1 /*
2  * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include <stdint.h>
8 #include "esp_types.h"
9 #include "driver/adc.h"
10 #include "soc/efuse_periph.h"
11 #include "esp_err.h"
12 #include "assert.h"
13 #include "esp_adc_cal.h"
14 
15 /* ----------------------------- Configuration ------------------------------ */
16 #ifdef CONFIG_ADC_CAL_EFUSE_TP_ENABLE
17 #define EFUSE_TP_ENABLED        1
18 #else
19 #define EFUSE_TP_ENABLED        0
20 #endif
21 
22 #ifdef CONFIG_ADC_CAL_EFUSE_VREF_ENABLE
23 #define EFUSE_VREF_ENABLED      1
24 #else
25 #define EFUSE_VREF_ENABLED      0
26 #endif
27 
28 #ifdef CONFIG_ADC_CAL_LUT_ENABLE
29 #define LUT_ENABLED             1
30 #else
31 #define LUT_ENABLED             0
32 #endif
33 
34 /* ESP32s with both Two Point Values and Vref burned into eFuse are required to
35  * also also burn the EFUSE_BLK3_PART_RESERVE flag. A limited set of ESP32s
36  * (not available through regular sales channel) DO NOT have the
37  * EFUSE_BLK3_PART_RESERVE burned. Moreover, this set of ESP32s represents Vref
38  * in Two's Complement format. If this is the case, modify the preprocessor
39  * definitions below as follows...
40  * #define CHECK_BLK3_FLAG         0        //Do not check BLK3 flag as it is not burned
41  * #define VREF_FORMAT             1        //eFuse Vref is in Two's Complement format
42  */
43 #define CHECK_BLK3_FLAG         1
44 #define VREF_FORMAT             0
45 
46 /* ------------------------------ eFuse Access ----------------------------- */
47 #define BLK3_RESERVED_REG               EFUSE_BLK0_RDATA3_REG
48 
49 #define VREF_REG                        EFUSE_BLK0_RDATA4_REG
50 #define VREF_MASK                       0x1F
51 #define VREF_STEP_SIZE                  7
52 #define VREF_OFFSET                     1100
53 
54 #define TP_REG                          EFUSE_BLK3_RDATA3_REG
55 #define TP_LOW1_OFFSET                  278
56 #define TP_LOW2_OFFSET                  421
57 #define TP_LOW_MASK                     0x7F
58 #define TP_LOW_VOLTAGE                  150
59 #define TP_HIGH1_OFFSET                 3265
60 #define TP_HIGH2_OFFSET                 3406
61 #define TP_HIGH_MASK                    0x1FF
62 #define TP_HIGH_VOLTAGE                 850
63 #define TP_STEP_SIZE                    4
64 
65 /* ----------------------- Raw to Voltage Constants ------------------------- */
66 #define LIN_COEFF_A_SCALE               65536
67 #define LIN_COEFF_A_ROUND               (LIN_COEFF_A_SCALE/2)
68 
69 #define LUT_VREF_LOW                    1000
70 #define LUT_VREF_HIGH                   1200
71 #define LUT_ADC_STEP_SIZE               64
72 #define LUT_POINTS                      20
73 #define LUT_LOW_THRESH                  2880
74 #define LUT_HIGH_THRESH                 (LUT_LOW_THRESH + LUT_ADC_STEP_SIZE)
75 #define ADC_12_BIT_RES                  4096
76 
77 /* ------------------------ Characterization Constants ---------------------- */
78 static const uint32_t adc1_tp_atten_scale[4] = {65504, 86975, 120389, 224310};
79 static const uint32_t adc2_tp_atten_scale[4] = {65467, 86861, 120416, 224708};
80 static const uint32_t adc1_tp_atten_offset[4] = {0, 1, 27, 54};
81 static const uint32_t adc2_tp_atten_offset[4] = {0, 9, 26, 66};
82 
83 static const uint32_t adc1_vref_atten_scale[4] = {57431, 76236, 105481, 196602};
84 static const uint32_t adc2_vref_atten_scale[4] = {57236, 76175, 105678, 197170};
85 static const uint32_t adc1_vref_atten_offset[4] = {75, 78, 107, 142};
86 static const uint32_t adc2_vref_atten_offset[4] = {63, 66, 89, 128};
87 
88 //20 Point lookup tables, covering ADC readings from 2880 to 4096, step size of 64
89 static const uint32_t lut_adc1_low[LUT_POINTS] = {2240, 2297, 2352, 2405, 2457, 2512, 2564, 2616, 2664, 2709,
90                                                   2754, 2795, 2832, 2868, 2903, 2937, 2969, 3000, 3030, 3060};
91 static const uint32_t lut_adc1_high[LUT_POINTS] = {2667, 2706, 2745, 2780, 2813, 2844, 2873, 2901, 2928, 2956,
92                                                    2982, 3006, 3032, 3059, 3084, 3110, 3135, 3160, 3184, 3209};
93 static const uint32_t lut_adc2_low[LUT_POINTS] = {2238, 2293, 2347, 2399, 2451, 2507, 2561, 2613, 2662, 2710,
94                                                   2754, 2792, 2831, 2869, 2904, 2937, 2968, 2999, 3029, 3059};
95 static const uint32_t lut_adc2_high[LUT_POINTS] = {2657, 2698, 2738, 2774, 2807, 2838, 2867, 2894, 2921, 2946,
96                                                    2971, 2996, 3020, 3043, 3067, 3092, 3116, 3139, 3162, 3185};
97 
98 /* ----------------------- EFuse Access Functions --------------------------- */
check_efuse_vref(void)99 static bool check_efuse_vref(void)
100 {
101     //Check if Vref is burned in eFuse
102     return (REG_GET_FIELD(VREF_REG, EFUSE_RD_ADC_VREF) != 0) ? true : false;
103 }
104 
check_efuse_tp(void)105 static bool check_efuse_tp(void)
106 {
107     //Check if Two Point values are burned in eFuse
108     if (CHECK_BLK3_FLAG && (REG_GET_FIELD(BLK3_RESERVED_REG, EFUSE_RD_BLK3_PART_RESERVE) == 0)) {
109         return false;
110     }
111     //All TP cal values must be non zero
112     if ((REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_LOW) != 0) &&
113         (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_LOW) != 0) &&
114         (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_HIGH) != 0) &&
115         (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_HIGH) != 0)) {
116         return true;
117     } else {
118         return false;
119     }
120 }
121 
decode_bits(uint32_t bits,uint32_t mask,bool is_twos_compl)122 static inline int decode_bits(uint32_t bits, uint32_t mask, bool is_twos_compl)
123 {
124     int ret;
125     if (bits & (~(mask >> 1) & mask)) {      //Check sign bit (MSB of mask)
126         //Negative
127         if (is_twos_compl) {
128             ret = -(((~bits) + 1) & (mask >> 1));   //2's complement
129         } else {
130             ret = -(bits & (mask >> 1));    //Sign-magnitude
131         }
132     } else {
133         //Positive
134         ret = bits & (mask >> 1);
135     }
136     return ret;
137 }
138 
read_efuse_vref(void)139 static uint32_t read_efuse_vref(void)
140 {
141     //eFuse stores deviation from ideal reference voltage
142     uint32_t ret = VREF_OFFSET;       //Ideal vref
143     uint32_t bits = REG_GET_FIELD(VREF_REG, EFUSE_ADC_VREF);
144     ret += decode_bits(bits, VREF_MASK, VREF_FORMAT) * VREF_STEP_SIZE;
145     return ret;     //ADC Vref in mV
146 }
147 
read_efuse_tp_low(adc_unit_t adc_num)148 static uint32_t read_efuse_tp_low(adc_unit_t adc_num)
149 {
150     //ADC reading at 150mV stored in two's complement format
151     uint32_t ret;
152     uint32_t bits;
153 
154     if (adc_num == ADC_UNIT_1) {
155         ret = TP_LOW1_OFFSET;
156         bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_LOW);
157     } else {
158         ret = TP_LOW2_OFFSET;
159         bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_LOW);
160     }
161     ret += decode_bits(bits, TP_LOW_MASK, true) * TP_STEP_SIZE;
162     return ret;     //Reading of ADC at 150mV
163 }
164 
read_efuse_tp_high(adc_unit_t adc_num)165 static uint32_t read_efuse_tp_high(adc_unit_t adc_num)
166 {
167     //ADC reading at 850mV stored in two's complement format
168     uint32_t ret;
169     uint32_t bits;
170 
171     if (adc_num == ADC_UNIT_1) {
172         ret = TP_HIGH1_OFFSET;
173         bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_HIGH);
174     } else {
175         ret = TP_HIGH2_OFFSET;
176         bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_HIGH);
177     }
178     ret += decode_bits(bits, TP_HIGH_MASK, true) * TP_STEP_SIZE;
179     return ret;     //Reading of ADC at 850mV
180 }
181 
182 /* ----------------------- Characterization Functions ----------------------- */
characterize_using_two_point(adc_unit_t adc_num,adc_atten_t atten,uint32_t high,uint32_t low,uint32_t * coeff_a,uint32_t * coeff_b)183 static void characterize_using_two_point(adc_unit_t adc_num,
184                                          adc_atten_t atten,
185                                          uint32_t high,
186                                          uint32_t low,
187                                          uint32_t *coeff_a,
188                                          uint32_t *coeff_b)
189 {
190     const uint32_t *atten_scales;
191     const uint32_t *atten_offsets;
192 
193     if (adc_num == ADC_UNIT_1) { //Using ADC 1
194         atten_scales = adc1_tp_atten_scale;
195         atten_offsets = adc1_tp_atten_offset;
196     } else {    //Using ADC 2
197         atten_scales = adc2_tp_atten_scale;
198         atten_offsets = adc2_tp_atten_offset;
199     }
200     //Characterize ADC-Voltage curve as y = (coeff_a * x) + coeff_b
201     uint32_t delta_x = high - low;
202     uint32_t delta_v = TP_HIGH_VOLTAGE - TP_LOW_VOLTAGE;
203     //Where coeff_a = (delta_v/delta_x) * atten_scale
204     *coeff_a = (delta_v * atten_scales[atten] + (delta_x / 2)) / delta_x;   //+(delta_x/2) for rounding
205     //Where coeff_b = high_v - ((delta_v/delta_x) * high_x) + atten_offset
206     *coeff_b = TP_HIGH_VOLTAGE - ((delta_v * high + (delta_x / 2)) / delta_x) + atten_offsets[atten];
207 }
208 
characterize_using_vref(adc_unit_t adc_num,adc_atten_t atten,uint32_t vref,uint32_t * coeff_a,uint32_t * coeff_b)209 static void characterize_using_vref(adc_unit_t adc_num,
210                                     adc_atten_t atten,
211                                     uint32_t vref,
212                                     uint32_t *coeff_a,
213                                     uint32_t *coeff_b)
214 {
215     const uint32_t *atten_scales;
216     const uint32_t *atten_offsets;
217 
218     if (adc_num == ADC_UNIT_1) { //Using ADC 1
219         atten_scales = adc1_vref_atten_scale;
220         atten_offsets = adc1_vref_atten_offset;
221     } else {    //Using ADC 2
222         atten_scales = adc2_vref_atten_scale;
223         atten_offsets = adc2_vref_atten_offset;
224     }
225     //Characterize ADC-Voltage curve as y = (coeff_a * x) + coeff_b
226     //Where coeff_a = (vref/4096) * atten_scale
227     *coeff_a = (vref * atten_scales[atten]) / (ADC_12_BIT_RES);
228     *coeff_b = atten_offsets[atten];
229 }
230 
231 /* ------------------------ Conversion Functions --------------------------- */
calculate_voltage_linear(uint32_t adc_reading,uint32_t coeff_a,uint32_t coeff_b)232 static uint32_t calculate_voltage_linear(uint32_t adc_reading, uint32_t coeff_a, uint32_t coeff_b)
233 {
234     //Where voltage = coeff_a * adc_reading + coeff_b
235     return (((coeff_a * adc_reading) + LIN_COEFF_A_ROUND) / LIN_COEFF_A_SCALE) + coeff_b;
236 }
237 
238 //Only call when ADC reading is above threshold
calculate_voltage_lut(uint32_t adc,uint32_t vref,const uint32_t * low_vref_curve,const uint32_t * high_vref_curve)239 static uint32_t calculate_voltage_lut(uint32_t adc, uint32_t vref, const uint32_t *low_vref_curve, const uint32_t *high_vref_curve)
240 {
241     //Get index of lower bound points of LUT
242     uint32_t i = (adc - LUT_LOW_THRESH) / LUT_ADC_STEP_SIZE;
243 
244     //Let the X Axis be Vref, Y axis be ADC reading, and Z be voltage
245     int x2dist = LUT_VREF_HIGH - vref;                 //(x2 - x)
246     int x1dist = vref - LUT_VREF_LOW;                  //(x - x1)
247     int y2dist = ((i + 1) * LUT_ADC_STEP_SIZE) + LUT_LOW_THRESH - adc;  //(y2 - y)
248     int y1dist = adc - ((i * LUT_ADC_STEP_SIZE) + LUT_LOW_THRESH);        //(y - y1)
249 
250     //For points for bilinear interpolation
251     int q11 = low_vref_curve[i];                    //Lower bound point of low_vref_curve
252     int q12 = low_vref_curve[i + 1];                //Upper bound point of low_vref_curve
253     int q21 = high_vref_curve[i];                   //Lower bound point of high_vref_curve
254     int q22 = high_vref_curve[i + 1];               //Upper bound point of high_vref_curve
255 
256     //Bilinear interpolation
257     //Where z = 1/((x2-x1)*(y2-y1)) * ( (q11*x2dist*y2dist) + (q21*x1dist*y2dist) + (q12*x2dist*y1dist) + (q22*x1dist*y1dist) )
258     int voltage = (q11 * x2dist * y2dist) + (q21 * x1dist * y2dist) + (q12 * x2dist * y1dist) + (q22 * x1dist * y1dist);
259     voltage += ((LUT_VREF_HIGH - LUT_VREF_LOW) * LUT_ADC_STEP_SIZE) / 2; //Integer division rounding
260     voltage /= ((LUT_VREF_HIGH - LUT_VREF_LOW) * LUT_ADC_STEP_SIZE);    //Divide by ((x2-x1)*(y2-y1))
261     return (uint32_t)voltage;
262 }
263 
interpolate_two_points(uint32_t y1,uint32_t y2,uint32_t x_step,uint32_t x)264 static inline uint32_t interpolate_two_points(uint32_t y1, uint32_t y2, uint32_t x_step, uint32_t x)
265 {
266     //Interpolate between two points (x1,y1) (x2,y2) between 'lower' and 'upper' separated by 'step'
267     return ((y1 * x_step) + (y2 * x) - (y1 * x) + (x_step / 2)) / x_step;
268 }
269 
270 /* ------------------------- Public API ------------------------------------- */
esp_adc_cal_check_efuse(esp_adc_cal_value_t source)271 esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
272 {
273     if (source == ESP_ADC_CAL_VAL_EFUSE_TP) {
274         return (check_efuse_tp()) ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
275     } else if (source == ESP_ADC_CAL_VAL_EFUSE_VREF) {
276         return (check_efuse_vref()) ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
277     } else {
278         return ESP_ERR_INVALID_ARG;
279     }
280 }
281 
esp_adc_cal_characterize(adc_unit_t adc_num,adc_atten_t atten,adc_bits_width_t bit_width,uint32_t default_vref,esp_adc_cal_characteristics_t * chars)282 esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
283                                              adc_atten_t atten,
284                                              adc_bits_width_t bit_width,
285                                              uint32_t default_vref,
286                                              esp_adc_cal_characteristics_t *chars)
287 {
288     //Check parameters
289     assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2));
290     assert(chars != NULL);
291     assert(bit_width < ADC_WIDTH_MAX);
292 
293     //Check eFuse if enabled to do so
294     bool efuse_tp_present = check_efuse_tp();
295     bool efuse_vref_present = check_efuse_vref();
296     esp_adc_cal_value_t ret;
297 
298     if (efuse_tp_present && EFUSE_TP_ENABLED) {
299         //Characterize based on Two Point values
300         uint32_t high = read_efuse_tp_high(adc_num);
301         uint32_t low = read_efuse_tp_low(adc_num);
302         characterize_using_two_point(adc_num, atten, high, low, &chars->coeff_a, &chars->coeff_b);
303         ret = ESP_ADC_CAL_VAL_EFUSE_TP;
304     } else if (efuse_vref_present && EFUSE_VREF_ENABLED) {
305         //Characterize based on eFuse Vref
306         uint32_t vref = read_efuse_vref();
307         characterize_using_vref(adc_num, atten, vref, &chars->coeff_a, &chars->coeff_b);
308         ret = ESP_ADC_CAL_VAL_EFUSE_VREF;
309     } else {
310         //Characterized based on default Vref
311         characterize_using_vref(adc_num, atten, default_vref, &chars->coeff_a, &chars->coeff_b);
312         ret = ESP_ADC_CAL_VAL_DEFAULT_VREF;
313     }
314 
315     //Initialized remaining fields
316     chars->adc_num = adc_num;
317     chars->atten = atten;
318     chars->bit_width = bit_width;
319     chars->vref = (EFUSE_VREF_ENABLED && efuse_vref_present) ? read_efuse_vref() : default_vref;
320     //Initialize fields for lookup table if necessary
321     if (LUT_ENABLED && atten == ADC_ATTEN_DB_12) {
322         chars->low_curve = (adc_num == ADC_UNIT_1) ? lut_adc1_low : lut_adc2_low;
323         chars->high_curve = (adc_num == ADC_UNIT_1) ? lut_adc1_high : lut_adc2_high;
324     } else {
325         chars->low_curve = NULL;
326         chars->high_curve = NULL;
327     }
328     return ret;
329 }
330 
esp_adc_cal_raw_to_voltage(uint32_t adc_reading,const esp_adc_cal_characteristics_t * chars)331 uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
332 {
333     assert(chars != NULL);
334 
335     //Scale adc_rading if not 12 bits wide
336     adc_reading = (adc_reading << (ADC_WIDTH_BIT_12 - chars->bit_width));
337     if (adc_reading > ADC_12_BIT_RES - 1) {
338         adc_reading = ADC_12_BIT_RES - 1;    //Set to 12bit res max
339     }
340 
341     if (LUT_ENABLED && (chars->atten == ADC_ATTEN_DB_12) && (adc_reading >= LUT_LOW_THRESH)) {  //Check if in non-linear region
342         //Use lookup table to get voltage in non linear portion of ADC_ATTEN_DB_12
343         uint32_t lut_voltage = calculate_voltage_lut(adc_reading, chars->vref, chars->low_curve, chars->high_curve);
344         if (adc_reading <= LUT_HIGH_THRESH) {   //If ADC is transitioning from linear region to non-linear region
345             //Linearly interpolate between linear voltage and lut voltage
346             uint32_t linear_voltage = calculate_voltage_linear(adc_reading, chars->coeff_a, chars->coeff_b);
347             return interpolate_two_points(linear_voltage, lut_voltage, LUT_ADC_STEP_SIZE, (adc_reading - LUT_LOW_THRESH));
348         } else {
349             return lut_voltage;
350         }
351     } else {
352         return calculate_voltage_linear(adc_reading, chars->coeff_a, chars->coeff_b);
353     }
354 }
355