1 /*
2  * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #include <stddef.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <string.h>
11 
12 #include "sdkconfig.h"
13 #include "esp_heap_caps.h"
14 #include "esp_heap_caps_init.h"
15 #include "freertos/FreeRTOS.h"
16 #include "freertos/task.h"
17 #include "freertos/queue.h"
18 #include "freertos/semphr.h"
19 #include "freertos/portmacro.h"
20 #include "esp_types.h"
21 #include "esp_mac.h"
22 #include "esp_random.h"
23 #include "esp_task.h"
24 #include "esp_attr.h"
25 #include "esp_phy_init.h"
26 #include "esp_bt.h"
27 #include "esp_err.h"
28 #include "esp_log.h"
29 #include "esp_pm.h"
30 #include "esp_ipc.h"
31 #include "esp_private/periph_ctrl.h"
32 #include "esp_private/esp_clk.h"
33 #include "soc/soc_caps.h"
34 #include "soc/rtc.h"
35 #include "soc/rtc_cntl_reg.h"
36 #include "soc/soc_memory_layout.h"
37 #include "esp_coexist_internal.h"
38 #include "esp_timer.h"
39 #include "esp_sleep.h"
40 #include "esp_rom_sys.h"
41 #include "esp_private/phy.h"
42 #if CONFIG_IDF_TARGET_ESP32C3
43 #include "riscv/interrupt.h"
44 #include "esp32c3/rom/rom_layout.h"
45 #else //CONFIG_IDF_TARGET_ESP32S3
46 #include "freertos/xtensa_api.h"
47 #include "xtensa/core-macros.h"
48 #include "esp32s3/rom/rom_layout.h"
49 #endif
50 #if CONFIG_BT_ENABLED
51 
52 /* Macro definition
53  ************************************************************************
54  */
55 
56 #define BT_LOG_TAG                          "BLE_INIT"
57 
58 #define BTDM_INIT_PERIOD                    (5000)    /* ms */
59 
60 /* Low Power Clock Selection */
61 #define BTDM_LPCLK_SEL_XTAL      (0)
62 #define BTDM_LPCLK_SEL_XTAL32K   (1)
63 #define BTDM_LPCLK_SEL_RTC_SLOW  (2)
64 #define BTDM_LPCLK_SEL_8M        (3)
65 
66 // wakeup request sources
67 enum {
68     BTDM_ASYNC_WAKEUP_SRC_VHCI = 0,
69     BTDM_ASYNC_WAKEUP_SRC_DISA,
70     BTDM_ASYNC_WAKEUP_SRC_TMR,
71     BTDM_ASYNC_WAKEUP_SRC_MAX,
72 };
73 
74 // low power control struct
75 typedef union {
76     struct {
77         uint32_t enable                  :  1; // whether low power mode is required
78         uint32_t lpclk_sel               :  2; // low power clock source
79         uint32_t mac_bb_pd               :  1; // whether hardware(MAC, BB) force-power-down is required during sleep
80         uint32_t wakeup_timer_required   :  1; // whether system timer is needed
81         uint32_t no_light_sleep          :  1; // do not allow system to enter light sleep after bluetooth is enabled
82         uint32_t main_xtal_pu            :  1; // power up main XTAL
83         uint32_t reserved                : 25; // reserved
84     };
85     uint32_t val;
86 } btdm_lpcntl_t;
87 
88 // low power control status
89 typedef union {
90     struct {
91         uint32_t pm_lock_released        :  1; // whether power management lock is released
92         uint32_t mac_bb_pd               :  1; // whether hardware(MAC, BB) is powered down
93         uint32_t phy_enabled             :  1; // whether phy is switched on
94         uint32_t wakeup_timer_started    :  1; // whether wakeup timer is started
95         uint32_t reserved                : 28; // reserved
96     };
97     uint32_t val;
98 } btdm_lpstat_t;
99 
100 /* Sleep and wakeup interval control */
101 #define BTDM_MIN_SLEEP_DURATION          (24) // threshold of interval in half slots to allow to fall into modem sleep
102 #define BTDM_MODEM_WAKE_UP_DELAY         (8)  // delay in half slots of modem wake up procedure, including re-enable PHY/RF
103 
104 #define BT_DEBUG(...)
105 #define BT_API_CALL_CHECK(info, api_call, ret) \
106 do{\
107     esp_err_t __err = (api_call);\
108     if ((ret) != __err) {\
109         BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
110         return __err;\
111     }\
112 } while(0)
113 
114 #define OSI_FUNCS_TIME_BLOCKING  0xffffffff
115 #define OSI_VERSION              0x00010006
116 #define OSI_MAGIC_VALUE          0xFADEBEAD
117 
118 /* Types definition
119  ************************************************************************
120  */
121 /* vendor dependent signals to be posted to controller task */
122 typedef enum {
123     BTDM_VND_OL_SIG_WAKEUP_TMR = 0,
124     BTDM_VND_OL_SIG_NUM,
125 } btdm_vnd_ol_sig_t;
126 
127 /* prototype of function to handle vendor dependent signals */
128 typedef void (* btdm_vnd_ol_task_func_t)(void *param);
129 
130 /* VHCI function interface */
131 typedef struct vhci_host_callback {
132     void (*notify_host_send_available)(void);               /*!< callback used to notify that the host can send packet to controller */
133     int (*notify_host_recv)(uint8_t *data, uint16_t len);   /*!< callback used to notify that the controller has a packet to send to the host*/
134 } vhci_host_callback_t;
135 
136 typedef struct {
137     void *handle;
138 } btdm_queue_item_t;
139 
140 typedef void (* osi_intr_handler)(void);
141 
142 /* OSI function */
143 struct osi_funcs_t {
144     uint32_t _magic;
145     uint32_t _version;
146     void (*_interrupt_set)(int cpu_no, int intr_source, int interrupt_no, int interrpt_prio);
147     void (*_interrupt_clear)(int interrupt_source, int interrupt_no);
148     void (*_interrupt_handler_set)(int interrupt_no, intr_handler_t fn, void *arg);
149     void (*_interrupt_disable)(void);
150     void (*_interrupt_restore)(void);
151     void (*_task_yield)(void);
152     void (*_task_yield_from_isr)(void);
153     void *(*_semphr_create)(uint32_t max, uint32_t init);
154     void (*_semphr_delete)(void *semphr);
155     int (*_semphr_take_from_isr)(void *semphr, void *hptw);
156     int (*_semphr_give_from_isr)(void *semphr, void *hptw);
157     int (*_semphr_take)(void *semphr, uint32_t block_time_ms);
158     int (*_semphr_give)(void *semphr);
159     void *(*_mutex_create)(void);
160     void (*_mutex_delete)(void *mutex);
161     int (*_mutex_lock)(void *mutex);
162     int (*_mutex_unlock)(void *mutex);
163     void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
164     void (* _queue_delete)(void *queue);
165     int (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
166     int (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
167     int (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
168     int (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
169     int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
170     void (* _task_delete)(void *task_handle);
171     bool (* _is_in_isr)(void);
172     int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
173     void *(* _malloc)(size_t size);
174     void *(* _malloc_internal)(size_t size);
175     void (* _free)(void *p);
176     int (* _read_efuse_mac)(uint8_t mac[6]);
177     void (* _srand)(unsigned int seed);
178     int (* _rand)(void);
179     uint32_t (* _btdm_lpcycles_2_hus)(uint32_t cycles, uint32_t *error_corr);
180     uint32_t (* _btdm_hus_2_lpcycles)(uint32_t hus);
181     bool (* _btdm_sleep_check_duration)(int32_t *slot_cnt);
182     void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles);  /* called when interrupt is disabled */
183     void (* _btdm_sleep_enter_phase2)(void);
184     void (* _btdm_sleep_exit_phase1)(void);  /* called from ISR */
185     void (* _btdm_sleep_exit_phase2)(void);  /* called from ISR */
186     void (* _btdm_sleep_exit_phase3)(void);  /* called from task */
187     void (* _coex_wifi_sleep_set)(bool sleep);
188     int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high);
189     void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
190     void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
191     void (* _interrupt_on)(int intr_num);
192     void (* _interrupt_off)(int intr_num);
193     void (* _esp_hw_power_down)(void);
194     void (* _esp_hw_power_up)(void);
195     void (* _ets_backup_dma_copy)(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_rem);
196 };
197 
198 
199 /* External functions or values
200  ************************************************************************
201  */
202 
203 /* not for user call, so don't put to include file */
204 /* OSI */
205 extern int btdm_osi_funcs_register(void *osi_funcs);
206 /* Initialise and De-initialise */
207 extern int btdm_controller_init(esp_bt_controller_config_t *config_opts);
208 extern void btdm_controller_deinit(void);
209 extern int btdm_controller_enable(esp_bt_mode_t mode);
210 extern void btdm_controller_disable(void);
211 extern uint8_t btdm_controller_get_mode(void);
212 extern const char *btdm_controller_get_compile_version(void);
213 extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
214 /* Sleep */
215 extern void btdm_controller_enable_sleep(bool enable);
216 extern uint8_t btdm_controller_get_sleep_mode(void);
217 extern bool btdm_power_state_active(void);
218 extern void btdm_wakeup_request(void);
219 extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
220 
221 /* vendor dependent tasks to be posted and handled by controller task*/
222 extern int btdm_vnd_offload_task_register(btdm_vnd_ol_sig_t sig, btdm_vnd_ol_task_func_t func);
223 extern int btdm_vnd_offload_task_deregister(btdm_vnd_ol_sig_t sig);
224 extern int r_btdm_vnd_offload_post_from_isr(btdm_vnd_ol_sig_t sig, void *param, bool need_yield);
225 extern int r_btdm_vnd_offload_post(btdm_vnd_ol_sig_t sig, void *param);
226 
227 /* Low Power Clock */
228 extern bool btdm_lpclk_select_src(uint32_t sel);
229 extern bool btdm_lpclk_set_div(uint32_t div);
230 extern int btdm_hci_tl_io_event_post(int event);
231 
232 /* VHCI */
233 extern bool API_vhci_host_check_send_available(void);
234 extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
235 extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
236 /* TX power */
237 extern int ble_txpwr_set(int power_type, int power_level);
238 extern int ble_txpwr_get(int power_type);
239 
240 extern uint16_t l2c_ble_link_get_tx_buf_num(void);
241 extern void coex_pti_v2(void);
242 
243 extern bool btdm_deep_sleep_mem_init(void);
244 extern void btdm_deep_sleep_mem_deinit(void);
245 extern void btdm_ble_power_down_dma_copy(bool copy);
246 extern uint8_t btdm_sleep_clock_sync(void);
247 
248 #if CONFIG_MAC_BB_PD
249 extern void esp_mac_bb_power_down(void);
250 extern void esp_mac_bb_power_up(void);
251 extern void ets_backup_dma_copy(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem);
252 #endif
253 
254 extern uint32_t _bt_bss_start;
255 extern uint32_t _bt_bss_end;
256 extern uint32_t _btdm_bss_start;
257 extern uint32_t _btdm_bss_end;
258 extern uint32_t _nimble_bss_start;
259 extern uint32_t _nimble_bss_end;
260 extern uint32_t _bt_data_start;
261 extern uint32_t _bt_data_end;
262 extern uint32_t _btdm_data_start;
263 extern uint32_t _btdm_data_end;
264 extern uint32_t _nimble_data_start;
265 extern uint32_t _nimble_data_end;
266 
267 /* Local Function Declare
268  *********************************************************************
269  */
270 static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio);
271 static void interrupt_clear_wrapper(int intr_source, int intr_num);
272 static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg);
273 static void interrupt_disable(void);
274 static void interrupt_restore(void);
275 static void task_yield_from_isr(void);
276 static void *semphr_create_wrapper(uint32_t max, uint32_t init);
277 static void semphr_delete_wrapper(void *semphr);
278 static int semphr_take_from_isr_wrapper(void *semphr, void *hptw);
279 static int semphr_give_from_isr_wrapper(void *semphr, void *hptw);
280 static int  semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
281 static int  semphr_give_wrapper(void *semphr);
282 static void *mutex_create_wrapper(void);
283 static void mutex_delete_wrapper(void *mutex);
284 static int mutex_lock_wrapper(void *mutex);
285 static int mutex_unlock_wrapper(void *mutex);
286 static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
287 static void queue_delete_wrapper(void *queue);
288 static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
289 static int queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
290 static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
291 static int queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
292 static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
293 static void task_delete_wrapper(void *task_handle);
294 static bool is_in_isr_wrapper(void);
295 static void *malloc_internal_wrapper(size_t size);
296 static int read_mac_wrapper(uint8_t mac[6]);
297 static void srand_wrapper(unsigned int seed);
298 static int rand_wrapper(void);
299 static uint32_t btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr);
300 static uint32_t btdm_hus_2_lpcycles(uint32_t hus);
301 static bool btdm_sleep_check_duration(int32_t *slot_cnt);
302 static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
303 static void btdm_sleep_enter_phase2_wrapper(void);
304 static void btdm_sleep_exit_phase3_wrapper(void);
305 static void coex_wifi_sleep_set_hook(bool sleep);
306 static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
307 static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
308 static void interrupt_on_wrapper(int intr_num);
309 static void interrupt_off_wrapper(int intr_num);
310 static void btdm_hw_mac_power_up_wrapper(void);
311 static void btdm_hw_mac_power_down_wrapper(void);
312 static void btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num,  bool to_mem);
313 
314 static void btdm_slp_tmr_callback(void *arg);
315 
316 static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end);
317 
318 static void bt_controller_deinit_internal(void);
319 
320 /* Local variable definition
321  ***************************************************************************
322  */
323 /* OSI funcs */
324 static const struct osi_funcs_t osi_funcs_ro = {
325     ._magic = OSI_MAGIC_VALUE,
326     ._version = OSI_VERSION,
327     ._interrupt_set = interrupt_set_wrapper,
328     ._interrupt_clear = interrupt_clear_wrapper,
329     ._interrupt_handler_set = interrupt_handler_set_wrapper,
330     ._interrupt_disable = interrupt_disable,
331     ._interrupt_restore = interrupt_restore,
332     ._task_yield = vPortYield,
333     ._task_yield_from_isr = task_yield_from_isr,
334     ._semphr_create = semphr_create_wrapper,
335     ._semphr_delete = semphr_delete_wrapper,
336     ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
337     ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
338     ._semphr_take = semphr_take_wrapper,
339     ._semphr_give = semphr_give_wrapper,
340     ._mutex_create = mutex_create_wrapper,
341     ._mutex_delete = mutex_delete_wrapper,
342     ._mutex_lock = mutex_lock_wrapper,
343     ._mutex_unlock = mutex_unlock_wrapper,
344     ._queue_create = queue_create_wrapper,
345     ._queue_delete = queue_delete_wrapper,
346     ._queue_send = queue_send_wrapper,
347     ._queue_send_from_isr = queue_send_from_isr_wrapper,
348     ._queue_recv = queue_recv_wrapper,
349     ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
350     ._task_create = task_create_wrapper,
351     ._task_delete = task_delete_wrapper,
352     ._is_in_isr = is_in_isr_wrapper,
353     ._cause_sw_intr_to_core = NULL,
354     ._malloc = malloc,
355     ._malloc_internal = malloc_internal_wrapper,
356     ._free = free,
357     ._read_efuse_mac = read_mac_wrapper,
358     ._srand = srand_wrapper,
359     ._rand = rand_wrapper,
360     ._btdm_lpcycles_2_hus = btdm_lpcycles_2_hus,
361     ._btdm_hus_2_lpcycles = btdm_hus_2_lpcycles,
362     ._btdm_sleep_check_duration = btdm_sleep_check_duration,
363     ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
364     ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
365     ._btdm_sleep_exit_phase1 = NULL,
366     ._btdm_sleep_exit_phase2 = NULL,
367     ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
368     ._coex_wifi_sleep_set = coex_wifi_sleep_set_hook,
369     ._coex_core_ble_conn_dyn_prio_get = NULL,
370     ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
371     ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
372     ._interrupt_on = interrupt_on_wrapper,
373     ._interrupt_off = interrupt_off_wrapper,
374     ._esp_hw_power_down = btdm_hw_mac_power_down_wrapper,
375     ._esp_hw_power_up = btdm_hw_mac_power_up_wrapper,
376     ._ets_backup_dma_copy = btdm_backup_dma_copy_wrapper,
377 };
378 
379 static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
380 
381 /* Static variable declare */
382 static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
383 
384 static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
385 
386 // low power control struct
387 static DRAM_ATTR btdm_lpcntl_t s_lp_cntl;
388 // low power status struct
389 static DRAM_ATTR btdm_lpstat_t s_lp_stat;
390 // measured average low power clock period in micro seconds
391 static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
392 // number of fractional bit for btdm_lpcycle_us
393 static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0;
394 // semaphore used for blocking VHCI API to wait for controller to wake up
395 static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
396 // wakeup timer
397 static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
398 
399 #ifdef CONFIG_PM_ENABLE
400 static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
401 // pm_lock to prevent light sleep due to incompatibility currently
402 static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
403 #endif
404 
btdm_hw_mac_power_down_wrapper(void)405 void IRAM_ATTR btdm_hw_mac_power_down_wrapper(void)
406 {
407 #if CONFIG_MAC_BB_PD
408 #if SOC_PM_SUPPORT_BT_PD
409     // Bluetooth module power down
410     SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
411     SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
412 #endif
413     esp_mac_bb_power_down();
414 #endif
415 }
416 
btdm_hw_mac_power_up_wrapper(void)417 void IRAM_ATTR btdm_hw_mac_power_up_wrapper(void)
418 {
419 #if CONFIG_MAC_BB_PD
420 #if SOC_PM_SUPPORT_BT_PD
421     // Bluetooth module power up
422     CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
423     CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
424 #endif
425     esp_mac_bb_power_up();
426 #endif
427 }
428 
btdm_backup_dma_copy_wrapper(uint32_t reg,uint32_t mem_addr,uint32_t num,bool to_mem)429 void IRAM_ATTR btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num,  bool to_mem)
430 {
431 #if CONFIG_MAC_BB_PD
432     ets_backup_dma_copy(reg, mem_addr, num, to_mem);
433 #endif
434 }
435 
esp_bt_power_domain_on(void)436 static inline void esp_bt_power_domain_on(void)
437 {
438     // Bluetooth module power up
439 #if SOC_PM_SUPPORT_BT_PD
440     CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
441     CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
442 #endif
443     esp_wifi_bt_power_domain_on();
444 }
445 
esp_bt_power_domain_off(void)446 static inline void esp_bt_power_domain_off(void)
447 {
448     // Bluetooth module power down
449 #if SOC_PM_SUPPORT_BT_PD
450     SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
451     SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
452 #endif
453     esp_wifi_bt_power_domain_off();
454 }
455 
interrupt_set_wrapper(int cpu_no,int intr_source,int intr_num,int intr_prio)456 static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio)
457 {
458     esp_rom_route_intr_matrix(cpu_no, intr_source, intr_num);
459 #if __riscv
460     esprv_intc_int_set_priority(intr_num, intr_prio);
461     //esprv_intc_int_enable_level(1 << intr_num);
462     esprv_intc_int_set_type(intr_num, 0);
463 #endif
464 }
465 
interrupt_clear_wrapper(int intr_source,int intr_num)466 static void interrupt_clear_wrapper(int intr_source, int intr_num)
467 {
468 }
469 
interrupt_handler_set_wrapper(int n,intr_handler_t fn,void * arg)470 static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg)
471 {
472     esp_cpu_intr_set_handler(n, fn, arg);
473 }
474 
interrupt_on_wrapper(int intr_num)475 static void interrupt_on_wrapper(int intr_num)
476 {
477     esp_cpu_intr_enable(1 << intr_num);
478 }
479 
interrupt_off_wrapper(int intr_num)480 static void interrupt_off_wrapper(int intr_num)
481 {
482     esp_cpu_intr_disable(1<<intr_num);
483 }
484 
interrupt_disable(void)485 static void IRAM_ATTR interrupt_disable(void)
486 {
487     if (xPortInIsrContext()) {
488         portENTER_CRITICAL_ISR(&global_int_mux);
489     } else {
490         portENTER_CRITICAL(&global_int_mux);
491     }
492 }
493 
interrupt_restore(void)494 static void IRAM_ATTR interrupt_restore(void)
495 {
496     if (xPortInIsrContext()) {
497         portEXIT_CRITICAL_ISR(&global_int_mux);
498     } else {
499         portEXIT_CRITICAL(&global_int_mux);
500     }
501 }
502 
task_yield_from_isr(void)503 static void IRAM_ATTR task_yield_from_isr(void)
504 {
505     portYIELD_FROM_ISR();
506 }
507 
semphr_create_wrapper(uint32_t max,uint32_t init)508 static void *semphr_create_wrapper(uint32_t max, uint32_t init)
509 {
510     btdm_queue_item_t *semphr = heap_caps_calloc(1, sizeof(btdm_queue_item_t), MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
511     assert(semphr);
512 
513     /* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
514     semphr->handle = (void *)xSemaphoreCreateCounting(max, init);
515     assert(semphr->handle);
516 
517     return semphr;
518 }
519 
semphr_delete_wrapper(void * semphr)520 static void semphr_delete_wrapper(void *semphr)
521 {
522     if (semphr == NULL) {
523         return;
524     }
525 
526     btdm_queue_item_t *semphr_item = (btdm_queue_item_t *)semphr;
527 
528     if (semphr_item->handle) {
529         vSemaphoreDelete(semphr_item->handle);
530     }
531 
532     free(semphr);
533 }
534 
semphr_take_from_isr_wrapper(void * semphr,void * hptw)535 static int IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
536 {
537     return (int)xSemaphoreTakeFromISR(((btdm_queue_item_t *)semphr)->handle, hptw);
538 }
539 
semphr_give_from_isr_wrapper(void * semphr,void * hptw)540 static int IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
541 {
542     return (int)xSemaphoreGiveFromISR(((btdm_queue_item_t *)semphr)->handle, hptw);
543 }
544 
semphr_take_wrapper(void * semphr,uint32_t block_time_ms)545 static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
546 {
547     if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
548         return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, portMAX_DELAY);
549     } else {
550         return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, block_time_ms / portTICK_PERIOD_MS);
551     }
552 }
553 
semphr_give_wrapper(void * semphr)554 static int semphr_give_wrapper(void *semphr)
555 {
556     return (int)xSemaphoreGive(((btdm_queue_item_t *)semphr)->handle);
557 }
558 
mutex_create_wrapper(void)559 static void *mutex_create_wrapper(void)
560 {
561     return (void *)xSemaphoreCreateMutex();
562 }
563 
mutex_delete_wrapper(void * mutex)564 static void mutex_delete_wrapper(void *mutex)
565 {
566     vSemaphoreDelete(mutex);
567 }
568 
mutex_lock_wrapper(void * mutex)569 static int mutex_lock_wrapper(void *mutex)
570 {
571     return (int)xSemaphoreTake(mutex, portMAX_DELAY);
572 }
573 
mutex_unlock_wrapper(void * mutex)574 static int mutex_unlock_wrapper(void *mutex)
575 {
576     return (int)xSemaphoreGive(mutex);
577 }
578 
queue_create_wrapper(uint32_t queue_len,uint32_t item_size)579 static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
580 {
581     btdm_queue_item_t *queue = NULL;
582 
583     queue = (btdm_queue_item_t*)heap_caps_malloc(sizeof(btdm_queue_item_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
584     assert(queue);
585 
586     /* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
587     queue->handle = xQueueCreate( queue_len, item_size);
588     assert(queue->handle);
589 
590     return queue;
591 }
592 
queue_delete_wrapper(void * queue)593 static void queue_delete_wrapper(void *queue)
594 {
595     btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
596     if (queue_item) {
597         if(queue_item->handle){
598             vQueueDelete(queue_item->handle);
599         }
600         free(queue_item);
601     }
602 }
603 
queue_send_wrapper(void * queue,void * item,uint32_t block_time_ms)604 static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
605 {
606     if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
607         return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
608     } else {
609         return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
610     }
611 }
612 
queue_send_from_isr_wrapper(void * queue,void * item,void * hptw)613 static int IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
614 {
615     return (int)xQueueSendFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
616 }
617 
queue_recv_wrapper(void * queue,void * item,uint32_t block_time_ms)618 static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
619 {
620     if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
621         return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
622     } else {
623         return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
624     }
625 }
626 
queue_recv_from_isr_wrapper(void * queue,void * item,void * hptw)627 static int IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
628 {
629     return (int)xQueueReceiveFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
630 }
631 
task_create_wrapper(void * task_func,const char * name,uint32_t stack_depth,void * param,uint32_t prio,void * task_handle,uint32_t core_id)632 static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
633 {
634     return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
635 }
636 
task_delete_wrapper(void * task_handle)637 static void task_delete_wrapper(void *task_handle)
638 {
639     vTaskDelete(task_handle);
640 }
641 
is_in_isr_wrapper(void)642 static bool IRAM_ATTR is_in_isr_wrapper(void)
643 {
644     return (bool)xPortInIsrContext();
645 }
646 
malloc_internal_wrapper(size_t size)647 static void *malloc_internal_wrapper(size_t size)
648 {
649     void *p = heap_caps_malloc(size, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA);
650     if(p == NULL) {
651         ESP_LOGE(BT_LOG_TAG, "Malloc failed");
652     }
653     return p;
654 }
655 
read_mac_wrapper(uint8_t mac[6])656 static int IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
657 {
658     int ret = esp_read_mac(mac, ESP_MAC_BT);
659     ESP_LOGI(BT_LOG_TAG, "Bluetooth MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
660                mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
661 
662     return ret;
663 }
664 
srand_wrapper(unsigned int seed)665 static void IRAM_ATTR srand_wrapper(unsigned int seed)
666 {
667     /* empty function */
668 }
669 
rand_wrapper(void)670 static int IRAM_ATTR rand_wrapper(void)
671 {
672     return (int)esp_random();
673 }
674 
btdm_lpcycles_2_hus(uint32_t cycles,uint32_t * error_corr)675 static uint32_t IRAM_ATTR btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr)
676 {
677     uint64_t local_error_corr = (error_corr == NULL) ? 0 : (uint64_t)(*error_corr);
678     uint64_t res = (uint64_t)btdm_lpcycle_us * cycles * 2;
679     local_error_corr += res;
680     res = (local_error_corr >> btdm_lpcycle_us_frac);
681     local_error_corr -= (res << btdm_lpcycle_us_frac);
682     if (error_corr) {
683         *error_corr = (uint32_t) local_error_corr;
684     }
685     return (uint32_t)res;
686 }
687 
688 /*
689  * @brief Converts a duration in half us into a number of low power clock cycles.
690  */
btdm_hus_2_lpcycles(uint32_t hus)691 static uint32_t IRAM_ATTR btdm_hus_2_lpcycles(uint32_t hus)
692 {
693     // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
694     // Compute the sleep duration in us to low power clock cycles, with calibration result applied
695     // clock measurement is conducted
696     uint64_t cycles = ((uint64_t)(hus) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
697     cycles >>= 1;
698 
699     return (uint32_t)cycles;
700 }
701 
btdm_sleep_check_duration(int32_t * half_slot_cnt)702 static bool IRAM_ATTR btdm_sleep_check_duration(int32_t *half_slot_cnt)
703 {
704     if (*half_slot_cnt < BTDM_MIN_SLEEP_DURATION) {
705         return false;
706     }
707     /* wake up in advance considering the delay in enabling PHY/RF */
708     *half_slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
709     return true;
710 }
711 
btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)712 static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
713 {
714     if (s_lp_cntl.wakeup_timer_required == 0) {
715         return;
716     }
717 
718     // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
719     uint32_t us_to_sleep = btdm_lpcycles_2_hus(lpcycles, NULL) >> 1;
720 
721 #define BTDM_MIN_TIMER_UNCERTAINTY_US      (1800)
722     assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
723     // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
724     // and set the timer in advance
725     uint32_t uncertainty = (us_to_sleep >> 11);
726     if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
727         uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
728     }
729 
730     assert (s_lp_stat.wakeup_timer_started == 0);
731     if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) == ESP_OK) {
732         s_lp_stat.wakeup_timer_started = 1;
733     } else {
734         ESP_LOGE(BT_LOG_TAG, "timer start failed");
735         assert(0);
736     }
737 }
738 
btdm_sleep_enter_phase2_wrapper(void)739 static void btdm_sleep_enter_phase2_wrapper(void)
740 {
741     if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
742         if (s_lp_stat.phy_enabled) {
743             esp_phy_disable();
744             s_lp_stat.phy_enabled = 0;
745         } else {
746             assert(0);
747         }
748 
749         if (s_lp_stat.pm_lock_released == 0) {
750 #ifdef CONFIG_PM_ENABLE
751             esp_pm_lock_release(s_pm_lock);
752 #endif
753             s_lp_stat.pm_lock_released = 1;
754         }
755     }
756 }
757 
btdm_sleep_exit_phase3_wrapper(void)758 static void btdm_sleep_exit_phase3_wrapper(void)
759 {
760 #ifdef CONFIG_PM_ENABLE
761     // If BT wakeup before esp timer coming due to timer task have no chance to run.
762     // Then we will not run into `btdm_sleep_exit_phase0` and acquire PM lock,
763     // Do it again here to fix this issue.
764     if (s_lp_stat.pm_lock_released) {
765         esp_pm_lock_acquire(s_pm_lock);
766         s_lp_stat.pm_lock_released = 0;
767     }
768 #endif
769 
770     if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
771         if (s_lp_stat.phy_enabled == 0) {
772             esp_phy_enable();
773             s_lp_stat.phy_enabled = 1;
774         }
775     }
776 
777     // If BT wakeup before esp timer coming due to timer task have no chance to run.
778     // Then we will not run into `btdm_sleep_exit_phase0` and stop esp timer,
779     // Do it again here to fix this issue.
780     if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
781         esp_timer_stop(s_btdm_slp_tmr);
782         s_lp_stat.wakeup_timer_started = 0;
783     }
784 
785     // wait for the sleep state to change
786     // the procedure duration is at micro-second level or less
787     while (btdm_sleep_clock_sync()) {
788         ;
789     }
790 }
791 
btdm_sleep_exit_phase0(void * param)792 static void IRAM_ATTR btdm_sleep_exit_phase0(void *param)
793 {
794     assert(s_lp_cntl.enable == 1);
795 
796 #ifdef CONFIG_PM_ENABLE
797     if (s_lp_stat.pm_lock_released) {
798         esp_pm_lock_acquire(s_pm_lock);
799         s_lp_stat.pm_lock_released = 0;
800     }
801 #endif
802 
803     int event = (int) param;
804     if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
805         btdm_wakeup_request();
806     }
807 
808     if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
809         esp_timer_stop(s_btdm_slp_tmr);
810         s_lp_stat.wakeup_timer_started = 0;
811     }
812 
813     if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
814         semphr_give_wrapper(s_wakeup_req_sem);
815     }
816 }
817 
btdm_slp_tmr_callback(void * arg)818 static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
819 {
820 #ifdef CONFIG_PM_ENABLE
821     r_btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)BTDM_ASYNC_WAKEUP_SRC_TMR);
822 #endif
823 }
824 
825 
async_wakeup_request(int event)826 static bool async_wakeup_request(int event)
827 {
828     if (s_lp_cntl.enable == 0) {
829         return false;
830     }
831 
832     bool do_wakeup_request = false;
833     switch (event) {
834         case BTDM_ASYNC_WAKEUP_SRC_VHCI:
835         case BTDM_ASYNC_WAKEUP_SRC_DISA:
836             btdm_in_wakeup_requesting_set(true);
837             if (!btdm_power_state_active()) {
838                 r_btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)event);
839                 do_wakeup_request = true;
840                 semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
841             }
842             break;
843         default:
844             break;
845     }
846 
847     return do_wakeup_request;
848 }
849 
async_wakeup_request_end(int event)850 static void async_wakeup_request_end(int event)
851 {
852     if (s_lp_cntl.enable == 0) {
853         return;
854     }
855 
856     bool allow_to_sleep;
857     switch (event) {
858         case BTDM_ASYNC_WAKEUP_SRC_VHCI:
859         case BTDM_ASYNC_WAKEUP_SRC_DISA:
860             allow_to_sleep = true;
861             break;
862         default:
863             allow_to_sleep = true;
864             break;
865     }
866 
867     if (allow_to_sleep) {
868         btdm_in_wakeup_requesting_set(false);
869     }
870 
871     return;
872 }
873 
coex_schm_status_bit_set_wrapper(uint32_t type,uint32_t status)874 static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
875 {
876 #if CONFIG_SW_COEXIST_ENABLE
877     coex_schm_status_bit_set(type, status);
878 #endif
879 }
880 
coex_schm_status_bit_clear_wrapper(uint32_t type,uint32_t status)881 static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
882 {
883 #if CONFIG_SW_COEXIST_ENABLE
884     coex_schm_status_bit_clear(type, status);
885 #endif
886 }
887 
esp_vhci_host_check_send_available(void)888 bool esp_vhci_host_check_send_available(void)
889 {
890     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
891         return false;
892     }
893     return API_vhci_host_check_send_available();
894 }
895 
esp_vhci_host_send_packet(uint8_t * data,uint16_t len)896 void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
897 {
898     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
899         return;
900     }
901     async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_VHCI);
902 
903     API_vhci_host_send_packet(data, len);
904 
905     async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_VHCI);
906 }
907 
esp_vhci_host_register_callback(const esp_vhci_host_callback_t * callback)908 esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
909 {
910     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
911         return ESP_FAIL;
912     }
913     return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
914 }
915 
btdm_controller_mem_init(void)916 static void btdm_controller_mem_init(void)
917 {
918     extern void btdm_controller_rom_data_init(void );
919     btdm_controller_rom_data_init();
920 }
921 
esp_bt_controller_mem_release(esp_bt_mode_t mode)922 esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
923 {
924     intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
925     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
926         return ESP_ERR_INVALID_STATE;
927     }
928 
929     if (mode & ESP_BT_MODE_BLE) {
930         /* if the addresses of rom btdm .data and .bss are consecutive,
931            they are registered in the system heap as a piece of memory
932         */
933         if(ets_rom_layout_p->data_end_btdm == ets_rom_layout_p->bss_start_btdm) {
934             mem_start = (intptr_t)ets_rom_layout_p->data_start_btdm;
935             mem_end = (intptr_t)ets_rom_layout_p->bss_end_btdm;
936             if (mem_start != mem_end) {
937                 ESP_LOGD(BT_LOG_TAG, "Release rom btdm [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
938                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
939             }
940         } else {
941             mem_start = (intptr_t)ets_rom_layout_p->bss_start_btdm;
942             mem_end = (intptr_t)ets_rom_layout_p->bss_end_btdm;
943             if (mem_start != mem_end) {
944                 ESP_LOGD(BT_LOG_TAG, "Release rom btdm BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
945                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
946             }
947 
948             mem_start = (intptr_t)ets_rom_layout_p->data_start_btdm;
949             mem_end = (intptr_t)ets_rom_layout_p->data_end_btdm;
950             if (mem_start != mem_end) {
951                 ESP_LOGD(BT_LOG_TAG, "Release rom btdm Data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
952                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
953             }
954         }
955         /* if the addresses of rom interface btdm .data and .bss are consecutive,
956            they are registered in the system heap as a piece of memory
957         */
958         if(ets_rom_layout_p->data_end_interface_btdm == ets_rom_layout_p->bss_start_interface_btdm) {
959             mem_start = (intptr_t)ets_rom_layout_p->data_start_interface_btdm;
960             mem_end = (intptr_t)ets_rom_layout_p->bss_end_interface_btdm;
961             if (mem_start != mem_end) {
962                 ESP_LOGD(BT_LOG_TAG, "Release rom interface btdm [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
963                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
964             }
965         } else {
966             mem_start = (intptr_t)ets_rom_layout_p->data_start_interface_btdm;
967             mem_end = (intptr_t)ets_rom_layout_p->data_end_interface_btdm;
968             if (mem_start != mem_end) {
969                 ESP_LOGD(BT_LOG_TAG, "Release rom interface btdm Data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
970                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
971             }
972 
973             mem_start = (intptr_t)ets_rom_layout_p->bss_start_interface_btdm;
974             mem_end = (intptr_t)ets_rom_layout_p->bss_end_interface_btdm;
975             if (mem_start != mem_end) {
976                 ESP_LOGD(BT_LOG_TAG, "Release rom interface btdm BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
977                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
978             }
979         }
980 
981     }
982     return ESP_OK;
983 }
984 
esp_bt_mem_release(esp_bt_mode_t mode)985 esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
986 {
987     int ret;
988     intptr_t mem_start, mem_end;
989 
990     ret = esp_bt_controller_mem_release(mode);
991     if (ret != ESP_OK) {
992         return ret;
993     }
994 
995     if (mode & ESP_BT_MODE_BLE) {
996         /* if the addresses of btdm .bss and bt .bss are consecutive,
997            they are registered in the system heap as a piece of memory
998         */
999         if(_bt_bss_end == _btdm_bss_start) {
1000             mem_start = (intptr_t)&_bt_bss_start;
1001             mem_end = (intptr_t)&_btdm_bss_end;
1002             if (mem_start != mem_end) {
1003                 ESP_LOGD(BT_LOG_TAG, "Release BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1004                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1005             }
1006         } else {
1007             mem_start = (intptr_t)&_bt_bss_start;
1008             mem_end = (intptr_t)&_bt_bss_end;
1009             if (mem_start != mem_end) {
1010                 ESP_LOGD(BT_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1011                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1012             }
1013 
1014             mem_start = (intptr_t)&_btdm_bss_start;
1015             mem_end = (intptr_t)&_btdm_bss_end;
1016             if (mem_start != mem_end) {
1017                 ESP_LOGD(BT_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1018                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1019             }
1020         }
1021         /* if the addresses of btdm .data and bt .data are consecutive,
1022            they are registered in the system heap as a piece of memory
1023         */
1024         if(_bt_data_end == _btdm_data_start) {
1025             mem_start = (intptr_t)&_bt_data_start;
1026             mem_end = (intptr_t)&_btdm_data_end;
1027             if (mem_start != mem_end) {
1028                 ESP_LOGD(BT_LOG_TAG, "Release data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1029                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1030             }
1031         } else {
1032             mem_start = (intptr_t)&_bt_data_start;
1033             mem_end = (intptr_t)&_bt_data_end;
1034             if (mem_start != mem_end) {
1035                 ESP_LOGD(BT_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1036                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1037             }
1038 
1039             mem_start = (intptr_t)&_btdm_data_start;
1040             mem_end = (intptr_t)&_btdm_data_end;
1041             if (mem_start != mem_end) {
1042                 ESP_LOGD(BT_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1043                 ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1044             }
1045         }
1046 
1047         mem_start = (intptr_t)&_nimble_bss_start;
1048         mem_end = (intptr_t)&_nimble_bss_end;
1049         if (mem_start != mem_end) {
1050             ESP_LOGD(BT_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1051             ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1052         }
1053         mem_start = (intptr_t)&_nimble_data_start;
1054         mem_end = (intptr_t)&_nimble_data_end;
1055         if (mem_start != mem_end) {
1056             ESP_LOGD(BT_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x], len %d", mem_start, mem_end, mem_end - mem_start);
1057             ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
1058         }
1059     }
1060     return ESP_OK;
1061 }
1062 
try_heap_caps_add_region(intptr_t start,intptr_t end)1063 static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
1064 {
1065     int ret = heap_caps_add_region(start, end);
1066     /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
1067      * is too small to fit a heap. This cannot be termed as a fatal error and hence
1068      * we replace it by ESP_OK
1069      */
1070 
1071     if (ret == ESP_ERR_INVALID_SIZE) {
1072         return ESP_OK;
1073     }
1074     return ret;
1075 }
1076 
1077 #if CONFIG_MAC_BB_PD
btdm_mac_bb_power_down_cb(void)1078 static void IRAM_ATTR btdm_mac_bb_power_down_cb(void)
1079 {
1080     if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd == 0) {
1081         btdm_ble_power_down_dma_copy(true);
1082         s_lp_stat.mac_bb_pd = 1;
1083     }
1084 }
1085 
btdm_mac_bb_power_up_cb(void)1086 static void IRAM_ATTR btdm_mac_bb_power_up_cb(void)
1087 {
1088     if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd) {
1089         btdm_ble_power_down_dma_copy(false);
1090         s_lp_stat.mac_bb_pd = 0;
1091     }
1092 }
1093 #endif
1094 
esp_bt_controller_init(esp_bt_controller_config_t * cfg)1095 esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
1096 {
1097     esp_err_t err = ESP_FAIL;
1098 
1099     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
1100         return ESP_ERR_INVALID_STATE;
1101     }
1102 
1103     if (cfg == NULL) {
1104         return ESP_ERR_INVALID_ARG;
1105     }
1106 
1107     if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
1108         || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
1109         ESP_LOGE(BT_LOG_TAG, "Invalid controller task prioriy or stack size");
1110         return ESP_ERR_INVALID_ARG;
1111     }
1112 
1113     if (cfg->bluetooth_mode != ESP_BT_MODE_BLE) {
1114         ESP_LOGE(BT_LOG_TAG, "%s controller only support BLE only mode", __func__);
1115         return ESP_ERR_NOT_SUPPORTED;
1116     }
1117 
1118     if (cfg->bluetooth_mode & ESP_BT_MODE_BLE) {
1119         if ((cfg->ble_max_act <= 0) || (cfg->ble_max_act > BT_CTRL_BLE_MAX_ACT_LIMIT)) {
1120             ESP_LOGE(BT_LOG_TAG, "Invalid value of ble_max_act");
1121             return ESP_ERR_INVALID_ARG;
1122         }
1123     }
1124 
1125     if (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) {
1126         if (cfg->sleep_clock == ESP_BT_SLEEP_CLOCK_NONE) {
1127             ESP_LOGE(BT_LOG_TAG, "SLEEP_MODE_1 enabled but sleep clock not configured");
1128             return ESP_ERR_INVALID_ARG;
1129         }
1130     }
1131 
1132     // overwrite some parameters
1133     cfg->magic = ESP_BT_CTRL_CONFIG_MAGIC_VAL;
1134 
1135 #if CONFIG_MAC_BB_PD
1136     esp_mac_bb_pd_mem_init();
1137 #endif
1138     esp_phy_modem_init();
1139     esp_bt_power_domain_on();
1140 
1141     btdm_controller_mem_init();
1142 
1143 #if CONFIG_MAC_BB_PD
1144     if (esp_register_mac_bb_pd_callback(btdm_mac_bb_power_down_cb) != 0) {
1145         err = ESP_ERR_INVALID_ARG;
1146         goto error;
1147     }
1148 
1149     if (esp_register_mac_bb_pu_callback(btdm_mac_bb_power_up_cb) != 0) {
1150         err = ESP_ERR_INVALID_ARG;
1151         goto error;
1152     }
1153 #endif
1154 
1155     osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
1156     if (osi_funcs_p == NULL) {
1157         return ESP_ERR_NO_MEM;
1158     }
1159 
1160     memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
1161     if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
1162         return ESP_ERR_INVALID_ARG;
1163     }
1164 
1165     ESP_LOGI(BT_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
1166 
1167     // init low-power control resources
1168     do {
1169         // set default values for global states or resources
1170         s_lp_stat.val = 0;
1171         s_lp_cntl.val = 0;
1172         s_lp_cntl.main_xtal_pu = 0;
1173         s_wakeup_req_sem = NULL;
1174         s_btdm_slp_tmr = NULL;
1175 
1176         // configure and initialize resources
1177         s_lp_cntl.enable = (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) ? 1 : 0;
1178         s_lp_cntl.no_light_sleep = 0;
1179 
1180         if (s_lp_cntl.enable) {
1181 #if CONFIG_MAC_BB_PD
1182             if (!btdm_deep_sleep_mem_init()) {
1183                 err = ESP_ERR_NO_MEM;
1184                 goto error;
1185             }
1186             s_lp_cntl.mac_bb_pd = 1;
1187 #endif
1188 #ifdef CONFIG_PM_ENABLE
1189             s_lp_cntl.wakeup_timer_required = 1;
1190 #endif
1191             // async wakeup semaphore for VHCI
1192             s_wakeup_req_sem = semphr_create_wrapper(1, 0);
1193             if (s_wakeup_req_sem == NULL) {
1194                 err = ESP_ERR_NO_MEM;
1195                 goto error;
1196             }
1197             btdm_vnd_offload_task_register(BTDM_VND_OL_SIG_WAKEUP_TMR, btdm_sleep_exit_phase0);
1198         }
1199 
1200         if (s_lp_cntl.wakeup_timer_required) {
1201             esp_timer_create_args_t create_args = {
1202                 .callback = btdm_slp_tmr_callback,
1203                 .arg = NULL,
1204                 .name = "btSlp",
1205             };
1206             if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
1207                 goto error;
1208             }
1209         }
1210 
1211         // set default bluetooth sleep clock cycle and its fractional bits
1212         btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
1213         btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
1214 
1215         // set default bluetooth sleep clock source
1216         s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
1217 #if CONFIG_BT_CTRL_LPCLK_SEL_EXT_32K_XTAL
1218         // check whether or not EXT_CRYS is working
1219         if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
1220             s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // External 32 kHz XTAL
1221         } else {
1222             ESP_LOGW(BT_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock");
1223 #if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
1224             s_lp_cntl.no_light_sleep = 1;
1225 #endif
1226         }
1227 #elif (CONFIG_BT_CTRL_LPCLK_SEL_MAIN_XTAL)
1228         ESP_LOGI(BT_LOG_TAG, "Bluetooth will use main XTAL as Bluetooth sleep clock.");
1229 #if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
1230         s_lp_cntl.no_light_sleep = 1;
1231 #endif
1232 #elif (CONFIG_BT_CTRL_LPCLK_SEL_RTC_SLOW)
1233         // check whether or not internal 150 kHz RC oscillator is working
1234         if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) {
1235             s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_RTC_SLOW; // Internal 150 kHz RC oscillator
1236             ESP_LOGW(BT_LOG_TAG, "Internal 150kHz RC osciallator. The accuracy of this clock is a lot larger than 500ppm which is "
1237                  "required in Bluetooth communication, so don't select this option in scenarios such as BLE connection state.");
1238         } else {
1239             ESP_LOGW(BT_LOG_TAG, "Internal 150kHz RC oscillator not detected.");
1240             assert(0);
1241         }
1242 #endif
1243 
1244         bool select_src_ret __attribute__((unused));
1245         bool set_div_ret __attribute__((unused));
1246         if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
1247 #ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
1248             ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON));
1249             s_lp_cntl.main_xtal_pu = 1;
1250 #endif
1251             select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
1252             set_div_ret = btdm_lpclk_set_div(esp_clk_xtal_freq() / MHZ);
1253             assert(select_src_ret && set_div_ret);
1254             btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
1255             btdm_lpcycle_us = 1 << (btdm_lpcycle_us_frac);
1256         } else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL32K) {
1257             select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
1258             set_div_ret = btdm_lpclk_set_div(0);
1259             assert(select_src_ret && set_div_ret);
1260             btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
1261             btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
1262                 (1000000 >> (15 - RTC_CLK_CAL_FRACT));
1263             assert(btdm_lpcycle_us != 0);
1264         } else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_RTC_SLOW) {
1265             select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
1266             set_div_ret = btdm_lpclk_set_div(0);
1267             assert(select_src_ret && set_div_ret);
1268             btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
1269             btdm_lpcycle_us = esp_clk_slowclk_cal_get();
1270         } else {
1271             err = ESP_ERR_INVALID_ARG;
1272             goto error;
1273         }
1274 #if CONFIG_SW_COEXIST_ENABLE
1275         coex_update_lpclk_interval();
1276 #endif
1277 
1278 #ifdef CONFIG_PM_ENABLE
1279         if (s_lp_cntl.no_light_sleep) {
1280             if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
1281                 err = ESP_ERR_NO_MEM;
1282                 goto error;
1283             }
1284             ESP_LOGW(BT_LOG_TAG, "light sleep mode will not be able to apply when bluetooth is enabled.");
1285         }
1286         if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
1287             err = ESP_ERR_NO_MEM;
1288             goto error;
1289         } else {
1290             s_lp_stat.pm_lock_released = 1;
1291         }
1292 #endif
1293     } while (0);
1294 
1295 #if CONFIG_SW_COEXIST_ENABLE
1296     coex_init();
1297 #endif
1298 
1299     periph_module_enable(PERIPH_BT_MODULE);
1300     periph_module_reset(PERIPH_BT_MODULE);
1301 
1302     esp_phy_enable();
1303     s_lp_stat.phy_enabled = 1;
1304 
1305     if (btdm_controller_init(cfg) != 0) {
1306         err = ESP_ERR_NO_MEM;
1307         goto error;
1308     }
1309     coex_pti_v2();
1310 
1311     btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
1312 
1313     return ESP_OK;
1314 
1315 error:
1316 
1317     bt_controller_deinit_internal();
1318 
1319     return err;
1320 }
1321 
esp_bt_controller_deinit(void)1322 esp_err_t esp_bt_controller_deinit(void)
1323 {
1324     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
1325         return ESP_ERR_INVALID_STATE;
1326     }
1327 
1328     btdm_controller_deinit();
1329 
1330     bt_controller_deinit_internal();
1331 
1332     return ESP_OK;
1333 }
1334 
bt_controller_deinit_internal(void)1335 static void bt_controller_deinit_internal(void)
1336 {
1337     periph_module_disable(PERIPH_BT_MODULE);
1338 
1339     if (s_lp_stat.phy_enabled) {
1340         esp_phy_disable();
1341         s_lp_stat.phy_enabled = 0;
1342     }
1343 
1344     // deinit low power control resources
1345     do {
1346 
1347 #if CONFIG_MAC_BB_PD
1348         if (s_lp_cntl.mac_bb_pd) {
1349             btdm_deep_sleep_mem_deinit();
1350             s_lp_cntl.mac_bb_pd = 0;
1351         }
1352 #endif
1353 
1354 #ifdef CONFIG_PM_ENABLE
1355         if (s_lp_cntl.no_light_sleep) {
1356             if (s_light_sleep_pm_lock != NULL) {
1357                 esp_pm_lock_delete(s_light_sleep_pm_lock);
1358                 s_light_sleep_pm_lock = NULL;
1359             }
1360         }
1361 
1362         if (s_pm_lock != NULL) {
1363             esp_pm_lock_delete(s_pm_lock);
1364             s_pm_lock = NULL;
1365             s_lp_stat.pm_lock_released = 0;
1366         }
1367 
1368 #endif
1369 
1370         if (s_lp_cntl.wakeup_timer_required) {
1371             if (s_lp_stat.wakeup_timer_started) {
1372                 esp_timer_stop(s_btdm_slp_tmr);
1373             }
1374             s_lp_stat.wakeup_timer_started = 0;
1375             esp_timer_delete(s_btdm_slp_tmr);
1376             s_btdm_slp_tmr = NULL;
1377         }
1378 
1379         if (s_lp_cntl.enable) {
1380             btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR);
1381             if (s_wakeup_req_sem != NULL) {
1382                 semphr_delete_wrapper(s_wakeup_req_sem);
1383                 s_wakeup_req_sem = NULL;
1384             }
1385         }
1386 
1387         if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
1388 #ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
1389             if (s_lp_cntl.main_xtal_pu) {
1390                 ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_OFF));
1391                 s_lp_cntl.main_xtal_pu = 0;
1392             }
1393 #endif
1394             btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
1395             btdm_lpclk_set_div(0);
1396 #if CONFIG_SW_COEXIST_ENABLE
1397             coex_update_lpclk_interval();
1398 #endif
1399         }
1400 
1401         btdm_lpcycle_us = 0;
1402     } while (0);
1403 
1404 #if CONFIG_MAC_BB_PD
1405     esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb);
1406     esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb);
1407 #endif
1408 
1409     esp_bt_power_domain_off();
1410 #if CONFIG_MAC_BB_PD
1411     esp_mac_bb_pd_mem_deinit();
1412 #endif
1413     esp_phy_modem_deinit();
1414 
1415     if (osi_funcs_p != NULL) {
1416         free(osi_funcs_p);
1417         osi_funcs_p = NULL;
1418     }
1419 
1420     btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
1421 }
1422 
esp_bt_controller_enable(esp_bt_mode_t mode)1423 esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
1424 {
1425     esp_err_t ret = ESP_OK;
1426 
1427     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
1428         return ESP_ERR_INVALID_STATE;
1429     }
1430 
1431     //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
1432     if (mode != btdm_controller_get_mode()) {
1433         ESP_LOGE(BT_LOG_TAG, "invalid mode %d, controller support mode is %d", mode, btdm_controller_get_mode());
1434         return ESP_ERR_INVALID_ARG;
1435     }
1436 
1437 #if CONFIG_SW_COEXIST_ENABLE
1438     coex_enable();
1439 #endif
1440 
1441     // enable low power mode
1442     do {
1443 #ifdef CONFIG_PM_ENABLE
1444         if (s_lp_cntl.no_light_sleep) {
1445             esp_pm_lock_acquire(s_light_sleep_pm_lock);
1446         }
1447         esp_pm_lock_acquire(s_pm_lock);
1448         s_lp_stat.pm_lock_released = 0;
1449 #endif
1450 
1451         if (s_lp_cntl.enable) {
1452             btdm_controller_enable_sleep(true);
1453         }
1454     } while (0);
1455 
1456     if (btdm_controller_enable(mode) != 0) {
1457         ret = ESP_ERR_INVALID_STATE;
1458         goto error;
1459     }
1460 
1461     btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
1462 
1463     return ret;
1464 
1465 error:
1466     // disable low power mode
1467     do {
1468         btdm_controller_enable_sleep(false);
1469 #ifdef CONFIG_PM_ENABLE
1470         if (s_lp_cntl.no_light_sleep) {
1471             esp_pm_lock_release(s_light_sleep_pm_lock);
1472         }
1473         if (s_lp_stat.pm_lock_released == 0) {
1474             esp_pm_lock_release(s_pm_lock);
1475             s_lp_stat.pm_lock_released = 1;
1476         }
1477 #endif
1478     } while (0);
1479 
1480 #if CONFIG_SW_COEXIST_ENABLE
1481     coex_disable();
1482 #endif
1483     return ret;
1484 }
1485 
esp_bt_controller_disable(void)1486 esp_err_t esp_bt_controller_disable(void)
1487 {
1488     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
1489         return ESP_ERR_INVALID_STATE;
1490     }
1491 
1492     async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_DISA);
1493     while (!btdm_power_state_active()){}
1494     btdm_controller_disable();
1495 
1496     async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_DISA);
1497 
1498 #if CONFIG_SW_COEXIST_ENABLE
1499     coex_disable();
1500 #endif
1501 
1502     btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
1503 
1504     // disable low power mode
1505     do {
1506 #ifdef CONFIG_PM_ENABLE
1507         if (s_lp_cntl.no_light_sleep) {
1508             esp_pm_lock_release(s_light_sleep_pm_lock);
1509         }
1510 
1511         if (s_lp_stat.pm_lock_released == 0) {
1512             esp_pm_lock_release(s_pm_lock);
1513             s_lp_stat.pm_lock_released = 1;
1514         } else {
1515             assert(0);
1516         }
1517 #endif
1518     } while (0);
1519 
1520     return ESP_OK;
1521 }
1522 
esp_bt_controller_get_status(void)1523 esp_bt_controller_status_t esp_bt_controller_get_status(void)
1524 {
1525     return btdm_controller_status;
1526 }
1527 
1528 /* extra functions */
esp_ble_tx_power_set(esp_ble_power_type_t power_type,esp_power_level_t power_level)1529 esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
1530 {
1531     esp_err_t stat = ESP_FAIL;
1532 
1533     switch (power_type) {
1534     case ESP_BLE_PWR_TYPE_ADV:
1535     case ESP_BLE_PWR_TYPE_SCAN:
1536     case ESP_BLE_PWR_TYPE_DEFAULT:
1537         if (ble_txpwr_set(power_type, power_level) == 0) {
1538             stat = ESP_OK;
1539         }
1540         break;
1541     default:
1542         stat = ESP_ERR_NOT_SUPPORTED;
1543         break;
1544     }
1545 
1546     return stat;
1547 }
1548 
esp_ble_tx_power_get(esp_ble_power_type_t power_type)1549 esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
1550 {
1551     esp_power_level_t lvl;
1552 
1553     switch (power_type) {
1554     case ESP_BLE_PWR_TYPE_ADV:
1555     case ESP_BLE_PWR_TYPE_SCAN:
1556         lvl = (esp_power_level_t)ble_txpwr_get(power_type);
1557         break;
1558     case ESP_BLE_PWR_TYPE_CONN_HDL0:
1559     case ESP_BLE_PWR_TYPE_CONN_HDL1:
1560     case ESP_BLE_PWR_TYPE_CONN_HDL2:
1561     case ESP_BLE_PWR_TYPE_CONN_HDL3:
1562     case ESP_BLE_PWR_TYPE_CONN_HDL4:
1563     case ESP_BLE_PWR_TYPE_CONN_HDL5:
1564     case ESP_BLE_PWR_TYPE_CONN_HDL6:
1565     case ESP_BLE_PWR_TYPE_CONN_HDL7:
1566     case ESP_BLE_PWR_TYPE_CONN_HDL8:
1567     case ESP_BLE_PWR_TYPE_DEFAULT:
1568         lvl = (esp_power_level_t)ble_txpwr_get(ESP_BLE_PWR_TYPE_DEFAULT);
1569         break;
1570     default:
1571         lvl = ESP_PWR_LVL_INVALID;
1572         break;
1573     }
1574 
1575     return lvl;
1576 }
1577 
esp_bt_sleep_enable(void)1578 esp_err_t esp_bt_sleep_enable (void)
1579 {
1580     esp_err_t status;
1581     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
1582         return ESP_ERR_INVALID_STATE;
1583     }
1584     if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
1585         btdm_controller_enable_sleep (true);
1586         status = ESP_OK;
1587     } else {
1588         status = ESP_ERR_NOT_SUPPORTED;
1589     }
1590 
1591     return status;
1592 }
1593 
esp_bt_sleep_disable(void)1594 esp_err_t esp_bt_sleep_disable (void)
1595 {
1596     esp_err_t status;
1597     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
1598         return ESP_ERR_INVALID_STATE;
1599     }
1600     if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
1601         btdm_controller_enable_sleep (false);
1602         status = ESP_OK;
1603     } else {
1604         status = ESP_ERR_NOT_SUPPORTED;
1605     }
1606 
1607     return status;
1608 }
1609 
esp_bt_controller_is_sleeping(void)1610 bool esp_bt_controller_is_sleeping(void)
1611 {
1612     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
1613         btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
1614         return false;
1615     }
1616 
1617     return !btdm_power_state_active();
1618 }
1619 
esp_bt_controller_wakeup_request(void)1620 void esp_bt_controller_wakeup_request(void)
1621 {
1622     if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
1623         btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
1624         return;
1625     }
1626 
1627     btdm_wakeup_request();
1628 
1629 }
1630 
esp_bt_h4tl_eif_io_event_notify(int event)1631 int IRAM_ATTR esp_bt_h4tl_eif_io_event_notify(int event)
1632 {
1633     return btdm_hci_tl_io_event_post(event);
1634 }
1635 
esp_bt_get_tx_buf_num(void)1636 uint16_t esp_bt_get_tx_buf_num(void)
1637 {
1638     return l2c_ble_link_get_tx_buf_num();
1639 }
1640 
coex_wifi_sleep_set_hook(bool sleep)1641 static void coex_wifi_sleep_set_hook(bool sleep)
1642 {
1643 
1644 }
1645 #endif /*  CONFIG_BT_ENABLED */
1646