1 /*
2 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/kernel.h>
8
9 #include <stdlib.h>
10 #include <assert.h>
11 #include <string.h>
12 #include <stdio.h>
13 #include "sdkconfig.h"
14 #include "esp_attr.h"
15 #include "esp_log.h"
16 #include "hal/mmu_ll.h"
17 #include "hal/mmu_hal.h"
18 #include "hal/cache_hal.h"
19 #include "soc/mmu.h"
20
21 #include "esp_private/esp_mmu_map_private.h"
22 #include "esp_mmu_map.h"
23 #include "esp_rom_spiflash.h"
24 #if CONFIG_SPIRAM
25 #include "esp_private/esp_psram_extram.h"
26 #include "esp_private/mmu_psram_flash.h"
27 #endif
28
29 #if CONFIG_IDF_TARGET_ESP32
30 #include "esp_private/esp_cache_esp32_private.h"
31 #endif
32
33 #include "esp_private/cache_utils.h"
34 #include "spi_flash_mmap.h"
35 #include "esp_heap_caps.h"
36
37 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
38 extern int _instruction_reserved_start;
39 extern int _instruction_reserved_end;
40 #endif
41
42 #if CONFIG_SPIRAM_RODATA
43 extern int _rodata_reserved_start;
44 extern int _rodata_reserved_end;
45 #endif
46
47 #if !CONFIG_SPI_FLASH_ROM_IMPL
48
49
50 typedef struct mmap_block_t {
51 uint32_t *vaddr_list;
52 int list_num;
53 } mmap_block_t;
54
55
spi_flash_mmap(size_t src_addr,size_t size,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)56 esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
57 const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
58 {
59 esp_err_t ret = ESP_FAIL;
60 mmu_mem_caps_t caps = 0;
61 void *ptr = NULL;
62 mmap_block_t *block = NULL;
63 uint32_t *vaddr_list = NULL;
64
65 block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
66 if (!block) {
67 ret = ESP_ERR_NO_MEM;
68 goto err;
69 }
70
71 vaddr_list = heap_caps_calloc(1, 1 * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
72 if (!vaddr_list) {
73 ret = ESP_ERR_NO_MEM;
74 goto err;
75 }
76
77 block->vaddr_list = vaddr_list;
78
79 if (memory == SPI_FLASH_MMAP_INST) {
80 caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
81 } else {
82 caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
83 }
84 ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
85 if (ret == ESP_OK) {
86 vaddr_list[0] = (uint32_t)ptr;
87 block->list_num = 1;
88
89 } else if (ret == ESP_ERR_INVALID_STATE) {
90 /**
91 * paddr region is mapped already,
92 * to keep `flash_mmap.c` original behaviour, we consider this as a valid behaviour.
93 * Set `list_num` to 0 so we don't need to call `esp_mmu_unmap` to this one, as `esp_mmu_map`
94 * doesn't really create a new handle.
95 */
96 block->list_num = 0;
97 } else {
98 goto err;
99 }
100
101 *out_ptr = ptr;
102 *out_handle = (uint32_t)block;
103
104 return ESP_OK;
105
106 err:
107 if (vaddr_list) {
108 k_free(vaddr_list);
109 }
110 if (block) {
111 k_free(block);
112 }
113 return ret;
114 }
115
116
s_find_non_contiguous_block_nums(const int * pages,int page_count)117 static int s_find_non_contiguous_block_nums(const int *pages, int page_count)
118 {
119 int nums = 1;
120 int last_end = pages[0] + 1;
121
122 for (int i = 1; i < page_count; i++) {
123 if (pages[i] != last_end) {
124 nums++;
125 }
126 last_end = pages[i] + 1;
127 }
128 return nums;
129 }
130
s_merge_contiguous_pages(const int * pages,uint32_t page_count,int block_nums,int (* out_blocks)[2])131 static void s_merge_contiguous_pages(const int *pages, uint32_t page_count, int block_nums, int (*out_blocks)[2])
132 {
133 uint32_t last_end = pages[0] + 1;
134 int new_array_id = 0;
135 out_blocks[new_array_id][0] = pages[0];
136 out_blocks[new_array_id][1] = 1;
137
138 for (int i = 1; i < page_count; i++) {
139
140 if (pages[i] != last_end) {
141 new_array_id += 1;
142 assert(new_array_id < block_nums);
143 out_blocks[new_array_id][0] = pages[i];
144 out_blocks[new_array_id][1] = 1;
145 } else {
146 out_blocks[new_array_id][1] += 1;
147 }
148
149 last_end = pages[i] + 1;
150 }
151 }
152
s_pages_to_bytes(int (* blocks)[2],int block_nums)153 static void s_pages_to_bytes(int (*blocks)[2], int block_nums)
154 {
155 for (int i = 0; i < block_nums; i++) {
156 blocks[i][0] = blocks[i][0] * CONFIG_MMU_PAGE_SIZE;
157 blocks[i][1] = blocks[i][1] * CONFIG_MMU_PAGE_SIZE;
158 }
159 }
160
spi_flash_mmap_pages(const int * pages,size_t page_count,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)161 esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
162 const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
163 {
164 esp_err_t ret = ESP_FAIL;
165 mmu_mem_caps_t caps = 0;
166 mmap_block_t *block = NULL;
167 uint32_t *vaddr_list = NULL;
168 int successful_cnt = 0;
169
170 const int block_num = s_find_non_contiguous_block_nums(pages, page_count);
171 int (*paddr_blocks)[2] = k_malloc(block_num * 2 * sizeof(int));
172
173 if (paddr_blocks == NULL) {
174 ret = ESP_ERR_NO_MEM;
175 goto err;
176 }
177
178 s_merge_contiguous_pages(pages, page_count, block_num, paddr_blocks);
179 s_pages_to_bytes(paddr_blocks, block_num);
180
181 block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
182 if (!block) {
183 ret = ESP_ERR_NO_MEM;
184 goto err;
185 }
186
187 vaddr_list = heap_caps_calloc(1, block_num * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
188 if (!vaddr_list) {
189 ret = ESP_ERR_NO_MEM;
190 goto err;
191 }
192
193 if (memory == SPI_FLASH_MMAP_INST) {
194 caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
195 } else {
196 caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
197 }
198 for (int i = 0; i < block_num; i++) {
199 void *ptr = NULL;
200 ret = esp_mmu_map(paddr_blocks[i][0], paddr_blocks[i][1], MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
201 if (ret == ESP_OK) {
202 vaddr_list[i] = (uint32_t)ptr;
203 successful_cnt++;
204 } else {
205 /**
206 * A note for `ret == ESP_ERR_INVALID_STATE`:
207 * If one of the `*pages` are mapped already, this means we can't find a
208 * consecutive vaddr block for these `*pages`
209 */
210 goto err;
211 }
212 vaddr_list[i] = (uint32_t)ptr;
213 }
214
215 block->vaddr_list = vaddr_list;
216 block->list_num = successful_cnt;
217
218 /**
219 * We get a contiguous vaddr block, but may contain multiple esp_mmu handles.
220 * The first handle vaddr is the start address of this contiguous vaddr block.
221 */
222 *out_ptr = (void *)vaddr_list[0];
223 *out_handle = (uint32_t)block;
224
225 k_free(paddr_blocks);
226 return ESP_OK;
227
228 err:
229 for (int i = 0; i < successful_cnt; i++) {
230 esp_mmu_unmap((void *)vaddr_list[i]);
231 }
232 if (vaddr_list) {
233 k_free(vaddr_list);
234 }
235 if (block) {
236 k_free(block);
237 }
238 if (paddr_blocks) {
239 k_free(paddr_blocks);
240 }
241 return ret;
242 }
243
244
spi_flash_munmap(spi_flash_mmap_handle_t handle)245 void spi_flash_munmap(spi_flash_mmap_handle_t handle)
246 {
247 esp_err_t ret = ESP_FAIL;
248 mmap_block_t *block = (void *)handle;
249
250 for (int i = 0; i < block->list_num; i++) {
251 ret = esp_mmu_unmap((void *)block->vaddr_list[i]);
252 if (ret == ESP_ERR_NOT_FOUND) {
253 assert(0 && "invalid handle, or handle already unmapped");
254 }
255 }
256
257 k_free(block->vaddr_list);
258 k_free(block);
259 }
260
261
spi_flash_mmap_dump(void)262 void spi_flash_mmap_dump(void)
263 {
264 esp_mmu_map_dump_mapped_blocks(stdout);
265 }
266
267
spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)268 uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
269 {
270 mmu_mem_caps_t caps = 0;
271 if (memory == SPI_FLASH_MMAP_INST) {
272 caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
273 } else {
274 caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
275 }
276
277 size_t len = 0;
278 esp_mmu_map_get_max_consecutive_free_block_size(caps, MMU_TARGET_FLASH0, &len);
279 return len / CONFIG_MMU_PAGE_SIZE;
280 }
281
spi_flash_phys2cache(size_t phys_offs,spi_flash_mmap_memory_t memory)282 const void * spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
283 {
284 esp_err_t ret = ESP_FAIL;
285 void *ptr = NULL;
286 mmu_target_t target = MMU_TARGET_FLASH0;
287
288 __attribute__((unused)) uint32_t phys_page = phys_offs / CONFIG_MMU_PAGE_SIZE;
289 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
290 if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
291 target = MMU_TARGET_PSRAM0;
292 phys_offs -= instruction_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
293 }
294 #endif
295
296 #if CONFIG_SPIRAM_RODATA
297 if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
298 target = MMU_TARGET_PSRAM0;
299 phys_offs -= rodata_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
300 }
301 #endif
302
303 mmu_vaddr_t type = (memory == SPI_FLASH_MMAP_DATA) ? MMU_VADDR_DATA : MMU_VADDR_INSTRUCTION;
304 ret = esp_mmu_paddr_to_vaddr(phys_offs, target, type, &ptr);
305 if (ret == ESP_ERR_NOT_FOUND) {
306 return NULL;
307 }
308 assert(ret == ESP_OK);
309 return (const void *)ptr;
310 }
311
is_page_mapped_in_cache(uint32_t phys_addr,const void ** out_ptr)312 static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_addr, const void **out_ptr)
313 {
314 *out_ptr = NULL;
315 mmu_mem_caps_t caps = 0;
316
317 esp_err_t err = esp_mmu_paddr_find_caps(phys_addr, &caps);
318 if (err == ESP_OK) {
319 // On ESP32, we will always flush all, so always return true, and don't care the vaddr
320 #if !CONFIG_IDF_TARGET_ESP32
321 uint32_t vaddr = 0;
322 if (caps & MMU_MEM_CAP_EXEC) {
323 mmu_hal_paddr_to_vaddr(0, phys_addr, MMU_TARGET_FLASH0, MMU_VADDR_INSTRUCTION, &vaddr);
324 } else {
325 mmu_hal_paddr_to_vaddr(0, phys_addr, MMU_TARGET_FLASH0, MMU_VADDR_DATA, &vaddr);
326 }
327 *out_ptr = (void *)vaddr;
328 #endif
329 return true;
330 }
331 return false;
332 }
333
334 /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
spi_flash_check_and_flush_cache(size_t start_addr,size_t length)335 IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
336 {
337 bool ret = false;
338 /* align start_addr & length to full MMU pages */
339 uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
340 length += (start_addr - page_start_addr);
341 length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
342 for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
343 if (addr >= g_rom_flashchip.chip_size) {
344 return false; /* invalid address */
345 }
346
347 const void *vaddr = NULL;
348 if (is_page_mapped_in_cache(addr, &vaddr)) {
349 #if CONFIG_IDF_TARGET_ESP32
350 cache_sync();
351 return true;
352 #else // CONFIG_IDF_TARGET_ESP32
353 if (vaddr != NULL) {
354 cache_hal_invalidate_addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
355 ret = true;
356 }
357 #endif // CONFIG_IDF_TARGET_ESP32
358
359 }
360 }
361 return ret;
362 }
363 #endif //!CONFIG_SPI_FLASH_ROM_IMPL
364
365 #if !CONFIG_SPI_FLASH_ROM_IMPL || CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
366 //The ROM implementation returns physical address of the PSRAM when the .text or .rodata is in the PSRAM.
367 //Always patch it when SPIRAM_FETCH_INSTRUCTIONS or SPIRAM_RODATA is set.
spi_flash_cache2phys(const void * cached)368 size_t spi_flash_cache2phys(const void *cached)
369 {
370 if (cached == NULL) {
371 return SPI_FLASH_CACHE2PHYS_FAIL;
372 }
373
374 esp_err_t ret = ESP_FAIL;
375 uint32_t paddr = 0;
376 mmu_target_t target = 0;
377
378 ret = esp_mmu_vaddr_to_paddr((void *)cached, &paddr, &target);
379 if (ret != ESP_OK) {
380 return SPI_FLASH_CACHE2PHYS_FAIL;
381 }
382
383 int offset = 0;
384 #if CONFIG_SPIRAM_RODATA
385 if ((uint32_t)cached >= (uint32_t)&_rodata_reserved_start && (uint32_t)cached <= (uint32_t)&_rodata_reserved_end) {
386 offset = rodata_flash2spiram_offset();
387 }
388 #endif
389 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
390 if ((uint32_t)cached >= (uint32_t)&_instruction_reserved_start && (uint32_t)cached <= (uint32_t)&_instruction_reserved_end) {
391 offset = instruction_flash2spiram_offset();
392 }
393 #endif
394
395 return paddr + offset * CONFIG_MMU_PAGE_SIZE;
396 }
397 #endif
398