1 /*
2 * Copyright (c) 2023 -2024 Intel Corporation
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include "aon_share.h"
8 #include "aon_defs.h"
9 #include "../ish_dma.h"
10 /**
11 * Due to very limit AON memory size (typically total 8KB), we don't want to
12 * define and allocate whole 256 entries for aontask'IDT, that almost need 2KB
13 * (256 * 8), so we just defined the only needed IDT entries:
14 * AON_IDT_ENTRY_VEC_FIRST ~ AON_IDT_ENTRY_VEC_LAST
15 */
16 #define AON_IDT_ENTRY_VEC_FIRST SEDI_VEC_RESET_PREP
17 #define AON_IDT_ENTRY_VEC_LAST SEDI_VEC_PMU2IOAPIC
18
19 static void handle_reset(enum ish_pm_state pm_state);
20
21 /* ISR for PMU wakeup interrupt */
pmu_wakeup_isr(void)22 static void pmu_wakeup_isr(void)
23 {
24 /**
25 * Indicate completion of servicing the interrupt to IOAPIC first
26 * then indicate completion of servicing the interrupt to LAPIC
27 */
28 write32(SEDI_IOAPIC_EOI, SEDI_VEC_PMU2IOAPIC);
29 write32(LAPIC_EOI, 0x0);
30
31 __asm__ volatile ("iret;");
32
33 __builtin_unreachable();
34 }
35
36 /* ISR for reset prep interrupt */
reset_prep_isr(void)37 static void reset_prep_isr(void)
38 {
39 /* mask reset prep avail interrupt */
40 write32(PMU_RST_PREP, PMU_RST_PREP_INT_MASK);
41
42 /**
43 * Indicate completion of servicing the interrupt to IOAPIC first
44 * then indicate completion of servicing the interrupt to LAPIC
45 */
46 write32(SEDI_IOAPIC_EOI, SEDI_VEC_RESET_PREP);
47 write32(LAPIC_EOI, 0x0);
48
49 handle_reset(ISH_PM_STATE_RESET_PREP);
50
51 __builtin_unreachable();
52 }
53
54 /**
55 * Use a static data array for aon IDT, and setting IDT header for IDTR
56 * register
57 *
58 * Since on x86, the IDT entry index (count from 0) is also the interrupt
59 * vector number, for IDT header, the 'start' filed still need to point to
60 * the entry 0, and 'size' must count from entry 0.
61 */
62
63 static struct idt_entry aon_idt[AON_IDT_ENTRY_VEC_LAST -
64 AON_IDT_ENTRY_VEC_FIRST + 1];
65
66 static struct idt_header aon_idt_hdr = {
67
68 .limit = (sizeof(struct idt_entry) * (AON_IDT_ENTRY_VEC_LAST + 1)) - 1,
69 .entries = (struct idt_entry *)((uint32_t)&aon_idt -
70 (sizeof(struct idt_entry) * AON_IDT_ENTRY_VEC_FIRST))
71 };
72
73 /* TSS segment for aon task */
74 struct tss_entry aon_tss = {
75 .prev_task_link = 0,
76 .reserved1 = 0,
77 .esp0 = (uint8_t *)(CONFIG_AON_PERSISTENT_BASE - AON_SP_RESERVED),
78 /* entry 1 in LDT for data segment */
79 .ss0 = 0xc,
80 .reserved2 = 0,
81 .esp1 = 0,
82 .ss1 = 0,
83 .reserved3 = 0,
84 .esp2 = 0,
85 .ss2 = 0,
86 .reserved4 = 0,
87 .cr3 = 0,
88 /* task execute entry point */
89 .eip = (uint32_t)&ish_aon_main,
90 .eflags = 0,
91 .eax = 0,
92 .ecx = 0,
93 .edx = 0,
94 .ebx = 0,
95 /* set stack top pointer at the end of usable aon memory */
96 .esp = CONFIG_AON_PERSISTENT_BASE - AON_SP_RESERVED,
97 .ebp = CONFIG_AON_PERSISTENT_BASE - AON_SP_RESERVED,
98 .esi = 0,
99 .edi = 0,
100 /* entry 1 in LDT for data segment */
101 .es = 0xc,
102 .reserved5 = 0,
103 /* entry 0 in LDT for code segment */
104 .cs = 0x4,
105 .reserved6 = 0,
106 /* entry 1 in LDT for data segment */
107 .ss = 0xc,
108 .reserved7 = 0,
109 /* entry 1 in LDT for data segment */
110 .ds = 0xc,
111 .reserved8 = 0,
112 /* entry 1 in LDT for data segment */
113 .fs = 0xc,
114 .reserved9 = 0,
115 /* entry 1 in LDT for data segment */
116 .gs = 0xc,
117 .reserved10 = 0,
118 .ldt_seg_selector = 0,
119 .reserved11 = 0,
120 .trap_debug = 0,
121
122 /**
123 * TSS's limit specified as 0x67, to allow the task has permission to
124 * access I/O port using IN/OUT instructions,'iomap_base_addr' field
125 * must be greater than or equal to TSS' limit
126 * see 'I/O port permissions' on
127 * https://en.wikipedia.org/wiki/Task_state_segment
128 */
129 .iomap_base_addr = GDT_DESC_TSS_LIMIT
130 };
131
132 /**
133 * define code and data LDT segements for aontask
134 * code : base = 0x0, limit = 0xFFFFFFFF, Present = 1, DPL = 0
135 * data : base = 0x0, limit = 0xFFFFFFFF, Present = 1, DPL = 0
136 */
137 static ldt_entry aon_ldt[2] = {
138
139 /**
140 * entry 0 for code segment
141 * base: 0x0
142 * limit: 0xFFFFFFFF
143 * flag: 0x9B, Present = 1, DPL = 0, code segment
144 */
145 {
146 .dword_lo = GEN_GDT_DESC_LO(0x0, 0xFFFFFFFF,
147 GDT_DESC_CODE_FLAGS),
148
149 .dword_up = GEN_GDT_DESC_UP(0x0, 0xFFFFFFFF,
150 GDT_DESC_CODE_FLAGS)
151 },
152
153 /**
154 * entry 1 for data segment
155 * base: 0x0
156 * limit: 0xFFFFFFFF
157 * flag: 0x93, Present = 1, DPL = 0, data segment
158 */
159 {
160 .dword_lo = GEN_GDT_DESC_LO(0x0, 0xFFFFFFFF,
161 GDT_DESC_DATA_FLAGS),
162
163 .dword_up = GEN_GDT_DESC_UP(0x0, 0xFFFFFFFF,
164 GDT_DESC_DATA_FLAGS)
165 }
166 };
167
168
169 /* shared data structure between main FW and aon task */
170 struct ish_aon_share aon_share = {
171 .magic_id = AON_MAGIC_ID,
172 .error_count = 0,
173 .last_error = AON_SUCCESS,
174 .aon_tss = &aon_tss,
175 .aon_ldt = &aon_ldt[0],
176 .aon_ldt_size = sizeof(aon_ldt),
177 };
178
179 /* snowball structure */
180 #define SNOWBALL_BASE (CONFIG_AON_PERSISTENT_BASE + 256)
181
182 struct snowball_struct *snowball = (void *)SNOWBALL_BASE;
183
184
185 /* In IMR DDR, ISH FW image has a manifest header */
186 #define ISH_FW_IMAGE_MANIFEST_HEADER_SIZE (0x1000)
187
188 /* simple count based delay */
delay(uint32_t count)189 static inline void delay(uint32_t count)
190 {
191 while (count)
192 count--;
193 }
194
enable_dma_bcg(void)195 static inline void enable_dma_bcg(void)
196 {
197 write32(CCU_BCG_DMA, 1);
198 }
199
disable_dma_bcg(void)200 static inline void disable_dma_bcg(void)
201 {
202 write32(CCU_BCG_DMA, 0);
203 }
204
store_main_fw(void)205 static int store_main_fw(void)
206 {
207 int ret;
208 uint64_t imr_fw_addr;
209 uint64_t imr_fw_rw_addr;
210
211 imr_fw_addr = (((uint64_t)snowball->uma_base_hi << 32) +
212 snowball->uma_base_lo +
213 snowball->fw_offset +
214 ISH_FW_IMAGE_MANIFEST_HEADER_SIZE);
215
216 imr_fw_rw_addr = (imr_fw_addr
217 + aon_share.main_fw_rw_addr
218 - CONFIG_RAM_BASE);
219
220 /* disable BCG (Block Clock Gating) for DMA, DMA can be accessed now */
221 disable_dma_bcg();
222
223 /* store main FW's read and write data region to IMR/UMA DDR */
224 ret = ish_dma_copy(
225 PAGING_CHAN,
226 imr_fw_rw_addr,
227 aon_share.main_fw_rw_addr,
228 aon_share.main_fw_rw_size,
229 SRAM_TO_UMA);
230
231 /* enable BCG for DMA, DMA can't be accessed now */
232 enable_dma_bcg();
233
234 if (ret != DMA_RC_OK) {
235
236 aon_share.last_error = AON_ERROR_DMA_FAILED;
237 aon_share.error_count++;
238
239 return AON_ERROR_DMA_FAILED;
240 }
241
242 return AON_SUCCESS;
243 }
244
restore_main_fw(void)245 static int restore_main_fw(void)
246 {
247 int ret;
248 uint64_t imr_fw_addr;
249 uint64_t imr_fw_ro_addr;
250 uint64_t imr_fw_rw_addr;
251
252 imr_fw_addr = (((uint64_t)snowball->uma_base_hi << 32) +
253 snowball->uma_base_lo +
254 snowball->fw_offset +
255 ISH_FW_IMAGE_MANIFEST_HEADER_SIZE);
256
257 imr_fw_ro_addr = (imr_fw_addr
258 + aon_share.main_fw_ro_addr
259 - CONFIG_RAM_BASE);
260
261 imr_fw_rw_addr = (imr_fw_addr
262 + aon_share.main_fw_rw_addr
263 - CONFIG_RAM_BASE);
264
265 /* disable BCG (Block Clock Gating) for DMA, DMA can be accessed now */
266 disable_dma_bcg();
267
268 /* restore main FW's read only code and data region from IMR/UMA DDR */
269 ret = ish_dma_copy(
270 PAGING_CHAN,
271 aon_share.main_fw_ro_addr,
272 imr_fw_ro_addr,
273 aon_share.main_fw_ro_size,
274 UMA_TO_SRAM);
275
276 if (ret != DMA_RC_OK) {
277
278 aon_share.last_error = AON_ERROR_DMA_FAILED;
279 aon_share.error_count++;
280
281 /* enable BCG for DMA, DMA can't be accessed now */
282 enable_dma_bcg();
283
284 return AON_ERROR_DMA_FAILED;
285 }
286
287 /* restore main FW's read and write data region from IMR/UMA DDR */
288 ret = ish_dma_copy(
289 PAGING_CHAN,
290 aon_share.main_fw_rw_addr,
291 imr_fw_rw_addr,
292 aon_share.main_fw_rw_size,
293 UMA_TO_SRAM
294 );
295
296 /* enable BCG for DMA, DMA can't be accessed now */
297 enable_dma_bcg();
298
299 if (ret != DMA_RC_OK) {
300
301 aon_share.last_error = AON_ERROR_DMA_FAILED;
302 aon_share.error_count++;
303
304 return AON_ERROR_DMA_FAILED;
305 }
306
307 return AON_SUCCESS;
308 }
309
310 #define SRAM_POWER_OFF_BANKS CONFIG_RAM_BANKS
311
312 /* SRAM needs time to enter retention mode */
313 #define CYCLES_PER_US 100
314 #ifdef CONFIG_SOC_INTEL_ISH_5_8_0
315 #define SRAM_RETENTION_US_DELAY 20
316 #else
317 #define SRAM_RETENTION_US_DELAY 5
318 #endif
319 #define SRAM_RETENTION_CYCLES_DELAY (SRAM_RETENTION_US_DELAY * CYCLES_PER_US)
320
321 #ifdef CONFIG_SOC_INTEL_ISH_5_6_0
322 #define SRAM_WARM_UP_COUNTER (1000)
323 #define SRAM_CTRL_ERASE_SIZE_BIT 2
324 #define SRAM_CTRL_ERASE_BYTE_TO_QWORD 3
325 #define SRAM_BANK_ERASE_SIZE \
326 ((CONFIG_RAM_BANK_SIZE >> SRAM_CTRL_ERASE_BYTE_TO_QWORD) \
327 << SRAM_CTRL_ERASE_SIZE_BIT)
328 #define SRAM_TILES (CONFIG_RAM_BANKS * 2)
329
sram_toggle_tile(uint32_t tile_id,uint32_t enable)330 static uint32_t sram_toggle_tile(uint32_t tile_id, uint32_t enable)
331 {
332 uint32_t pmu_sram_val = read32(PMU_SRAM_PG_EN);
333 uint32_t pmu_toggle_bit = (1 << tile_id);
334 uint32_t u = 0;
335
336 if (enable && (pmu_sram_val & pmu_toggle_bit)) {
337 pmu_sram_val &= ~pmu_toggle_bit;
338 write32(PMU_SRAM_PG_EN, pmu_sram_val);
339 while (!(pmu_toggle_bit & read32(PMU_SRAM_PWR_STATUS)))
340 ;
341 for (u = 0; u < SRAM_WARM_UP_COUNTER; ++u)
342 __asm__ volatile ("nop");
343 } else if (!enable && (~pmu_sram_val & pmu_toggle_bit)) {
344 pmu_sram_val |= pmu_toggle_bit;
345 write32(PMU_SRAM_PG_EN, pmu_sram_val);
346 while ((pmu_toggle_bit & read32(PMU_SRAM_PWR_STATUS)))
347 ;
348 for (u = 0; u < SRAM_WARM_UP_COUNTER; ++u)
349 __asm__ volatile ("nop");
350 } else {
351 enable = 0;
352 }
353 return enable;
354 }
355
sram_toggle_bank(unsigned int bank_number,unsigned int enable)356 static void sram_toggle_bank(unsigned int bank_number, unsigned int enable)
357 {
358 uint32_t tile_id = bank_number << 1;
359
360 if (enable) {
361 if (sram_toggle_tile(tile_id, enable) &&
362 sram_toggle_tile((tile_id + 1), enable)) {
363 write32(ISH_SRAM_CTRL_ERASE_ADDR,
364 CONFIG_RAM_BASE +
365 bank_number * CONFIG_RAM_BANK_SIZE);
366 write32(ISH_SRAM_CTRL_ERASE_CTRL, (SRAM_BANK_ERASE_SIZE | 0x1));
367 while (read32(ISH_SRAM_CTRL_ERASE_CTRL) & 0x1)
368 ;
369 }
370 } else {
371 sram_toggle_tile(tile_id, enable);
372 sram_toggle_tile((tile_id + 1), enable);
373 }
374
375 write32(ISH_SRAM_CTRL_INTR, read32(ISH_SRAM_CTRL_INTR));
376 }
377
sram_power(int on)378 static void sram_power(int on)
379 {
380 int i;
381
382 for (i = 0; i < SRAM_POWER_OFF_BANKS; i++) {
383 sram_toggle_bank(i, on);
384 }
385 }
386 #else
387
388 /**
389 * check SRAM bank i power gated status in PMU_SRAM_PG_EN register
390 * 1: power gated 0: not power gated
391 */
392 #define BANK_PG_STATUS(i) (read32(PMU_SRAM_PG_EN) & (0x1 << (i)))
393
394 /* enable power gate of a SRAM bank */
395 #define BANK_PG_ENABLE(i) (write32(PMU_SRAM_PG_EN, (read32(PMU_SRAM_PG_EN) | (0x1 << (i)))))
396
397 /* disable power gate of a SRAM bank */
398 #define BANK_PG_DISABLE(i) \
399 (write32(PMU_SRAM_PG_EN, (read32(PMU_SRAM_PG_EN) & (~(0x1 << (i))))))
400
401 /**
402 * check SRAM bank i disabled status in ISH_SRAM_CTRL_CSFGR register
403 * 1: disabled 0: enabled
404 */
405 #define BANK_DISABLE_STATUS(i) (read32(ISH_SRAM_CTRL_CSFGR) & (0x1 << ((i) + 4)))
406
407 /* enable a SRAM bank in ISH_SRAM_CTRL_CSFGR register */
408 #define BANK_ENABLE(i) \
409 (write32(ISH_SRAM_CTRL_CSFGR, \
410 (read32(ISH_SRAM_CTRL_CSFGR) & (~(0x1 << ((i) + 4))))))
411
412 /* disable a SRAM bank in ISH_SRAM_CTRL_CSFGR register */
413 #define BANK_DISABLE(i) \
414 (write32(ISH_SRAM_CTRL_CSFGR, \
415 (read32(ISH_SRAM_CTRL_CSFGR) | (0x1 << ((i) + 4)))))
416
417 /* SRAM needs time to warm up after power on */
418 #define SRAM_WARM_UP_DELAY_CNT 10
419
sram_power(int on)420 static void sram_power(int on)
421 {
422 int i;
423 uint32_t bank_size;
424 uint32_t sram_addr;
425 uint32_t erase_cfg;
426
427 bank_size = CONFIG_RAM_BANK_SIZE;
428 sram_addr = CONFIG_RAM_BASE;
429
430 /**
431 * set erase size as one bank, erase control register using DWORD as
432 * size unit, and using 0 based length, i.e if set 0, will erase one
433 * DWORD
434 */
435 erase_cfg = ((bank_size >> 3) << 2) | 0x1;
436
437 for (i = 0; i < SRAM_POWER_OFF_BANKS; i++) {
438
439 if (on && (BANK_PG_STATUS(i))) {
440
441 /* power on and enable a bank */
442 BANK_PG_DISABLE(i);
443
444 delay(SRAM_WARM_UP_DELAY_CNT);
445
446 /* erase a bank */
447 write32(ISH_SRAM_CTRL_ERASE_ADDR, sram_addr + (i * bank_size));
448 write32(ISH_SRAM_CTRL_ERASE_CTRL, erase_cfg);
449
450 /* wait erase complete */
451 while (read32(ISH_SRAM_CTRL_ERASE_CTRL) & 0x1)
452 continue;
453
454 } else {
455 /* disable and power off a bank */
456 BANK_PG_ENABLE(i);
457 }
458
459 /**
460 * clear interrupt status register, not allow generate SRAM
461 * interrupts. Bringup already masked all SRAM interrupts when
462 * booting ISH
463 */
464 write32(ISH_SRAM_CTRL_INTR, 0xFFFFFFFF);
465
466 }
467 }
468 #endif
469
470 #define RTC_TICKS_IN_SECOND 32768
471
get_rtc(void)472 static uint64_t get_rtc(void)
473 {
474 uint32_t lower;
475 uint32_t upper;
476
477 do {
478 upper = read32(MISC_ISH_RTC_COUNTER1);
479 lower = read32(MISC_ISH_RTC_COUNTER0);
480 } while (upper != read32(MISC_ISH_RTC_COUNTER1));
481
482 return ((uint64_t)upper << 32) | lower;
483 }
484
is_ipapg_allowed(void)485 static int is_ipapg_allowed(void)
486 {
487 uint32_t power_ctrl_enabled, sw_power_req, power_ctrl_wake;
488 int system_power_state;
489
490 system_power_state = ((read32(PMU_PMC_HOST_RST_CTL) & PMU_HOST_RST_B) == 0);
491
492 write32(PMU_PMC_HOST_RST_CTL, read32(PMU_PMC_HOST_RST_CTL));
493
494 power_ctrl_enabled = read32(PMU_D3_STATUS);
495 sw_power_req = read32(PMU_SW_PG_REQ);
496 power_ctrl_wake = read32(PMU_PMC_PG_WAKE);
497
498 if (system_power_state)
499 power_ctrl_enabled |= PMU_PCE_PG_ALLOWED;
500
501 write32(PMU_INTERNAL_PCE, ((power_ctrl_enabled & PMU_PCE_SHADOW_MASK) |
502 PMU_PCE_CHANGE_DETECTED | PMU_PCE_CHANGE_MASK));
503
504 write32(PMU_SW_PG_REQ, (sw_power_req | PMU_SW_PG_REQ_B_RISE |
505 PMU_SW_PG_REQ_B_FALL));
506 write32(PMU_PMC_PG_WAKE, (power_ctrl_wake | PMU_PMC_PG_WAKE_RISE |
507 PMU_PMC_PG_WAKE_FALL));
508 write32(PMU_D3_STATUS, (read32(PMU_D3_STATUS) & (PMU_D0I3_ENABLE_MASK |
509 PMU_D3_BIT_SET | PMU_BME_BIT_SET)));
510
511 power_ctrl_enabled = read32(PMU_D3_STATUS);
512 sw_power_req = read32(PMU_SW_PG_REQ);
513 power_ctrl_wake = read32(PMU_PMC_PG_WAKE);
514
515 if (system_power_state) {
516 uint64_t rtc_start = get_rtc();
517 uint64_t rtc_end;
518
519 while (power_ctrl_wake & PMU_PMC_PG_WAKE_VAL) {
520 power_ctrl_wake = read32(PMU_PMC_PG_WAKE);
521 rtc_end = get_rtc();
522 if (rtc_end - rtc_start > RTC_TICKS_IN_SECOND)
523 break;
524 }
525 }
526
527 if (((power_ctrl_enabled & PMU_PCE_PG_ALLOWED) || system_power_state) &&
528 (((sw_power_req & PMU_SW_PG_REQ_B_VAL) == 0) ||
529 ((power_ctrl_enabled & PMU_PCE_PMCRE) == 0)))
530 return 1;
531 else
532 return 0;
533 }
534
535 #define NUMBER_IRQ_PINS 30
536 static uint32_t ioapic_rte[NUMBER_IRQ_PINS];
537
do_ipapg(void)538 static int do_ipapg(void)
539 {
540 int ret;
541 uint32_t rte_offset = SEDI_IOAPIC_IOREDTBL;
542
543 for (int pin = 0; pin < NUMBER_IRQ_PINS; pin++) {
544 write32(SEDI_IOAPIC_IDX, rte_offset + pin * 2);
545 ioapic_rte[pin] = read32(SEDI_IOAPIC_WDW);
546 }
547
548 ret = ipapg();
549
550 rte_offset = SEDI_IOAPIC_IOREDTBL;
551 for (int pin = 0; pin < NUMBER_IRQ_PINS; pin++) {
552 write32(SEDI_IOAPIC_IDX, rte_offset + pin * 2);
553 write32(SEDI_IOAPIC_WDW, ioapic_rte[pin]);
554 }
555
556 return ret;
557 }
558
set_vnnred_aoncg(void)559 static inline void set_vnnred_aoncg(void)
560 {
561 write32(PMU_VNNAON_RED, 1);
562 write32(CCU_AONCG_EN, 1);
563
564 write32(CCU_TCG_EN, 1);
565 write32(CCU_TCG_ENABLE, 0);
566 write32(CCU_BCG_ENABLE, 0);
567 }
568
clear_vnnred_aoncg(void)569 static inline void clear_vnnred_aoncg(void)
570 {
571 write32(PMU_VNNAON_RED, 0);
572 write32(CCU_AONCG_EN, 0);
573
574 write32(CCU_TCG_EN, 0);
575 write32(CCU_TCG_ENABLE, 1);
576 write32(CCU_BCG_ENABLE, 1);
577 }
578
579 #if (defined(CONFIG_SOC_INTEL_ISH_5_6_0) || defined(CONFIG_SOC_INTEL_ISH_5_8_0))
580 #define STRINGIFY(x) #x
581 #define SLINE(num) STRINGIFY(num)
582 #define RETENTION_EXIT_CYCLES_DELAY 5
583 #ifdef CONFIG_SOC_INTEL_ISH_5_8_0
584 #define SRAM_PG_BITS(i) (0x3 << (2 * i))
585 #define BANK_PWR_STATUS(i) (read32(PMU_SRAM_PWR_STATUS) & SRAM_PG_BITS(i))
586 #define BANK_DS_ENABLE(i) \
587 (write32(PMU_SRAM_DEEPSLEEP, read32(PMU_SRAM_DEEPSLEEP) | (0x3 << (2 * i))))
588
589 #define BANK_DS_DISABLE(i) \
590 (write32(PMU_SRAM_DEEPSLEEP, read32(PMU_SRAM_DEEPSLEEP) & ~(0x3 << (2 * i))))
591 #endif
592
593
sram_enter_sleep_mode(void)594 static void sram_enter_sleep_mode(void)
595 {
596 #if defined(CONFIG_SOC_INTEL_ISH_5_6_0)
597 uint32_t val, sum_mask, mask;
598
599 sum_mask = mask = 0x1;
600 val = read32(PMU_SRAM_DEEPSLEEP);
601 while (sum_mask <= CONFIG_RAM_BANK_TILE_MASK) {
602 if (!(val & mask)) {
603 write32(PMU_SRAM_DEEPSLEEP, val | sum_mask);
604 while (read32(PMU_SRAM_PWR_STATUS) & mask)
605 ;
606 }
607 mask <<= 1;
608 sum_mask += mask;
609 }
610 #else
611 for (int i = 0; i < SRAM_POWER_OFF_BANKS; i++) {
612 BANK_DS_ENABLE(i);
613 while (BANK_PWR_STATUS(i))
614 ;
615 }
616 #endif
617 }
618
sram_exit_sleep_mode(void)619 static void sram_exit_sleep_mode(void)
620 {
621 #if defined(CONFIG_SOC_INTEL_ISH_5_6_0)
622 uint32_t val, sum_mask, mask;
623
624 sum_mask = mask = 0x1;
625 val = read32(PMU_SRAM_DEEPSLEEP);
626 while (sum_mask <= CONFIG_RAM_BANK_TILE_MASK) {
627 if ((val & mask)) {
628 write32(PMU_SRAM_DEEPSLEEP, val & ~sum_mask);
629 while (!(read32(PMU_SRAM_PWR_STATUS) & mask))
630 ;
631 __asm__ volatile (
632 "movl $"SLINE(RETENTION_EXIT_CYCLES_DELAY)", %%ecx;"
633 "loop .;\n\t"
634 :
635 :
636 : "ecx"
637 );
638 }
639 mask <<= 1;
640 sum_mask += mask;
641 }
642 #else
643 for (int i = 0; i < SRAM_POWER_OFF_BANKS; i++) {
644 if (!BANK_PWR_STATUS(i)) {
645 BANK_DS_DISABLE(i);
646 delay(RETENTION_EXIT_CYCLES_DELAY);
647 while (!BANK_PWR_STATUS(i))
648 ;
649 }
650 }
651 #endif
652 }
653 #endif
654
handle_d0i2(void)655 static void handle_d0i2(void)
656 {
657 pg_exit_save_ctx();
658 aon_share.pg_exit = 0;
659
660 #if (defined(CONFIG_SOC_INTEL_ISH_5_6_0) || defined(CONFIG_SOC_INTEL_ISH_5_8_0))
661 sram_enter_sleep_mode();
662 #else
663 /* set main SRAM into retention mode*/
664 write32(PMU_LDO_CTRL, (PMU_LDO_ENABLE_BIT
665 | PMU_LDO_RETENTION_BIT));
666 #endif
667 /* delay some cycles before halt */
668 delay(SRAM_RETENTION_CYCLES_DELAY);
669
670 set_vnnred_aoncg();
671
672 if (is_ipapg_allowed()) {
673 uint32_t sram_cfg_reg;
674
675 sram_cfg_reg = read32(ISH_SRAM_CTRL_CSFGR);
676
677 aon_share.pg_exit = do_ipapg();
678
679 if (aon_share.pg_exit)
680 write32(ISH_SRAM_CTRL_CSFGR, sram_cfg_reg);
681 } else {
682 ish_mia_halt();
683 }
684
685 /* wakeup from PMU interrupt */
686
687 clear_vnnred_aoncg();
688
689 #if (defined(CONFIG_SOC_INTEL_ISH_5_6_0) || defined(CONFIG_SOC_INTEL_ISH_5_8_0))
690 sram_exit_sleep_mode();
691 #else
692 /* set main SRAM intto normal mode */
693 write32(PMU_LDO_CTRL, PMU_LDO_ENABLE_BIT);
694
695 /**
696 * poll LDO_READY status to make sure SRAM LDO is on
697 * (exited retention mode)
698 */
699 while (!(read32(PMU_LDO_CTRL) & PMU_LDO_READY_BIT))
700 continue;
701 #endif
702
703 if (read32(PMU_RST_PREP) & PMU_RST_PREP_AVAIL)
704 handle_reset(ISH_PM_STATE_RESET_PREP);
705
706 if (aon_share.pg_exit)
707 ish_dma_set_msb(PAGING_CHAN, aon_share.uma_msb,
708 aon_share.uma_msb);
709 }
710
handle_d0i3(void)711 static void handle_d0i3(void)
712 {
713 int ret;
714
715 pg_exit_save_ctx();
716 aon_share.pg_exit = 0;
717
718 /* store main FW 's context to IMR DDR from main SRAM */
719 ret = store_main_fw();
720
721 /* if store main FW failed, then switch back to main FW */
722 if (ret != AON_SUCCESS)
723 return;
724
725 /* power off main SRAM */
726 sram_power(0);
727
728 set_vnnred_aoncg();
729
730 if (is_ipapg_allowed()) {
731 uint32_t sram_cfg_reg;
732
733 sram_cfg_reg = read32(ISH_SRAM_CTRL_CSFGR);
734
735 aon_share.pg_exit = do_ipapg();
736
737 if (aon_share.pg_exit)
738 write32(ISH_SRAM_CTRL_CSFGR, sram_cfg_reg);
739 } else {
740 ish_mia_halt();
741 }
742
743 /* wakeup from PMU interrupt */
744
745 clear_vnnred_aoncg();
746
747 if (read32(PMU_RST_PREP) & PMU_RST_PREP_AVAIL)
748 handle_reset(ISH_PM_STATE_RESET_PREP);
749
750 /* power on main SRAM */
751 sram_power(1);
752
753 if (aon_share.pg_exit)
754 ish_dma_set_msb(PAGING_CHAN, aon_share.uma_msb,
755 aon_share.uma_msb);
756
757 /* restore main FW 's context to main SRAM from IMR DDR */
758 ret = restore_main_fw();
759
760 if (ret != AON_SUCCESS) {
761 /* we can't switch back to main FW now, reset ISH */
762 handle_reset(ISH_PM_STATE_RESET);
763 }
764 }
765
handle_d3(void)766 static void handle_d3(void)
767 {
768 /* handle D3 */
769 handle_reset(ISH_PM_STATE_RESET);
770 }
771
disable_csme_csrirq(void)772 static inline void disable_csme_csrirq(void)
773 {
774 write32(IPC_PIMR_CIM_SEC, 1);
775 }
776
handle_reset(enum ish_pm_state pm_state)777 static void handle_reset(enum ish_pm_state pm_state)
778 {
779 (void)(pm_state);
780
781 /* disable watch dog */
782 write32(WDT_CONTROL, (read32(WDT_CONTROL) & (~WDT_CONTROL_ENABLE_BIT)));
783
784 /* disable all gpio interrupts */
785 write32(ISH_GPIO_GRER, 0);
786 write32(ISH_GPIO_GFER, 0);
787 write32(ISH_GPIO_GIMR, 0);
788
789 /* disable CSME CSR irq */
790 disable_csme_csrirq();
791
792 while (1) {
793 /* clear ISH2HOST doorbell register */
794 write32(IPC_ISH2HOST_DOORBELL_ADDR, 0);
795
796 /* clear error register in MISC space */
797 write32(MISC_ISH_ECC_ERR_SRESP, 1);
798
799 /*
800 * Disable power gating of RF(Cache) and ROMs.
801 *
802 * Before switch to aon task, RF and ROMs are already
803 * power gated, so we need disable the power gating
804 * before reset to ROM, to make sure ROM code runs
805 * correctly.
806 */
807 write32(PMU_RF_ROM_PWR_CTRL, 0);
808
809 /* reset ISH minute-ia cpu core, will goto ISH ROM */
810 ish_mia_reset();
811
812 __builtin_unreachable();
813
814 ish_mia_halt();
815 }
816
817 }
818
handle_unknown_state(void)819 static void handle_unknown_state(void)
820 {
821 aon_share.last_error = AON_ERROR_NOT_SUPPORT_POWER_MODE;
822 aon_share.error_count++;
823
824 /* switch back to main FW */
825 }
826
ish_aon_main(void)827 void ish_aon_main(void)
828 {
829
830 /* set PMU wakeup interrupt gate using LDT code segment selector(0x4) */
831 aon_idt[AON_IDT_ENTRY_VEC_LAST -
832 AON_IDT_ENTRY_VEC_FIRST].dword_lo =
833 GEN_IDT_DESC_LO(&pmu_wakeup_isr, 0x4, IDT_DESC_FLAGS);
834
835 aon_idt[AON_IDT_ENTRY_VEC_LAST -
836 AON_IDT_ENTRY_VEC_FIRST].dword_up =
837 GEN_IDT_DESC_UP(&pmu_wakeup_isr, 0x4, IDT_DESC_FLAGS);
838
839 /*
840 * set reset prep interrupt gate using LDT code segment
841 * selector(0x4)
842 */
843 aon_idt[0].dword_lo = GEN_IDT_DESC_LO(&reset_prep_isr,
844 0x4, IDT_DESC_FLAGS);
845
846 aon_idt[0].dword_up = GEN_IDT_DESC_UP(&reset_prep_isr,
847 0x4, IDT_DESC_FLAGS);
848
849 while (1) {
850
851 /**
852 * will start to run from here when switched to aontask from
853 * the second time
854 */
855
856 /* save main FW's IDT and load aontask's IDT */
857 __asm__ volatile (
858 "sidtl %0;\n"
859 "lidtl %1;\n"
860 :
861 : "m" (aon_share.main_fw_idt_hdr),
862 "m" (aon_idt_hdr)
863 );
864
865 aon_share.last_error = AON_SUCCESS;
866
867 switch (aon_share.pm_state) {
868 case ISH_PM_STATE_D0I2:
869 handle_d0i2();
870 break;
871 case ISH_PM_STATE_D0I3:
872 handle_d0i3();
873 break;
874 case ISH_PM_STATE_D3:
875 handle_d3();
876 break;
877 case ISH_PM_STATE_RESET:
878 case ISH_PM_STATE_RESET_PREP:
879 handle_reset(aon_share.pm_state);
880 break;
881 default:
882 handle_unknown_state();
883 break;
884 }
885
886 /* check if D3 rising status */
887 if (read32(PMU_D3_STATUS) &
888 (PMU_D3_BIT_RISING_EDGE_STATUS | PMU_D3_BIT_SET)) {
889 if (!(aon_share.host_in_suspend)) {
890 aon_share.pm_state = ISH_PM_STATE_D3;
891 handle_d3();
892 }
893 }
894
895 /* restore main FW's IDT and switch back to main FW */
896 __asm__ volatile(
897 "lidtl %0;\n"
898 :
899 : "m" (aon_share.main_fw_idt_hdr)
900 );
901
902 if (aon_share.pg_exit) {
903 mainfw_gdt.entries[tr / sizeof(struct gdt_entry)]
904 .flags &= 0xfd;
905 pg_exit_restore_ctx();
906 }
907
908 __asm__ volatile ("iret;");
909 }
910 }
911