS task. */
115 NRF_USBD_SHORT_ENDEPOUT0_EP0STATUS_MASK = USBD_SHORTS_ENDEPOUT0_EP0STATUS_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0STATUS task. */
116 NRF_USBD_SHORT_ENDEPOUT0_EP0RCVOUT_MASK = USBD_SHORTS_ENDEPOUT0_EP0RCVOUT_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0RCVOUT task. */
117 }nrf_usbd_short_mask_t;
118
119 /** @brief USBD interrupts. */
120 typedef enum
121 {
122 NRF_USBD_INT_USBRESET_MASK = USBD_INTEN_USBRESET_Msk , /**< Enable or disable interrupt for USBRESET event. */
123 NRF_USBD_INT_STARTED_MASK = USBD_INTEN_STARTED_Msk , /**< Enable or disable interrupt for STARTED event. */
124 NRF_USBD_INT_ENDEPIN0_MASK = USBD_INTEN_ENDEPIN0_Msk , /**< Enable or disable interrupt for ENDEPIN[0] event. */
125 NRF_USBD_INT_ENDEPIN1_MASK = USBD_INTEN_ENDEPIN1_Msk , /**< Enable or disable interrupt for ENDEPIN[1] event. */
126 NRF_USBD_INT_ENDEPIN2_MASK = USBD_INTEN_ENDEPIN2_Msk , /**< Enable or disable interrupt for ENDEPIN[2] event. */
127 NRF_USBD_INT_ENDEPIN3_MASK = USBD_INTEN_ENDEPIN3_Msk , /**< Enable or disable interrupt for ENDEPIN[3] event. */
128 NRF_USBD_INT_ENDEPIN4_MASK = USBD_INTEN_ENDEPIN4_Msk , /**< Enable or disable interrupt for ENDEPIN[4] event. */
129 NRF_USBD_INT_ENDEPIN5_MASK = USBD_INTEN_ENDEPIN5_Msk , /**< Enable or disable interrupt for ENDEPIN[5] event. */
130 NRF_USBD_INT_ENDEPIN6_MASK = USBD_INTEN_ENDEPIN6_Msk , /**< Enable or disable interrupt for ENDEPIN[6] event. */
131 NRF_USBD_INT_ENDEPIN7_MASK = USBD_INTEN_ENDEPIN7_Msk , /**< Enable or disable interrupt for ENDEPIN[7] event. */
132 NRF_USBD_INT_EP0DATADONE_MASK = USBD_INTEN_EP0DATADONE_Msk, /**< Enable or disable interrupt for EP0DATADONE event. */
133 NRF_USBD_INT_ENDISOIN0_MASK = USBD_INTEN_ENDISOIN_Msk , /**< Enable or disable interrupt for ENDISOIN[0] event. */
134 NRF_USBD_INT_ENDEPOUT0_MASK = USBD_INTEN_ENDEPOUT0_Msk , /**< Enable or disable interrupt for ENDEPOUT[0] event. */
135 NRF_USBD_INT_ENDEPOUT1_MASK = USBD_INTEN_ENDEPOUT1_Msk , /**< Enable or disable interrupt for ENDEPOUT[1] event. */
136 NRF_USBD_INT_ENDEPOUT2_MASK = USBD_INTEN_ENDEPOUT2_Msk , /**< Enable or disable interrupt for ENDEPOUT[2] event. */
137 NRF_USBD_INT_ENDEPOUT3_MASK = USBD_INTEN_ENDEPOUT3_Msk , /**< Enable or disable interrupt for ENDEPOUT[3] event. */
138 NRF_USBD_INT_ENDEPOUT4_MASK = USBD_INTEN_ENDEPOUT4_Msk , /**< Enable or disable interrupt for ENDEPOUT[4] event. */
139 NRF_USBD_INT_ENDEPOUT5_MASK = USBD_INTEN_ENDEPOUT5_Msk , /**< Enable or disable interrupt for ENDEPOUT[5] event. */
140 NRF_USBD_INT_ENDEPOUT6_MASK = USBD_INTEN_ENDEPOUT6_Msk , /**< Enable or disable interrupt for ENDEPOUT[6] event. */
141 NRF_USBD_INT_ENDEPOUT7_MASK = USBD_INTEN_ENDEPOUT7_Msk , /**< Enable or disable interrupt for ENDEPOUT[7] event. */
142 NRF_USBD_INT_ENDISOOUT0_MASK = USBD_INTEN_ENDISOOUT_Msk , /**< Enable or disable interrupt for ENDISOOUT[0] event. */
143 NRF_USBD_INT_SOF_MASK = USBD_INTEN_SOF_Msk , /**< Enable or disable interrupt for SOF event. */
144 NRF_USBD_INT_USBEVENT_MASK = USBD_INTEN_USBEVENT_Msk , /**< Enable or disable interrupt for USBEVENT event. */
145 NRF_USBD_INT_EP0SETUP_MASK = USBD_INTEN_EP0SETUP_Msk , /**< Enable or disable interrupt for EP0SETUP event. */
146 NRF_USBD_INT_DATAEP_MASK = USBD_INTEN_EPDATA_Msk , /**< Enable or disable interrupt for EPDATA event. */
147 }nrf_usbd_int_mask_t;
148
149
150 /**
151 * @brief Function for activating the specified USBD task.
152 *
153 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
154 * @param[in] task Task to be activated.
155 */
156 NRF_STATIC_INLINE void nrf_usbd_task_trigger(NRF_USBD_Type * p_reg, nrf_usbd_task_t task);
157
158 /**
159 * @brief Function for returning the address of the specified USBD task register.
160 *
161 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
162 * @param[in] task Task.
163 *
164 * @return Task address.
165 */
166 NRF_STATIC_INLINE uint32_t nrf_usbd_task_address_get(NRF_USBD_Type const * p_reg,
167 nrf_usbd_task_t task);
168
169 /**
170 * @brief Function for clearing the specified event.
171 *
172 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
173 * @param[in] event Event.
174 */
175 NRF_STATIC_INLINE void nrf_usbd_event_clear(NRF_USBD_Type * p_reg, nrf_usbd_event_t event);
176
177 /**
178 * @brief Function for retrieving the state of the USBD event.
179 *
180 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
181 * @param[in] event Event to be checked.
182 *
183 * @retval true The event has been generated.
184 * @retval false The event has not been generated.
185 */
186 NRF_STATIC_INLINE bool nrf_usbd_event_check(NRF_USBD_Type const * p_reg, nrf_usbd_event_t event);
187
188 /**
189 * @brief Function for getting and clearing the state of the specified event.
190 *
191 * This function checks the state of the event and clears it.
192 *
193 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
194 * @param[in] event Event.
195 *
196 * @retval true The event was set.
197 * @retval false The event was not set.
198 */
199 NRF_STATIC_INLINE bool nrf_usbd_event_get_and_clear(NRF_USBD_Type * p_reg, nrf_usbd_event_t event);
200
201 /**
202 * @brief Function for returning the address of the specified USBD event register.
203 *
204 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
205 * @param[in] event Event.
206 *
207 * @return Address.
208 */
209 NRF_STATIC_INLINE uint32_t nrf_usbd_event_address_get(NRF_USBD_Type const * p_reg,
210 nrf_usbd_event_t event);
211
212 /**
213 * @brief Function for setting shortcuts.
214 *
215 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
216 * @param[in] mask Shortcut mask.
217 */
218 NRF_STATIC_INLINE void nrf_usbd_shorts_enable(NRF_USBD_Type * p_reg, uint32_t mask);
219
220 /**
221 * @brief Function for clearing shortcuts.
222 *
223 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
224 * @param[in] mask Shortcut mask.
225 */
226 NRF_STATIC_INLINE void nrf_usbd_shorts_disable(NRF_USBD_Type * p_reg, uint32_t mask);
227
228 /**
229 * @brief Function for getting the shortcut mask.
230 *
231 * Function returns shortcut register.
232 *
233 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
234 *
235 * @return Flags of the currently enabled shortcuts.
236 */
237 NRF_STATIC_INLINE uint32_t nrf_usbd_shorts_get(NRF_USBD_Type const * p_reg);
238
239 /**
240 * @brief Function for enabling the selected interrupts.
241 *
242 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
243 * @param[in] mask Mask of interrupts to be enabled.
244 * Use @ref nrf_usbd_int_mask_t values for bit masking.
245 */
246 NRF_STATIC_INLINE void nrf_usbd_int_enable(NRF_USBD_Type * p_reg, uint32_t mask);
247
248 /**
249 * @brief Function for checking if the specified interrupts are enabled.
250 *
251 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
252 * @param[in] mask Mask of interrupts to be checked.
253 * Use @ref nrf_usbd_int_mask_t values for bit masking.
254 *
255 * @return Mask of enabled interrupts.
256 */
257 NRF_STATIC_INLINE uint32_t nrf_usbd_int_enable_check(NRF_USBD_Type const * p_reg, uint32_t mask);
258
259 /**
260 * @brief Function for retrieving the information about the enabled interrupts.
261 *
262 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
263 *
264 * @return The flags of the enabled interrupts.
265 */
266 NRF_STATIC_INLINE uint32_t nrf_usbd_int_enable_get(NRF_USBD_Type const * p_reg);
267
268 /**
269 * @brief Function for disabling the selected interrupts.
270 *
271 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
272 * @param[in] mask Mask of interrupts to be disabled.
273 * Use @ref nrf_usbd_int_mask_t values for bit masking.
274 */
275 NRF_STATIC_INLINE void nrf_usbd_int_disable(NRF_USBD_Type * p_reg, uint32_t mask);
276
277
278 /** @} */ /* End of nrf_usbd_hal */
279
280
281 #ifndef NRF_DECLARE_ONLY
282
283 /* ------------------------------------------------------------------------------------------------
284 * Internal functions
285 */
286
287 /**
288 * @internal
289 * @brief Internal function for getting the register address of task or event.
290 *
291 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
292 * @param[in] offset Offset of the register from the beginning of the instance.
293 *
294 * @attention The offset must be aligned to 4. In other case, hardware fault can occur.
295 * @return Pointer to the register.
296 */
nrf_usbd_getRegPtr(NRF_USBD_Type * p_reg,uint32_t offset)297 NRF_STATIC_INLINE volatile uint32_t* nrf_usbd_getRegPtr(NRF_USBD_Type * p_reg, uint32_t offset)
298 {
299 return (volatile uint32_t*)(((uint8_t *)p_reg) + (uint32_t)offset);
300 }
301
302 /**
303 * @internal
304 * @brief Internal function for getting the register address of task or event - constant version.
305 *
306 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
307 * @param[in] offset Offset of the register from the beginning of the instance.
308 *
309 * @attention The offset must be aligned to 4. In other case, hardware fault can occur.
310 * @return Pointer to the register.
311 */
nrf_usbd_getRegPtr_c(NRF_USBD_Type const * p_reg,uint32_t offset)312 NRF_STATIC_INLINE volatile const uint32_t* nrf_usbd_getRegPtr_c(NRF_USBD_Type const * p_reg,
313 uint32_t offset)
314 {
315 return (volatile const uint32_t*)(((uint8_t const *)p_reg) + (uint32_t)offset);
316 }
317
318 /* ------------------------------------------------------------------------------------------------
319 * Interface functions definitions
320 */
321
nrf_usbd_task_trigger(NRF_USBD_Type * p_reg,nrf_usbd_task_t task)322 NRF_STATIC_INLINE void nrf_usbd_task_trigger(NRF_USBD_Type * p_reg, nrf_usbd_task_t task)
323 {
324 *(nrf_usbd_getRegPtr(p_reg, (uint32_t)task)) = 1UL;
325 (void)*(nrf_usbd_getRegPtr(p_reg, (uint32_t)task));
326 }
327
nrf_usbd_task_address_get(NRF_USBD_Type const * p_reg,nrf_usbd_task_t task)328 NRF_STATIC_INLINE uint32_t nrf_usbd_task_address_get(NRF_USBD_Type const * p_reg,
329 nrf_usbd_task_t task)
330 {
331 return (uint32_t)nrf_usbd_getRegPtr_c(p_reg, (uint32_t)task);
332 }
333
nrf_usbd_event_clear(NRF_USBD_Type * p_reg,nrf_usbd_event_t event)334 NRF_STATIC_INLINE void nrf_usbd_event_clear(NRF_USBD_Type * p_reg, nrf_usbd_event_t event)
335 {
336 *(nrf_usbd_getRegPtr(p_reg, (uint32_t)event)) = 0UL;
337 (void)*(nrf_usbd_getRegPtr(p_reg, (uint32_t)event));
338 }
339
nrf_usbd_event_check(NRF_USBD_Type const * p_reg,nrf_usbd_event_t event)340 NRF_STATIC_INLINE bool nrf_usbd_event_check(NRF_USBD_Type const * p_reg, nrf_usbd_event_t event)
341 {
342 return (bool)*nrf_usbd_getRegPtr_c(p_reg, (uint32_t)event);
343 }
344
nrf_usbd_event_get_and_clear(NRF_USBD_Type * p_reg,nrf_usbd_event_t event)345 NRF_STATIC_INLINE bool nrf_usbd_event_get_and_clear(NRF_USBD_Type * p_reg, nrf_usbd_event_t event)
346 {
347 bool ret = nrf_usbd_event_check(p_reg, event);
348 if (ret)
349 {
350 nrf_usbd_event_clear(p_reg, event);
351 }
352 return ret;
353 }
354
nrf_usbd_event_address_get(NRF_USBD_Type const * p_reg,nrf_usbd_event_t event)355 NRF_STATIC_INLINE uint32_t nrf_usbd_event_address_get(NRF_USBD_Type const * p_reg,
356 nrf_usbd_event_t event)
357 {
358 return (uint32_t)nrf_usbd_getRegPtr_c(p_reg, (uint32_t)event);
359 }
360
nrf_usbd_shorts_enable(NRF_USBD_Type * p_reg,uint32_t mask)361 NRF_STATIC_INLINE void nrf_usbd_shorts_enable(NRF_USBD_Type * p_reg, uint32_t mask)
362 {
363 p_reg->SHORTS |= mask;
364 }
365
nrf_usbd_shorts_disable(NRF_USBD_Type * p_reg,uint32_t mask)366 NRF_STATIC_INLINE void nrf_usbd_shorts_disable(NRF_USBD_Type * p_reg, uint32_t mask)
367 {
368 if (~0U == mask)
369 {
370 /* Optimized version for "disable all" */
371 p_reg->SHORTS = 0;
372 }
373 else
374 {
375 p_reg->SHORTS &= ~mask;
376 }
377 }
378
nrf_usbd_shorts_get(NRF_USBD_Type const * p_reg)379 NRF_STATIC_INLINE uint32_t nrf_usbd_shorts_get(NRF_USBD_Type const * p_reg)
380 {
381 return p_reg->SHORTS;
382 }
383
nrf_usbd_int_enable(NRF_USBD_Type * p_reg,uint32_t mask)384 NRF_STATIC_INLINE void nrf_usbd_int_enable(NRF_USBD_Type * p_reg, uint32_t mask)
385 {
386 p_reg->INTENSET = mask;
387 }
388
nrf_usbd_int_enable_check(NRF_USBD_Type const * p_reg,uint32_t mask)389 NRF_STATIC_INLINE uint32_t nrf_usbd_int_enable_check(NRF_USBD_Type const * p_reg, uint32_t mask)
390 {
391 return p_reg->INTENSET & mask;
392 }
393
nrf_usbd_int_enable_get(NRF_USBD_Type const * p_reg)394 NRF_STATIC_INLINE uint32_t nrf_usbd_int_enable_get(NRF_USBD_Type const * p_reg)
395 {
396 return p_reg->INTENSET;
397 }
398
nrf_usbd_int_disable(NRF_USBD_Type * p_reg,uint32_t mask)399 NRF_STATIC_INLINE void nrf_usbd_int_disable(NRF_USBD_Type * p_reg, uint32_t mask)
400 {
401 p_reg->INTENCLR = mask;
402 }
403
404 #endif /* NRF_DECLARE_ONLY */
405
406 /* ------------------------------------------------------------------------------------------------
407 * End of automatically generated part
408 * ------------------------------------------------------------------------------------------------
409 */
410 /**
411 * @addtogroup nrf_usbd_hal
412 * @{
413 */
414
415 /**
416 * @brief Frame counter size.
417 *
418 * The number of counts that can be fitted into frame counter.
419 */
420 #define NRF_USBD_FRAMECNTR_SIZE \
421 ( (USBD_FRAMECNTR_FRAMECNTR_Msk >> USBD_FRAMECNTR_FRAMECNTR_Pos) + 1UL )
422 #ifndef USBD_FRAMECNTR_FRAMECNTR_Msk
423 #error USBD_FRAMECNTR_FRAMECNTR_Msk should be changed into USBD_FRAMECNTR_FRAMECNTR_Msk
424 #endif
425
426 /**
427 * @brief First isochronous endpoint number.
428 *
429 * The number of the first isochronous endpoint.
430 */
431 #define NRF_USBD_EPISO_FIRST 8
432
433 /**
434 * @brief Total number of IN endpoints.
435 *
436 * Total number of IN endpoint (including ISOCHRONOUS).
437 */
438 #define NRF_USBD_EPIN_CNT 9
439
440 /**
441 * @brief Total number of OUT endpoints.
442 *
443 * Total number of OUT endpoint (including ISOCHRONOUS).
444 */
445 #define NRF_USBD_EPOUT_CNT 9
446
447 /** @brief Mask of the direction bit in an endpoint number. */
448 #define NRF_USBD_EP_DIR_Msk (1U << 7)
449
450 /** @brief The value of direction bit for the IN endpoint direction. */
451 #define NRF_USBD_EP_DIR_IN (1U << 7)
452
453 /** @brief The value of direction bit for the OUT endpoint direction. */
454 #define NRF_USBD_EP_DIR_OUT (0U << 7)
455
456 /**
457 * @brief Macro for making the IN endpoint identifier from endpoint number.
458 *
459 * Macro that sets direction bit to make IN endpoint.
460 *
461 * @param[in] epnr Endpoint number.
462 *
463 * @return IN Endpoint identifier.
464 */
465 #define NRF_USBD_EPIN(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_IN)
466
467 /**
468 * @brief Macro for making the OUT endpoint identifier from endpoint number.
469 *
470 * Macro that sets direction bit to make OUT endpoint.
471 *
472 * @param[in] epnr Endpoint number.
473 *
474 * @return OUT Endpoint identifier.
475 */
476 #define NRF_USBD_EPOUT(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_OUT)
477
478 /**
479 * @brief Macro for extracting the endpoint number from the specified endpoint identifier.
480 *
481 * Macro that strips out the information about endpoint direction.
482 *
483 * @param[in] ep Endpoint identifier.
484 *
485 * @return Endpoint number.
486 */
487 #define NRF_USBD_EP_NR_GET(ep) ((uint8_t)(((uint8_t)(ep)) & 0xFU))
488
489 /**
490 * @brief Macro for checking the endpoint direction.
491 *
492 * This macro checks if the specified endpoint has the IN direction.
493 *
494 * @param[in] ep Endpoint identifier.
495 *
496 * @retval true The endpoint direction is IN.
497 * @retval false The endpoint direction is OUT.
498 */
499 #define NRF_USBD_EPIN_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_IN )
500
501 /**
502 * @brief Macro for checking endpoint direction.
503 *
504 * This macro checks if given endpoint has OUT direction.
505 *
506 * @param[in] ep Endpoint identifier
507 *
508 * @retval true The endpoint direction is OUT
509 * @retval false The endpoint direction is IN
510 */
511 #define NRF_USBD_EPOUT_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_OUT )
512
513 /**
514 * @brief Macro for checking if endpoint is isochronous.
515 *
516 * @param[in] ep It can be endpoint identifier or just endpoint number to be checked.
517 *
518 * @retval true The endpoint is isochronous type.
519 * @retval false The endpoint is bulk of interrupt type.
520 */
521 #define NRF_USBD_EPISO_CHECK(ep) (NRF_USBD_EP_NR_GET(ep) >= NRF_USBD_EPISO_FIRST)
522
523 /**
524 * @brief Macro for checking if given number is valid endpoint number.
525 *
526 * @param[in] ep Endpoint number to be checked.
527 *
528 * @retval true The endpoint is valid.
529 * @retval false The endpoint is not valid.
530 */
531 #define NRF_USBD_EP_VALIDATE(ep) ( \
532 (NRF_USBD_EPIN_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPIN_CNT)) \
533 || \
534 (NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPOUT_CNT)) \
535 )
536
537 /**
538 * @brief Not isochronous data frame received.
539 *
540 * Special value returned by @ref nrf_usbd_episoout_size_get function that means that
541 * data frame was not received at all.
542 * This allows differentiate between situations when zero size data comes or no data comes at all
543 * on isochronous endpoint.
544 */
545 #define NRF_USBD_EPISOOUT_NO_DATA ((size_t)(-1))
546
547 /** @brief EVENTCAUSE register bit masks. */
548 typedef enum
549 {
550 NRF_USBD_EVENTCAUSE_ISOOUTCRC_MASK = USBD_EVENTCAUSE_ISOOUTCRC_Msk, /**< CRC error was detected on isochronous OUT endpoint 8. */
551 NRF_USBD_EVENTCAUSE_SUSPEND_MASK = USBD_EVENTCAUSE_SUSPEND_Msk, /**< Signals that the USB lines have been seen idle long enough for the device to enter suspend. */
552 NRF_USBD_EVENTCAUSE_RESUME_MASK = USBD_EVENTCAUSE_RESUME_Msk, /**< Signals that a RESUME condition (K state or activity restart) has been detected on the USB lines. */
553 NRF_USBD_EVENTCAUSE_WUREQ_MASK = USBD_EVENTCAUSE_USBWUALLOWED_Msk, /**< The USBD peripheral has exited Low Power mode. */
554 NRF_USBD_EVENTCAUSE_READY_MASK = USBD_EVENTCAUSE_READY_Msk, /**< MAC is ready for normal operation, rised few us after USBD enabling. */
555 }nrf_usbd_eventcause_mask_t;
556
557 /** @brief DPDMVALUE register. */
558 typedef enum
559 {
560 /** Generate RESUME signal. Signal is generated for 50 us or 5 ms,
561 * depending on bus state. */
562 NRF_USBD_DPDMVALUE_RESUME = USBD_DPDMVALUE_STATE_Resume,
563 /** D+ Forced high, D- forced low (J state) */
564 NRF_USBD_DPDMVALUE_J = USBD_DPDMVALUE_STATE_J,
565 /** D+ Forced low, D- forced high (K state) */
566 NRF_USBD_DPMVALUE_K = USBD_DPDMVALUE_STATE_K
567 }nrf_usbd_dpdmvalue_t;
568
569 /** @brief Data toggle value or operation. */
570 typedef enum
571 {
572 NRF_USBD_DTOGGLE_NOP = USBD_DTOGGLE_VALUE_Nop, /**< No operation - do not change the current data toggle on the selected endpoint. */
573 NRF_USBD_DTOGGLE_DATA0 = USBD_DTOGGLE_VALUE_Data0,/**< Data toggle is DATA0 on the selected endpoint. */
574 NRF_USBD_DTOGGLE_DATA1 = USBD_DTOGGLE_VALUE_Data1 /**< Data toggle is DATA1 on the selected endpoint. */
575 }nrf_usbd_dtoggle_t;
576
577 /** @brief EPSTATUS bit masks. */
578 typedef enum
579 {
580 NRF_USBD_EPSTATUS_EPIN0_MASK = USBD_EPSTATUS_EPIN0_Msk,
581 NRF_USBD_EPSTATUS_EPIN1_MASK = USBD_EPSTATUS_EPIN1_Msk,
582 NRF_USBD_EPSTATUS_EPIN2_MASK = USBD_EPSTATUS_EPIN2_Msk,
583 NRF_USBD_EPSTATUS_EPIN3_MASK = USBD_EPSTATUS_EPIN3_Msk,
584 NRF_USBD_EPSTATUS_EPIN4_MASK = USBD_EPSTATUS_EPIN4_Msk,
585 NRF_USBD_EPSTATUS_EPIN5_MASK = USBD_EPSTATUS_EPIN5_Msk,
586 NRF_USBD_EPSTATUS_EPIN6_MASK = USBD_EPSTATUS_EPIN6_Msk,
587 NRF_USBD_EPSTATUS_EPIN7_MASK = USBD_EPSTATUS_EPIN7_Msk,
588
589 NRF_USBD_EPSTATUS_EPOUT0_MASK = USBD_EPSTATUS_EPOUT0_Msk,
590 NRF_USBD_EPSTATUS_EPOUT1_MASK = USBD_EPSTATUS_EPOUT1_Msk,
591 NRF_USBD_EPSTATUS_EPOUT2_MASK = USBD_EPSTATUS_EPOUT2_Msk,
592 NRF_USBD_EPSTATUS_EPOUT3_MASK = USBD_EPSTATUS_EPOUT3_Msk,
593 NRF_USBD_EPSTATUS_EPOUT4_MASK = USBD_EPSTATUS_EPOUT4_Msk,
594 NRF_USBD_EPSTATUS_EPOUT5_MASK = USBD_EPSTATUS_EPOUT5_Msk,
595 NRF_USBD_EPSTATUS_EPOUT6_MASK = USBD_EPSTATUS_EPOUT6_Msk,
596 NRF_USBD_EPSTATUS_EPOUT7_MASK = USBD_EPSTATUS_EPOUT7_Msk,
597 }nrf_usbd_epstatus_mask_t;
598
599 /** @brief DATAEPSTATUS bit masks. */
600 typedef enum
601 {
602 NRF_USBD_EPDATASTATUS_EPIN1_MASK = USBD_EPDATASTATUS_EPIN1_Msk,
603 NRF_USBD_EPDATASTATUS_EPIN2_MASK = USBD_EPDATASTATUS_EPIN2_Msk,
604 NRF_USBD_EPDATASTATUS_EPIN3_MASK = USBD_EPDATASTATUS_EPIN3_Msk,
605 NRF_USBD_EPDATASTATUS_EPIN4_MASK = USBD_EPDATASTATUS_EPIN4_Msk,
606 NRF_USBD_EPDATASTATUS_EPIN5_MASK = USBD_EPDATASTATUS_EPIN5_Msk,
607 NRF_USBD_EPDATASTATUS_EPIN6_MASK = USBD_EPDATASTATUS_EPIN6_Msk,
608 NRF_USBD_EPDATASTATUS_EPIN7_MASK = USBD_EPDATASTATUS_EPIN7_Msk,
609
610 NRF_USBD_EPDATASTATUS_EPOUT1_MASK = USBD_EPDATASTATUS_EPOUT1_Msk,
611 NRF_USBD_EPDATASTATUS_EPOUT2_MASK = USBD_EPDATASTATUS_EPOUT2_Msk,
612 NRF_USBD_EPDATASTATUS_EPOUT3_MASK = USBD_EPDATASTATUS_EPOUT3_Msk,
613 NRF_USBD_EPDATASTATUS_EPOUT4_MASK = USBD_EPDATASTATUS_EPOUT4_Msk,
614 NRF_USBD_EPDATASTATUS_EPOUT5_MASK = USBD_EPDATASTATUS_EPOUT5_Msk,
615 NRF_USBD_EPDATASTATUS_EPOUT6_MASK = USBD_EPDATASTATUS_EPOUT6_Msk,
616 NRF_USBD_EPDATASTATUS_EPOUT7_MASK = USBD_EPDATASTATUS_EPOUT7_Msk,
617 }nrf_usbd_dataepstatus_mask_t;
618
619 /** @brief ISOSPLIT configurations. */
620 typedef enum
621 {
622 NRF_USBD_ISOSPLIT_ONEDIR = USBD_ISOSPLIT_SPLIT_OneDir, /**< Full buffer dedicated to either ISO IN or OUT. */
623 NRF_USBD_ISOSPLIT_HALF = USBD_ISOSPLIT_SPLIT_HalfIN, /**< Buffer divided in half. */
624 }nrf_usbd_isosplit_t;
625
626 /** @brief ISOINCONFIG configurations. */
627 typedef enum
628 {
629 NRF_USBD_ISOINCONFIG_NORESP = USBD_ISOINCONFIG_RESPONSE_NoResp, /**< Endpoint does not respond to an ISO IN token when no data is ready. */
630 NRF_USBD_ISOINCONFIG_ZERODATA = USBD_ISOINCONFIG_RESPONSE_ZeroData, /**< Endpoint responds with a zero-length data packet to an ISO IN token when no data is ready. */
631 }nrf_usbd_isoinconfig_t;
632
633 /**
634 * @brief Function for enabling the USBD.
635 *
636 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
637 */
638 NRF_STATIC_INLINE void nrf_usbd_enable(NRF_USBD_Type * p_reg);
639
640 /**
641 * @brief Function for disabling the USBD.
642 *
643 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
644 */
645 NRF_STATIC_INLINE void nrf_usbd_disable(NRF_USBD_Type * p_reg);
646
647 /**
648 * @brief Function for getting the EVENTCAUSE register.
649 *
650 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
651 *
652 * @return Flag values defined in @ref nrf_usbd_eventcause_mask_t.
653 */
654 NRF_STATIC_INLINE uint32_t nrf_usbd_eventcause_get(NRF_USBD_Type const * p_reg);
655
656 /**
657 * @brief Function for clearing the EVENTCAUSE flags.
658 *
659 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
660 * @param[in] flags Flags defined in @ref nrf_usbd_eventcause_mask_t.
661 */
662 NRF_STATIC_INLINE void nrf_usbd_eventcause_clear(NRF_USBD_Type * p_reg, uint32_t flags);
663
664 /**
665 * @brief Function for getting the EVENTCAUSE register and clearing flags that are set.
666 *
667 * The safest way to return current EVENTCAUSE register.
668 * All the flags that are returned would be cleared inside EVENTCAUSE register.
669 *
670 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
671 *
672 * @return Flag values defined in @ref nrf_usbd_eventcause_mask_t
673 */
674 NRF_STATIC_INLINE uint32_t nrf_usbd_eventcause_get_and_clear(NRF_USBD_Type * p_reg);
675
676 /**
677 * @brief Function for getting the HALTEDEPIN register value.
678 *
679 * @note Use this function for the response for GetStatus() request to endpoint.
680 * To check whether the endpoint is stalled in the code, use @ref nrf_usbd_ep_is_stall.
681 *
682 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
683 * @param[in] ep Endpoint number with IN or OUT flag.
684 *
685 * @return The value of the HALTEDEPIN or HALTEDOUT register for the selected endpoint.
686 */
687 NRF_STATIC_INLINE uint32_t nrf_usbd_halted_get(NRF_USBD_Type const * p_reg, uint8_t ep);
688
689 /**
690 * @brief Function for checking whether the selected endpoint is stalled.
691 *
692 * Function to be used as a syntax sweeter for @ref nrf_usbd_halted_get.
693 *
694 * Also as the isochronous endpoint cannot be halted - it returns always false
695 * if isochronous endpoint is checked.
696 *
697 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
698 * @param[in] ep Endpoint number with IN or OUT flag.
699 *
700 * @retval true The endpoint is halted.
701 * @retval false The endpoint is not halted.
702 */
703 NRF_STATIC_INLINE bool nrf_usbd_ep_is_stall(NRF_USBD_Type const * p_reg, uint8_t ep);
704
705 /**
706 * @brief Function for getting EPSTATUS register value.
707 *
708 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
709 *
710 * @return Flag values defined in @ref nrf_usbd_epstatus_mask_t.
711 */
712 NRF_STATIC_INLINE uint32_t nrf_usbd_epstatus_get(NRF_USBD_Type const * p_reg);
713
714 /**
715 * @brief Function for clearing EPSTATUS register value.
716 *
717 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
718 * @param[in] flags Flags defined in @ref nrf_usbd_epstatus_mask_t.
719 */
720 NRF_STATIC_INLINE void nrf_usbd_epstatus_clear(NRF_USBD_Type * p_reg, uint32_t flags);
721
722 /**
723 * @brief Function for getting and clearing EPSTATUS register value.
724 *
725 * Function clears all flags in register set before returning its value.
726 *
727 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
728 *
729 * @return Flag values defined in @ref nrf_usbd_epstatus_mask_t.
730 */
731 NRF_STATIC_INLINE uint32_t nrf_usbd_epstatus_get_and_clear(NRF_USBD_Type * p_reg);
732
733 /**
734 * @brief Function for getting DATAEPSTATUS register value.
735 *
736 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
737 *
738 * @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t.
739 */
740 NRF_STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get(NRF_USBD_Type const * p_reg);
741
742 /**
743 * @brief Function for clearing DATAEPSTATUS register value.
744 *
745 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
746 * @param[in] flags Flags defined in @ref nrf_usbd_dataepstatus_mask_t.
747 */
748 NRF_STATIC_INLINE void nrf_usbd_epdatastatus_clear(NRF_USBD_Type * p_reg, uint32_t flags);
749
750 /**
751 * @brief Function for getting and clearing DATAEPSTATUS register value.
752 *
753 * Function clears all flags in register set before returning its value.
754 *
755 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
756 *
757 * @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t.
758 */
759 NRF_STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get_and_clear(NRF_USBD_Type * p_reg);
760
761 /**
762 * @name Setup command frame functions.
763 *
764 * Functions for setting up command frame part access.
765 * @{
766 */
767 /**
768 * @brief Function for reading BMREQUESTTYPE - part of the SETUP packet.
769 *
770 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
771 *
772 * @return Value of BREQUESTTYPE on the last received SETUP frame.
773 */
774 NRF_STATIC_INLINE uint8_t nrf_usbd_setup_bmrequesttype_get(NRF_USBD_Type const * p_reg);
775
776 /**
777 * @brief Function for reading BMREQUEST - part of the SETUP packet.
778 *
779 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
780 *
781 * @return Value of BREQUEST on the last received SETUP frame.
782 */
783 NRF_STATIC_INLINE uint8_t nrf_usbd_setup_brequest_get(NRF_USBD_Type const * p_reg);
784
785 /**
786 * @brief Function for reading WVALUE - part of the SETUP packet.
787 *
788 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
789 *
790 * @return Value of WVALUE on the last received SETUP frame.
791 */
792 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_wvalue_get(NRF_USBD_Type const * p_reg);
793
794 /**
795 * @brief Function for reading WINDEX - part of the SETUP packet.
796 *
797 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
798 *
799 * @return Value of WINDEX on the last received SETUP frame.
800 */
801 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_windex_get(NRF_USBD_Type const * p_reg);
802
803 /**
804 * @brief Function for reading WLENGTH - part of the SETUP packet.
805 *
806 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
807 *
808 * @return Value of WLENGTH on the last received SETUP frame.
809 */
810 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_wlength_get(NRF_USBD_Type const * p_reg);
811 /** @} */
812
813 /**
814 * @brief Function for getting the number of received bytes on the selected endpoint.
815 *
816 * @note This function can be used on bulk, interrupt, and isochronous endpoints.
817 * @note For the function that returns different value for the ISOOUT zero
818 * transfer or no transfer at all, see the @ref nrf_usbd_episoout_size_get
819 * function. This function will return 0 for both cases.
820 *
821 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
822 * @param[in] ep Endpoint identifier.
823 *
824 * @return Number of received bytes.
825 */
826 NRF_STATIC_INLINE size_t nrf_usbd_epout_size_get(NRF_USBD_Type const * p_reg, uint8_t ep);
827
828 /**
829 * @brief Function for getting number of the received bytes on isochronous endpoint.
830 *
831 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
832 * @param[in] ep Endpoint identifier, must be an isochronous OUT endpoint.
833 *
834 * @return Number of bytes received or @ref NRF_USBD_EPISOOUT_NO_DATA.
835 */
836 NRF_STATIC_INLINE size_t nrf_usbd_episoout_size_get(NRF_USBD_Type const * p_reg, uint8_t ep);
837
838 /**
839 * @brief Function for clearing OUT endpoint to accept any new incoming traffic.
840 *
841 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
842 * @param[in] ep Endpoint identifier. Only OUT interrupt/bulk endpoints are accepted.
843 */
844 NRF_STATIC_INLINE void nrf_usbd_epout_clear(NRF_USBD_Type * p_reg, uint8_t ep);
845
846 /**
847 * @brief Function for enabling the USB pullup.
848 *
849 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
850 */
851 NRF_STATIC_INLINE void nrf_usbd_pullup_enable(NRF_USBD_Type * p_reg);
852
853 /**
854 * @brief Function for disabling the USB pullup.
855 *
856 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
857 */
858 NRF_STATIC_INLINE void nrf_usbd_pullup_disable(NRF_USBD_Type * p_reg);
859
860 /**
861 * @brief Function for returning the current the USB pullup state.
862 *
863 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
864 *
865 * @retval true The USB pullup is enabled.
866 * @retval false The USB pullup is disabled.
867 */
868 NRF_STATIC_INLINE bool nrf_usbd_pullup_check(NRF_USBD_Type const * p_reg);
869
870 /**
871 * @brief Function for configuring the value to be forced on the bus on the DRIVEDPDM task.
872 *
873 * The selected state will be forced on the bus when @ref NRF_USBD_TASK_DRIVEDPDM is set.
874 * The state will be removed from the bus on @ref NRF_USBD_TASK_NODRIVEDPDM and
875 * the control will be returned to the USBD peripheral.
876 *
877 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
878 * @param[in] val State to be set.
879 */
880 NRF_STATIC_INLINE void nrf_usbd_dpdmvalue_set(NRF_USBD_Type * p_reg, nrf_usbd_dpdmvalue_t val);
881
882 /**
883 * @brief Function for setting the data toggle.
884 *
885 * Configuration of the current state of data toggling.
886 *
887 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
888 * @param[in] ep Endpoint number with the information about its direction.
889 * @param[in] op Operation to execute.
890 */
891 NRF_STATIC_INLINE void nrf_usbd_dtoggle_set(NRF_USBD_Type * p_reg,
892 uint8_t ep,
893 nrf_usbd_dtoggle_t op);
894
895 /**
896 * @brief Function for getting the data toggle.
897 *
898 * Get the current state of data toggling.
899 *
900 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
901 * @param[in] ep Endpoint number to return the information about current data toggling.
902 *
903 * @retval NRF_USBD_DTOGGLE_DATA0 Data toggle is DATA0 on selected endpoint.
904 * @retval NRF_USBD_DTOGGLE_DATA1 Data toggle is DATA1 on selected endpoint.
905 */
906 NRF_STATIC_INLINE nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(NRF_USBD_Type * p_reg, uint8_t ep);
907
908 /**
909 * @brief Function for checking whether the endpoint is enabled.
910 *
911 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
912 * @param[in] ep Endpoint ID to be checked.
913 *
914 * @retval true Endpoint is enabled.
915 * @retval false Endpoint is disabled.
916 */
917 NRF_STATIC_INLINE bool nrf_usbd_ep_enable_check(NRF_USBD_Type const * p_reg, uint8_t ep);
918
919 /**
920 * @brief Function for enabling the selected endpoint.
921 *
922 * The enabled endpoint responds for the tokens on the USB bus.
923 *
924 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
925 * @param[in] ep Endpoint ID to be enabled.
926 */
927 NRF_STATIC_INLINE void nrf_usbd_ep_enable(NRF_USBD_Type * p_reg, uint8_t ep);
928
929 /**
930 * @brief Function for disabling the selected endpoint.
931 *
932 * The disabled endpoint does not respond for the tokens on the USB bus.
933 *
934 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
935 * @param[in] ep Endpoint ID to be disabled.
936 */
937 NRF_STATIC_INLINE void nrf_usbd_ep_disable(NRF_USBD_Type * p_reg, uint8_t ep);
938
939 /**
940 * @brief Function for disabling all endpoints.
941 *
942 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
943 */
944 NRF_STATIC_INLINE void nrf_usbd_ep_all_disable(NRF_USBD_Type * p_reg);
945
946 /**
947 * @brief Function for setting the default endpoint configuration.
948 *
949 * @note The default configuration means that all endpoints, except for EP0 IN
950 * and EP0 OUT, are disabled. Such configuration is used after the USB
951 * device reset.
952 *
953 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
954 */
955 NRF_STATIC_INLINE void nrf_usbd_ep_default_config(NRF_USBD_Type * p_reg);
956
957 /**
958 * @brief Function for stalling the selected endpoint.
959 *
960 * @note This function cannot be called on isochronous endpoint.
961 *
962 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
963 * @param[in] ep Endpoint identifier.
964 */
965 NRF_STATIC_INLINE void nrf_usbd_ep_stall(NRF_USBD_Type * p_reg, uint8_t ep);
966
967 /**
968 * @brief Function for unstalling the selected endpoint.
969 *
970 * @note This function cannot be called on isochronous endpoint.
971 *
972 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
973 * @param[in] ep Endpoint identifier
974 */
975 NRF_STATIC_INLINE void nrf_usbd_ep_unstall(NRF_USBD_Type * p_reg, uint8_t ep);
976
977 /**
978 * @brief Function for configuring the isochronous buffer splitting.
979 *
980 * This function configures isochronous buffer splitting between IN and OUT endpoints.
981 *
982 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
983 * @param[in] split Required configuration.
984 */
985 NRF_STATIC_INLINE void nrf_usbd_isosplit_set(NRF_USBD_Type * p_reg, nrf_usbd_isosplit_t split);
986
987 /**
988 * @brief Function for getting the isochronous buffer splitting configuration.
989 *
990 * This function gets the current isochronous buffer splitting configuration.
991 *
992 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
993 *
994 * @return Current configuration.
995 */
996 NRF_STATIC_INLINE nrf_usbd_isosplit_t nrf_usbd_isosplit_get(NRF_USBD_Type const * p_reg);
997
998 /**
999 * @brief Function for getting current frame counter.
1000 *
1001 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1002 *
1003 * @return Current frame counter.
1004 */
1005 NRF_STATIC_INLINE uint32_t nrf_usbd_framecntr_get(NRF_USBD_Type const * p_reg);
1006
1007 /**
1008 * @brief Function for entering into the USB low power mode.
1009 *
1010 * After this function is called, the clock source from the USBD is disconnected internally.
1011 * After this function is called, most of the USBD registers cannot be accessed anymore.
1012 *
1013 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1014 *
1015 * @sa nrf_usbd_lowpower_disable
1016 * @sa nrf_usbd_lowpower_check
1017 */
1018 NRF_STATIC_INLINE void nrf_usbd_lowpower_enable(NRF_USBD_Type * p_reg);
1019
1020 /**
1021 * @brief Function for exiting from the USB low power mode.
1022 *
1023 * After this function is called, the clock source for the USBD is connected internally.
1024 * The @ref NRF_USBD_EVENTCAUSE_WUREQ_MASK event will be generated and
1025 * then the USBD registers can be accessed.
1026 *
1027 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1028 *
1029 * @sa nrf_usbd_lowpower_enable
1030 * @sa nrf_usbd_lowpower_check
1031 */
1032 NRF_STATIC_INLINE void nrf_usbd_lowpower_disable(NRF_USBD_Type * p_reg);
1033
1034 /**
1035 * @brief Function for checking the state of the low power mode.
1036 *
1037 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1038 *
1039 * @retval true The USBD is in low power mode.
1040 * @retval false The USBD is not in low power mode.
1041 */
1042 NRF_STATIC_INLINE bool nrf_usbd_lowpower_check(NRF_USBD_Type const * p_reg);
1043
1044 /**
1045 * @brief Function for configuring ISO IN endpoint response to an IN token when no data is ready to be sent.
1046 *
1047 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1048 * @param[in] config Required configuration.
1049 */
1050 NRF_STATIC_INLINE void nrf_usbd_isoinconfig_set(NRF_USBD_Type * p_reg,
1051 nrf_usbd_isoinconfig_t config);
1052
1053 /**
1054 * @brief Function for getting the cofiguration of ISO IN endpoint response to an IN token when no data is ready to be sent.
1055 *
1056 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1057 *
1058 * @return Current configuration.
1059 */
1060 NRF_STATIC_INLINE nrf_usbd_isoinconfig_t nrf_usbd_isoinconfig_get(NRF_USBD_Type const * p_reg);
1061
1062 /**
1063 * @brief Function for configuring the EasyDMA channel.
1064 *
1065 * Configures EasyDMA for the transfer.
1066 *
1067 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1068 * @param[in] ep Endpoint identifier (with direction).
1069 * @param[in] ptr Pointer to the data.
1070 * @param[in] maxcnt Number of bytes to transfer.
1071 */
1072 NRF_STATIC_INLINE void nrf_usbd_ep_easydma_set(NRF_USBD_Type * p_reg,
1073 uint8_t ep,
1074 uint32_t ptr,
1075 uint32_t maxcnt);
1076
1077 /**
1078 * @brief Function for getting number of transferred bytes.
1079 *
1080 * This function gets the number of transferred bytes in the last transaction.
1081 *
1082 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
1083 * @param[in] ep Endpoint identifier.
1084 *
1085 * @return The content of the AMOUNT register.
1086 */
1087 NRF_STATIC_INLINE uint32_t nrf_usbd_ep_amount_get(NRF_USBD_Type const * p_reg, uint8_t ep);
1088
1089
1090 #ifndef NRF_DECLARE_ONLY
1091
nrf_usbd_enable(NRF_USBD_Type * p_reg)1092 NRF_STATIC_INLINE void nrf_usbd_enable(NRF_USBD_Type * p_reg)
1093 {
1094 p_reg->ENABLE = USBD_ENABLE_ENABLE_Enabled << USBD_ENABLE_ENABLE_Pos;
1095 (void) p_reg->ENABLE;
1096 }
1097
nrf_usbd_disable(NRF_USBD_Type * p_reg)1098 NRF_STATIC_INLINE void nrf_usbd_disable(NRF_USBD_Type * p_reg)
1099 {
1100 p_reg->ENABLE = USBD_ENABLE_ENABLE_Disabled << USBD_ENABLE_ENABLE_Pos;
1101 (void) p_reg->ENABLE;
1102 }
1103
nrf_usbd_eventcause_get(NRF_USBD_Type const * p_reg)1104 NRF_STATIC_INLINE uint32_t nrf_usbd_eventcause_get(NRF_USBD_Type const * p_reg)
1105 {
1106 return p_reg->EVENTCAUSE;
1107 }
1108
nrf_usbd_eventcause_clear(NRF_USBD_Type * p_reg,uint32_t flags)1109 NRF_STATIC_INLINE void nrf_usbd_eventcause_clear(NRF_USBD_Type * p_reg, uint32_t flags)
1110 {
1111 p_reg->EVENTCAUSE = flags;
1112 (void) p_reg->EVENTCAUSE;
1113 }
1114
nrf_usbd_eventcause_get_and_clear(NRF_USBD_Type * p_reg)1115 NRF_STATIC_INLINE uint32_t nrf_usbd_eventcause_get_and_clear(NRF_USBD_Type * p_reg)
1116 {
1117 uint32_t ret;
1118 ret = nrf_usbd_eventcause_get(p_reg);
1119 nrf_usbd_eventcause_clear(p_reg, ret);
1120 return ret;
1121 }
1122
nrf_usbd_halted_get(NRF_USBD_Type const * p_reg,uint8_t ep)1123 NRF_STATIC_INLINE uint32_t nrf_usbd_halted_get(NRF_USBD_Type const * p_reg, uint8_t ep)
1124 {
1125 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1126 if (NRF_USBD_EPIN_CHECK(ep))
1127 {
1128 return p_reg->HALTED.EPIN[epnr];
1129 }
1130 else
1131 {
1132 return p_reg->HALTED.EPOUT[epnr];
1133 }
1134 }
1135
nrf_usbd_ep_is_stall(NRF_USBD_Type const * p_reg,uint8_t ep)1136 NRF_STATIC_INLINE bool nrf_usbd_ep_is_stall(NRF_USBD_Type const * p_reg, uint8_t ep)
1137 {
1138 if (NRF_USBD_EPISO_CHECK(ep))
1139 return false;
1140 return USBD_HALTED_EPOUT_GETSTATUS_Halted == nrf_usbd_halted_get(p_reg, ep);
1141 }
1142
nrf_usbd_epstatus_get(NRF_USBD_Type const * p_reg)1143 NRF_STATIC_INLINE uint32_t nrf_usbd_epstatus_get(NRF_USBD_Type const * p_reg)
1144 {
1145 return p_reg->EPSTATUS;
1146 }
1147
nrf_usbd_epstatus_clear(NRF_USBD_Type * p_reg,uint32_t flags)1148 NRF_STATIC_INLINE void nrf_usbd_epstatus_clear(NRF_USBD_Type * p_reg, uint32_t flags)
1149 {
1150 p_reg->EPSTATUS = flags;
1151 }
1152
nrf_usbd_epstatus_get_and_clear(NRF_USBD_Type * p_reg)1153 NRF_STATIC_INLINE uint32_t nrf_usbd_epstatus_get_and_clear(NRF_USBD_Type * p_reg)
1154 {
1155 uint32_t ret;
1156 ret = nrf_usbd_epstatus_get(p_reg);
1157 nrf_usbd_epstatus_clear(p_reg, ret);
1158 return ret;
1159 }
1160
nrf_usbd_epdatastatus_get(NRF_USBD_Type const * p_reg)1161 NRF_STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get(NRF_USBD_Type const * p_reg)
1162 {
1163 return p_reg->EPDATASTATUS;
1164 }
1165
nrf_usbd_epdatastatus_clear(NRF_USBD_Type * p_reg,uint32_t flags)1166 NRF_STATIC_INLINE void nrf_usbd_epdatastatus_clear(NRF_USBD_Type * p_reg, uint32_t flags)
1167 {
1168 p_reg->EPDATASTATUS = flags;
1169 }
1170
nrf_usbd_epdatastatus_get_and_clear(NRF_USBD_Type * p_reg)1171 NRF_STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get_and_clear(NRF_USBD_Type * p_reg)
1172 {
1173 uint32_t ret;
1174 ret = nrf_usbd_epdatastatus_get(p_reg);
1175 nrf_usbd_epdatastatus_clear(p_reg, ret);
1176 return ret;
1177 }
1178
nrf_usbd_setup_bmrequesttype_get(NRF_USBD_Type const * p_reg)1179 NRF_STATIC_INLINE uint8_t nrf_usbd_setup_bmrequesttype_get(NRF_USBD_Type const * p_reg)
1180 {
1181 return (uint8_t)(p_reg->BMREQUESTTYPE);
1182 }
1183
nrf_usbd_setup_brequest_get(NRF_USBD_Type const * p_reg)1184 NRF_STATIC_INLINE uint8_t nrf_usbd_setup_brequest_get(NRF_USBD_Type const * p_reg)
1185 {
1186 return (uint8_t)(p_reg->BREQUEST);
1187 }
1188
nrf_usbd_setup_wvalue_get(NRF_USBD_Type const * p_reg)1189 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_wvalue_get(NRF_USBD_Type const * p_reg)
1190 {
1191 const uint16_t val = (uint16_t)p_reg->WVALUEL;
1192 return (uint16_t)(val | ((p_reg->WVALUEH) << 8));
1193 }
1194
nrf_usbd_setup_windex_get(NRF_USBD_Type const * p_reg)1195 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_windex_get(NRF_USBD_Type const * p_reg)
1196 {
1197 const uint16_t val = (uint16_t)p_reg->WINDEXL;
1198 return (uint16_t)(val | ((p_reg->WINDEXH) << 8));
1199 }
1200
nrf_usbd_setup_wlength_get(NRF_USBD_Type const * p_reg)1201 NRF_STATIC_INLINE uint16_t nrf_usbd_setup_wlength_get(NRF_USBD_Type const * p_reg)
1202 {
1203 const uint16_t val = (uint16_t)p_reg->WLENGTHL;
1204 return (uint16_t)(val | ((p_reg->WLENGTHH) << 8));
1205 }
1206
nrf_usbd_epout_size_get(NRF_USBD_Type const * p_reg,uint8_t ep)1207 NRF_STATIC_INLINE size_t nrf_usbd_epout_size_get(NRF_USBD_Type const * p_reg, uint8_t ep)
1208 {
1209 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1210 NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep));
1211 if (NRF_USBD_EPISO_CHECK(ep))
1212 {
1213 size_t size_isoout = p_reg->SIZE.ISOOUT;
1214 if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) ==
1215 (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos))
1216 {
1217 size_isoout = 0;
1218 }
1219 return size_isoout;
1220 }
1221
1222 return p_reg->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)];
1223 }
1224
nrf_usbd_episoout_size_get(NRF_USBD_Type const * p_reg,uint8_t ep)1225 NRF_STATIC_INLINE size_t nrf_usbd_episoout_size_get(NRF_USBD_Type const * p_reg, uint8_t ep)
1226 {
1227 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1228 NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep));
1229 NRFX_ASSERT(NRF_USBD_EPISO_CHECK(ep));
1230
1231 size_t size_isoout = p_reg->SIZE.ISOOUT;
1232 if (size_isoout == 0)
1233 {
1234 size_isoout = NRF_USBD_EPISOOUT_NO_DATA;
1235 }
1236 else if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) ==
1237 (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos))
1238 {
1239 size_isoout = 0;
1240 }
1241 return size_isoout;
1242 }
1243
nrf_usbd_epout_clear(NRF_USBD_Type * p_reg,uint8_t ep)1244 NRF_STATIC_INLINE void nrf_usbd_epout_clear(NRF_USBD_Type * p_reg, uint8_t ep)
1245 {
1246 NRFX_ASSERT(NRF_USBD_EPOUT_CHECK(ep));
1247 p_reg->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)] = 0;
1248 (void) p_reg->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)];
1249 }
1250
nrf_usbd_pullup_enable(NRF_USBD_Type * p_reg)1251 NRF_STATIC_INLINE void nrf_usbd_pullup_enable(NRF_USBD_Type * p_reg)
1252 {
1253 p_reg->USBPULLUP = USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos;
1254 (void) p_reg->USBPULLUP;
1255 }
1256
nrf_usbd_pullup_disable(NRF_USBD_Type * p_reg)1257 NRF_STATIC_INLINE void nrf_usbd_pullup_disable(NRF_USBD_Type * p_reg)
1258 {
1259 p_reg->USBPULLUP = USBD_USBPULLUP_CONNECT_Disabled << USBD_USBPULLUP_CONNECT_Pos;
1260 (void) p_reg->USBPULLUP;
1261 }
1262
nrf_usbd_pullup_check(NRF_USBD_Type const * p_reg)1263 NRF_STATIC_INLINE bool nrf_usbd_pullup_check(NRF_USBD_Type const * p_reg)
1264 {
1265 return p_reg->USBPULLUP == (USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos);
1266 }
1267
nrf_usbd_dpdmvalue_set(NRF_USBD_Type * p_reg,nrf_usbd_dpdmvalue_t val)1268 NRF_STATIC_INLINE void nrf_usbd_dpdmvalue_set(NRF_USBD_Type * p_reg, nrf_usbd_dpdmvalue_t val)
1269 {
1270 p_reg->DPDMVALUE = ((uint32_t)val) << USBD_DPDMVALUE_STATE_Pos;
1271 }
1272
nrf_usbd_dtoggle_set(NRF_USBD_Type * p_reg,uint8_t ep,nrf_usbd_dtoggle_t op)1273 NRF_STATIC_INLINE void nrf_usbd_dtoggle_set(NRF_USBD_Type * p_reg,
1274 uint8_t ep,
1275 nrf_usbd_dtoggle_t op)
1276 {
1277 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1278 NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep));
1279 p_reg->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos);
1280 p_reg->DTOGGLE = ep | ((uint32_t)op << USBD_DTOGGLE_VALUE_Pos);
1281 (void) p_reg->DTOGGLE;
1282 }
1283
nrf_usbd_dtoggle_get(NRF_USBD_Type * p_reg,uint8_t ep)1284 NRF_STATIC_INLINE nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(NRF_USBD_Type * p_reg, uint8_t ep)
1285 {
1286 uint32_t retval;
1287 /* Select the endpoint to read */
1288 p_reg->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos);
1289 retval = ((p_reg->DTOGGLE) & USBD_DTOGGLE_VALUE_Msk) >> USBD_DTOGGLE_VALUE_Pos;
1290 return (nrf_usbd_dtoggle_t)retval;
1291 }
1292
nrf_usbd_ep_enable_check(NRF_USBD_Type const * p_reg,uint8_t ep)1293 NRF_STATIC_INLINE bool nrf_usbd_ep_enable_check(NRF_USBD_Type const * p_reg, uint8_t ep)
1294 {
1295 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1296 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1297
1298 if (NRF_USBD_EPIN_CHECK(ep))
1299 {
1300 return 0 != (p_reg->EPINEN & (1UL << epnr));
1301 }
1302 else
1303 {
1304 return 0 != (p_reg->EPOUTEN & (1UL << epnr));
1305 }
1306 }
1307
nrf_usbd_ep_enable(NRF_USBD_Type * p_reg,uint8_t ep)1308 NRF_STATIC_INLINE void nrf_usbd_ep_enable(NRF_USBD_Type * p_reg, uint8_t ep)
1309 {
1310 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1311 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1312
1313 if (NRF_USBD_EPIN_CHECK(ep))
1314 {
1315 p_reg->EPINEN |= 1UL << epnr;
1316 }
1317 else
1318 {
1319 p_reg->EPOUTEN |= 1UL << epnr;
1320 }
1321 }
1322
nrf_usbd_ep_disable(NRF_USBD_Type * p_reg,uint8_t ep)1323 NRF_STATIC_INLINE void nrf_usbd_ep_disable(NRF_USBD_Type * p_reg, uint8_t ep)
1324 {
1325 NRFX_ASSERT(NRF_USBD_EP_VALIDATE(ep));
1326 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1327
1328 if (NRF_USBD_EPIN_CHECK(ep))
1329 {
1330 p_reg->EPINEN &= ~(1UL << epnr);
1331 }
1332 else
1333 {
1334 p_reg->EPOUTEN &= ~(1UL << epnr);
1335 }
1336 }
1337
nrf_usbd_ep_all_disable(NRF_USBD_Type * p_reg)1338 NRF_STATIC_INLINE void nrf_usbd_ep_all_disable(NRF_USBD_Type * p_reg)
1339 {
1340 p_reg->EPINEN = 0;
1341 p_reg->EPOUTEN = 0;
1342 }
1343
nrf_usbd_ep_default_config(NRF_USBD_Type * p_reg)1344 void nrf_usbd_ep_default_config(NRF_USBD_Type * p_reg)
1345 {
1346 p_reg->EPINEN = USBD_EPINEN_IN0_Enable << USBD_EPINEN_IN0_Pos;
1347 p_reg->EPOUTEN = USBD_EPOUTEN_OUT0_Enable << USBD_EPOUTEN_OUT0_Pos;
1348 }
1349
nrf_usbd_ep_stall(NRF_USBD_Type * p_reg,uint8_t ep)1350 NRF_STATIC_INLINE void nrf_usbd_ep_stall(NRF_USBD_Type * p_reg, uint8_t ep)
1351 {
1352 NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep));
1353 p_reg->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep;
1354 }
1355
nrf_usbd_ep_unstall(NRF_USBD_Type * p_reg,uint8_t ep)1356 NRF_STATIC_INLINE void nrf_usbd_ep_unstall(NRF_USBD_Type * p_reg, uint8_t ep)
1357 {
1358 NRFX_ASSERT(!NRF_USBD_EPISO_CHECK(ep));
1359 p_reg->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep;
1360 }
1361
nrf_usbd_isosplit_set(NRF_USBD_Type * p_reg,nrf_usbd_isosplit_t split)1362 NRF_STATIC_INLINE void nrf_usbd_isosplit_set(NRF_USBD_Type * p_reg, nrf_usbd_isosplit_t split)
1363 {
1364 p_reg->ISOSPLIT = split << USBD_ISOSPLIT_SPLIT_Pos;
1365 }
1366
nrf_usbd_isosplit_get(NRF_USBD_Type const * p_reg)1367 NRF_STATIC_INLINE nrf_usbd_isosplit_t nrf_usbd_isosplit_get(NRF_USBD_Type const * p_reg)
1368 {
1369 return (nrf_usbd_isosplit_t)
1370 (((p_reg->ISOSPLIT) & USBD_ISOSPLIT_SPLIT_Msk) >> USBD_ISOSPLIT_SPLIT_Pos);
1371 }
1372
nrf_usbd_framecntr_get(NRF_USBD_Type const * p_reg)1373 NRF_STATIC_INLINE uint32_t nrf_usbd_framecntr_get(NRF_USBD_Type const * p_reg)
1374 {
1375 return p_reg->FRAMECNTR;
1376 }
1377
nrf_usbd_lowpower_enable(NRF_USBD_Type * p_reg)1378 NRF_STATIC_INLINE void nrf_usbd_lowpower_enable(NRF_USBD_Type * p_reg)
1379 {
1380 p_reg->LOWPOWER = USBD_LOWPOWER_LOWPOWER_LowPower << USBD_LOWPOWER_LOWPOWER_Pos;
1381 (void) p_reg->LOWPOWER;
1382 }
1383
nrf_usbd_lowpower_disable(NRF_USBD_Type * p_reg)1384 NRF_STATIC_INLINE void nrf_usbd_lowpower_disable(NRF_USBD_Type * p_reg)
1385 {
1386 p_reg->LOWPOWER = USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos;
1387 (void) p_reg->LOWPOWER;
1388 }
1389
nrf_usbd_lowpower_check(NRF_USBD_Type const * p_reg)1390 NRF_STATIC_INLINE bool nrf_usbd_lowpower_check(NRF_USBD_Type const * p_reg)
1391 {
1392 return (p_reg->LOWPOWER != (USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos));
1393 }
1394
nrf_usbd_isoinconfig_set(NRF_USBD_Type * p_reg,nrf_usbd_isoinconfig_t config)1395 NRF_STATIC_INLINE void nrf_usbd_isoinconfig_set(NRF_USBD_Type * p_reg,
1396 nrf_usbd_isoinconfig_t config)
1397 {
1398 p_reg->ISOINCONFIG = ((uint32_t)config) << USBD_ISOINCONFIG_RESPONSE_Pos;
1399 }
1400
nrf_usbd_isoinconfig_get(NRF_USBD_Type const * p_reg)1401 NRF_STATIC_INLINE nrf_usbd_isoinconfig_t nrf_usbd_isoinconfig_get(NRF_USBD_Type const * p_reg)
1402 {
1403 return (nrf_usbd_isoinconfig_t) (((p_reg->ISOINCONFIG) & USBD_ISOINCONFIG_RESPONSE_Msk) >>
1404 USBD_ISOINCONFIG_RESPONSE_Pos);
1405 }
1406
nrf_usbd_ep_easydma_set(NRF_USBD_Type * p_reg,uint8_t ep,uint32_t ptr,uint32_t maxcnt)1407 NRF_STATIC_INLINE void nrf_usbd_ep_easydma_set(NRF_USBD_Type * p_reg,
1408 uint8_t ep,
1409 uint32_t ptr,
1410 uint32_t maxcnt)
1411 {
1412 if (NRF_USBD_EPIN_CHECK(ep))
1413 {
1414 if (NRF_USBD_EPISO_CHECK(ep))
1415 {
1416 p_reg->ISOIN.PTR = ptr;
1417 p_reg->ISOIN.MAXCNT = maxcnt;
1418 }
1419 else
1420 {
1421 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1422 p_reg->EPIN[epnr].PTR = ptr;
1423 p_reg->EPIN[epnr].MAXCNT = maxcnt;
1424 }
1425 }
1426 else
1427 {
1428 if (NRF_USBD_EPISO_CHECK(ep))
1429 {
1430 p_reg->ISOOUT.PTR = ptr;
1431 p_reg->ISOOUT.MAXCNT = maxcnt;
1432 }
1433 else
1434 {
1435 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1436 p_reg->EPOUT[epnr].PTR = ptr;
1437 p_reg->EPOUT[epnr].MAXCNT = maxcnt;
1438 }
1439 }
1440 }
1441
nrf_usbd_ep_amount_get(NRF_USBD_Type const * p_reg,uint8_t ep)1442 NRF_STATIC_INLINE uint32_t nrf_usbd_ep_amount_get(NRF_USBD_Type const * p_reg, uint8_t ep)
1443 {
1444 uint32_t ret;
1445
1446 if (NRF_USBD_EPIN_CHECK(ep))
1447 {
1448 if (NRF_USBD_EPISO_CHECK(ep))
1449 {
1450 ret = p_reg->ISOIN.AMOUNT;
1451 }
1452 else
1453 {
1454 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1455 ret = p_reg->EPIN[epnr].AMOUNT;
1456 }
1457 }
1458 else
1459 {
1460 if (NRF_USBD_EPISO_CHECK(ep))
1461 {
1462 ret = p_reg->ISOOUT.AMOUNT;
1463 }
1464 else
1465 {
1466 uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
1467 ret = p_reg->EPOUT[epnr].AMOUNT;
1468 }
1469 }
1470
1471 return ret;
1472 }
1473
1474 #endif /* NRF_DECLARE_ONLY */
1475
1476 /** @} */
1477
1478 #ifdef __cplusplus
1479 }
1480 #endif
1481
1482 #endif /* NRF_USBD_H__ */
1483