1 /*
2 * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <stdint.h>
8 #include <string.h>
9 #include <sys/param.h>
10 #include <sys/queue.h>
11 #include <inttypes.h>
12 #include "sdkconfig.h"
13 #include "esp_attr.h"
14 #include "esp_log.h"
15 #include "esp_check.h"
16 #include "esp_heap_caps.h"
17
18 #include "soc/soc_caps.h"
19 #include "hal/cache_types.h"
20 #include "hal/cache_hal.h"
21 #include "hal/cache_ll.h"
22 #include "hal/mmu_types.h"
23 #include "hal/mmu_hal.h"
24 #include "hal/mmu_ll.h"
25
26 #include "esp_private/cache_utils.h"
27 #include "esp_private/esp_cache_esp32_private.h"
28 #include "esp_private/esp_mmu_map_private.h"
29 #include "ext_mem_layout.h"
30 #include "esp_mmu_map.h"
31
32
33 //This is for size align
34 #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
35 //This is for vaddr align
36 #define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
37
38 //This flag indicates the memory region is merged, we don't care about it anymore
39 #define MEM_REGION_MERGED -1
40
41 /**
42 * We have some hw related tests for vaddr region capabilites
43 * Use this macro to disable paddr check as we need to reuse certain paddr blocks
44 */
45 #define ENABLE_PADDR_CHECK !ESP_MMAP_TEST_ALLOW_MAP_TO_MAPPED_PADDR
46
47 static DRAM_ATTR const char *TAG = "mmap";
48
49 /**
50 * @brief MMU Memory Mapping Driver
51 *
52 * Driver Backgrounds:
53 *
54 * --------------------------------------------------------------------------------------------------------
55 * Memory Pool |
56 * --------------------------------------------------------------------------------------------------------
57 * | Memory Region 0 | Memory Region 1 | ... |
58 * --------------------------------------------------------------------------------------------------------
59 * | Block 0 | Slot 0 | Block 1 | Block 2 | ... | Slot 1 (final slot) | ... |
60 * --------------------------------------------------------------------------------------------------------
61 *
62 * - A block is a piece of vaddr range that is dynamically mapped. Blocks are doubly linked:
63 * Block 0 <-> Block 1 <-> Block 2
64 * - A Slot is the vaddr range between 2 blocks.
65 */
66
67 /**
68 * Struct for a block
69 */
70 typedef struct mem_block_ {
71 uint32_t laddr_start; //linear address start of this block
72 uint32_t laddr_end; //linear address end of this block
73 intptr_t vaddr_start; //virtual address start of this block
74 intptr_t vaddr_end; //virtual address end of this block
75 size_t size; //size of this block, should be aligned to MMU page size
76 int caps; //caps of this block, `mmu_mem_caps_t`
77 uint32_t paddr_start; //physical address start of this block
78 uint32_t paddr_end; //physical address end of this block
79 mmu_target_t target; //physical target that this block is mapped to
80 TAILQ_ENTRY(mem_block_) entries; //link entry
81 } mem_block_t;
82
83 /**
84 * Struct for a memory region
85 */
86 typedef struct mem_region_ {
87 cache_bus_mask_t bus_id; //cache bus mask of this region
88 uint32_t start; //linear address start of this region
89 uint32_t end; //linear address end of this region
90 size_t region_size; //region size, in bytes
91 uint32_t free_head; //linear address free head of this region
92 size_t max_slot_size; //max slot size within this region
93 int caps; //caps of this region, `mmu_mem_caps_t`
94 mmu_target_t targets; //physical targets that this region is supported
95 TAILQ_HEAD(mem_block_head_, mem_block_) mem_block_head; //link head of allocated blocks within this region
96 } mem_region_t;
97
98 typedef struct {
99 /**
100 * number of memory regions that are available, after coalescing, this number should be smaller than or equal to `SOC_MMU_LINEAR_ADDRESS_REGION_NUM`
101 */
102 uint32_t num_regions;
103 /**
104 * This saves the available MMU linear address regions,
105 * after reserving flash .rodata and .text, and after coalescing.
106 * Only the first `num_regions` items are valid
107 */
108 mem_region_t mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM];
109 } mmu_ctx_t;
110
111
112 static mmu_ctx_t s_mmu_ctx;
113
114 #if ENABLE_PADDR_CHECK
115 static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
116 static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
117 #endif //#if ENABLE_PADDR_CHECK
118
119
120 #if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
s_reserve_irom_region(mem_region_t * hw_mem_regions,int region_nums)121 static void s_reserve_irom_region(mem_region_t *hw_mem_regions, int region_nums)
122 {
123 /**
124 * We follow the way how 1st bootloader load flash .text:
125 *
126 * - Now IBUS addresses (between `_instruction_reserved_start` and `_instruction_reserved_end`) are consecutive on all chips,
127 * we strongly rely on this to calculate the .text length
128 */
129 extern int _instruction_reserved_start;
130 extern int _instruction_reserved_end;
131 size_t irom_len_to_reserve = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
132 assert((mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_start)) == irom_len_to_reserve);
133
134 irom_len_to_reserve += (uint32_t)&_instruction_reserved_start - ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
135 irom_len_to_reserve = ALIGN_UP_BY(irom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
136 cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_instruction_reserved_start, irom_len_to_reserve);
137
138 for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
139 if (bus_mask & hw_mem_regions[i].bus_id) {
140 if (hw_mem_regions[i].region_size <= irom_len_to_reserve) {
141 hw_mem_regions[i].free_head = hw_mem_regions[i].end;
142 hw_mem_regions[i].max_slot_size = 0;
143 irom_len_to_reserve -= hw_mem_regions[i].region_size;
144 } else {
145 hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + irom_len_to_reserve;
146 hw_mem_regions[i].max_slot_size -= irom_len_to_reserve;
147 }
148 }
149 }
150 }
151
s_reserve_drom_region(mem_region_t * hw_mem_regions,int region_nums)152 static void s_reserve_drom_region(mem_region_t *hw_mem_regions, int region_nums)
153 {
154 /**
155 * Similarly, we follow the way how 1st bootloader load flash .rodata:
156 */
157 extern int _rodata_reserved_start;
158 extern int _rodata_reserved_end;
159 size_t drom_len_to_reserve = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
160 assert((mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_start)) == drom_len_to_reserve);
161
162 drom_len_to_reserve += (uint32_t)&_rodata_reserved_start - ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
163 drom_len_to_reserve = ALIGN_UP_BY(drom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
164 cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_rodata_reserved_start, drom_len_to_reserve);
165
166 for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
167 if (bus_mask & hw_mem_regions[i].bus_id) {
168 if (hw_mem_regions[i].region_size <= drom_len_to_reserve) {
169 hw_mem_regions[i].free_head = hw_mem_regions[i].end;
170 hw_mem_regions[i].max_slot_size = 0;
171 drom_len_to_reserve -= hw_mem_regions[i].region_size;
172 } else {
173 hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + drom_len_to_reserve;
174 hw_mem_regions[i].max_slot_size -= drom_len_to_reserve;
175 }
176 }
177 }
178 }
179 #endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
180
esp_mmu_map_init(void)181 void esp_mmu_map_init(void)
182 {
183 mem_region_t hw_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {};
184
185 for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
186 hw_mem_regions[i].start = g_mmu_mem_regions[i].start;
187 hw_mem_regions[i].end = g_mmu_mem_regions[i].end;
188 hw_mem_regions[i].region_size = g_mmu_mem_regions[i].size;
189 hw_mem_regions[i].max_slot_size = g_mmu_mem_regions[i].size;
190 hw_mem_regions[i].free_head = g_mmu_mem_regions[i].start;
191 hw_mem_regions[i].bus_id = g_mmu_mem_regions[i].bus_id;
192 hw_mem_regions[i].caps = g_mmu_mem_regions[i].caps;
193 hw_mem_regions[i].targets = g_mmu_mem_regions[i].targets;
194 #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
195 assert(__builtin_popcount(hw_mem_regions[i].bus_id) == 1);
196 #endif
197 assert(hw_mem_regions[i].region_size % CONFIG_MMU_PAGE_SIZE == 0);
198 }
199
200 #if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
201 //First reserve memory regions used for irom and drom, as we must follow the way how 1st bootloader load them
202 s_reserve_irom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
203 s_reserve_drom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
204 #endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
205
206 if (SOC_MMU_LINEAR_ADDRESS_REGION_NUM > 1) {
207 //Now we can coalesce adjacent regions
208 for (int i = 1; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
209 mem_region_t *a = &hw_mem_regions[i - 1];
210 mem_region_t *b = &hw_mem_regions[i];
211 if ((b->free_head == a->end) && (b->caps == a->caps) && (b->targets == a->targets)) {
212 a->caps = MEM_REGION_MERGED;
213 b->bus_id |= a->bus_id;
214 b->start = a->start;
215 b->region_size += a->region_size;
216 b->free_head = a->free_head;
217 b->max_slot_size += a->max_slot_size;
218 }
219 }
220 }
221
222 //Count the mem regions left after coalescing
223 uint32_t region_num = 0;
224 for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
225 if(hw_mem_regions[i].caps != MEM_REGION_MERGED) {
226 region_num++;
227 }
228 }
229 ESP_EARLY_LOGV(TAG, "after coalescing, %d regions are left", region_num);
230
231 //Initialise `s_mmu_ctx.mem_regions[]`, as we've done all static allocation, to prepare available virtual memory regions
232 uint32_t available_region_idx = 0;
233 s_mmu_ctx.num_regions = region_num;
234 for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
235 if (hw_mem_regions[i].caps == MEM_REGION_MERGED) {
236 continue;
237 }
238
239 memcpy(&s_mmu_ctx.mem_regions[available_region_idx], &hw_mem_regions[i], sizeof(mem_region_t));
240 available_region_idx++;
241 }
242
243 for (int i = 0; i < available_region_idx; i++) {
244 TAILQ_INIT(&s_mmu_ctx.mem_regions[i].mem_block_head);
245 }
246
247 assert(available_region_idx == region_num);
248 }
249
250
s_mem_caps_check(mmu_mem_caps_t caps)251 static esp_err_t s_mem_caps_check(mmu_mem_caps_t caps)
252 {
253 if (caps & MMU_MEM_CAP_EXEC) {
254 if ((caps & MMU_MEM_CAP_8BIT) || (caps & MMU_MEM_CAP_WRITE)) {
255 //None of the executable memory are expected to be 8-bit accessible or writable.
256 return ESP_ERR_INVALID_ARG;
257 }
258 caps |= MMU_MEM_CAP_32BIT;
259 }
260 return ESP_OK;
261 }
262
esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps,mmu_target_t target,size_t * out_len)263 esp_err_t esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps, mmu_target_t target, size_t *out_len)
264 {
265 ESP_RETURN_ON_FALSE(out_len, ESP_ERR_INVALID_ARG, TAG, "null pointer");
266 ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
267 *out_len = 0;
268
269 size_t max = 0;
270
271 for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
272 if (((s_mmu_ctx.mem_regions[i].caps & caps) == caps) && ((s_mmu_ctx.mem_regions[i].targets & target) == target)) {
273 if (s_mmu_ctx.mem_regions[i].max_slot_size > max) {
274 max = s_mmu_ctx.mem_regions[i].max_slot_size;
275 }
276 }
277 }
278
279 *out_len = max;
280
281 return ESP_OK;
282 }
283
284
s_find_available_region(mem_region_t * mem_regions,uint32_t region_nums,size_t size,mmu_mem_caps_t caps,mmu_target_t target)285 static int32_t s_find_available_region(mem_region_t *mem_regions, uint32_t region_nums, size_t size, mmu_mem_caps_t caps, mmu_target_t target)
286 {
287 int32_t found_region_id = -1;
288 for (int i = 0; i < region_nums; i++) {
289 if (((mem_regions[i].caps & caps) == caps) && ((mem_regions[i].targets & target) == target)) {
290 if (mem_regions[i].max_slot_size >= size) {
291 found_region_id = i;
292 break;
293 }
294 }
295 }
296 return found_region_id;
297 }
298
esp_mmu_map_reserve_block_with_caps(size_t size,mmu_mem_caps_t caps,mmu_target_t target,const void ** out_ptr)299 esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps, mmu_target_t target, const void **out_ptr)
300 {
301 ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
302 ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
303
304 size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
305 uint32_t laddr = 0;
306
307 int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
308 if (found_region_id == -1) {
309 ESP_EARLY_LOGE(TAG, "no such vaddr range");
310 return ESP_ERR_NOT_FOUND;
311 }
312
313 laddr = (uint32_t)s_mmu_ctx.mem_regions[found_region_id].free_head;
314 s_mmu_ctx.mem_regions[found_region_id].free_head += aligned_size;
315 s_mmu_ctx.mem_regions[found_region_id].max_slot_size -= aligned_size;
316 ESP_EARLY_LOGV(TAG, "found laddr is 0x%x", laddr);
317
318 uint32_t vaddr = 0;
319 if (caps & MMU_MEM_CAP_EXEC) {
320 vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION);
321 } else {
322 vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA);
323 }
324 *out_ptr = (void *)vaddr;
325
326 return ESP_OK;
327 }
328
esp_mmu_paddr_find_caps(const esp_paddr_t paddr,mmu_mem_caps_t * out_caps)329 IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_caps_t *out_caps)
330 {
331 mem_region_t *region = NULL;
332 mem_block_t *mem_block = NULL;
333 bool found = false;
334 mem_block_t *found_block = NULL;
335 if (out_caps == NULL) {
336 return ESP_ERR_INVALID_ARG;
337 }
338
339
340 for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
341 region = &s_mmu_ctx.mem_regions[i];
342
343 TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
344 if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
345 //we don't care the dummy_head and the dummy_tail
346 continue;
347 }
348
349 //now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
350 if (mem_block->paddr_start == paddr) {
351 found = true;
352 found_block = mem_block;
353 break;
354 }
355 }
356 }
357
358 if (!found) {
359 return ESP_ERR_NOT_FOUND;
360 }
361
362 *out_caps = found_block->caps;
363 return ESP_OK;
364 }
365
366
s_do_cache_invalidate(uint32_t vaddr_start,uint32_t size)367 static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start, uint32_t size)
368 {
369 #if CONFIG_IDF_TARGET_ESP32
370 /**
371 * On ESP32, due to hardware limitation, we don't have an
372 * easy way to sync between cache and external memory wrt
373 * certain range. So we do a full sync here
374 */
375 cache_sync();
376 #else //Other chips
377 cache_hal_invalidate_addr(vaddr_start, size);
378 #endif // CONFIG_IDF_TARGET_ESP32
379 }
380
s_do_mapping(mmu_target_t target,uint32_t vaddr_start,esp_paddr_t paddr_start,uint32_t size)381 static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
382 {
383 /**
384 * Disable Cache, after this function, involved code and data should be placed in internal RAM.
385 *
386 * @note we call this for now, but this will be refactored to move out of `spi_flash`
387 */
388 spi_flash_disable_interrupts_caches_and_other_cpu();
389
390 uint32_t actual_mapped_len = 0;
391 mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
392 #if (SOC_MMU_PERIPH_NUM == 2)
393 #if !CONFIG_FREERTOS_UNICORE
394 mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
395 #endif // #if !CONFIG_FREERTOS_UNICORE
396 #endif // #if (SOC_MMU_PERIPH_NUM == 2)
397
398 cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
399 cache_ll_l1_enable_bus(0, bus_mask);
400 #if !CONFIG_FREERTOS_UNICORE
401 bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
402 cache_ll_l1_enable_bus(1, bus_mask);
403 #endif
404
405 s_do_cache_invalidate(vaddr_start, size);
406
407 //enable Cache, after this function, internal RAM access is no longer mandatory
408 spi_flash_enable_interrupts_caches_and_other_cpu();
409
410 ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%"PRIx32, actual_mapped_len);
411 }
412
esp_mmu_map(esp_paddr_t paddr_start,size_t size,mmu_target_t target,mmu_mem_caps_t caps,int flags,void ** out_ptr)413 esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target, mmu_mem_caps_t caps, int flags, void **out_ptr)
414 {
415 esp_err_t ret = ESP_FAIL;
416 ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
417 #if !SOC_SPIRAM_SUPPORTED || CONFIG_IDF_TARGET_ESP32
418 ESP_RETURN_ON_FALSE(!(target & MMU_TARGET_PSRAM0), ESP_ERR_NOT_SUPPORTED, TAG, "PSRAM is not supported");
419 #endif
420 ESP_RETURN_ON_FALSE((paddr_start % CONFIG_MMU_PAGE_SIZE == 0), ESP_ERR_INVALID_ARG, TAG, "paddr must be rounded up to the nearest multiple of CONFIG_MMU_PAGE_SIZE");
421 ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
422
423 size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
424 int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
425 if (found_region_id == -1) {
426 ESP_EARLY_LOGE(TAG, "no such vaddr range");
427 return ESP_ERR_NOT_FOUND;
428 }
429
430 //Now we're sure we can find an available block inside a certain region
431 mem_region_t *found_region = &s_mmu_ctx.mem_regions[found_region_id];
432 mem_block_t *dummy_head = NULL;
433 mem_block_t *dummy_tail = NULL;
434 mem_block_t *new_block = NULL;
435
436 if (TAILQ_EMPTY(&found_region->mem_block_head)) {
437 dummy_head = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
438 ESP_GOTO_ON_FALSE(dummy_head, ESP_ERR_NO_MEM, err, TAG, "no mem");
439
440 dummy_head->laddr_start = found_region->free_head;
441 dummy_head->laddr_end = found_region->free_head;
442 //We don't care vaddr or paddr address for dummy head
443 dummy_head->size = 0;
444 dummy_head->caps = caps;
445 TAILQ_INSERT_HEAD(&found_region->mem_block_head, dummy_head, entries);
446
447 dummy_tail = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
448 ESP_GOTO_ON_FALSE(dummy_tail, ESP_ERR_NO_MEM, err, TAG, "no mem");
449
450 dummy_tail->laddr_start = found_region->end;
451 dummy_tail->laddr_end = found_region->end;
452 //We don't care vaddr or paddr address for dummy tail
453 dummy_tail->size = 0;
454 dummy_tail->caps = caps;
455 TAILQ_INSERT_TAIL(&found_region->mem_block_head, dummy_tail, entries);
456 }
457
458 //Check if paddr is overlapped
459 mem_block_t *mem_block = NULL;
460
461 #if ENABLE_PADDR_CHECK
462 bool is_enclosed = false;
463 bool is_overlapped = false;
464 bool allow_overlap = flags & ESP_MMU_MMAP_FLAG_PADDR_SHARED;
465
466 TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
467 if (target == mem_block->target) {
468 if ((s_is_enclosed(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
469 //the to-be-mapped paddr block is mapped already
470 is_enclosed = true;
471 break;
472 }
473
474 if (!allow_overlap && (s_is_overlapped(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
475 is_overlapped = true;
476 break;
477 }
478 }
479 }
480
481 if (is_enclosed) {
482 ESP_LOGW(TAG, "paddr block is mapped already, vaddr_start: %p, size: 0x%x", (void *)mem_block->vaddr_start, mem_block->size);
483 *out_ptr = (void *)mem_block->vaddr_start;
484 return ESP_ERR_INVALID_STATE;
485 }
486
487 if (!allow_overlap && is_overlapped) {
488 ESP_LOGE(TAG, "paddr block is overlapped with an already mapped paddr block");
489 return ESP_ERR_INVALID_ARG;
490 }
491 #endif //#if ENABLE_PADDR_CHECK
492
493 new_block = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
494 ESP_GOTO_ON_FALSE(new_block, ESP_ERR_NO_MEM, err, TAG, "no mem");
495
496 //Reserve this block as it'll be mapped
497 bool found = false;
498 // Get the end address of the dummy_head block, which is always first block on the list
499 uint32_t last_end = TAILQ_FIRST(&found_region->mem_block_head)->laddr_end;
500 size_t slot_len = 0;
501 size_t max_slot_len = 0;
502 mem_block_t *found_block = NULL; //This stands for the block we found, whose slot between its prior block is where we will insert the new block to
503
504 TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
505 slot_len = mem_block->laddr_start - last_end;
506
507 if (!found) {
508 if (slot_len >= aligned_size) {
509 //Found it
510 found = true;
511 found_block = mem_block;
512 slot_len -= aligned_size;
513 new_block->laddr_start = last_end;
514 }
515 }
516
517 max_slot_len = (slot_len > max_slot_len) ? slot_len : max_slot_len;
518 last_end = mem_block->laddr_end;
519 }
520
521 assert(found);
522 //insert the to-be-mapped new block to the list
523 TAILQ_INSERT_BEFORE(found_block, new_block, entries);
524
525 //Finally, we update the max_slot_size
526 found_region->max_slot_size = max_slot_len;
527
528 //Now we fill others according to the found `new_block->laddr_start`
529 new_block->laddr_end = new_block->laddr_start + aligned_size;
530 new_block->size = aligned_size;
531 new_block->caps = caps;
532 if (caps & MMU_MEM_CAP_EXEC) {
533 new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION);
534 new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION);
535 } else {
536 new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA);
537 new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA);
538 }
539 new_block->paddr_start = paddr_start;
540 new_block->paddr_end = paddr_start + aligned_size;
541 new_block->target = target;
542
543 //do mapping
544 s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
545 *out_ptr = (void *)new_block->vaddr_start;
546
547 return ESP_OK;
548
549 err:
550 if (dummy_tail) {
551 heap_caps_free(dummy_tail);
552 }
553 if (dummy_head) {
554 heap_caps_free(dummy_head);
555 }
556
557 return ret;
558 }
559
560
s_do_unmapping(uint32_t vaddr_start,uint32_t size)561 static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
562 {
563 /**
564 * Disable Cache, after this function, involved code and data should be placed in internal RAM.
565 *
566 * @note we call this for now, but this will be refactored to move out of `spi_flash`
567 */
568 spi_flash_disable_interrupts_caches_and_other_cpu();
569
570 mmu_hal_unmap_region(0, vaddr_start, size);
571 #if (SOC_MMU_PERIPH_NUM == 2)
572 #if !CONFIG_FREERTOS_UNICORE
573 mmu_hal_unmap_region(1, vaddr_start, size);
574 #endif // #if !CONFIG_FREERTOS_UNICORE
575 #endif // #if (SOC_MMU_PERIPH_NUM == 2)
576
577 //enable Cache, after this function, internal RAM access is no longer mandatory
578 spi_flash_enable_interrupts_caches_and_other_cpu();
579 }
580
esp_mmu_unmap(void * ptr)581 esp_err_t esp_mmu_unmap(void *ptr)
582 {
583 ESP_RETURN_ON_FALSE(ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
584
585 mem_region_t *region = NULL;
586 mem_block_t *mem_block = NULL;
587 uint32_t ptr_laddr = mmu_ll_vaddr_to_laddr((uint32_t)ptr);
588 size_t slot_len = 0;
589
590 for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
591 if (ptr_laddr >= s_mmu_ctx.mem_regions[i].free_head && ptr_laddr < s_mmu_ctx.mem_regions[i].end) {
592 region = &s_mmu_ctx.mem_regions[i];
593 }
594 }
595 ESP_RETURN_ON_FALSE(region, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer is outside external memory regions");
596
597 bool found = false;
598 mem_block_t *found_block = NULL;
599 TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
600 if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
601 //we don't care the dummy_head and the dummy_tail
602 continue;
603 }
604
605 //now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
606 if (mem_block->laddr_start == ptr_laddr) {
607 slot_len = TAILQ_NEXT(mem_block, entries)->laddr_start - TAILQ_PREV(mem_block, mem_block_head_, entries)->laddr_end;
608 region->max_slot_size = (slot_len > region->max_slot_size) ? slot_len : region->max_slot_size;
609
610 found = true;
611 found_block = mem_block;
612 break;
613 }
614 }
615
616 ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer isn't mapped yet");
617
618 //do unmap
619 s_do_unmapping(mem_block->vaddr_start, mem_block->size);
620 //remove the already unmapped block from the list
621 TAILQ_REMOVE(®ion->mem_block_head, found_block, entries);
622 heap_caps_free(found_block);
623
624 return ESP_OK;
625 }
626
esp_mmu_map_dump_mapped_blocks(FILE * stream)627 esp_err_t esp_mmu_map_dump_mapped_blocks(FILE* stream)
628 {
629 char line[100];
630 for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
631 fprintf(stream, "region %d:\n", i);
632 fprintf(stream, "%-15s %-14s %-14s %-12s %-12s %-12s\n", "Bus ID", "Start", "Free Head", "End", "Caps", "Max Slot Size");
633
634 char *buf = line;
635 size_t len = sizeof(line);
636 memset(line, 0x0, len);
637 snprintf(buf, len, "0x%-13x 0x%-12"PRIx32" 0x%-11"PRIx32" 0x%-10"PRIx32" 0x%-10x 0x%-8x\n",
638 s_mmu_ctx.mem_regions[i].bus_id,
639 s_mmu_ctx.mem_regions[i].start,
640 s_mmu_ctx.mem_regions[i].free_head,
641 s_mmu_ctx.mem_regions[i].end,
642 s_mmu_ctx.mem_regions[i].caps,
643 s_mmu_ctx.mem_regions[i].max_slot_size);
644 fputs(line, stream);
645
646 fprintf(stream, "mapped blocks:\n");
647 fprintf(stream, "%-4s %-13s %-12s %-12s %-6s %-13s %-11s\n", "ID", "Vaddr Start", "Vaddr End", "Block Size", "Caps", "Paddr Start", "Paddr End");
648 mem_region_t *region = &s_mmu_ctx.mem_regions[i];
649 mem_block_t *mem_block = NULL;
650 int id = 0;
651 TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
652 if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
653 snprintf(buf, len, "%-4d 0x%-11x 0x%-10x 0x%-10x 0x%-4x 0x%-11"PRIx32" 0x%-8"PRIx32"\n",
654 id,
655 (uint32_t) mem_block->vaddr_start,
656 (uint32_t) mem_block->vaddr_end,
657 mem_block->size,
658 mem_block->caps,
659 mem_block->paddr_start,
660 mem_block->paddr_end);
661 fputs(line, stream);
662 id++;
663 }
664 }
665 fprintf(stream, "\n");
666 }
667
668 return ESP_OK;
669 }
670
671 /*---------------------------------------------------------------
672 Private dump functions, IRAM Safe
673 ---------------------------------------------------------------*/
esp_mmu_map_dump_mapped_blocks_private(void)674 esp_err_t IRAM_ATTR esp_mmu_map_dump_mapped_blocks_private(void)
675 {
676 for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
677 mem_region_t *region = &s_mmu_ctx.mem_regions[i];
678 mem_block_t *mem_block = NULL;
679 TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
680 if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
681 ESP_DRAM_LOGI(TAG, "block vaddr_start: 0x%x", mem_block->vaddr_start);
682 ESP_DRAM_LOGI(TAG, "block vaddr_end: 0x%x", mem_block->vaddr_end);
683 ESP_DRAM_LOGI(TAG, "block size: 0x%x", mem_block->size);
684 ESP_DRAM_LOGI(TAG, "block caps: 0x%x\n", mem_block->caps);
685 ESP_DRAM_LOGI(TAG, "block paddr_start: 0x%x\n", mem_block->paddr_start);
686 ESP_DRAM_LOGI(TAG, "block paddr_end: 0x%x\n", mem_block->paddr_end);
687 }
688 }
689 ESP_DRAM_LOGI(TAG, "region bus_id: 0x%x", s_mmu_ctx.mem_regions[i].bus_id);
690 ESP_DRAM_LOGI(TAG, "region start: 0x%x", s_mmu_ctx.mem_regions[i].start);
691 ESP_DRAM_LOGI(TAG, "region end: 0x%x", s_mmu_ctx.mem_regions[i].end);
692 ESP_DRAM_LOGI(TAG, "region caps: 0x%x\n", s_mmu_ctx.mem_regions[i].caps);
693 }
694
695 return ESP_OK;
696 }
697
698
699 /*---------------------------------------------------------------
700 Helper APIs for conversion between vaddr and paddr
701 ---------------------------------------------------------------*/
s_vaddr_to_paddr(uint32_t vaddr,esp_paddr_t * out_paddr,mmu_target_t * out_target)702 static bool NOINLINE_ATTR IRAM_ATTR s_vaddr_to_paddr(uint32_t vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
703 {
704 //we call this for now, but this will be refactored to move out of `spi_flash`
705 spi_flash_disable_interrupts_caches_and_other_cpu();
706 //On ESP32, core 1 settings should be the same as the core 0
707 bool is_mapped = mmu_hal_vaddr_to_paddr(0, vaddr, out_paddr, out_target);
708 spi_flash_enable_interrupts_caches_and_other_cpu();
709
710 return is_mapped;
711 }
712
esp_mmu_vaddr_to_paddr(void * vaddr,esp_paddr_t * out_paddr,mmu_target_t * out_target)713 esp_err_t esp_mmu_vaddr_to_paddr(void *vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
714 {
715 ESP_RETURN_ON_FALSE(vaddr && out_paddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
716 ESP_RETURN_ON_FALSE(mmu_hal_check_valid_ext_vaddr_region(0, (uint32_t)vaddr, 1, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION), ESP_ERR_INVALID_ARG, TAG, "not a valid external virtual address");
717
718 esp_paddr_t paddr = 0;
719 mmu_target_t target = 0;
720
721 bool is_mapped = s_vaddr_to_paddr((uint32_t)vaddr, &paddr, &target);
722 ESP_RETURN_ON_FALSE(is_mapped, ESP_ERR_NOT_FOUND, TAG, "vaddr isn't mapped");
723
724 *out_paddr = paddr;
725 *out_target = target;
726
727 return ESP_OK;
728 }
729
730
s_paddr_to_vaddr(esp_paddr_t paddr,mmu_target_t target,mmu_vaddr_t type,uint32_t * out_vaddr)731 static bool NOINLINE_ATTR IRAM_ATTR s_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, uint32_t *out_vaddr)
732 {
733 //we call this for now, but this will be refactored to move out of `spi_flash`
734 spi_flash_disable_interrupts_caches_and_other_cpu();
735 //On ESP32, core 1 settings should be the same as the core 0
736 bool found = mmu_hal_paddr_to_vaddr(0, paddr, target, type, out_vaddr);
737 spi_flash_enable_interrupts_caches_and_other_cpu();
738
739 return found;
740 }
741
esp_mmu_paddr_to_vaddr(esp_paddr_t paddr,mmu_target_t target,mmu_vaddr_t type,void ** out_vaddr)742 esp_err_t esp_mmu_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, void **out_vaddr)
743 {
744 ESP_RETURN_ON_FALSE(out_vaddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
745
746 uint32_t vaddr = 0;
747 bool found = false;
748
749 found = s_paddr_to_vaddr(paddr, target, type, &vaddr);
750 ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "paddr isn't mapped");
751
752 *out_vaddr = (void *)vaddr;
753
754 return ESP_OK;
755 }
756
757
758 #if ENABLE_PADDR_CHECK
759 /*---------------------------------------------------------------
760 Helper functions to check block
761 ---------------------------------------------------------------*/
762 /**
763 * Check if a new block is enclosed by another, e.g.
764 *
765 * This is enclosed:
766 *
767 * new_block_start new_block_end
768 * |-------- New Block --------|
769 * |--------------- Block ---------------|
770 * block_start block_end
771 *
772 * @note Note the difference between `s_is_overlapped()` below
773 *
774 * @param block_start An original block start
775 * @param block_end An original block end
776 * @param new_block_start New block start
777 * @param new_block_size New block size
778 *
779 * @return True: new block is enclosed; False: new block is not enclosed
780 */
s_is_enclosed(uint32_t block_start,uint32_t block_end,uint32_t new_block_start,uint32_t new_block_size)781 static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
782 {
783 bool is_enclosed = false;
784 uint32_t new_block_end = new_block_start + new_block_size;
785
786 if ((new_block_start >= block_start) && (new_block_end <= block_end)) {
787 is_enclosed = true;
788 } else {
789 is_enclosed = false;
790 }
791
792 return is_enclosed;
793 }
794
795 /**
796 * Check if a new block is overlapped by another, e.g.
797 *
798 * This is overlapped:
799 *
800 * new_block_start new_block_end
801 * |---------- New Block ----------|
802 * |--------------- Block ---------------|
803 * block_start block_end
804 *
805 * @note Note the difference between `s_is_enclosed()` above
806 *
807 * @param block_start An original block start
808 * @param block_end An original block end
809 * @param new_block_start New block start
810 * @param new_block_size New block size
811 *
812 * @return True: new block is overlapped; False: new block is not overlapped
813 */
s_is_overlapped(uint32_t block_start,uint32_t block_end,uint32_t new_block_start,uint32_t new_block_size)814 static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
815 {
816 bool is_overlapped = false;
817 uint32_t new_block_end = new_block_start + new_block_size;
818
819 if (((new_block_start < block_start) && (new_block_end > block_start)) ||
820 ((new_block_start < block_end) && (new_block_end > block_end))) {
821 is_overlapped = true;
822 } else {
823 is_overlapped = false;
824 }
825
826 return is_overlapped;
827 }
828 #endif //#if ENABLE_PADDR_CHECK
829