1 /*
2 * Copyright (c) 2022 - 2023, Nordic Semiconductor ASA
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice, this
11 * list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived from this
19 * software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <nrfx_example.h>
35 #include <saadc_examples_common.h>
36 #include <nrfx_saadc.h>
37
38 #define NRFX_LOG_MODULE EXAMPLE
39 #define NRFX_EXAMPLE_CONFIG_LOG_ENABLED 1
40 #define NRFX_EXAMPLE_CONFIG_LOG_LEVEL 3
41 #include <nrfx_log.h>
42
43 /**
44 * @defgroup nrfx_saadc_simple_non_blocking_example Simple non-blocking SAADC example
45 * @{
46 * @ingroup nrfx_saadc_examples
47 *
48 * @brief Example showing simple functionality of nrfx_saadc driver operating in the non-blocking mode.
49 *
50 * @details Application initializes nrfx_saadc driver and starts operating in the non-blocking mode.
51 * Program works as a simple state machine and starts in state @ref m_current_state == STATE_SINGLE_CONFIG.
52 * In state ( @ref m_current_state ):
53 * - STATE_SINGLE_CONFIG - SAADC driver is configured to work with only one channel ( @ref m_single_channel )
54 * in the non-blocking mode. @ref m_current_state is changed to STATE_SINGLE_SAMPLING afterward.
55 * - STATE_SINGLE_SAMPLING - sampling on a single channel ( @ref m_single_channel ) is performed specified
56 * number of times ( @ref SAMPLING_ITERATIONS ), after that @ref m_current_state is changed to STATE_MULTIPLE_CONFIG.
57 * - STATE_MULTIPLE_CONFIG - SAADC driver is configured to work with multiple channels ( @ref m_multiple_channels )
58 * in the non-blocking mode. @ref m_current_state is changed to STATE_MULTIPLE_SAMPLING afterward.
59 * - STATE_MULTIPLE_SAMPLING - sampling on multiple channels ( @ref m_multiple_channels ) is performed specified
60 * number of times ( @ref SAMPLING_ITERATIONS ).
61 * Before every sampling, calibration in a non-blocking manner is performed. It triggers @ref saadc_handler()
62 * where sampling is invoked by @p nrfx_saadc_mode_trigger() function.
63 *
64 * In the example there are GPIOTE tasks configured to toggle specified ( @ref m_out_pins ) loopback pins. Those tasks
65 * are being triggered between successive samplings to verify the functionality of the SAADC on the non-constant analog signal.
66 */
67
68 /** @brief Symbol specifying analog input to be observed by SAADC channel 0. */
69 #define CH0_AIN ANALOG_INPUT_TO_SAADC_AIN(ANALOG_INPUT_A0)
70
71 /** @brief Symbol specifying analog input to be observed by SAADC channel 1. */
72 #define CH1_AIN ANALOG_INPUT_TO_SAADC_AIN(ANALOG_INPUT_A1)
73
74 /** @brief Symbol specifying analog input to be observed by SAADC channel 2. */
75 #define CH2_AIN ANALOG_INPUT_TO_SAADC_AIN(ANALOG_INPUT_A2)
76
77 /** @brief Declaration of enum containing a set of states for the simple state machine. */
78 typedef enum
79 {
80 STATE_SINGLE_CONFIG, ///< Configure a single SAADC channel and set the SAADC driver in the simple mode.
81 STATE_SINGLE_SAMPLING, ///< Trigger SAADC sampling on the single channel.
82 STATE_MULTIPLE_CONFIG, ///< Configure multiple SAADC channels and set the SAADC driver in the simple mode.
83 STATE_MULTIPLE_SAMPLING, ///< Trigger SAADC sampling on multiple channels.
84 } state_t;
85
86 /** @brief SAADC channel configuration structure for single channel use. */
87 static const nrfx_saadc_channel_t m_single_channel = NRFX_SAADC_DEFAULT_CHANNEL_SE(CH0_AIN, 0);
88
89 /** @brief SAADC channel configuration structure for multiple channel use. */
90 static const nrfx_saadc_channel_t m_multiple_channels[] =
91 {
92 NRFX_SAADC_DEFAULT_CHANNEL_SE(CH0_AIN, 0),
93 NRFX_SAADC_DEFAULT_CHANNEL_SE(CH1_AIN, 1),
94 NRFX_SAADC_DEFAULT_CHANNEL_SE(CH2_AIN, 2)
95 };
96
97 /** @brief Symbol specifying numbers of multiple channels ( @ref m_multiple_channels) used by SAADC. */
98 #define CHANNEL_COUNT NRFX_ARRAY_SIZE(m_multiple_channels)
99
100 /** @brief Array specifying GPIO pins used to test the functionality of SAADC. */
101 static uint8_t m_out_pins[CHANNEL_COUNT] = {LOOPBACK_PIN_1B, LOOPBACK_PIN_2B, LOOPBACK_PIN_3B};
102
103 /** @brief Samples buffer defined with the size of @ref CHANNEL_COUNT symbol to store values from each channel ( @ref m_multiple_channels). */
104 static nrf_saadc_value_t m_samples_buffer[CHANNEL_COUNT];
105
106 /** @brief Symbol specifying the number of SAADC samplings to trigger. */
107 #define SAMPLING_ITERATIONS 8
108
109 /** @brief Enum with the current state of the simple state machine. */
110 static state_t m_current_state = STATE_SINGLE_CONFIG;
111
112 /** @brief Flag indicating that sampling on every specified channel is finished and buffer ( @ref m_samples_buffer ) is filled with samples. */
113 static bool m_saadc_ready;
114
115 /**
116 * @brief Function for handling SAADC driver events.
117 *
118 * @param[in] p_event Pointer to an SAADC driver event.
119 */
saadc_handler(nrfx_saadc_evt_t const * p_event)120 static void saadc_handler(nrfx_saadc_evt_t const * p_event)
121 {
122 nrfx_err_t status;
123 (void)status;
124
125 uint16_t samples_number;
126
127 switch (p_event->type)
128 {
129 case NRFX_SAADC_EVT_DONE:
130 NRFX_LOG_INFO("SAADC event: DONE");
131
132 samples_number = p_event->data.done.size;
133 for (uint16_t i = 0; i < samples_number; i++)
134 {
135 NRFX_LOG_INFO("[Sample %d] value == %d", i, p_event->data.done.p_buffer[i]);
136 }
137
138 m_saadc_ready = true;
139 break;
140
141 case NRFX_SAADC_EVT_CALIBRATEDONE:
142 NRFX_LOG_INFO("SAADC event: CALIBRATEDONE");
143 status = nrfx_saadc_mode_trigger();
144 NRFX_ASSERT(status == NRFX_SUCCESS);
145 break;
146
147 default:
148 break;
149 }
150 }
151
152 /**
153 * @brief Function for application main entry.
154 *
155 * @return Nothing.
156 */
main(void)157 int main(void)
158 {
159 nrfx_err_t status;
160 (void)status;
161
162 NRFX_EXAMPLE_LOG_INIT();
163 NRFX_LOG_INFO("Starting nrfx_saadc simple non-blocking example.");
164 NRFX_EXAMPLE_LOG_PROCESS();
165
166 status = nrfx_saadc_init(NRFX_SAADC_DEFAULT_CONFIG_IRQ_PRIORITY);
167 NRFX_ASSERT(status == NRFX_SUCCESS);
168
169 uint8_t i;
170 for (i = 0; i < CHANNEL_COUNT; i++)
171 {
172 gpiote_pin_toggle_task_setup(m_out_pins[i]);
173 }
174
175 #if defined(__ZEPHYR__)
176 IRQ_DIRECT_CONNECT(NRFX_IRQ_NUMBER_GET(NRF_SAADC), IRQ_PRIO_LOWEST, nrfx_saadc_irq_handler, 0);
177 #endif
178
179 uint32_t sampling_index = 0;
180 while (1)
181 {
182 switch (m_current_state)
183 {
184 case STATE_SINGLE_CONFIG:
185 NRFX_LOG_INFO("Single channel SAADC test.");
186
187 status = nrfx_saadc_channel_config(&m_single_channel);
188 NRFX_ASSERT(status == NRFX_SUCCESS);
189
190 uint32_t channels_mask = nrfx_saadc_channels_configured_get();
191 status = nrfx_saadc_simple_mode_set(channels_mask,
192 NRF_SAADC_RESOLUTION_8BIT,
193 NRF_SAADC_OVERSAMPLE_DISABLED,
194 saadc_handler);
195 NRFX_ASSERT(status == NRFX_SUCCESS);
196
197 status = nrfx_saadc_buffer_set(m_samples_buffer, 1);
198 NRFX_ASSERT(status == NRFX_SUCCESS);
199
200 m_saadc_ready = true;
201 m_current_state = STATE_SINGLE_SAMPLING;
202 break;
203
204 case STATE_SINGLE_SAMPLING:
205 if (m_saadc_ready && sampling_index < SAMPLING_ITERATIONS)
206 {
207 nrfx_gpiote_out_task_trigger(m_out_pins[0]);
208
209 m_saadc_ready = false;
210 status = nrfx_saadc_offset_calibrate(saadc_handler);
211 NRFX_ASSERT(status == NRFX_SUCCESS);
212
213 sampling_index++;
214 }
215 else if (m_saadc_ready && sampling_index == SAMPLING_ITERATIONS)
216 {
217 m_current_state = STATE_MULTIPLE_CONFIG;
218 sampling_index = 0;
219 }
220 break;
221
222 case STATE_MULTIPLE_CONFIG:
223 NRFX_LOG_INFO("Multiple channels SAADC test.");
224
225 status = nrfx_saadc_channels_config(m_multiple_channels, CHANNEL_COUNT);
226 NRFX_ASSERT(status == NRFX_SUCCESS);
227
228 channels_mask = nrfx_saadc_channels_configured_get();
229 status = nrfx_saadc_simple_mode_set(channels_mask,
230 NRF_SAADC_RESOLUTION_8BIT,
231 NRF_SAADC_OVERSAMPLE_DISABLED,
232 saadc_handler);
233 NRFX_ASSERT(status == NRFX_SUCCESS);
234
235 status = nrfx_saadc_buffer_set(m_samples_buffer, CHANNEL_COUNT);
236 NRFX_ASSERT(status == NRFX_SUCCESS);
237
238 m_current_state = STATE_MULTIPLE_SAMPLING;
239 break;
240
241 case STATE_MULTIPLE_SAMPLING:
242 if (m_saadc_ready && sampling_index < SAMPLING_ITERATIONS)
243 {
244 for (i = 0; i < CHANNEL_COUNT; i++)
245 {
246 nrfx_gpiote_out_task_trigger(m_out_pins[i]);
247 }
248
249 m_saadc_ready = false;
250 status = nrfx_saadc_offset_calibrate(saadc_handler);
251 NRFX_ASSERT(status == NRFX_SUCCESS);
252
253 sampling_index++;
254 }
255 break;
256
257 default:
258 break;
259 }
260 NRFX_EXAMPLE_LOG_PROCESS();
261 }
262 }
263
264 /** @} */
265