1 /*
2 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /*******************************************************************************
8 * NOTICE
9 * The hal is not public api, don't use in application code.
10 * See readme.md in hal/include/hal/readme.md
11 ******************************************************************************/
12
13 // The LL layer for ESP32-S3 SPI register operations
14
15 #pragma once
16
17 #include <stdlib.h> //for abs()
18 #include <string.h>
19 #include "esp_attr.h"
20 #include "esp_types.h"
21 #include "soc/spi_periph.h"
22 #include "soc/spi_struct.h"
23 #include "soc/lldesc.h"
24 #include "hal/assert.h"
25 #include "hal/misc.h"
26 #include "hal/spi_types.h"
27
28 #ifdef __cplusplus
29 extern "C" {
30 #endif
31
32 /// Interrupt not used. Don't use in app.
33 #define SPI_LL_UNUSED_INT_MASK (SPI_TRANS_DONE_INT_ENA | SPI_SLV_WR_DMA_DONE_INT_ENA | SPI_SLV_RD_DMA_DONE_INT_ENA | SPI_SLV_WR_BUF_DONE_INT_ENA | SPI_SLV_RD_BUF_DONE_INT_ENA)
34 /// These 2 masks together will set SPI transaction to one line mode
35 #define SPI_LL_ONE_LINE_CTRL_MASK (SPI_FREAD_OCT | SPI_FREAD_QUAD | SPI_FREAD_DUAL | SPI_FCMD_OCT | \
36 SPI_FCMD_QUAD | SPI_FCMD_DUAL | SPI_FADDR_OCT | SPI_FADDR_QUAD | SPI_FADDR_DUAL)
37 #define SPI_LL_ONE_LINE_USER_MASK (SPI_FWRITE_OCT | SPI_FWRITE_QUAD | SPI_FWRITE_DUAL)
38
39 /// Swap the bit order to its correct place to send
40 #define HAL_SPI_SWAP_DATA_TX(data, len) HAL_SWAP32((uint32_t)(data) << (32 - len))
41 /// This is the expected clock frequency
42 #define SPI_LL_PERIPH_CLK_FREQ (80 * 1000000)
43 #define SPI_LL_GET_HW(ID) ((ID)==0? ({abort();NULL;}):((ID)==1? &GPSPI2 : &GPSPI3))
44
45 /**
46 * The data structure holding calculated clock configuration. Since the
47 * calculation needs long time, it should be calculated during initialization and
48 * stored somewhere to be quickly used.
49 */
50 typedef uint32_t spi_ll_clock_val_t;
51 typedef spi_dev_t spi_dma_dev_t;
52
53 // Type definition of all supported interrupts
54 typedef enum {
55 SPI_LL_INTR_TRANS_DONE = BIT(0), ///< A transaction has done
56 SPI_LL_INTR_RDBUF = BIT(6), ///< Has received RDBUF command. Only available in slave HD.
57 SPI_LL_INTR_WRBUF = BIT(7), ///< Has received WRBUF command. Only available in slave HD.
58 SPI_LL_INTR_RDDMA = BIT(8), ///< Has received RDDMA command. Only available in slave HD.
59 SPI_LL_INTR_WRDMA = BIT(9), ///< Has received WRDMA command. Only available in slave HD.
60 SPI_LL_INTR_CMD7 = BIT(10), ///< Has received CMD7 command. Only available in slave HD.
61 SPI_LL_INTR_CMD8 = BIT(11), ///< Has received CMD8 command. Only available in slave HD.
62 SPI_LL_INTR_CMD9 = BIT(12), ///< Has received CMD9 command. Only available in slave HD.
63 SPI_LL_INTR_CMDA = BIT(13), ///< Has received CMDA command. Only available in slave HD.
64 SPI_LL_INTR_SEG_DONE = BIT(14),
65 } spi_ll_intr_t;
66 FLAG_ATTR(spi_ll_intr_t)
67
68 // Flags for conditions under which the transaction length should be recorded
69 typedef enum {
70 SPI_LL_TRANS_LEN_COND_WRBUF = BIT(0), ///< WRBUF length will be recorded
71 SPI_LL_TRANS_LEN_COND_RDBUF = BIT(1), ///< RDBUF length will be recorded
72 SPI_LL_TRANS_LEN_COND_WRDMA = BIT(2), ///< WRDMA length will be recorded
73 SPI_LL_TRANS_LEN_COND_RDDMA = BIT(3), ///< RDDMA length will be recorded
74 } spi_ll_trans_len_cond_t;
FLAG_ATTR(spi_ll_trans_len_cond_t)75 FLAG_ATTR(spi_ll_trans_len_cond_t)
76
77 /*------------------------------------------------------------------------------
78 * Control
79 *----------------------------------------------------------------------------*/
80 /**
81 * Initialize SPI peripheral (master).
82 *
83 * @param hw Beginning address of the peripheral registers.
84 */
85 static inline void spi_ll_master_init(spi_dev_t *hw)
86 {
87 //Reset timing
88 hw->user1.cs_setup_time = 0;
89 hw->user1.cs_hold_time = 0;
90
91 //use all 64 bytes of the buffer
92 hw->user.usr_miso_highpart = 0;
93 hw->user.usr_mosi_highpart = 0;
94
95 //Disable unneeded ints
96 hw->slave.val = 0;
97 hw->user.val = 0;
98
99 hw->clk_gate.clk_en = 1;
100 hw->clk_gate.mst_clk_active = 1;
101 hw->clk_gate.mst_clk_sel = 1;
102
103 hw->dma_conf.val = 0;
104 hw->dma_conf.tx_seg_trans_clr_en = 1;
105 hw->dma_conf.rx_seg_trans_clr_en = 1;
106 hw->dma_conf.dma_seg_trans_en = 0;
107 }
108
109 /**
110 * Initialize SPI peripheral (slave).
111 *
112 * @param hw Beginning address of the peripheral registers.
113 */
spi_ll_slave_init(spi_dev_t * hw)114 static inline void spi_ll_slave_init(spi_dev_t *hw)
115 {
116 //Configure slave
117 hw->clock.val = 0;
118 hw->user.val = 0;
119 hw->ctrl.val = 0;
120 hw->user.doutdin = 1; //we only support full duplex
121 hw->user.sio = 0;
122 hw->slave.slave_mode = 1;
123 hw->slave.soft_reset = 1;
124 hw->slave.soft_reset = 0;
125 //use all 64 bytes of the buffer
126 hw->user.usr_miso_highpart = 0;
127 hw->user.usr_mosi_highpart = 0;
128
129 // Configure DMA In-Link to not be terminated when transaction bit counter exceeds
130 hw->dma_conf.rx_eof_en = 0;
131 hw->dma_conf.dma_seg_trans_en = 0;
132
133 //Disable unneeded ints
134 hw->dma_int_ena.val &= ~SPI_LL_UNUSED_INT_MASK;
135 }
136
137 /**
138 * Initialize SPI peripheral (slave half duplex mode)
139 *
140 * @param hw Beginning address of the peripheral registers.
141 */
spi_ll_slave_hd_init(spi_dev_t * hw)142 static inline void spi_ll_slave_hd_init(spi_dev_t *hw)
143 {
144 hw->clock.val = 0;
145 hw->user.val = 0;
146 hw->ctrl.val = 0;
147 hw->user.doutdin = 0;
148 hw->user.sio = 0;
149
150 hw->slave.soft_reset = 1;
151 hw->slave.soft_reset = 0;
152 hw->slave.slave_mode = 1;
153 }
154
155 /**
156 * Check whether user-defined transaction is done.
157 *
158 * @param hw Beginning address of the peripheral registers.
159 *
160 * @return True if transaction is done, otherwise false.
161 */
spi_ll_usr_is_done(spi_dev_t * hw)162 static inline bool spi_ll_usr_is_done(spi_dev_t *hw)
163 {
164 return hw->dma_int_raw.trans_done;
165 }
166
167 /**
168 * Trigger start of user-defined transaction for master.
169 * The synchronization between two clock domains is required in ESP32-S3
170 *
171 * @param hw Beginning address of the peripheral registers.
172 */
spi_ll_master_user_start(spi_dev_t * hw)173 static inline void spi_ll_master_user_start(spi_dev_t *hw)
174 {
175 hw->cmd.update = 1;
176 while (hw->cmd.update);
177 hw->cmd.usr = 1;
178 }
179
180 /**
181 * Trigger start of user-defined transaction for slave.
182 *
183 * @param hw Beginning address of the peripheral registers.
184 */
spi_ll_slave_user_start(spi_dev_t * hw)185 static inline void spi_ll_slave_user_start(spi_dev_t *hw)
186 {
187 hw->cmd.usr = 1;
188 }
189
190 /**
191 * Get current running command bit-mask. (Preview)
192 *
193 * @param hw Beginning address of the peripheral registers.
194 *
195 * @return Bitmask of running command, see ``SPI_CMD_REG``. 0 if no in-flight command.
196 */
spi_ll_get_running_cmd(spi_dev_t * hw)197 static inline uint32_t spi_ll_get_running_cmd(spi_dev_t *hw)
198 {
199 return hw->cmd.val;
200 }
201
202 /**
203 * Reset the slave peripheral before next transaction.
204 *
205 * @param hw Beginning address of the peripheral registers.
206 */
spi_ll_slave_reset(spi_dev_t * hw)207 static inline void spi_ll_slave_reset(spi_dev_t *hw)
208 {
209 hw->slave.soft_reset = 1;
210 hw->slave.soft_reset = 0;
211 }
212
213 /**
214 * Reset SPI CPU TX FIFO
215 *
216 * On ESP32S3, this function is not seperated
217 *
218 * @param hw Beginning address of the peripheral registers.
219 */
spi_ll_cpu_tx_fifo_reset(spi_dev_t * hw)220 static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
221 {
222 hw->dma_conf.buf_afifo_rst = 1;
223 hw->dma_conf.buf_afifo_rst = 0;
224 }
225
226 /**
227 * Reset SPI CPU RX FIFO
228 *
229 * On ESP32S3, this function is not seperated
230 *
231 * @param hw Beginning address of the peripheral registers.
232 */
spi_ll_cpu_rx_fifo_reset(spi_dev_t * hw)233 static inline void spi_ll_cpu_rx_fifo_reset(spi_dev_t *hw)
234 {
235 hw->dma_conf.rx_afifo_rst = 1;
236 hw->dma_conf.rx_afifo_rst = 0;
237 }
238
239 /**
240 * Reset SPI DMA TX FIFO
241 *
242 * @param hw Beginning address of the peripheral registers.
243 */
spi_ll_dma_tx_fifo_reset(spi_dev_t * hw)244 static inline void spi_ll_dma_tx_fifo_reset(spi_dev_t *hw)
245 {
246 hw->dma_conf.dma_afifo_rst = 1;
247 hw->dma_conf.dma_afifo_rst = 0;
248 }
249
250 /**
251 * Reset SPI DMA RX FIFO
252 *
253 * @param hw Beginning address of the peripheral registers.
254 */
spi_ll_dma_rx_fifo_reset(spi_dev_t * hw)255 static inline void spi_ll_dma_rx_fifo_reset(spi_dev_t *hw)
256 {
257 hw->dma_conf.rx_afifo_rst = 1;
258 hw->dma_conf.rx_afifo_rst = 0;
259 }
260
261 /**
262 * Clear in fifo full error
263 *
264 * @param hw Beginning address of the peripheral registers.
265 */
spi_ll_infifo_full_clr(spi_dev_t * hw)266 static inline void spi_ll_infifo_full_clr(spi_dev_t *hw)
267 {
268 hw->dma_int_clr.infifo_full_err = 1;
269 }
270
271 /**
272 * Clear out fifo empty error
273 *
274 * @param hw Beginning address of the peripheral registers.
275 */
spi_ll_outfifo_empty_clr(spi_dev_t * hw)276 static inline void spi_ll_outfifo_empty_clr(spi_dev_t *hw)
277 {
278 hw->dma_int_clr.outfifo_empty_err = 1;
279 }
280
281 /*------------------------------------------------------------------------------
282 * DMA
283 *----------------------------------------------------------------------------*/
284 /**
285 * Enable/Disable RX DMA (Peripherals->DMA->RAM)
286 *
287 * @param hw Beginning address of the peripheral registers.
288 * @param enable 1: enable; 2: disable
289 */
spi_ll_dma_rx_enable(spi_dev_t * hw,bool enable)290 static inline void spi_ll_dma_rx_enable(spi_dev_t *hw, bool enable)
291 {
292 hw->dma_conf.dma_rx_ena = enable;
293 }
294
295 /**
296 * Enable/Disable TX DMA (RAM->DMA->Peripherals)
297 *
298 * @param hw Beginning address of the peripheral registers.
299 * @param enable 1: enable; 2: disable
300 */
spi_ll_dma_tx_enable(spi_dev_t * hw,bool enable)301 static inline void spi_ll_dma_tx_enable(spi_dev_t *hw, bool enable)
302 {
303 hw->dma_conf.dma_tx_ena = enable;
304 }
305
306 /**
307 * Configuration of RX DMA EOF interrupt generation way
308 *
309 * @param hw Beginning address of the peripheral registers.
310 * @param enable 1: spi_dma_inlink_eof is set when the number of dma pushed data bytes is equal to the value of spi_slv/mst_dma_rd_bytelen[19:0] in spi dma transition. 0: spi_dma_inlink_eof is set by spi_trans_done in non-seg-trans or spi_dma_seg_trans_done in seg-trans.
311 */
spi_ll_dma_set_rx_eof_generation(spi_dev_t * hw,bool enable)312 static inline void spi_ll_dma_set_rx_eof_generation(spi_dev_t *hw, bool enable)
313 {
314 hw->dma_conf.rx_eof_en = enable;
315 }
316
317 /*------------------------------------------------------------------------------
318 * Buffer
319 *----------------------------------------------------------------------------*/
320 /**
321 * Write to SPI hardware data buffer.
322 *
323 * @param hw Beginning address of the peripheral registers.
324 * @param buffer_to_send Address of the data to be written to the hardware data buffer.
325 * @param bitlen Length to write, in bits.
326 */
spi_ll_write_buffer(spi_dev_t * hw,const uint8_t * buffer_to_send,size_t bitlen)327 static inline void spi_ll_write_buffer(spi_dev_t *hw, const uint8_t *buffer_to_send, size_t bitlen)
328 {
329 for (size_t x = 0; x < bitlen; x += 32) {
330 //Use memcpy to get around alignment issues for txdata
331 uint32_t word;
332 memcpy(&word, &buffer_to_send[x / 8], 4);
333 hw->data_buf[(x / 32)] = word;
334 }
335 }
336
337 /**
338 * Write to SPI hardware data buffer by buffer ID (address)
339 *
340 * @param hw Beginning address of the peripheral registers
341 * @param byte_id Start ID (address) of the hardware buffer to be written
342 * @param data Address of the data to be written to the hardware data buffer.
343 * @param len Length to write, in bytes.
344 */
spi_ll_write_buffer_byte(spi_dev_t * hw,int byte_id,uint8_t * data,int len)345 static inline void spi_ll_write_buffer_byte(spi_dev_t *hw, int byte_id, uint8_t *data, int len)
346 {
347 HAL_ASSERT(byte_id + len <= 64);
348 HAL_ASSERT(len > 0);
349 HAL_ASSERT(byte_id >= 0);
350
351 while (len > 0) {
352 uint32_t word;
353 int offset = byte_id % 4;
354 int copy_len = 4 - offset;
355 if (copy_len > len) {
356 copy_len = len;
357 }
358
359 //read-modify-write
360 if (copy_len != 4) {
361 word = hw->data_buf[byte_id / 4]; //read
362 }
363 memcpy(((uint8_t *)&word) + offset, data, copy_len); //modify
364 hw->data_buf[byte_id / 4] = word; //write
365
366 data += copy_len;
367 byte_id += copy_len;
368 len -= copy_len;
369 }
370 }
371
372 /**
373 * Read from SPI hardware data buffer.
374 *
375 * @param hw Beginning address of the peripheral registers.
376 * @param buffer_to_rcv Address of a buffer to read data from hardware data buffer
377 * @param bitlen Length to read, in bits.
378 */
spi_ll_read_buffer(spi_dev_t * hw,uint8_t * buffer_to_rcv,size_t bitlen)379 static inline void spi_ll_read_buffer(spi_dev_t *hw, uint8_t *buffer_to_rcv, size_t bitlen)
380 {
381 for (size_t x = 0; x < bitlen; x += 32) {
382 //Do a memcpy to get around possible alignment issues in rx_buffer
383 uint32_t word = hw->data_buf[x / 32];
384 int len = bitlen - x;
385 if (len > 32) {
386 len = 32;
387 }
388 memcpy(&buffer_to_rcv[x / 8], &word, (len + 7) / 8);
389 }
390 }
391
392 /**
393 * Read from SPI hardware data buffer by buffer ID (address)
394 *
395 * @param hw Beginning address of the peripheral registers
396 * @param byte_id Start ID (address) of the hardware buffer to be read
397 * @param data Address of a buffer to read data from hardware data buffer
398 * @param len Length to read, in bytes.
399 */
spi_ll_read_buffer_byte(spi_dev_t * hw,int byte_id,uint8_t * out_data,int len)400 static inline void spi_ll_read_buffer_byte(spi_dev_t *hw, int byte_id, uint8_t *out_data, int len)
401 {
402 while (len > 0) {
403 uint32_t word = hw->data_buf[byte_id / 4];
404 int offset = byte_id % 4;
405 int copy_len = 4 - offset;
406 if (copy_len > len) {
407 copy_len = len;
408 }
409
410 memcpy(out_data, ((uint8_t *)&word) + offset, copy_len);
411 byte_id += copy_len;
412 out_data += copy_len;
413 len -= copy_len;
414 }
415 }
416
417 /*------------------------------------------------------------------------------
418 * Configs: mode
419 *----------------------------------------------------------------------------*/
420 /**
421 * Enable/disable the postive-cs feature.
422 *
423 * @param hw Beginning address of the peripheral registers.
424 * @param cs One of the CS (0-2) to enable/disable the feature.
425 * @param pos_cs True to enable the feature, otherwise disable (default).
426 */
spi_ll_master_set_pos_cs(spi_dev_t * hw,int cs,uint32_t pos_cs)427 static inline void spi_ll_master_set_pos_cs(spi_dev_t *hw, int cs, uint32_t pos_cs)
428 {
429 if (pos_cs) {
430 hw->misc.master_cs_pol |= (1 << cs);
431 } else {
432 hw->misc.master_cs_pol &= ~(1 << cs);
433 }
434 }
435
436 /**
437 * Enable/disable the LSBFIRST feature for TX data.
438 *
439 * @param hw Beginning address of the peripheral registers.
440 * @param lsbfirst True if LSB of TX data to be sent first, otherwise MSB is sent first (default).
441 */
spi_ll_set_tx_lsbfirst(spi_dev_t * hw,bool lsbfirst)442 static inline void spi_ll_set_tx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
443 {
444 hw->ctrl.wr_bit_order = lsbfirst;
445 }
446
447 /**
448 * Enable/disable the LSBFIRST feature for RX data.
449 *
450 * @param hw Beginning address of the peripheral registers.
451 * @param lsbfirst True if first bit received as LSB, otherwise as MSB (default).
452 */
spi_ll_set_rx_lsbfirst(spi_dev_t * hw,bool lsbfirst)453 static inline void spi_ll_set_rx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
454 {
455 hw->ctrl.rd_bit_order = lsbfirst;
456 }
457
458 /**
459 * Set SPI mode for the peripheral as master.
460 *
461 * @param hw Beginning address of the peripheral registers.
462 * @param mode SPI mode to work at, 0-3.
463 */
spi_ll_master_set_mode(spi_dev_t * hw,uint8_t mode)464 static inline void spi_ll_master_set_mode(spi_dev_t *hw, uint8_t mode)
465 {
466 //Configure polarity
467 if (mode == 0) {
468 hw->misc.ck_idle_edge = 0;
469 hw->user.ck_out_edge = 0;
470 } else if (mode == 1) {
471 hw->misc.ck_idle_edge = 0;
472 hw->user.ck_out_edge = 1;
473 } else if (mode == 2) {
474 hw->misc.ck_idle_edge = 1;
475 hw->user.ck_out_edge = 1;
476 } else if (mode == 3) {
477 hw->misc.ck_idle_edge = 1;
478 hw->user.ck_out_edge = 0;
479 }
480 }
481
482 /**
483 * Set SPI mode for the peripheral as slave.
484 *
485 * @param hw Beginning address of the peripheral registers.
486 * @param mode SPI mode to work at, 0-3.
487 */
spi_ll_slave_set_mode(spi_dev_t * hw,const int mode,bool dma_used)488 static inline void spi_ll_slave_set_mode(spi_dev_t *hw, const int mode, bool dma_used)
489 {
490 if (mode == 0) {
491 hw->misc.ck_idle_edge = 0;
492 hw->user.rsck_i_edge = 0;
493 hw->user.tsck_i_edge = 0;
494 hw->slave.clk_mode_13 = 0;
495 } else if (mode == 1) {
496 hw->misc.ck_idle_edge = 0;
497 hw->user.rsck_i_edge = 1;
498 hw->user.tsck_i_edge = 1;
499 hw->slave.clk_mode_13 = 1;
500 } else if (mode == 2) {
501 hw->misc.ck_idle_edge = 1;
502 hw->user.rsck_i_edge = 1;
503 hw->user.tsck_i_edge = 1;
504 hw->slave.clk_mode_13 = 0;
505 } else if (mode == 3) {
506 hw->misc.ck_idle_edge = 1;
507 hw->user.rsck_i_edge = 0;
508 hw->user.tsck_i_edge = 0;
509 hw->slave.clk_mode_13 = 1;
510 }
511 hw->slave.rsck_data_out = 0;
512 }
513
514 /**
515 * Set SPI to work in full duplex or half duplex mode.
516 *
517 * @param hw Beginning address of the peripheral registers.
518 * @param half_duplex True to work in half duplex mode, otherwise in full duplex mode.
519 */
spi_ll_set_half_duplex(spi_dev_t * hw,bool half_duplex)520 static inline void spi_ll_set_half_duplex(spi_dev_t *hw, bool half_duplex)
521 {
522 hw->user.doutdin = !half_duplex;
523 }
524
525 /**
526 * Set SPI to work in SIO mode or not.
527 *
528 * SIO is a mode which MOSI and MISO share a line. The device MUST work in half-duplexmode.
529 *
530 * @param hw Beginning address of the peripheral registers.
531 * @param sio_mode True to work in SIO mode, otherwise false.
532 */
spi_ll_set_sio_mode(spi_dev_t * hw,int sio_mode)533 static inline void spi_ll_set_sio_mode(spi_dev_t *hw, int sio_mode)
534 {
535 hw->user.sio = sio_mode;
536 }
537
538 /**
539 * Configure the SPI transaction line mode for the master to use.
540 *
541 * @param hw Beginning address of the peripheral registers.
542 * @param line_mode SPI transaction line mode to use, see ``spi_line_mode_t``.
543 */
spi_ll_master_set_line_mode(spi_dev_t * hw,spi_line_mode_t line_mode)544 static inline void spi_ll_master_set_line_mode(spi_dev_t *hw, spi_line_mode_t line_mode)
545 {
546 hw->ctrl.val &= ~SPI_LL_ONE_LINE_CTRL_MASK;
547 hw->user.val &= ~SPI_LL_ONE_LINE_USER_MASK;
548 hw->ctrl.fcmd_dual = (line_mode.cmd_lines == 2);
549 hw->ctrl.fcmd_quad = (line_mode.cmd_lines == 4);
550 hw->ctrl.fcmd_oct = (line_mode.cmd_lines == 8);
551 hw->ctrl.faddr_dual = (line_mode.addr_lines == 2);
552 hw->ctrl.faddr_quad = (line_mode.addr_lines == 4);
553 hw->ctrl.faddr_oct = (line_mode.addr_lines == 8);
554 hw->ctrl.fread_dual = (line_mode.data_lines == 2);
555 hw->user.fwrite_dual = (line_mode.data_lines == 2);
556 hw->ctrl.fread_quad = (line_mode.data_lines == 4);
557 hw->user.fwrite_quad = (line_mode.data_lines == 4);
558 hw->ctrl.fread_oct = (line_mode.data_lines == 8);
559 hw->user.fwrite_oct = (line_mode.data_lines == 8);
560 }
561
562 /**
563 * Set the SPI slave to work in segment transaction mode
564 *
565 * @param hw Beginning address of the peripheral registers.
566 * @param seg_trans True to work in seg mode, otherwise false.
567 */
spi_ll_slave_set_seg_mode(spi_dev_t * hw,bool seg_trans)568 static inline void spi_ll_slave_set_seg_mode(spi_dev_t *hw, bool seg_trans)
569 {
570 hw->dma_conf.dma_seg_trans_en = seg_trans;
571 }
572
573 /**
574 * Select one of the CS to use in current transaction.
575 *
576 * @param hw Beginning address of the peripheral registers.
577 * @param cs_id The cs to use, 0-2, otherwise none of them is used.
578 */
spi_ll_master_select_cs(spi_dev_t * hw,int cs_id)579 static inline void spi_ll_master_select_cs(spi_dev_t *hw, int cs_id)
580 {
581 if (hw == &GPSPI2) {
582 hw->misc.cs0_dis = (cs_id == 0) ? 0 : 1;
583 hw->misc.cs1_dis = (cs_id == 1) ? 0 : 1;
584 hw->misc.cs2_dis = (cs_id == 2) ? 0 : 1;
585 hw->misc.cs3_dis = (cs_id == 3) ? 0 : 1;
586 hw->misc.cs4_dis = (cs_id == 4) ? 0 : 1;
587 hw->misc.cs5_dis = (cs_id == 5) ? 0 : 1;
588 }
589
590 if (hw == &GPSPI3) {
591 hw->misc.cs0_dis = (cs_id == 0) ? 0 : 1;
592 hw->misc.cs1_dis = (cs_id == 1) ? 0 : 1;
593 hw->misc.cs2_dis = (cs_id == 2) ? 0 : 1;
594 }
595 }
596
597 /**
598 * Keep Chip Select activated after the current transaction.
599 *
600 * @param hw Beginning address of the peripheral registers.
601 * @param keep_active if 0 don't keep CS activated, else keep CS activated
602 */
spi_ll_master_keep_cs(spi_dev_t * hw,int keep_active)603 static inline void spi_ll_master_keep_cs(spi_dev_t *hw, int keep_active)
604 {
605 hw->misc.cs_keep_active = (keep_active != 0) ? 1 : 0;
606 }
607
608 /*------------------------------------------------------------------------------
609 * Configs: parameters
610 *----------------------------------------------------------------------------*/
611 /**
612 * Set the clock for master by stored value.
613 *
614 * @param hw Beginning address of the peripheral registers.
615 * @param val Stored clock configuration calculated before (by ``spi_ll_cal_clock``).
616 */
spi_ll_master_set_clock_by_reg(spi_dev_t * hw,const spi_ll_clock_val_t * val)617 static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_clock_val_t *val)
618 {
619 hw->clock.val = *(uint32_t *)val;
620 }
621
622 /**
623 * Get the frequency of given dividers. Don't use in app.
624 *
625 * @param fapb APB clock of the system.
626 * @param pre Pre devider.
627 * @param n Main divider.
628 *
629 * @return Frequency of given dividers.
630 */
spi_ll_freq_for_pre_n(int fapb,int pre,int n)631 static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
632 {
633 return (fapb / (pre * n));
634 }
635
636 /**
637 * Calculate the nearest frequency avaliable for master.
638 *
639 * @param fapb APB clock of the system.
640 * @param hz Frequncy desired.
641 * @param duty_cycle Duty cycle desired.
642 * @param out_reg Output address to store the calculated clock configurations for the return frequency.
643 *
644 * @return Actual (nearest) frequency.
645 */
spi_ll_master_cal_clock(int fapb,int hz,int duty_cycle,spi_ll_clock_val_t * out_reg)646 static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_ll_clock_val_t *out_reg)
647 {
648 __typeof__(GPSPI2.clock) reg;
649 int eff_clk;
650
651 //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
652 if (hz > ((fapb / 4) * 3)) {
653 //Using Fapb directly will give us the best result here.
654 reg.clkcnt_l = 0;
655 reg.clkcnt_h = 0;
656 reg.clkcnt_n = 0;
657 reg.clkdiv_pre = 0;
658 reg.clk_equ_sysclk = 1;
659 eff_clk = fapb;
660 } else {
661 //For best duty cycle resolution, we want n to be as close to 32 as possible, but
662 //we also need a pre/n combo that gets us as close as possible to the intended freq.
663 //To do this, we bruteforce n and calculate the best pre to go along with that.
664 //If there's a choice between pre/n combos that give the same result, use the one
665 //with the higher n.
666 int pre, n, h, l;
667 int bestn = -1;
668 int bestpre = -1;
669 int besterr = 0;
670 int errval;
671 for (n = 2; n <= 64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
672 //Effectively, this does pre=round((fapb/n)/hz).
673 pre = ((fapb / n) + (hz / 2)) / hz;
674 if (pre <= 0) {
675 pre = 1;
676 }
677 if (pre > 8192) {
678 pre = 8192;
679 }
680 errval = abs(spi_ll_freq_for_pre_n(fapb, pre, n) - hz);
681 if (bestn == -1 || errval <= besterr) {
682 besterr = errval;
683 bestn = n;
684 bestpre = pre;
685 }
686 }
687
688 n = bestn;
689 pre = bestpre;
690 l = n;
691 //This effectively does round((duty_cycle*n)/256)
692 h = (duty_cycle * n + 127) / 256;
693 if (h <= 0) {
694 h = 1;
695 }
696
697 reg.clk_equ_sysclk = 0;
698 reg.clkcnt_n = n - 1;
699 reg.clkdiv_pre = pre - 1;
700 reg.clkcnt_h = h - 1;
701 reg.clkcnt_l = l - 1;
702 eff_clk = spi_ll_freq_for_pre_n(fapb, pre, n);
703 }
704 if (out_reg != NULL) {
705 *(uint32_t *)out_reg = reg.val;
706 }
707 return eff_clk;
708 }
709
710 /**
711 * Calculate and set clock for SPI master according to desired parameters.
712 *
713 * This takes long, suggest to calculate the configuration during
714 * initialization by ``spi_ll_master_cal_clock`` and store the result, then
715 * configure the clock by stored value when used by
716 * ``spi_ll_msater_set_clock_by_reg``.
717 *
718 * @param hw Beginning address of the peripheral registers.
719 * @param fapb APB clock of the system.
720 * @param hz Frequncy desired.
721 * @param duty_cycle Duty cycle desired.
722 *
723 * @return Actual frequency that is used.
724 */
spi_ll_master_set_clock(spi_dev_t * hw,int fapb,int hz,int duty_cycle)725 static inline int spi_ll_master_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle)
726 {
727 spi_ll_clock_val_t reg_val;
728 int freq = spi_ll_master_cal_clock(fapb, hz, duty_cycle, ®_val);
729 spi_ll_master_set_clock_by_reg(hw, ®_val);
730 return freq;
731 }
732
733 /**
734 * Set the mosi delay after the output edge to the signal. (Preview)
735 *
736 * The delay mode/num is a Espressif conception, may change in the new chips.
737 *
738 * @param hw Beginning address of the peripheral registers.
739 * @param delay_mode Delay mode, see TRM.
740 * @param delay_num APB clocks to delay.
741 */
spi_ll_set_mosi_delay(spi_dev_t * hw,int delay_mode,int delay_num)742 static inline void spi_ll_set_mosi_delay(spi_dev_t *hw, int delay_mode, int delay_num)
743 {
744 }
745
746 /**
747 * Set the miso delay applied to the input signal before the internal peripheral. (Preview)
748 *
749 * The delay mode/num is a Espressif conception, may change in the new chips.
750 *
751 * @param hw Beginning address of the peripheral registers.
752 * @param delay_mode Delay mode, see TRM.
753 * @param delay_num APB clocks to delay.
754 */
spi_ll_set_miso_delay(spi_dev_t * hw,int delay_mode,int delay_num)755 static inline void spi_ll_set_miso_delay(spi_dev_t *hw, int delay_mode, int delay_num)
756 {
757 }
758
759 /**
760 * Set the delay of SPI clocks before the CS inactive edge after the last SPI clock.
761 *
762 * @param hw Beginning address of the peripheral registers.
763 * @param hold Delay of SPI clocks after the last clock, 0 to disable the hold phase.
764 */
spi_ll_master_set_cs_hold(spi_dev_t * hw,int hold)765 static inline void spi_ll_master_set_cs_hold(spi_dev_t *hw, int hold)
766 {
767 hw->user1.cs_hold_time = hold;
768 hw->user.cs_hold = hold ? 1 : 0;
769 }
770
771 /**
772 * Set the delay of SPI clocks before the first SPI clock after the CS active edge.
773 *
774 * Note ESP32 doesn't support to use this feature when command/address phases
775 * are used in full duplex mode.
776 *
777 * @param hw Beginning address of the peripheral registers.
778 * @param setup Delay of SPI clocks after the CS active edge, 0 to disable the setup phase.
779 */
spi_ll_master_set_cs_setup(spi_dev_t * hw,uint8_t setup)780 static inline void spi_ll_master_set_cs_setup(spi_dev_t *hw, uint8_t setup)
781 {
782 hw->user1.cs_setup_time = setup - 1;
783 hw->user.cs_setup = setup ? 1 : 0;
784 }
785
786 /*------------------------------------------------------------------------------
787 * Configs: data
788 *----------------------------------------------------------------------------*/
789 /**
790 * Set the output length (master).
791 * This should be called before master setting MISO(input) length
792 *
793 * @param hw Beginning address of the peripheral registers.
794 * @param bitlen output length, in bits.
795 */
spi_ll_set_mosi_bitlen(spi_dev_t * hw,size_t bitlen)796 static inline void spi_ll_set_mosi_bitlen(spi_dev_t *hw, size_t bitlen)
797 {
798 if (bitlen > 0) {
799 hw->ms_dlen.ms_data_bitlen = bitlen - 1;
800 }
801 }
802
803 /**
804 * Set the input length (master).
805 *
806 * @param hw Beginning address of the peripheral registers.
807 * @param bitlen input length, in bits.
808 */
spi_ll_set_miso_bitlen(spi_dev_t * hw,size_t bitlen)809 static inline void spi_ll_set_miso_bitlen(spi_dev_t *hw, size_t bitlen)
810 {
811 if (bitlen > 0) {
812 hw->ms_dlen.ms_data_bitlen = bitlen - 1;
813 }
814 }
815
816 /**
817 * Set the maximum input length (slave).
818 *
819 * @param hw Beginning address of the peripheral registers.
820 * @param bitlen Input length, in bits.
821 */
spi_ll_slave_set_rx_bitlen(spi_dev_t * hw,size_t bitlen)822 static inline void spi_ll_slave_set_rx_bitlen(spi_dev_t *hw, size_t bitlen)
823 {
824 //This is not used in esp32s3
825 }
826
827 /**
828 * Set the maximum output length (slave).
829 *
830 * @param hw Beginning address of the peripheral registers.
831 * @param bitlen Output length, in bits.
832 */
spi_ll_slave_set_tx_bitlen(spi_dev_t * hw,size_t bitlen)833 static inline void spi_ll_slave_set_tx_bitlen(spi_dev_t *hw, size_t bitlen)
834 {
835 //This is not used in esp32s3
836 }
837
838 /**
839 * Set the length of command phase.
840 *
841 * When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
842 * command phases takes 4 cycles in 4-bit mode.
843 *
844 * @param hw Beginning address of the peripheral registers.
845 * @param bitlen Length of command phase, in bits. 0 to disable the command phase.
846 */
spi_ll_set_command_bitlen(spi_dev_t * hw,int bitlen)847 static inline void spi_ll_set_command_bitlen(spi_dev_t *hw, int bitlen)
848 {
849 hw->user2.usr_command_bitlen = bitlen - 1;
850 hw->user.usr_command = bitlen ? 1 : 0;
851 }
852
853 /**
854 * Set the length of address phase.
855 *
856 * When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
857 * address phases takes 4 cycles in 4-bit mode.
858 *
859 * @param hw Beginning address of the peripheral registers.
860 * @param bitlen Length of address phase, in bits. 0 to disable the address phase.
861 */
spi_ll_set_addr_bitlen(spi_dev_t * hw,int bitlen)862 static inline void spi_ll_set_addr_bitlen(spi_dev_t *hw, int bitlen)
863 {
864 hw->user1.usr_addr_bitlen = bitlen - 1;
865 hw->user.usr_addr = bitlen ? 1 : 0;
866 }
867
868 /**
869 * Set the address value in an intuitive way.
870 *
871 * The length and lsbfirst is required to shift and swap the address to the right place.
872 *
873 * @param hw Beginning address of the peripheral registers.
874 * @param address Address to set
875 * @param addrlen Length of the address phase
876 * @param lsbfirst Whether the LSB first feature is enabled.
877 */
spi_ll_set_address(spi_dev_t * hw,uint64_t addr,int addrlen,uint32_t lsbfirst)878 static inline void spi_ll_set_address(spi_dev_t *hw, uint64_t addr, int addrlen, uint32_t lsbfirst)
879 {
880 if (lsbfirst) {
881 /* The output address start from the LSB of the highest byte, i.e.
882 * addr[24] -> addr[31]
883 * ...
884 * addr[0] -> addr[7]
885 * So swap the byte order to let the LSB sent first.
886 */
887 addr = HAL_SWAP32(addr);
888 //otherwise only addr register is sent
889 hw->addr = addr;
890 } else {
891 // shift the address to MSB of addr register.
892 // output address will be sent from MSB to LSB of addr register
893 hw->addr = addr << (32 - addrlen);
894 }
895 }
896
897 /**
898 * Set the command value in an intuitive way.
899 *
900 * The length and lsbfirst is required to shift and swap the command to the right place.
901 *
902 * @param hw Beginning command of the peripheral registers.
903 * @param command Command to set
904 * @param addrlen Length of the command phase
905 * @param lsbfirst Whether the LSB first feature is enabled.
906 */
spi_ll_set_command(spi_dev_t * hw,uint16_t cmd,int cmdlen,bool lsbfirst)907 static inline void spi_ll_set_command(spi_dev_t *hw, uint16_t cmd, int cmdlen, bool lsbfirst)
908 {
909 if (lsbfirst) {
910 // The output command start from bit0 to bit 15, kept as is.
911 HAL_FORCE_MODIFY_U32_REG_FIELD(hw->user2, usr_command_value, cmd);
912 } else {
913 /* Output command will be sent from bit 7 to 0 of command_value, and
914 * then bit 15 to 8 of the same register field. Shift and swap to send
915 * more straightly.
916 */
917 HAL_FORCE_MODIFY_U32_REG_FIELD(hw->user2, usr_command_value, HAL_SPI_SWAP_DATA_TX(cmd, cmdlen));
918
919 }
920 }
921
922 /**
923 * Set dummy clocks to output before RX phase (master), or clocks to skip
924 * before the data phase and after the address phase (slave).
925 *
926 * Note this phase is also used to compensate RX timing in half duplex mode.
927 *
928 * @param hw Beginning address of the peripheral registers.
929 * @param dummy_n Dummy cycles used. 0 to disable the dummy phase.
930 */
spi_ll_set_dummy(spi_dev_t * hw,int dummy_n)931 static inline void spi_ll_set_dummy(spi_dev_t *hw, int dummy_n)
932 {
933 hw->user.usr_dummy = dummy_n ? 1 : 0;
934 HAL_FORCE_MODIFY_U32_REG_FIELD(hw->user1, usr_dummy_cyclelen, dummy_n - 1);
935 }
936
937 /**
938 * Enable/disable the RX data phase.
939 *
940 * @param hw Beginning address of the peripheral registers.
941 * @param enable True if RX phase exist, otherwise false.
942 */
spi_ll_enable_miso(spi_dev_t * hw,int enable)943 static inline void spi_ll_enable_miso(spi_dev_t *hw, int enable)
944 {
945 hw->user.usr_miso = enable;
946 }
947
948 /**
949 * Enable/disable the TX data phase.
950 *
951 * @param hw Beginning address of the peripheral registers.
952 * @param enable True if TX phase exist, otherwise false.
953 */
spi_ll_enable_mosi(spi_dev_t * hw,int enable)954 static inline void spi_ll_enable_mosi(spi_dev_t *hw, int enable)
955 {
956 hw->user.usr_mosi = enable;
957 }
958
959 /**
960 * Get the received bit length of the slave.
961 *
962 * @param hw Beginning address of the peripheral registers.
963 *
964 * @return Received bits of the slave.
965 */
spi_ll_slave_get_rcv_bitlen(spi_dev_t * hw)966 static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
967 {
968 return hw->slave1.data_bitlen;
969 }
970
971 /*------------------------------------------------------------------------------
972 * Interrupts
973 *----------------------------------------------------------------------------*/
974 //helper macros to generate code for each interrupts
975 #define FOR_EACH_ITEM(op, list) do { list(op) } while(0)
976 #define INTR_LIST(item) \
977 item(SPI_LL_INTR_TRANS_DONE, dma_int_ena.trans_done, dma_int_raw.trans_done, dma_int_clr.trans_done, dma_int_set.trans_done_int_set) \
978 item(SPI_LL_INTR_RDBUF, dma_int_ena.rd_buf_done, dma_int_raw.rd_buf_done, dma_int_clr.rd_buf_done, dma_int_set.rd_buf_done_int_set) \
979 item(SPI_LL_INTR_WRBUF, dma_int_ena.wr_buf_done, dma_int_raw.wr_buf_done, dma_int_clr.wr_buf_done, dma_int_set.wr_buf_done_int_set) \
980 item(SPI_LL_INTR_RDDMA, dma_int_ena.rd_dma_done, dma_int_raw.rd_dma_done, dma_int_clr.rd_dma_done, dma_int_set.rd_dma_done_int_set) \
981 item(SPI_LL_INTR_WRDMA, dma_int_ena.wr_dma_done, dma_int_raw.wr_dma_done, dma_int_clr.wr_dma_done, dma_int_set.wr_dma_done_int_set) \
982 item(SPI_LL_INTR_SEG_DONE, dma_int_ena.dma_seg_trans_done, dma_int_raw.dma_seg_trans_done, dma_int_clr.dma_seg_trans_done, dma_int_set.dma_seg_trans_done_int_set) \
983 item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7, dma_int_set.cmd7_int_set) \
984 item(SPI_LL_INTR_CMD8, dma_int_ena.cmd8, dma_int_raw.cmd8, dma_int_clr.cmd8, dma_int_set.cmd8_int_set) \
985 item(SPI_LL_INTR_CMD9, dma_int_ena.cmd9, dma_int_raw.cmd9, dma_int_clr.cmd9, dma_int_set.cmd9_int_set) \
986 item(SPI_LL_INTR_CMDA, dma_int_ena.cmda, dma_int_raw.cmda, dma_int_clr.cmda, dma_int_set.cmda_int_set)
987
988
spi_ll_enable_intr(spi_dev_t * hw,spi_ll_intr_t intr_mask)989 static inline void spi_ll_enable_intr(spi_dev_t *hw, spi_ll_intr_t intr_mask)
990 {
991 #define ENA_INTR(intr_bit, en_reg, ...) if (intr_mask & (intr_bit)) hw->en_reg = 1;
992 FOR_EACH_ITEM(ENA_INTR, INTR_LIST);
993 #undef ENA_INTR
994 }
995
spi_ll_disable_intr(spi_dev_t * hw,spi_ll_intr_t intr_mask)996 static inline void spi_ll_disable_intr(spi_dev_t *hw, spi_ll_intr_t intr_mask)
997 {
998 #define DIS_INTR(intr_bit, en_reg, ...) if (intr_mask & (intr_bit)) hw->en_reg = 0;
999 FOR_EACH_ITEM(DIS_INTR, INTR_LIST);
1000 #undef DIS_INTR
1001 }
1002
spi_ll_set_intr(spi_dev_t * hw,spi_ll_intr_t intr_mask)1003 static inline void spi_ll_set_intr(spi_dev_t *hw, spi_ll_intr_t intr_mask)
1004 {
1005 #define SET_INTR(intr_bit, _, __, ___, set_reg) if (intr_mask & (intr_bit)) hw->set_reg = 1;
1006 FOR_EACH_ITEM(SET_INTR, INTR_LIST);
1007 #undef SET_INTR
1008 }
1009
spi_ll_clear_intr(spi_dev_t * hw,spi_ll_intr_t intr_mask)1010 static inline void spi_ll_clear_intr(spi_dev_t *hw, spi_ll_intr_t intr_mask)
1011 {
1012 #define CLR_INTR(intr_bit, _, __, clr_reg, ...) if (intr_mask & (intr_bit)) hw->clr_reg = 1;
1013 FOR_EACH_ITEM(CLR_INTR, INTR_LIST);
1014 #undef CLR_INTR
1015 }
1016
spi_ll_get_intr(spi_dev_t * hw,spi_ll_intr_t intr_mask)1017 static inline bool spi_ll_get_intr(spi_dev_t *hw, spi_ll_intr_t intr_mask)
1018 {
1019 #define GET_INTR(intr_bit, _, raw_reg, ...) if (intr_mask & (intr_bit) && hw->raw_reg) return true;
1020 FOR_EACH_ITEM(GET_INTR, INTR_LIST);
1021 return false;
1022 #undef GET_INTR
1023 }
1024
1025 #undef FOR_EACH_ITEM
1026 #undef INTR_LIST
1027
1028 /**
1029 * Disable the trans_done interrupt.
1030 *
1031 * @param hw Beginning address of the peripheral registers.
1032 */
spi_ll_disable_int(spi_dev_t * hw)1033 static inline void spi_ll_disable_int(spi_dev_t *hw)
1034 {
1035 hw->dma_int_ena.trans_done = 0;
1036 }
1037
1038 /**
1039 * Clear the trans_done interrupt.
1040 *
1041 * @param hw Beginning address of the peripheral registers.
1042 */
spi_ll_clear_int_stat(spi_dev_t * hw)1043 static inline void spi_ll_clear_int_stat(spi_dev_t *hw)
1044 {
1045 hw->dma_int_clr.trans_done = 1;
1046 }
1047
1048 /**
1049 * Set the trans_done interrupt.
1050 *
1051 * @param hw Beginning address of the peripheral registers.
1052 */
spi_ll_set_int_stat(spi_dev_t * hw)1053 static inline void spi_ll_set_int_stat(spi_dev_t *hw)
1054 {
1055 hw->dma_int_set.trans_done_int_set = 1;
1056 }
1057
1058 /**
1059 * Enable the trans_done interrupt.
1060 *
1061 * @param hw Beginning address of the peripheral registers.
1062 */
spi_ll_enable_int(spi_dev_t * hw)1063 static inline void spi_ll_enable_int(spi_dev_t *hw)
1064 {
1065 hw->dma_int_ena.trans_done = 1;
1066 }
1067
1068 /*------------------------------------------------------------------------------
1069 * Slave HD
1070 *----------------------------------------------------------------------------*/
spi_ll_slave_hd_set_len_cond(spi_dev_t * hw,spi_ll_trans_len_cond_t cond_mask)1071 static inline void spi_ll_slave_hd_set_len_cond(spi_dev_t *hw, spi_ll_trans_len_cond_t cond_mask)
1072 {
1073 hw->slave.rdbuf_bitlen_en = (cond_mask & SPI_LL_TRANS_LEN_COND_RDBUF) ? 1 : 0;
1074 hw->slave.wrbuf_bitlen_en = (cond_mask & SPI_LL_TRANS_LEN_COND_WRBUF) ? 1 : 0;
1075 hw->slave.rddma_bitlen_en = (cond_mask & SPI_LL_TRANS_LEN_COND_RDDMA) ? 1 : 0;
1076 hw->slave.wrdma_bitlen_en = (cond_mask & SPI_LL_TRANS_LEN_COND_WRDMA) ? 1 : 0;
1077 }
1078
spi_ll_slave_get_rx_byte_len(spi_dev_t * hw)1079 static inline int spi_ll_slave_get_rx_byte_len(spi_dev_t *hw)
1080 {
1081 return hw->slave1.data_bitlen / 8;
1082 }
1083
spi_ll_slave_hd_get_last_addr(spi_dev_t * hw)1084 static inline uint32_t spi_ll_slave_hd_get_last_addr(spi_dev_t *hw)
1085 {
1086 return hw->slave1.last_addr;
1087 }
1088
1089 #undef SPI_LL_RST_MASK
1090 #undef SPI_LL_UNUSED_INT_MASK
1091
1092 #ifdef __cplusplus
1093 }
1094 #endif
1095