1 /*
2 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <stdint.h>
8 #include <sys/cdefs.h>
9 #include <sys/param.h>
10 #include "sdkconfig.h"
11 #include "esp_attr.h"
12 #include "esp_log.h"
13 #include "esp_cpu.h"
14 #include "esp_private/esp_clk.h"
15 #include "esp_clk_internal.h"
16 #include "esp32c2/rom/ets_sys.h"
17 #include "esp32c2/rom/uart.h"
18 #include "esp32c2/rom/rtc.h"
19 #include "soc/system_reg.h"
20 #include "soc/soc.h"
21 #include "soc/rtc.h"
22 #include "soc/rtc_periph.h"
23 #include "hal/wdt_hal.h"
24 #include "esp_private/periph_ctrl.h"
25 #include "bootloader_clock.h"
26 #include "soc/syscon_reg.h"
27 #include "esp_rom_uart.h"
28
29 /* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
30 * Larger values increase startup delay. Smaller values may cause false positive
31 * detection (i.e. oscillator runs for a few cycles and then stops).
32 */
33 #define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
34
35 /* Indicates that this 32k oscillator gets input from external oscillator, rather
36 * than a crystal.
37 */
38 #define EXT_OSC_FLAG BIT(3)
39
40 /* This is almost the same as soc_rtc_slow_clk_src_t, except that we define
41 * an extra enum member for the external 32k oscillator.
42 * For convenience, lower 2 bits should correspond to soc_rtc_slow_clk_src_t values.
43 */
44 typedef enum {
45 SLOW_CLK_RTC = SOC_RTC_SLOW_CLK_SRC_RC_SLOW, //!< Internal 150 kHz RC oscillator
46 SLOW_CLK_8MD256 = SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256, //!< Internal 8 MHz RC oscillator, divided by 256
47 SLOW_CLK_32K_EXT_OSC = SOC_RTC_SLOW_CLK_SRC_OSC_SLOW | EXT_OSC_FLAG //!< External 32k oscillator connected to pin0
48 } slow_clk_sel_t;
49
50 static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
51 static __attribute__((unused)) void recalib_bbpll(void);
52
53 static const char *TAG = "clk";
54
55
esp_rtc_init(void)56 void esp_rtc_init(void)
57 {
58 #if CONFIG_ESP_SYSTEM_BBPLL_RECALIB
59 // In earlier version of ESP-IDF, the PLL provided by bootloader is not stable enough.
60 // Do calibration again here so that we can use better clock for the timing tuning.
61 recalib_bbpll();
62 #endif
63
64 #if !CONFIG_IDF_ENV_FPGA
65 rtc_config_t cfg = RTC_CONFIG_DEFAULT();
66 soc_reset_reason_t rst_reas;
67 rst_reas = esp_rom_get_reset_reason(0);
68 if (rst_reas == RESET_REASON_CHIP_POWER_ON) {
69 cfg.cali_ocode = 1;
70 }
71 rtc_init(cfg);
72 #endif
73 }
74
esp_clk_init(void)75 __attribute__((weak)) void esp_clk_init(void)
76 {
77 #if !CONFIG_IDF_ENV_FPGA
78 #ifndef CONFIG_XTAL_FREQ_AUTO
79 assert(rtc_clk_xtal_freq_get() == CONFIG_XTAL_FREQ);
80 #endif
81
82 bool rc_fast_d256_is_enabled = rtc_clk_8md256_enabled();
83 rtc_clk_8m_enable(true, rc_fast_d256_is_enabled);
84 rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
85 #endif
86
87 #ifdef CONFIG_BOOTLOADER_WDT_ENABLE
88 // WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
89 // If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
90 // Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec on 40MHz XTAL and 2.5 sec on 26MHz XTAL).
91 // This prevents excessive delay before resetting in case the supply voltage is drawdown.
92 // (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec 40MHz XTAL,
93 // or 11.72 sec on 26MHz XTAL).
94 wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
95 #ifdef CONFIG_XTAL_FREQ_26
96 uint32_t stage_timeout_ticks = (uint32_t)(2500ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
97 #else
98 uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
99 #endif
100 wdt_hal_write_protect_disable(&rtc_wdt_ctx);
101 wdt_hal_feed(&rtc_wdt_ctx);
102 //Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
103 wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
104 wdt_hal_write_protect_enable(&rtc_wdt_ctx);
105 #endif
106
107 #if defined(CONFIG_RTC_CLK_SRC_EXT_OSC)
108 select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
109 #elif defined(CONFIG_RTC_CLK_SRC_INT_8MD256)
110 select_rtc_slow_clk(SLOW_CLK_8MD256);
111 #else
112 select_rtc_slow_clk(SLOW_CLK_RTC);
113 #endif
114
115 #ifdef CONFIG_BOOTLOADER_WDT_ENABLE
116 // After changing a frequency WDT timeout needs to be set for new frequency.
117 stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
118 wdt_hal_write_protect_disable(&rtc_wdt_ctx);
119 wdt_hal_feed(&rtc_wdt_ctx);
120 wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
121 wdt_hal_write_protect_enable(&rtc_wdt_ctx);
122 #endif
123
124 rtc_cpu_freq_config_t old_config, new_config;
125 rtc_clk_cpu_freq_get_config(&old_config);
126 const uint32_t old_freq_mhz = old_config.freq_mhz;
127 const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
128
129 bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
130 assert(res);
131
132 // Wait for UART TX to finish, otherwise some UART output will be lost
133 // when switching APB frequency
134 esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
135
136 if (res) {
137 rtc_clk_cpu_freq_set_config(&new_config);
138 }
139
140 // Re calculate the ccount to make time calculation correct.
141 esp_cpu_set_cycle_count( (uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz );
142 }
143
select_rtc_slow_clk(slow_clk_sel_t slow_clk)144 static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
145 {
146 soc_rtc_slow_clk_src_t rtc_slow_clk_src = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
147 uint32_t cal_val = 0;
148 /* number of times to repeat external clock calibration
149 * before giving up and switching to the internal RC
150 */
151 int retry_ext_clk = 3;
152
153 do {
154 if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
155 /* external clock needs to be connected to PIN0 before it can
156 * be used. Here we use rtc_clk_cal function to count
157 * the number of ext clk cycles in the given number of ext clk
158 * cycles. If the ext clk has not started up, calibration
159 * will time out, returning 0.
160 */
161 ESP_EARLY_LOGD(TAG, "waiting for external clock by pin0 to start up");
162 rtc_clk_32k_enable_external();
163
164 // When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
165 if (SLOW_CLK_CAL_CYCLES > 0) {
166 cal_val = rtc_clk_cal(RTC_CAL_32K_OSC_SLOW, SLOW_CLK_CAL_CYCLES);
167 if (cal_val == 0) {
168 if (retry_ext_clk-- > 0) {
169 continue;
170 }
171 ESP_EARLY_LOGW(TAG, "external clock connected to pin0 not found, switching to internal 150 kHz oscillator");
172 rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
173 }
174 }
175 } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
176 rtc_clk_8m_enable(true, true);
177 }
178 rtc_clk_slow_src_set(rtc_slow_clk_src);
179
180 if (SLOW_CLK_CAL_CYCLES > 0) {
181 /* TODO: 32k XTAL oscillator has some frequency drift at startup.
182 * Improve calibration routine to wait until the frequency is stable.
183 */
184 cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
185 } else {
186 const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
187 cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
188 }
189 } while (cal_val == 0);
190 ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
191 esp_clk_slowclk_cal_set(cal_val);
192 }
193
194 /* This function is not exposed as an API at this point.
195 * All peripheral clocks are default enabled after chip is powered on.
196 * This function disables some peripheral clocks when cpu starts.
197 * These peripheral clocks are enabled when the peripherals are initialized
198 * and disabled when they are de-initialized.
199 */
esp_perip_clk_init(void)200 __attribute__((weak)) void esp_perip_clk_init(void)
201 {
202 uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
203 uint32_t common_perip_clk1 = 0;
204
205 soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
206
207 /* For reason that only reset CPU, do not disable the clocks
208 * that have been enabled before reset.
209 */
210 if (rst_reason == RESET_REASON_CPU0_MWDT0 || rst_reason == RESET_REASON_CPU0_SW ||
211 rst_reason == RESET_REASON_CPU0_RTC_WDT || rst_reason == RESET_REASON_CPU0_JTAG) {
212 common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG);
213 hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG);
214 wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG);
215 } else {
216 common_perip_clk = SYSTEM_SPI2_CLK_EN |
217 #if CONFIG_ESP_CONSOLE_UART_NUM != 0
218 SYSTEM_UART_CLK_EN |
219 #endif
220 #if CONFIG_ESP_CONSOLE_UART_NUM != 1
221 SYSTEM_UART1_CLK_EN |
222 #endif
223 SYSTEM_LEDC_CLK_EN |
224 SYSTEM_I2C_EXT0_CLK_EN |
225 SYSTEM_LEDC_CLK_EN;
226
227 common_perip_clk1 = 0;
228 hwcrypto_perip_clk = SYSTEM_CRYPTO_SHA_CLK_EN;
229 wifi_bt_sdio_clk = SYSTEM_WIFI_CLK_WIFI_EN |
230 SYSTEM_WIFI_CLK_BT_EN_M |
231 SYSTEM_WIFI_CLK_UNUSED_BIT5 |
232 SYSTEM_WIFI_CLK_UNUSED_BIT12;
233 }
234
235 //Reset the communication peripherals like I2C, SPI, UART and bring them to known state.
236 common_perip_clk |= SYSTEM_SPI2_CLK_EN |
237 #if CONFIG_ESP_CONSOLE_UART_NUM != 0
238 SYSTEM_UART_CLK_EN |
239 #endif
240 #if CONFIG_ESP_CONSOLE_UART_NUM != 1
241 SYSTEM_UART1_CLK_EN |
242 #endif
243 SYSTEM_I2C_EXT0_CLK_EN;
244 common_perip_clk1 = 0;
245
246 /* Disable some peripheral clocks. */
247 CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk);
248 SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk);
249
250 CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1);
251 SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1);
252
253 /* Disable hardware crypto clocks. */
254 CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
255 SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
256
257 /* Disable WiFi/BT/SDIO clocks. */
258 CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
259 SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN);
260
261 /* Set WiFi light sleep clock source to RTC slow clock */
262 REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0);
263 CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_XTAL32K | SYSTEM_LPCLK_SEL_XTAL | SYSTEM_LPCLK_SEL_8M | SYSTEM_LPCLK_SEL_RTC_SLOW);
264 SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW);
265
266 /* Enable RNG clock. */
267 periph_module_enable(PERIPH_RNG_MODULE);
268
269 /* Enable TimerGroup 0 clock to ensure its reference counter will never
270 * be decremented to 0 during normal operation and preventing it from
271 * being disabled.
272 * If the TimerGroup 0 clock is disabled and then reenabled, the watchdog
273 * registers (Flashboot protection included) will be reenabled, and some
274 * seconds later, will trigger an unintended reset.
275 */
276 periph_module_enable(PERIPH_TIMG0_MODULE);
277 }
278
279 // Workaround for bootloader not calibrated well issue.
280 // Placed in IRAM because disabling BBPLL may influence the cache
recalib_bbpll(void)281 static void IRAM_ATTR NOINLINE_ATTR recalib_bbpll(void)
282 {
283 rtc_cpu_freq_config_t old_config;
284 rtc_clk_cpu_freq_get_config(&old_config);
285
286 // There are two paths we arrive here: 1. CPU reset. 2. Other reset reasons.
287 // - For other reasons, the bootloader will set CPU source to BBPLL and enable it. But there are calibration issues.
288 // Turn off the BBPLL and do calibration again to fix the issue.
289 // - For CPU reset, the CPU source will be set to XTAL, while the BBPLL is kept to meet USB Serial JTAG's
290 // requirements. In this case, we don't touch BBPLL to avoid USJ disconnection.
291 if (old_config.source == SOC_CPU_CLK_SRC_PLL) {
292 rtc_clk_cpu_freq_set_xtal();
293 rtc_clk_cpu_freq_set_config(&old_config);
294 }
295 }
296