1.. _burn-key-cmd: 2 3Burn Key 4======== 5 6The ``espefuse.py burn_key`` command burns keys to eFuse blocks: 7 8.. list:: 9 10 :esp32: - `Secure Boot V1 <https://docs.espressif.com/projects/esp-idf/en/latest/{IDF_TARGET_PATH_NAME}/security/secure-boot-v1.html>`_ 11 - `Secure Boot V2 <https://docs.espressif.com/projects/esp-idf/en/latest/{IDF_TARGET_PATH_NAME}/security/secure-boot-v2.html>`_ 12 - `Flash Encryption <https://docs.espressif.com/projects/esp-idf/en/latest/{IDF_TARGET_PATH_NAME}/security/flash-encryption.html>`_ 13 - etc. 14 15Positional arguments: 16 17.. list:: 18 19 - ``block`` - Name of key block. 20 :esp32: - ``Keyfile``. It is a raw binary file. It must contain 256 bits of binary key if the coding scheme is ``None`` and 128 bits if ``3/4``. 21 :not esp32 and not esp32h2: - ``Keyfile``. It is a raw binary file. The length of binary key depends on the key purpose option. 22 :esp32h2: - ``Keyfile``. It is a raw binary file. The length of binary key depends on the key purpose option. For the ``ECDSA_KEY`` purpose use ``PEM`` file. 23 :not esp32: - ``Key purpose``. The purpose of this key. 24 25.. only:: esp32 26 27 It can be list of key blocks and keyfiles (like BLOCK1 file1.bin BLOCK2 file2.bin etc.). 28 29.. only:: not esp32 30 31 It can be list of key blocks and keyfiles and key purposes (like BLOCK_KEY1 file1.bin USER BLOCK_KEY2 file2.bin USER etc.). 32 33Optional arguments: 34 35.. list:: 36 37 :esp32: - ``--no-protect-key``. Disable default read and write protecting of the key. If this option is not set, once the key is flashed it can not be read back. 38 :not esp32: - ``--no-write-protect``. Disable write-protecting of the key. The key remains writable. The keys use the RS coding scheme that does not support post-write data changes. Forced write can damage RS encoding bits. The write-protecting of keypurposes does not depend on the option, it will be set anyway. 39 :not esp32: - ``--no-read-protect``. Disable read-protecting of the key. The key remains readable software. The key with keypurpose [USER, RESERVED and .._DIGEST] will remain readable anyway, but for the rest keypurposes the read-protection will be defined by this option (Read-protect by default). 40 - ``--force-write-always``. Write the eFuse key even if it looks like it is already been written, or is write protected. Note that this option can't disable write protection, or clear any bit which has already been set. 41 - ``--show-sensitive-info``. Show data to be burned (may expose sensitive data). Enabled if --debug is used. Use this option to see the byte order of the data being written. 42 43.. only:: esp32 44 45 {IDF_TARGET_NAME} supports keys: 46 47 * Secure boot key. Use ``secure_boot_v1`` or ``secure_boot_v2`` as block name. The key is placed in BLOCK2. 48 * Flash encryption key. Use ``flash_encryption`` as block name. The key is placed in BLOCK1. 49 50 Keys for ``flash_encryption`` and ``secure_boot_v1`` will be burned as read and write protected. The hardware will still have access to them. These keys are burned in reversed byte order. 51 52 Key for ``secure_boot_v2`` will be burned only as write protected. The key must be readable because the software need access to it. 53 54 .. warning:: 55 56 Do not use the names ``BLOCK1`` and ``BLOCK2`` to burn flash encryption and secure boot v2 keys because byte order will be incorrect and read protection will not meet security requirements. 57 58.. only:: not esp32 and not esp32c2 59 60 {IDF_TARGET_NAME} supports eFuse key purposes. This means that each eFuse block has a special eFuse field that indicates which key is in the eFuse block. During the burn operation this eFuse key purpose is burned as well with write protection (the ``--no-write-protect`` flag has no effect on this field). The {IDF_TARGET_NAME} chip supports the following key purposes: 61 62 .. list:: 63 64 - USER. 65 - RESERVED. 66 :esp32s2 or esp32s3: - XTS_AES_256_KEY_1. The first 256 bits of 512bit flash encryption key. 67 :esp32s2 or esp32s3: - XTS_AES_256_KEY_2. The second 256 bits of 512bit flash encryption key. 68 :esp32h2: - ECDSA_KEY. It can be ECDSA private keys based on NIST192p or NIST256p curve. The private key is extracted from the given file and written into a eFuse block with write and read protection enabled. This private key shall be used by ECDSA accelerator for the signing purpose. 69 - XTS_AES_128_KEY. 256 bit flash encryption key. 70 - HMAC_DOWN_ALL. 71 - HMAC_DOWN_JTAG. 72 - HMAC_DOWN_DIGITAL_SIGNATURE. 73 - HMAC_UP. 74 - SECURE_BOOT_DIGEST0. 1 secure boot key. 75 - SECURE_BOOT_DIGEST1. 2 secure boot key. 76 - SECURE_BOOT_DIGEST2. 3 secure boot key. 77 :esp32s2 or esp32s3: - XTS_AES_256_KEY. This is a virtual key purpose for flash encryption key. This allows you to write a whole 512-bit key into two blocks with ``XTS_AES_256_KEY_1`` and ``XTS_AES_256_KEY_2`` purposes without splitting the key file. 78 79.. only:: esp32h2 80 81 {IDF_TARGET_NAME} has the ECDSA accelerator for signature purposes and supports private keys based on the NIST192p or NIST256p curve. These two commands below can be used to generate such keys (``PEM`` file). The ``burn_key`` command with the ``ECDSA_KEY`` purpose takes the ``PEM`` file and writes the private key into a eFuse block. The key is written to the block in reverse byte order. 82 83 For NIST192p, the private key is 192 bits long, so 8 padding bytes ("0x00") are added. 84 85 .. code-block:: none 86 87 > espsecure.py generate_signing_key -v 2 -s ecdsa192 ecdsa192.pem 88 ECDSA NIST192p private key in PEM format written to ecdsa192.pem 89 90 .. code-block:: none 91 92 > espsecure.py generate_signing_key -v 2 -s ecdsa256 ecdsa256.pem 93 ECDSA NIST256p private key in PEM format written to ecdsa256.pem 94 95.. only:: esp32c2 96 97 {IDF_TARGET_NAME} has only one eFuse key block (256 bits long). It is block #3 - ``BLOCK_KEY0``. This block can have user, flash encryption, secure boot keys. This chip does not have any eFuse key purpose fields, but we use the key purpose option to distinguish between such keys. The key purpose option determines protection and byte order for key. 98 99 .. list:: 100 101 - USER 102 - XTS_AES_128_KEY. 256 bits flash encryption key. The secure boot key can not be used with this option. In addition, eFuse ``XTS_KEY_LENGTH_256`` is set to 1, which means that the flash encryption key is 256 bits long. 103 - XTS_AES_128_KEY_DERIVED_FROM_128_EFUSE_BITS. 128 bits flash encryption key. The 128 bits of this key will be burned to the low part of the eFuse block. These bits will be read protected. 104 - SECURE_BOOT_DIGEST. Secure boot key. The first 128 bits of key will be burned to the high part of the eFuse block. 105 106 {IDF_TARGET_NAME} can have in eFuse block the following combination of keys: 107 108 1. Both, Flash encryption (low 128 bits of eFuse block) and Secure boot key (high 128 bits of eFuse block). 109 2. only Flash encryption (low 128 bits of eFuse block), rest part of eFuse block is not possible to use in future. 110 3. only Flash encryption key (256 bits long), whole eFuse key block. 111 4. only Secure boot key (high 128 bits of eFuse block). 112 5. no keys, used for user purposes. Chip does not have security features. 113 114.. only:: not esp32 115 116 All keys will be burned with write protection if ``--no-write-protect`` is not used. 117 118 Only flash encryption key is read protected if ``--no-read-protect`` is not used. 119 120 All keys, except flash encryption, will be burned in direct byte order. The encryption key is written in reverse byte order for compatibility with encryption hardware. 121 122.. only:: esp32 123 124 Key Coding Scheme 125 ^^^^^^^^^^^^^^^^^ 126 127 When the ``None`` coding scheme is in use, keys are 256-bits (32 bytes) long. When 3/4 Coding Scheme is in use (``CODING_SCHEME`` eFuse has value 1 not 0), keys are 192-bits (24 bytes) long and an additional 64 bits of error correction data are also written. 128 espefuse v2.6 or newer supports the 3/4 Coding Scheme. The key file must be the appropriate length for the coding scheme currently in use. 129 130Unprotected Keys 131^^^^^^^^^^^^^^^^ 132 133By default, when an encryption key block is burned it is also read and write protected. 134 135.. only:: esp32 136 137 The ``--no-protect-key`` option will disable this behaviour (you can separately read or write protect the key later). 138 139.. only:: not esp32 140 141 The ``--no-read-protect`` and ``--no-write-protect`` options will disable this behaviour (you can separately read or write protect the key later). 142 143.. note:: 144 145 Leaving a key unprotected may compromise its use as a security feature. 146 147.. code-block:: none 148 149 espefuse.py burn_key secure_boot_v1 secure_boot_key_v1.bin 150 151.. only:: esp32 152 153 Note that the hardware flash encryption and secure boot v1 features require the key to be written to the eFuse block in reversed byte order, compared to the order used by the AES algorithm on the host. Using corresponding block name, the tool automatically reverses the bytes when writing. For this reason, an unprotected key will read back in the reverse order. 154 155Force Writing a Key 156^^^^^^^^^^^^^^^^^^^ 157 158Normally, a key will only be burned if the efuse block has not been previously written to. The ``--force-write-always`` option can be used to ignore this and try to burn the key anyhow. 159 160Note that this option is still limited by the eFuse hardware - hardware does not allow any eFuse bits to be cleared 1->0, and can not write anything to write protected eFuse blocks. 161 162Usage 163----- 164 165.. only:: esp32 166 167 .. code-block:: none 168 169 > espefuse.py burn_key flash_encryption 256bit_fe_key.bin 170 171 === Run "burn_key" command === 172 Sensitive data will be hidden (see --show-sensitive-info) 173 Burn keys to blocks: 174 - BLOCK1 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 175 Reversing the byte order 176 Disabling read to key block 177 Disabling write to key block 178 179 Burn keys in efuse blocks. 180 The key block will be read and write protected 181 182 Check all blocks for burn... 183 idx, BLOCK_NAME, Conclusion 184 [00] BLOCK0 is empty, will burn the new value 185 [01] BLOCK1 is empty, will burn the new value 186 . 187 This is an irreversible operation! 188 Type 'BURN' (all capitals) to continue. 189 BURN 190 BURN BLOCK1 - OK (write block == read block) 191 BURN BLOCK0 - OK (write block == read block) 192 Reading updated efuses... 193 Successful 194 195 .. code-block:: none 196 197 > espefuse.py summary 198 ... 199 BLOCK1 (BLOCK1): Flash encryption key 200 = ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? -/- 201 202 Byte order for flash encryption key is reversed. Content of flash encryption key file ("256bit_fe_key.bin"): 203 204 .. code-block:: none 205 206 0001 0203 0405 0607 0809 0a0b 0c0d 0e0f 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f 207 208 When the ``no protection`` option is used then you can see the burned key: 209 210 .. code-block:: none 211 212 > espefuse.py burn_key flash_encryption 256bit_fe_key.bin --no-protect-key 213 214 === Run "burn_key" command === 215 Sensitive data will be hidden (see --show-sensitive-info) 216 Burn keys to blocks: 217 - BLOCK1 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 218 Reversing the byte order 219 220 Key is left unprotected as per --no-protect-key argument. 221 Burn keys in efuse blocks. 222 The key block will left readable and writeable (due to --no-protect-key) 223 224 Check all blocks for burn... 225 idx, BLOCK_NAME, Conclusion 226 [01] BLOCK1 is empty, will burn the new value 227 . 228 This is an irreversible operation! 229 Type 'BURN' (all capitals) to continue. 230 BURN 231 BURN BLOCK1 - OK (write block == read block) 232 Reading updated efuses... 233 Successful 234 235 .. code-block:: none 236 237 > espefuse.py summary 238 ... 239 BLOCK1 (BLOCK1): Flash encryption key 240 = 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 R/W 241 242.. only:: esp32s2 or esp32s3 243 244 Burning XTS_AES_256_KEY: 245 246 The first 256 bit of the key goes to given BLOCK (here it is ``BLOCK_KEY0``) with key purpose = ``XTS_AES_256_KEY_1``. The last 256 bit of the key will be burned to the first free key block after BLOCK (here it is ``BLOCK_KEY1``) and set key purpose to ``XTS_AES_256_KEY_2`` for this block. 247 248 This example uses ``--no-read-protect`` to expose the byte order written into eFuse blocks. 249 250 Content of flash encryption key file (``512bits_0.bin``): 251 252 .. code-block:: none 253 254 0001 0203 0405 0607 0809 0a0b 0c0d 0e0f 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f 255 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 3637 3839 3a3b 3c3d 3e3f 256 257 .. code-block:: none 258 259 > espefuse.py burn_key BLOCK_KEY0 ~/esp/tests/efuse/512bits_0.bin XTS_AES_256_KEY --no-read-protect 260 261 === Run "burn_key" command === 262 Sensitive data will be hidden (see --show-sensitive-info) 263 Burn keys to blocks: 264 - BLOCK_KEY0 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 265 Reversing byte order for AES-XTS hardware peripheral 266 'KEY_PURPOSE_0': 'USER' -> 'XTS_AES_256_KEY_1'. 267 Disabling write to 'KEY_PURPOSE_0'. 268 Disabling write to key block 269 270 - BLOCK_KEY1 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 271 Reversing byte order for AES-XTS hardware peripheral 272 'KEY_PURPOSE_1': 'USER' -> 'XTS_AES_256_KEY_2'. 273 Disabling write to 'KEY_PURPOSE_1'. 274 Disabling write to key block 275 276 Keys will remain readable (due to --no-read-protect) 277 278 Check all blocks for burn... 279 idx, BLOCK_NAME, Conclusion 280 [00] BLOCK0 is empty, will burn the new value 281 [04] BLOCK_KEY0 is empty, will burn the new value 282 [05] BLOCK_KEY1 is empty, will burn the new value 283 . 284 This is an irreversible operation! 285 Type 'BURN' (all capitals) to continue. 286 BURN 287 BURN BLOCK5 - OK (write block == read block) 288 BURN BLOCK4 - OK (write block == read block) 289 BURN BLOCK0 - OK (write block == read block) 290 Reading updated efuses... 291 Successful 292 293 > espefuse.py summary 294 ... 295 KEY_PURPOSE_0 (BLOCK0) KEY0 purpose = XTS_AES_256_KEY_1 R/- (0x2) 296 KEY_PURPOSE_1 (BLOCK0) KEY1 purpose = XTS_AES_256_KEY_2 R/- (0x3) 297 ... 298 BLOCK_KEY0 (BLOCK4) 299 Purpose: XTS_AES_256_KEY_1 300 Encryption key0 or user data 301 = 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 R/- 302 BLOCK_KEY1 (BLOCK5) 303 Purpose: XTS_AES_256_KEY_2 304 Encryption key1 or user data 305 = 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 R/- 306 307.. only:: esp32c2 308 309 .. code-block:: none 310 311 > espefuse.py -c esp32c2 \ 312 burn_key_digest secure_images/ecdsa256_secure_boot_signing_key_v2.pem \ 313 burn_key BLOCK_KEY0 images/efuse/128bit_key.bin XTS_AES_128_KEY_DERIVED_FROM_128_EFUSE_BITS 314 315 === Run "burn_key_digest" command === 316 Sensitive data will be hidden (see --show-sensitive-info) 317 Burn keys to blocks: 318 - BLOCK_KEY0_HI_128 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 319 Disabling write to key block 320 321 322 Batch mode is enabled, the burn will be done at the end of the command. 323 324 === Run "burn_key" command === 325 Sensitive data will be hidden (see --show-sensitive-info) 326 Burn keys to blocks: 327 - BLOCK_KEY0_LOW_128 -> [?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??] 328 Reversing byte order for AES-XTS hardware peripheral 329 Disabling read to key block 330 Disabling write to key block 331 The same value for WR_DIS is already burned. Do not change the efuse. 332 333 Batch mode is enabled, the burn will be done at the end of the command. 334 335 Check all blocks for burn... 336 idx, BLOCK_NAME, Conclusion 337 [00] BLOCK0 is empty, will burn the new value 338 [03] BLOCK_KEY0 is empty, will burn the new value 339 . 340 This is an irreversible operation! 341 Type 'BURN' (all capitals) to continue. 342 BURN 343 BURN BLOCK3 - OK (write block == read block) 344 BURN BLOCK0 - OK (write block == read block) 345 Reading updated efuses... 346