1 /*
2 * Minimal code for RSA support from LibTomMath 0.41
3 * http://libtom.org/
4 * http://libtom.org/files/ltm-0.41.tar.bz2
5 * This library was released in public domain by Tom St Denis.
6 *
7 * The combination in this file may not use all of the optimized algorithms
8 * from LibTomMath and may be considerable slower than the LibTomMath with its
9 * default settings. The main purpose of having this version here is to make it
10 * easier to build bignum.c wrapper without having to install and build an
11 * external library.
12 *
13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14 * libtommath.c file instead of using the external LibTomMath library.
15 */
16 #include "os.h"
17 #include "stdarg.h"
18
19 #ifndef CHAR_BIT
20 #define CHAR_BIT 8
21 #endif
22
23 #define BN_MP_INVMOD_C
24 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
25 * require BN_MP_EXPTMOD_FAST_C instead */
26 #define BN_S_MP_MUL_DIGS_C
27 #define BN_MP_INVMOD_SLOW_C
28 #define BN_S_MP_SQR_C
29 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
30 * would require other than mp_reduce */
31
32 #ifdef LTM_FAST
33
34 /* Use faster div at the cost of about 1 kB */
35 #define BN_MP_MUL_D_C
36
37 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
38 #define BN_MP_EXPTMOD_FAST_C
39 #define BN_MP_MONTGOMERY_SETUP_C
40 #define BN_FAST_MP_MONTGOMERY_REDUCE_C
41 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
42 #define BN_MP_MUL_2_C
43
44 /* Include faster sqr at the cost of about 0.5 kB in code */
45 #define BN_FAST_S_MP_SQR_C
46
47 #else /* LTM_FAST */
48
49 #define BN_MP_DIV_SMALL
50 #define BN_MP_INIT_MULTI_C
51 #define BN_MP_CLEAR_MULTI_C
52 #define BN_MP_ABS_C
53 #endif /* LTM_FAST */
54
55 /* Current uses do not require support for negative exponent in exptmod, so we
56 * can save about 1.5 kB in leaving out invmod. */
57 #define LTM_NO_NEG_EXP
58
59 /* from tommath.h */
60
61 #ifndef MIN
62 #define MIN(x,y) ((x)<(y)?(x):(y))
63 #endif
64
65 #ifndef MAX
66 #define MAX(x,y) ((x)>(y)?(x):(y))
67 #endif
68
69 #define OPT_CAST(x) (x *)
70
71 typedef unsigned long mp_digit;
72 typedef u64 mp_word;
73
74 #define DIGIT_BIT 28
75 #define MP_28BIT
76
77
78 #define XMALLOC os_malloc
79 #define XFREE os_free
80 #define XREALLOC os_realloc
81
82
83 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
84
85 #define MP_LT -1 /* less than */
86 #define MP_EQ 0 /* equal to */
87 #define MP_GT 1 /* greater than */
88
89 #define MP_ZPOS 0 /* positive integer */
90 #define MP_NEG 1 /* negative */
91
92 #define MP_OKAY 0 /* ok result */
93 #define MP_MEM -2 /* out of mem */
94 #define MP_VAL -3 /* invalid input */
95
96 #define MP_YES 1 /* yes response */
97 #define MP_NO 0 /* no response */
98
99 typedef int mp_err;
100
101 /* define this to use lower memory usage routines (exptmods mostly) */
102 #define MP_LOW_MEM
103
104 /* default precision */
105 #ifndef MP_PREC
106 #ifndef MP_LOW_MEM
107 #define MP_PREC 32 /* default digits of precision */
108 #else
109 #define MP_PREC 8 /* default digits of precision */
110 #endif
111 #endif
112
113 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
114 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
115
116 /* the infamous mp_int structure */
117 typedef struct {
118 int used, alloc, sign;
119 mp_digit *dp;
120 } mp_int;
121
122
123 /* ---> Basic Manipulations <--- */
124 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
125 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
126 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
127
128
129 /* prototypes for copied functions */
130 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
131 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
132 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
133 static int s_mp_sqr(mp_int * a, mp_int * b);
134 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
135
136 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
137
138 #ifdef BN_MP_INIT_MULTI_C
139 static int mp_init_multi(mp_int *mp, ...);
140 #endif
141 #ifdef BN_MP_CLEAR_MULTI_C
142 static void mp_clear_multi(mp_int *mp, ...);
143 #endif
144 static int mp_lshd(mp_int * a, int b);
145 static void mp_set(mp_int * a, mp_digit b);
146 static void mp_clamp(mp_int * a);
147 static void mp_exch(mp_int * a, mp_int * b);
148 static void mp_rshd(mp_int * a, int b);
149 static void mp_zero(mp_int * a);
150 static int mp_mod_2d(mp_int * a, int b, mp_int * c);
151 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
152 static int mp_init_copy(mp_int * a, mp_int * b);
153 static int mp_mul_2d(mp_int * a, int b, mp_int * c);
154 #ifndef LTM_NO_NEG_EXP
155 static int mp_div_2(mp_int * a, mp_int * b);
156 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
157 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
158 #endif /* LTM_NO_NEG_EXP */
159 static int mp_copy(mp_int * a, mp_int * b);
160 static int mp_count_bits(mp_int * a);
161 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
162 static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
163 static int mp_grow(mp_int * a, int size);
164 static int mp_cmp_mag(mp_int * a, mp_int * b);
165 #ifdef BN_MP_ABS_C
166 static int mp_abs(mp_int * a, mp_int * b);
167 #endif
168 static int mp_sqr(mp_int * a, mp_int * b);
169 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
170 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
171 static int mp_2expt(mp_int * a, int b);
172 static int mp_reduce_setup(mp_int * a, mp_int * b);
173 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
174 static int mp_init_size(mp_int * a, int size);
175 #ifdef BN_MP_EXPTMOD_FAST_C
176 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
177 #endif /* BN_MP_EXPTMOD_FAST_C */
178 #ifdef BN_FAST_S_MP_SQR_C
179 static int fast_s_mp_sqr (mp_int * a, mp_int * b);
180 #endif /* BN_FAST_S_MP_SQR_C */
181 #ifdef BN_MP_MUL_D_C
182 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
183 #endif /* BN_MP_MUL_D_C */
184
185
186
187 /* functions from bn_<func name>.c */
188
189
190 /* reverse an array, used for radix code */
191 static void
bn_reverse(unsigned char * s,int len)192 bn_reverse (unsigned char *s, int len)
193 {
194 int ix, iy;
195 unsigned char t;
196
197 ix = 0;
198 iy = len - 1;
199 while (ix < iy) {
200 t = s[ix];
201 s[ix] = s[iy];
202 s[iy] = t;
203 ++ix;
204 --iy;
205 }
206 }
207
208
209 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
210 static int
s_mp_add(mp_int * a,mp_int * b,mp_int * c)211 s_mp_add (mp_int * a, mp_int * b, mp_int * c)
212 {
213 mp_int *x;
214 int olduse, res, min, max;
215
216 /* find sizes, we let |a| <= |b| which means we have to sort
217 * them. "x" will point to the input with the most digits
218 */
219 if (a->used > b->used) {
220 min = b->used;
221 max = a->used;
222 x = a;
223 } else {
224 min = a->used;
225 max = b->used;
226 x = b;
227 }
228
229 /* init result */
230 if (c->alloc < max + 1) {
231 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
232 return res;
233 }
234 }
235
236 /* get old used digit count and set new one */
237 olduse = c->used;
238 c->used = max + 1;
239
240 {
241 register mp_digit u, *tmpa, *tmpb, *tmpc;
242 register int i;
243
244 /* alias for digit pointers */
245
246 /* first input */
247 tmpa = a->dp;
248
249 /* second input */
250 tmpb = b->dp;
251
252 /* destination */
253 tmpc = c->dp;
254
255 /* zero the carry */
256 u = 0;
257 for (i = 0; i < min; i++) {
258 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
259 *tmpc = *tmpa++ + *tmpb++ + u;
260
261 /* U = carry bit of T[i] */
262 u = *tmpc >> ((mp_digit)DIGIT_BIT);
263
264 /* take away carry bit from T[i] */
265 *tmpc++ &= MP_MASK;
266 }
267
268 /* now copy higher words if any, that is in A+B
269 * if A or B has more digits add those in
270 */
271 if (min != max) {
272 for (; i < max; i++) {
273 /* T[i] = X[i] + U */
274 *tmpc = x->dp[i] + u;
275
276 /* U = carry bit of T[i] */
277 u = *tmpc >> ((mp_digit)DIGIT_BIT);
278
279 /* take away carry bit from T[i] */
280 *tmpc++ &= MP_MASK;
281 }
282 }
283
284 /* add carry */
285 *tmpc++ = u;
286
287 /* clear digits above oldused */
288 for (i = c->used; i < olduse; i++) {
289 *tmpc++ = 0;
290 }
291 }
292
293 mp_clamp (c);
294 return MP_OKAY;
295 }
296
297
298 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
299 static int
s_mp_sub(mp_int * a,mp_int * b,mp_int * c)300 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
301 {
302 int olduse, res, min, max;
303
304 /* find sizes */
305 min = b->used;
306 max = a->used;
307
308 /* init result */
309 if (c->alloc < max) {
310 if ((res = mp_grow (c, max)) != MP_OKAY) {
311 return res;
312 }
313 }
314 olduse = c->used;
315 c->used = max;
316
317 {
318 register mp_digit u, *tmpa, *tmpb, *tmpc;
319 register int i;
320
321 /* alias for digit pointers */
322 tmpa = a->dp;
323 tmpb = b->dp;
324 tmpc = c->dp;
325
326 /* set carry to zero */
327 u = 0;
328 for (i = 0; i < min; i++) {
329 /* T[i] = A[i] - B[i] - U */
330 *tmpc = *tmpa++ - *tmpb++ - u;
331
332 /* U = carry bit of T[i]
333 * Note this saves performing an AND operation since
334 * if a carry does occur it will propagate all the way to the
335 * MSB. As a result a single shift is enough to get the carry
336 */
337 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
338
339 /* Clear carry from T[i] */
340 *tmpc++ &= MP_MASK;
341 }
342
343 /* now copy higher words if any, e.g. if A has more digits than B */
344 for (; i < max; i++) {
345 /* T[i] = A[i] - U */
346 *tmpc = *tmpa++ - u;
347
348 /* U = carry bit of T[i] */
349 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
350
351 /* Clear carry from T[i] */
352 *tmpc++ &= MP_MASK;
353 }
354
355 /* clear digits above used (since we may not have grown result above) */
356 for (i = c->used; i < olduse; i++) {
357 *tmpc++ = 0;
358 }
359 }
360
361 mp_clamp (c);
362 return MP_OKAY;
363 }
364
365
366 /* init a new mp_int */
367 static int
mp_init(mp_int * a)368 mp_init (mp_int * a)
369 {
370 int i;
371
372 /* allocate memory required and clear it */
373 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
374 if (a->dp == NULL) {
375 return MP_MEM;
376 }
377
378 /* set the digits to zero */
379 for (i = 0; i < MP_PREC; i++) {
380 a->dp[i] = 0;
381 }
382
383 /* set the used to zero, allocated digits to the default precision
384 * and sign to positive */
385 a->used = 0;
386 a->alloc = MP_PREC;
387 a->sign = MP_ZPOS;
388
389 return MP_OKAY;
390 }
391
392
393 /* clear one (frees) */
394 static void
mp_clear(mp_int * a)395 mp_clear (mp_int * a)
396 {
397 int i;
398
399 /* only do anything if a hasn't been freed previously */
400 if (a->dp != NULL) {
401 /* first zero the digits */
402 for (i = 0; i < a->used; i++) {
403 a->dp[i] = 0;
404 }
405
406 /* free ram */
407 XFREE(a->dp);
408
409 /* reset members to make debugging easier */
410 a->dp = NULL;
411 a->alloc = a->used = 0;
412 a->sign = MP_ZPOS;
413 }
414 }
415
416
417 /* high level addition (handles signs) */
418 static int
mp_add(mp_int * a,mp_int * b,mp_int * c)419 mp_add (mp_int * a, mp_int * b, mp_int * c)
420 {
421 int sa, sb, res;
422
423 /* get sign of both inputs */
424 sa = a->sign;
425 sb = b->sign;
426
427 /* handle two cases, not four */
428 if (sa == sb) {
429 /* both positive or both negative */
430 /* add their magnitudes, copy the sign */
431 c->sign = sa;
432 res = s_mp_add (a, b, c);
433 } else {
434 /* one positive, the other negative */
435 /* subtract the one with the greater magnitude from */
436 /* the one of the lesser magnitude. The result gets */
437 /* the sign of the one with the greater magnitude. */
438 if (mp_cmp_mag (a, b) == MP_LT) {
439 c->sign = sb;
440 res = s_mp_sub (b, a, c);
441 } else {
442 c->sign = sa;
443 res = s_mp_sub (a, b, c);
444 }
445 }
446 return res;
447 }
448
449
450 /* high level subtraction (handles signs) */
451 static int
mp_sub(mp_int * a,mp_int * b,mp_int * c)452 mp_sub (mp_int * a, mp_int * b, mp_int * c)
453 {
454 int sa, sb, res;
455
456 sa = a->sign;
457 sb = b->sign;
458
459 if (sa != sb) {
460 /* subtract a negative from a positive, OR */
461 /* subtract a positive from a negative. */
462 /* In either case, ADD their magnitudes, */
463 /* and use the sign of the first number. */
464 c->sign = sa;
465 res = s_mp_add (a, b, c);
466 } else {
467 /* subtract a positive from a positive, OR */
468 /* subtract a negative from a negative. */
469 /* First, take the difference between their */
470 /* magnitudes, then... */
471 if (mp_cmp_mag (a, b) != MP_LT) {
472 /* Copy the sign from the first */
473 c->sign = sa;
474 /* The first has a larger or equal magnitude */
475 res = s_mp_sub (a, b, c);
476 } else {
477 /* The result has the *opposite* sign from */
478 /* the first number. */
479 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
480 /* The second has a larger magnitude */
481 res = s_mp_sub (b, a, c);
482 }
483 }
484 return res;
485 }
486
487
488 /* high level multiplication (handles sign) */
489 static int
mp_mul(mp_int * a,mp_int * b,mp_int * c)490 mp_mul (mp_int * a, mp_int * b, mp_int * c)
491 {
492 int res, neg;
493 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
494
495 /* use Toom-Cook? */
496 #ifdef BN_MP_TOOM_MUL_C
497 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
498 res = mp_toom_mul(a, b, c);
499 } else
500 #endif
501 #ifdef BN_MP_KARATSUBA_MUL_C
502 /* use Karatsuba? */
503 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
504 res = mp_karatsuba_mul (a, b, c);
505 } else
506 #endif
507 {
508 /* can we use the fast multiplier?
509 *
510 * The fast multiplier can be used if the output will
511 * have less than MP_WARRAY digits and the number of
512 * digits won't affect carry propagation
513 */
514 #ifdef BN_FAST_S_MP_MUL_DIGS_C
515 int digs = a->used + b->used + 1;
516
517 if ((digs < MP_WARRAY) &&
518 MIN(a->used, b->used) <=
519 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
520 res = fast_s_mp_mul_digs (a, b, c, digs);
521 } else
522 #endif
523 #ifdef BN_S_MP_MUL_DIGS_C
524 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
525 #else
526 #error mp_mul could fail
527 res = MP_VAL;
528 #endif
529
530 }
531 c->sign = (c->used > 0) ? neg : MP_ZPOS;
532 return res;
533 }
534
535
536 /* d = a * b (mod c) */
537 static int
mp_mulmod(mp_int * a,mp_int * b,mp_int * c,mp_int * d)538 mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
539 {
540 int res;
541 mp_int t;
542
543 if ((res = mp_init (&t)) != MP_OKAY) {
544 return res;
545 }
546
547 if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
548 mp_clear (&t);
549 return res;
550 }
551 res = mp_mod (&t, c, d);
552 mp_clear (&t);
553 return res;
554 }
555
556
557 /* c = a mod b, 0 <= c < b */
558 static int
mp_mod(mp_int * a,mp_int * b,mp_int * c)559 mp_mod (mp_int * a, mp_int * b, mp_int * c)
560 {
561 mp_int t;
562 int res;
563
564 if ((res = mp_init (&t)) != MP_OKAY) {
565 return res;
566 }
567
568 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
569 mp_clear (&t);
570 return res;
571 }
572
573 if (t.sign != b->sign) {
574 res = mp_add (b, &t, c);
575 } else {
576 res = MP_OKAY;
577 mp_exch (&t, c);
578 }
579
580 mp_clear (&t);
581 return res;
582 }
583
584
585 /* this is a shell function that calls either the normal or Montgomery
586 * exptmod functions. Originally the call to the montgomery code was
587 * embedded in the normal function but that wasted a lot of stack space
588 * for nothing (since 99% of the time the Montgomery code would be called)
589 */
590 static int
mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y)591 mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
592 {
593 #if defined(BN_MP_DR_IS_MODULUS_C)||defined(BN_MP_REDUCE_IS_2K_C)||defined(BN_MP_EXPTMOD_FAST_C)
594 int dr = 0;
595 #endif
596
597 /* modulus P must be positive */
598 if (P->sign == MP_NEG) {
599 return MP_VAL;
600 }
601
602 /* if exponent X is negative we have to recurse */
603 if (X->sign == MP_NEG) {
604 #ifdef LTM_NO_NEG_EXP
605 return MP_VAL;
606 #else /* LTM_NO_NEG_EXP */
607 #ifdef BN_MP_INVMOD_C
608 mp_int tmpG, tmpX;
609 int err;
610
611 /* first compute 1/G mod P */
612 if ((err = mp_init(&tmpG)) != MP_OKAY) {
613 return err;
614 }
615 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
616 mp_clear(&tmpG);
617 return err;
618 }
619
620 /* now get |X| */
621 if ((err = mp_init(&tmpX)) != MP_OKAY) {
622 mp_clear(&tmpG);
623 return err;
624 }
625 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
626 mp_clear_multi(&tmpG, &tmpX, NULL);
627 return err;
628 }
629
630 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
631 err = mp_exptmod(&tmpG, &tmpX, P, Y);
632 mp_clear_multi(&tmpG, &tmpX, NULL);
633 return err;
634 #else
635 #error mp_exptmod would always fail
636 /* no invmod */
637 return MP_VAL;
638 #endif
639 #endif /* LTM_NO_NEG_EXP */
640 }
641
642 /* modified diminished radix reduction */
643 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
644 if (mp_reduce_is_2k_l(P) == MP_YES) {
645 return s_mp_exptmod(G, X, P, Y, 1);
646 }
647 #endif
648
649 #ifdef BN_MP_DR_IS_MODULUS_C
650 /* is it a DR modulus? */
651 dr = mp_dr_is_modulus(P);
652 #endif
653
654 #ifdef BN_MP_REDUCE_IS_2K_C
655 /* if not, is it a unrestricted DR modulus? */
656 if (dr == 0) {
657 dr = mp_reduce_is_2k(P) << 1;
658 }
659 #endif
660
661 /* if the modulus is odd or dr != 0 use the montgomery method */
662 #ifdef BN_MP_EXPTMOD_FAST_C
663 if (mp_isodd (P) == 1 || dr != 0) {
664 return mp_exptmod_fast (G, X, P, Y, dr);
665 } else {
666 #endif
667 #ifdef BN_S_MP_EXPTMOD_C
668 /* otherwise use the generic Barrett reduction technique */
669 return s_mp_exptmod (G, X, P, Y, 0);
670 #else
671 #error mp_exptmod could fail
672 /* no exptmod for evens */
673 return MP_VAL;
674 #endif
675 #ifdef BN_MP_EXPTMOD_FAST_C
676 }
677 #endif
678 }
679
680
681 /* compare two ints (signed)*/
682 static int
mp_cmp(mp_int * a,mp_int * b)683 mp_cmp (mp_int * a, mp_int * b)
684 {
685 /* compare based on sign */
686 if (a->sign != b->sign) {
687 if (a->sign == MP_NEG) {
688 return MP_LT;
689 } else {
690 return MP_GT;
691 }
692 }
693
694 /* compare digits */
695 if (a->sign == MP_NEG) {
696 /* if negative compare opposite direction */
697 return mp_cmp_mag(b, a);
698 } else {
699 return mp_cmp_mag(a, b);
700 }
701 }
702
703
704 /* compare a digit */
705 static int
mp_cmp_d(mp_int * a,mp_digit b)706 mp_cmp_d(mp_int * a, mp_digit b)
707 {
708 /* compare based on sign */
709 if (a->sign == MP_NEG) {
710 return MP_LT;
711 }
712
713 /* compare based on magnitude */
714 if (a->used > 1) {
715 return MP_GT;
716 }
717
718 /* compare the only digit of a to b */
719 if (a->dp[0] > b) {
720 return MP_GT;
721 } else if (a->dp[0] < b) {
722 return MP_LT;
723 } else {
724 return MP_EQ;
725 }
726 }
727
728
729 #ifndef LTM_NO_NEG_EXP
730 /* hac 14.61, pp608 */
731 static int
mp_invmod(mp_int * a,mp_int * b,mp_int * c)732 mp_invmod (mp_int * a, mp_int * b, mp_int * c)
733 {
734 /* b cannot be negative */
735 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
736 return MP_VAL;
737 }
738
739 #ifdef BN_FAST_MP_INVMOD_C
740 /* if the modulus is odd we can use a faster routine instead */
741 if (mp_isodd (b) == 1) {
742 return fast_mp_invmod (a, b, c);
743 }
744 #endif
745
746 #ifdef BN_MP_INVMOD_SLOW_C
747 return mp_invmod_slow(a, b, c);
748 #endif
749
750 #ifndef BN_FAST_MP_INVMOD_C
751 #ifndef BN_MP_INVMOD_SLOW_C
752 #error mp_invmod would always fail
753 #endif
754 #endif
755 return MP_VAL;
756 }
757 #endif /* LTM_NO_NEG_EXP */
758
759
760 /* get the size for an unsigned equivalent */
761 static int
mp_unsigned_bin_size(mp_int * a)762 mp_unsigned_bin_size (mp_int * a)
763 {
764 int size = mp_count_bits (a);
765 return (size / 8 + ((size & 7) != 0 ? 1 : 0));
766 }
767
768
769 #ifndef LTM_NO_NEG_EXP
770 /* hac 14.61, pp608 */
771 static int
mp_invmod_slow(mp_int * a,mp_int * b,mp_int * c)772 mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
773 {
774 mp_int x, y, u, v, A, B, C, D;
775 int res;
776
777 /* b cannot be negative */
778 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
779 return MP_VAL;
780 }
781
782 /* init temps */
783 if ((res = mp_init_multi(&x, &y, &u, &v,
784 &A, &B, &C, &D, NULL)) != MP_OKAY) {
785 return res;
786 }
787
788 /* x = a, y = b */
789 if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
790 goto LBL_ERR;
791 }
792 if ((res = mp_copy (b, &y)) != MP_OKAY) {
793 goto LBL_ERR;
794 }
795
796 /* 2. [modified] if x,y are both even then return an error! */
797 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
798 res = MP_VAL;
799 goto LBL_ERR;
800 }
801
802 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
803 if ((res = mp_copy (&x, &u)) != MP_OKAY) {
804 goto LBL_ERR;
805 }
806 if ((res = mp_copy (&y, &v)) != MP_OKAY) {
807 goto LBL_ERR;
808 }
809 mp_set (&A, 1);
810 mp_set (&D, 1);
811
812 top:
813 /* 4. while u is even do */
814 while (mp_iseven (&u) == 1) {
815 /* 4.1 u = u/2 */
816 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
817 goto LBL_ERR;
818 }
819 /* 4.2 if A or B is odd then */
820 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
821 /* A = (A+y)/2, B = (B-x)/2 */
822 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
823 goto LBL_ERR;
824 }
825 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
826 goto LBL_ERR;
827 }
828 }
829 /* A = A/2, B = B/2 */
830 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
831 goto LBL_ERR;
832 }
833 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
834 goto LBL_ERR;
835 }
836 }
837
838 /* 5. while v is even do */
839 while (mp_iseven (&v) == 1) {
840 /* 5.1 v = v/2 */
841 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
842 goto LBL_ERR;
843 }
844 /* 5.2 if C or D is odd then */
845 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
846 /* C = (C+y)/2, D = (D-x)/2 */
847 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
848 goto LBL_ERR;
849 }
850 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
851 goto LBL_ERR;
852 }
853 }
854 /* C = C/2, D = D/2 */
855 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
856 goto LBL_ERR;
857 }
858 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
859 goto LBL_ERR;
860 }
861 }
862
863 /* 6. if u >= v then */
864 if (mp_cmp (&u, &v) != MP_LT) {
865 /* u = u - v, A = A - C, B = B - D */
866 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
867 goto LBL_ERR;
868 }
869
870 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
871 goto LBL_ERR;
872 }
873
874 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
875 goto LBL_ERR;
876 }
877 } else {
878 /* v - v - u, C = C - A, D = D - B */
879 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
880 goto LBL_ERR;
881 }
882
883 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
884 goto LBL_ERR;
885 }
886
887 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
888 goto LBL_ERR;
889 }
890 }
891
892 /* if not zero goto step 4 */
893 if (mp_iszero (&u) == 0)
894 goto top;
895
896 /* now a = C, b = D, gcd == g*v */
897
898 /* if v != 1 then there is no inverse */
899 if (mp_cmp_d (&v, 1) != MP_EQ) {
900 res = MP_VAL;
901 goto LBL_ERR;
902 }
903
904 /* if its too low */
905 while (mp_cmp_d(&C, 0) == MP_LT) {
906 if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
907 goto LBL_ERR;
908 }
909 }
910
911 /* too big */
912 while (mp_cmp_mag(&C, b) != MP_LT) {
913 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
914 goto LBL_ERR;
915 }
916 }
917
918 /* C is now the inverse */
919 mp_exch (&C, c);
920 res = MP_OKAY;
921 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
922 return res;
923 }
924 #endif /* LTM_NO_NEG_EXP */
925
926
927 /* compare maginitude of two ints (unsigned) */
928 static int
mp_cmp_mag(mp_int * a,mp_int * b)929 mp_cmp_mag (mp_int * a, mp_int * b)
930 {
931 int n;
932 mp_digit *tmpa, *tmpb;
933
934 /* compare based on # of non-zero digits */
935 if (a->used > b->used) {
936 return MP_GT;
937 }
938
939 if (a->used < b->used) {
940 return MP_LT;
941 }
942
943 /* alias for a */
944 tmpa = a->dp + (a->used - 1);
945
946 /* alias for b */
947 tmpb = b->dp + (a->used - 1);
948
949 /* compare based on digits */
950 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
951 if (*tmpa > *tmpb) {
952 return MP_GT;
953 }
954
955 if (*tmpa < *tmpb) {
956 return MP_LT;
957 }
958 }
959 return MP_EQ;
960 }
961
962
963 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
964 static int
mp_read_unsigned_bin(mp_int * a,const unsigned char * b,int c)965 mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
966 {
967 int res;
968
969 /* make sure there are at least two digits */
970 if (a->alloc < 2) {
971 if ((res = mp_grow(a, 2)) != MP_OKAY) {
972 return res;
973 }
974 }
975
976 /* zero the int */
977 mp_zero (a);
978
979 /* read the bytes in */
980 while (c-- > 0) {
981 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
982 return res;
983 }
984
985 #ifndef MP_8BIT
986 a->dp[0] |= *b++;
987 a->used += 1;
988 #else
989 a->dp[0] = (*b & MP_MASK);
990 a->dp[1] |= ((*b++ >> 7U) & 1);
991 a->used += 2;
992 #endif
993 }
994 mp_clamp (a);
995 return MP_OKAY;
996 }
997
998
999 /* store in unsigned [big endian] format */
1000 static int
mp_to_unsigned_bin(mp_int * a,unsigned char * b)1001 mp_to_unsigned_bin (mp_int * a, unsigned char *b)
1002 {
1003 int x, res;
1004 mp_int t;
1005
1006 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
1007 return res;
1008 }
1009
1010 x = 0;
1011 while (mp_iszero (&t) == 0) {
1012 #ifndef MP_8BIT
1013 b[x++] = (unsigned char) (t.dp[0] & 255);
1014 #else
1015 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1016 #endif
1017 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1018 mp_clear (&t);
1019 return res;
1020 }
1021 }
1022 bn_reverse (b, x);
1023 mp_clear (&t);
1024 return MP_OKAY;
1025 }
1026
1027
1028 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1029 static int
mp_div_2d(mp_int * a,int b,mp_int * c,mp_int * d)1030 mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1031 {
1032 mp_digit D, r, rr;
1033 int x, res;
1034 mp_int t;
1035
1036
1037 /* if the shift count is <= 0 then we do no work */
1038 if (b <= 0) {
1039 res = mp_copy (a, c);
1040 if (d != NULL) {
1041 mp_zero (d);
1042 }
1043 return res;
1044 }
1045
1046 if ((res = mp_init (&t)) != MP_OKAY) {
1047 return res;
1048 }
1049
1050 /* get the remainder */
1051 if (d != NULL) {
1052 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1053 mp_clear (&t);
1054 return res;
1055 }
1056 }
1057
1058 /* copy */
1059 if ((res = mp_copy (a, c)) != MP_OKAY) {
1060 mp_clear (&t);
1061 return res;
1062 }
1063
1064 /* shift by as many digits in the bit count */
1065 if (b >= (int)DIGIT_BIT) {
1066 mp_rshd (c, b / DIGIT_BIT);
1067 }
1068
1069 /* shift any bit count < DIGIT_BIT */
1070 D = (mp_digit) (b % DIGIT_BIT);
1071 if (D != 0) {
1072 register mp_digit *tmpc, mask, shift;
1073
1074 /* mask */
1075 mask = (((mp_digit)1) << D) - 1;
1076
1077 /* shift for lsb */
1078 shift = DIGIT_BIT - D;
1079
1080 /* alias */
1081 tmpc = c->dp + (c->used - 1);
1082
1083 /* carry */
1084 r = 0;
1085 for (x = c->used - 1; x >= 0; x--) {
1086 /* get the lower bits of this word in a temp */
1087 rr = *tmpc & mask;
1088
1089 /* shift the current word and mix in the carry bits from the previous word */
1090 *tmpc = (*tmpc >> D) | (r << shift);
1091 --tmpc;
1092
1093 /* set the carry to the carry bits of the current word found above */
1094 r = rr;
1095 }
1096 }
1097 mp_clamp (c);
1098 if (d != NULL) {
1099 mp_exch (&t, d);
1100 }
1101 mp_clear (&t);
1102 return MP_OKAY;
1103 }
1104
1105
1106 static int
mp_init_copy(mp_int * a,mp_int * b)1107 mp_init_copy (mp_int * a, mp_int * b)
1108 {
1109 int res;
1110
1111 if ((res = mp_init (a)) != MP_OKAY) {
1112 return res;
1113 }
1114 return mp_copy (b, a);
1115 }
1116
1117
1118 /* set to zero */
1119 static void
mp_zero(mp_int * a)1120 mp_zero (mp_int * a)
1121 {
1122 int n;
1123 mp_digit *tmp;
1124
1125 a->sign = MP_ZPOS;
1126 a->used = 0;
1127
1128 tmp = a->dp;
1129 for (n = 0; n < a->alloc; n++) {
1130 *tmp++ = 0;
1131 }
1132 }
1133
1134
1135 /* copy, b = a */
1136 static int
mp_copy(mp_int * a,mp_int * b)1137 mp_copy (mp_int * a, mp_int * b)
1138 {
1139 int res, n;
1140
1141 /* if dst == src do nothing */
1142 if (a == b) {
1143 return MP_OKAY;
1144 }
1145
1146 /* grow dest */
1147 if (b->alloc < a->used) {
1148 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1149 return res;
1150 }
1151 }
1152
1153 /* zero b and copy the parameters over */
1154 {
1155 register mp_digit *tmpa, *tmpb;
1156
1157 /* pointer aliases */
1158
1159 /* source */
1160 tmpa = a->dp;
1161
1162 /* destination */
1163 tmpb = b->dp;
1164
1165 /* copy all the digits */
1166 for (n = 0; n < a->used; n++) {
1167 *tmpb++ = *tmpa++;
1168 }
1169
1170 /* clear high digits */
1171 for (; n < b->used; n++) {
1172 *tmpb++ = 0;
1173 }
1174 }
1175
1176 /* copy used count and sign */
1177 b->used = a->used;
1178 b->sign = a->sign;
1179 return MP_OKAY;
1180 }
1181
1182
1183 /* shift right a certain amount of digits */
1184 static void
mp_rshd(mp_int * a,int b)1185 mp_rshd (mp_int * a, int b)
1186 {
1187 int x;
1188
1189 /* if b <= 0 then ignore it */
1190 if (b <= 0) {
1191 return;
1192 }
1193
1194 /* if b > used then simply zero it and return */
1195 if (a->used <= b) {
1196 mp_zero (a);
1197 return;
1198 }
1199
1200 {
1201 register mp_digit *bottom, *top;
1202
1203 /* shift the digits down */
1204
1205 /* bottom */
1206 bottom = a->dp;
1207
1208 /* top [offset into digits] */
1209 top = a->dp + b;
1210
1211 /* this is implemented as a sliding window where
1212 * the window is b-digits long and digits from
1213 * the top of the window are copied to the bottom
1214 *
1215 * e.g.
1216
1217 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1218 /\ | ---->
1219 \-------------------/ ---->
1220 */
1221 for (x = 0; x < (a->used - b); x++) {
1222 *bottom++ = *top++;
1223 }
1224
1225 /* zero the top digits */
1226 for (; x < a->used; x++) {
1227 *bottom++ = 0;
1228 }
1229 }
1230
1231 /* remove excess digits */
1232 a->used -= b;
1233 }
1234
1235
1236 /* swap the elements of two integers, for cases where you can't simply swap the
1237 * mp_int pointers around
1238 */
1239 static void
mp_exch(mp_int * a,mp_int * b)1240 mp_exch (mp_int * a, mp_int * b)
1241 {
1242 mp_int t;
1243
1244 t = *a;
1245 *a = *b;
1246 *b = t;
1247 }
1248
1249
1250 /* trim unused digits
1251 *
1252 * This is used to ensure that leading zero digits are
1253 * trimed and the leading "used" digit will be non-zero
1254 * Typically very fast. Also fixes the sign if there
1255 * are no more leading digits
1256 */
1257 static void
mp_clamp(mp_int * a)1258 mp_clamp (mp_int * a)
1259 {
1260 /* decrease used while the most significant digit is
1261 * zero.
1262 */
1263 while (a->used > 0 && a->dp[a->used - 1] == 0) {
1264 --(a->used);
1265 }
1266
1267 /* reset the sign flag if used == 0 */
1268 if (a->used == 0) {
1269 a->sign = MP_ZPOS;
1270 }
1271 }
1272
1273
1274 /* grow as required */
1275 static int
mp_grow(mp_int * a,int size)1276 mp_grow (mp_int * a, int size)
1277 {
1278 int i;
1279 mp_digit *tmp;
1280
1281 /* if the alloc size is smaller alloc more ram */
1282 if (a->alloc < size) {
1283 /* ensure there are always at least MP_PREC digits extra on top */
1284 size += (MP_PREC * 2) - (size % MP_PREC);
1285
1286 /* reallocate the array a->dp
1287 *
1288 * We store the return in a temporary variable
1289 * in case the operation failed we don't want
1290 * to overwrite the dp member of a.
1291 */
1292 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1293 if (tmp == NULL) {
1294 /* reallocation failed but "a" is still valid [can be freed] */
1295 return MP_MEM;
1296 }
1297
1298 /* reallocation succeeded so set a->dp */
1299 a->dp = tmp;
1300
1301 /* zero excess digits */
1302 i = a->alloc;
1303 a->alloc = size;
1304 for (; i < a->alloc; i++) {
1305 a->dp[i] = 0;
1306 }
1307 }
1308 return MP_OKAY;
1309 }
1310
1311
1312 #ifdef BN_MP_ABS_C
1313 /* b = |a|
1314 *
1315 * Simple function copies the input and fixes the sign to positive
1316 */
1317 static int
mp_abs(mp_int * a,mp_int * b)1318 mp_abs (mp_int * a, mp_int * b)
1319 {
1320 int res;
1321
1322 /* copy a to b */
1323 if (a != b) {
1324 if ((res = mp_copy (a, b)) != MP_OKAY) {
1325 return res;
1326 }
1327 }
1328
1329 /* force the sign of b to positive */
1330 b->sign = MP_ZPOS;
1331
1332 return MP_OKAY;
1333 }
1334 #endif
1335
1336
1337 /* set to a digit */
1338 static void
mp_set(mp_int * a,mp_digit b)1339 mp_set (mp_int * a, mp_digit b)
1340 {
1341 mp_zero (a);
1342 a->dp[0] = b & MP_MASK;
1343 a->used = (a->dp[0] != 0) ? 1 : 0;
1344 }
1345
1346
1347 #ifndef LTM_NO_NEG_EXP
1348 /* b = a/2 */
1349 static int
mp_div_2(mp_int * a,mp_int * b)1350 mp_div_2(mp_int * a, mp_int * b)
1351 {
1352 int x, res, oldused;
1353
1354 /* copy */
1355 if (b->alloc < a->used) {
1356 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1357 return res;
1358 }
1359 }
1360
1361 oldused = b->used;
1362 b->used = a->used;
1363 {
1364 register mp_digit r, rr, *tmpa, *tmpb;
1365
1366 /* source alias */
1367 tmpa = a->dp + b->used - 1;
1368
1369 /* dest alias */
1370 tmpb = b->dp + b->used - 1;
1371
1372 /* carry */
1373 r = 0;
1374 for (x = b->used - 1; x >= 0; x--) {
1375 /* get the carry for the next iteration */
1376 rr = *tmpa & 1;
1377
1378 /* shift the current digit, add in carry and store */
1379 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1380
1381 /* forward carry to next iteration */
1382 r = rr;
1383 }
1384
1385 /* zero excess digits */
1386 tmpb = b->dp + b->used;
1387 for (x = b->used; x < oldused; x++) {
1388 *tmpb++ = 0;
1389 }
1390 }
1391 b->sign = a->sign;
1392 mp_clamp (b);
1393 return MP_OKAY;
1394 }
1395 #endif /* LTM_NO_NEG_EXP */
1396
1397
1398 /* shift left by a certain bit count */
1399 static int
mp_mul_2d(mp_int * a,int b,mp_int * c)1400 mp_mul_2d (mp_int * a, int b, mp_int * c)
1401 {
1402 mp_digit d;
1403 int res;
1404
1405 /* copy */
1406 if (a != c) {
1407 if ((res = mp_copy (a, c)) != MP_OKAY) {
1408 return res;
1409 }
1410 }
1411
1412 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1413 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1414 return res;
1415 }
1416 }
1417
1418 /* shift by as many digits in the bit count */
1419 if (b >= (int)DIGIT_BIT) {
1420 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1421 return res;
1422 }
1423 }
1424
1425 /* shift any bit count < DIGIT_BIT */
1426 d = (mp_digit) (b % DIGIT_BIT);
1427 if (d != 0) {
1428 register mp_digit *tmpc, shift, mask, r, rr;
1429 register int x;
1430
1431 /* bitmask for carries */
1432 mask = (((mp_digit)1) << d) - 1;
1433
1434 /* shift for msbs */
1435 shift = DIGIT_BIT - d;
1436
1437 /* alias */
1438 tmpc = c->dp;
1439
1440 /* carry */
1441 r = 0;
1442 for (x = 0; x < c->used; x++) {
1443 /* get the higher bits of the current word */
1444 rr = (*tmpc >> shift) & mask;
1445
1446 /* shift the current word and OR in the carry */
1447 *tmpc = ((*tmpc << d) | r) & MP_MASK;
1448 ++tmpc;
1449
1450 /* set the carry to the carry bits of the current word */
1451 r = rr;
1452 }
1453
1454 /* set final carry */
1455 if (r != 0) {
1456 c->dp[(c->used)++] = r;
1457 }
1458 }
1459 mp_clamp (c);
1460 return MP_OKAY;
1461 }
1462
1463
1464 #ifdef BN_MP_INIT_MULTI_C
1465 static int
mp_init_multi(mp_int * mp,...)1466 mp_init_multi(mp_int *mp, ...)
1467 {
1468 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
1469 int n = 0; /* Number of ok inits */
1470 mp_int* cur_arg = mp;
1471 va_list args;
1472
1473 va_start(args, mp); /* init args to next argument from caller */
1474 while (cur_arg != NULL) {
1475 if (mp_init(cur_arg) != MP_OKAY) {
1476 /* Oops - error! Back-track and mp_clear what we already
1477 succeeded in init-ing, then return error.
1478 */
1479 va_list clean_args;
1480
1481 /* end the current list */
1482 va_end(args);
1483
1484 /* now start cleaning up */
1485 cur_arg = mp;
1486 va_start(clean_args, mp);
1487 while (n--) {
1488 mp_clear(cur_arg);
1489 cur_arg = va_arg(clean_args, mp_int*);
1490 }
1491 va_end(clean_args);
1492 res = MP_MEM;
1493 break;
1494 }
1495 n++;
1496 cur_arg = va_arg(args, mp_int*);
1497 }
1498 va_end(args);
1499 return res; /* Assumed ok, if error flagged above. */
1500 }
1501 #endif
1502
1503
1504 #ifdef BN_MP_CLEAR_MULTI_C
1505 static void
mp_clear_multi(mp_int * mp,...)1506 mp_clear_multi(mp_int *mp, ...)
1507 {
1508 mp_int* next_mp = mp;
1509 va_list args;
1510 va_start(args, mp);
1511 while (next_mp != NULL) {
1512 mp_clear(next_mp);
1513 next_mp = va_arg(args, mp_int*);
1514 }
1515 va_end(args);
1516 }
1517 #endif
1518
1519
1520 /* shift left a certain amount of digits */
1521 static int
mp_lshd(mp_int * a,int b)1522 mp_lshd (mp_int * a, int b)
1523 {
1524 int x, res;
1525
1526 /* if its less than zero return */
1527 if (b <= 0) {
1528 return MP_OKAY;
1529 }
1530
1531 /* grow to fit the new digits */
1532 if (a->alloc < a->used + b) {
1533 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1534 return res;
1535 }
1536 }
1537
1538 {
1539 register mp_digit *top, *bottom;
1540
1541 /* increment the used by the shift amount then copy upwards */
1542 a->used += b;
1543
1544 /* top */
1545 top = a->dp + a->used - 1;
1546
1547 /* base */
1548 bottom = a->dp + a->used - 1 - b;
1549
1550 /* much like mp_rshd this is implemented using a sliding window
1551 * except the window goes the otherway around. Copying from
1552 * the bottom to the top. see bn_mp_rshd.c for more info.
1553 */
1554 for (x = a->used - 1; x >= b; x--) {
1555 *top-- = *bottom--;
1556 }
1557
1558 /* zero the lower digits */
1559 top = a->dp;
1560 for (x = 0; x < b; x++) {
1561 *top++ = 0;
1562 }
1563 }
1564 return MP_OKAY;
1565 }
1566
1567
1568 /* returns the number of bits in an int */
1569 static int
mp_count_bits(mp_int * a)1570 mp_count_bits (mp_int * a)
1571 {
1572 int r;
1573 mp_digit q;
1574
1575 /* shortcut */
1576 if (a->used == 0) {
1577 return 0;
1578 }
1579
1580 /* get number of digits and add that */
1581 r = (a->used - 1) * DIGIT_BIT;
1582
1583 /* take the last digit and count the bits in it */
1584 q = a->dp[a->used - 1];
1585 while (q > ((mp_digit) 0)) {
1586 ++r;
1587 q >>= ((mp_digit) 1);
1588 }
1589 return r;
1590 }
1591
1592
1593 /* calc a value mod 2**b */
1594 static int
mp_mod_2d(mp_int * a,int b,mp_int * c)1595 mp_mod_2d (mp_int * a, int b, mp_int * c)
1596 {
1597 int x, res;
1598
1599 /* if b is <= 0 then zero the int */
1600 if (b <= 0) {
1601 mp_zero (c);
1602 return MP_OKAY;
1603 }
1604
1605 /* if the modulus is larger than the value than return */
1606 if (b >= (int) (a->used * DIGIT_BIT)) {
1607 res = mp_copy (a, c);
1608 return res;
1609 }
1610
1611 /* copy */
1612 if ((res = mp_copy (a, c)) != MP_OKAY) {
1613 return res;
1614 }
1615
1616 /* zero digits above the last digit of the modulus */
1617 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1618 c->dp[x] = 0;
1619 }
1620 /* clear the digit that is not completely outside/inside the modulus */
1621 c->dp[b / DIGIT_BIT] &=
1622 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1623 mp_clamp (c);
1624 return MP_OKAY;
1625 }
1626
1627
1628 #ifdef BN_MP_DIV_SMALL
1629
1630 /* slower bit-bang division... also smaller */
1631 static int
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)1632 mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1633 {
1634 mp_int ta, tb, tq, q;
1635 int res, n, n2;
1636
1637 /* is divisor zero ? */
1638 if (mp_iszero (b) == 1) {
1639 return MP_VAL;
1640 }
1641
1642 /* if a < b then q=0, r = a */
1643 if (mp_cmp_mag (a, b) == MP_LT) {
1644 if (d != NULL) {
1645 res = mp_copy (a, d);
1646 } else {
1647 res = MP_OKAY;
1648 }
1649 if (c != NULL) {
1650 mp_zero (c);
1651 }
1652 return res;
1653 }
1654
1655 /* init our temps */
1656 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1657 return res;
1658 }
1659
1660
1661 mp_set(&tq, 1);
1662 n = mp_count_bits(a) - mp_count_bits(b);
1663 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1664 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1665 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1666 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1667 goto LBL_ERR;
1668 }
1669
1670 while (n-- >= 0) {
1671 if (mp_cmp(&tb, &ta) != MP_GT) {
1672 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1673 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1674 goto LBL_ERR;
1675 }
1676 }
1677 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1678 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1679 goto LBL_ERR;
1680 }
1681 }
1682
1683 /* now q == quotient and ta == remainder */
1684 n = a->sign;
1685 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1686 if (c != NULL) {
1687 mp_exch(c, &q);
1688 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1689 }
1690 if (d != NULL) {
1691 mp_exch(d, &ta);
1692 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1693 }
1694 LBL_ERR:
1695 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1696 return res;
1697 }
1698
1699 #else
1700
1701 /* integer signed division.
1702 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1703 * HAC pp.598 Algorithm 14.20
1704 *
1705 * Note that the description in HAC is horribly
1706 * incomplete. For example, it doesn't consider
1707 * the case where digits are removed from 'x' in
1708 * the inner loop. It also doesn't consider the
1709 * case that y has fewer than three digits, etc..
1710 *
1711 * The overall algorithm is as described as
1712 * 14.20 from HAC but fixed to treat these cases.
1713 */
1714 static int
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)1715 mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1716 {
1717 mp_int q, x, y, t1, t2;
1718 int res, n, t, i, norm, neg;
1719
1720 /* is divisor zero ? */
1721 if (mp_iszero (b) == 1) {
1722 return MP_VAL;
1723 }
1724
1725 /* if a < b then q=0, r = a */
1726 if (mp_cmp_mag (a, b) == MP_LT) {
1727 if (d != NULL) {
1728 res = mp_copy (a, d);
1729 } else {
1730 res = MP_OKAY;
1731 }
1732 if (c != NULL) {
1733 mp_zero (c);
1734 }
1735 return res;
1736 }
1737
1738 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1739 return res;
1740 }
1741 q.used = a->used + 2;
1742
1743 if ((res = mp_init (&t1)) != MP_OKAY) {
1744 goto LBL_Q;
1745 }
1746
1747 if ((res = mp_init (&t2)) != MP_OKAY) {
1748 goto LBL_T1;
1749 }
1750
1751 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1752 goto LBL_T2;
1753 }
1754
1755 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1756 goto LBL_X;
1757 }
1758
1759 /* fix the sign */
1760 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1761 x.sign = y.sign = MP_ZPOS;
1762
1763 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1764 norm = mp_count_bits(&y) % DIGIT_BIT;
1765 if (norm < (int)(DIGIT_BIT-1)) {
1766 norm = (DIGIT_BIT-1) - norm;
1767 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1768 goto LBL_Y;
1769 }
1770 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1771 goto LBL_Y;
1772 }
1773 } else {
1774 norm = 0;
1775 }
1776
1777 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1778 n = x.used - 1;
1779 t = y.used - 1;
1780
1781 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1782 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1783 goto LBL_Y;
1784 }
1785
1786 while (mp_cmp (&x, &y) != MP_LT) {
1787 ++(q.dp[n - t]);
1788 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1789 goto LBL_Y;
1790 }
1791 }
1792
1793 /* reset y by shifting it back down */
1794 mp_rshd (&y, n - t);
1795
1796 /* step 3. for i from n down to (t + 1) */
1797 for (i = n; i >= (t + 1); i--) {
1798 if (i > x.used) {
1799 continue;
1800 }
1801
1802 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1803 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1804 if (x.dp[i] == y.dp[t]) {
1805 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1806 } else {
1807 mp_word tmp;
1808 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1809 tmp |= ((mp_word) x.dp[i - 1]);
1810 tmp /= ((mp_word) y.dp[t]);
1811 if (tmp > (mp_word) MP_MASK)
1812 tmp = MP_MASK;
1813 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1814 }
1815
1816 /* while (q{i-t-1} * (yt * b + y{t-1})) >
1817 xi * b**2 + xi-1 * b + xi-2
1818
1819 do q{i-t-1} -= 1;
1820 */
1821 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1822 do {
1823 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1824
1825 /* find left hand */
1826 mp_zero (&t1);
1827 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1828 t1.dp[1] = y.dp[t];
1829 t1.used = 2;
1830 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1831 goto LBL_Y;
1832 }
1833
1834 /* find right hand */
1835 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1836 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1837 t2.dp[2] = x.dp[i];
1838 t2.used = 3;
1839 } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1840
1841 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1842 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1843 goto LBL_Y;
1844 }
1845
1846 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1847 goto LBL_Y;
1848 }
1849
1850 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1851 goto LBL_Y;
1852 }
1853
1854 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1855 if (x.sign == MP_NEG) {
1856 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1857 goto LBL_Y;
1858 }
1859 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1860 goto LBL_Y;
1861 }
1862 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1863 goto LBL_Y;
1864 }
1865
1866 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1867 }
1868 }
1869
1870 /* now q is the quotient and x is the remainder
1871 * [which we have to normalize]
1872 */
1873
1874 /* get sign before writing to c */
1875 x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1876
1877 if (c != NULL) {
1878 mp_clamp (&q);
1879 mp_exch (&q, c);
1880 c->sign = neg;
1881 }
1882
1883 if (d != NULL) {
1884 mp_div_2d (&x, norm, &x, NULL);
1885 mp_exch (&x, d);
1886 }
1887
1888 res = MP_OKAY;
1889
1890 LBL_Y:mp_clear (&y);
1891 LBL_X:mp_clear (&x);
1892 LBL_T2:mp_clear (&t2);
1893 LBL_T1:mp_clear (&t1);
1894 LBL_Q:mp_clear (&q);
1895 return res;
1896 }
1897
1898 #endif
1899
1900
1901 #ifdef MP_LOW_MEM
1902 #define TAB_SIZE 32
1903 #else
1904 #define TAB_SIZE 256
1905 #endif
1906
1907 static int
s_mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)1908 s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1909 {
1910 mp_int M[TAB_SIZE], res, mu;
1911 mp_digit buf;
1912 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1913 int (*redux)(mp_int*,mp_int*,mp_int*);
1914
1915 /* find window size */
1916 x = mp_count_bits (X);
1917 if (x <= 7) {
1918 winsize = 2;
1919 } else if (x <= 36) {
1920 winsize = 3;
1921 } else if (x <= 140) {
1922 winsize = 4;
1923 } else if (x <= 450) {
1924 winsize = 5;
1925 } else if (x <= 1303) {
1926 winsize = 6;
1927 } else if (x <= 3529) {
1928 winsize = 7;
1929 } else {
1930 winsize = 8;
1931 }
1932
1933 #ifdef MP_LOW_MEM
1934 if (winsize > 5) {
1935 winsize = 5;
1936 }
1937 #endif
1938
1939 /* init M array */
1940 /* init first cell */
1941 if ((err = mp_init(&M[1])) != MP_OKAY) {
1942 return err;
1943 }
1944
1945 /* now init the second half of the array */
1946 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1947 if ((err = mp_init(&M[x])) != MP_OKAY) {
1948 for (y = 1<<(winsize-1); y < x; y++) {
1949 mp_clear (&M[y]);
1950 }
1951 mp_clear(&M[1]);
1952 return err;
1953 }
1954 }
1955
1956 /* create mu, used for Barrett reduction */
1957 if ((err = mp_init (&mu)) != MP_OKAY) {
1958 goto LBL_M;
1959 }
1960
1961 if (redmode == 0) {
1962 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1963 goto LBL_MU;
1964 }
1965 redux = mp_reduce;
1966 } else {
1967 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1968 goto LBL_MU;
1969 }
1970 redux = mp_reduce_2k_l;
1971 }
1972
1973 /* create M table
1974 *
1975 * The M table contains powers of the base,
1976 * e.g. M[x] = G**x mod P
1977 *
1978 * The first half of the table is not
1979 * computed though accept for M[0] and M[1]
1980 */
1981 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1982 goto LBL_MU;
1983 }
1984
1985 /* compute the value at M[1<<(winsize-1)] by squaring
1986 * M[1] (winsize-1) times
1987 */
1988 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1989 goto LBL_MU;
1990 }
1991
1992 for (x = 0; x < (winsize - 1); x++) {
1993 /* square it */
1994 if ((err = mp_sqr (&M[1 << (winsize - 1)],
1995 &M[1 << (winsize - 1)])) != MP_OKAY) {
1996 goto LBL_MU;
1997 }
1998
1999 /* reduce modulo P */
2000 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
2001 goto LBL_MU;
2002 }
2003 }
2004
2005 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
2006 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
2007 */
2008 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
2009 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
2010 goto LBL_MU;
2011 }
2012 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
2013 goto LBL_MU;
2014 }
2015 }
2016
2017 /* setup result */
2018 if ((err = mp_init (&res)) != MP_OKAY) {
2019 goto LBL_MU;
2020 }
2021 mp_set (&res, 1);
2022
2023 /* set initial mode and bit cnt */
2024 mode = 0;
2025 bitcnt = 1;
2026 buf = 0;
2027 digidx = X->used - 1;
2028 bitcpy = 0;
2029 bitbuf = 0;
2030
2031 for (;;) {
2032 /* grab next digit as required */
2033 if (--bitcnt == 0) {
2034 /* if digidx == -1 we are out of digits */
2035 if (digidx == -1) {
2036 break;
2037 }
2038 /* read next digit and reset the bitcnt */
2039 buf = X->dp[digidx--];
2040 bitcnt = (int) DIGIT_BIT;
2041 }
2042
2043 /* grab the next msb from the exponent */
2044 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2045 buf <<= (mp_digit)1;
2046
2047 /* if the bit is zero and mode == 0 then we ignore it
2048 * These represent the leading zero bits before the first 1 bit
2049 * in the exponent. Technically this opt is not required but it
2050 * does lower the # of trivial squaring/reductions used
2051 */
2052 if (mode == 0 && y == 0) {
2053 continue;
2054 }
2055
2056 /* if the bit is zero and mode == 1 then we square */
2057 if (mode == 1 && y == 0) {
2058 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2059 goto LBL_RES;
2060 }
2061 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2062 goto LBL_RES;
2063 }
2064 continue;
2065 }
2066
2067 /* else we add it to the window */
2068 bitbuf |= (y << (winsize - ++bitcpy));
2069 mode = 2;
2070
2071 if (bitcpy == winsize) {
2072 /* ok window is filled so square as required and multiply */
2073 /* square first */
2074 for (x = 0; x < winsize; x++) {
2075 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2076 goto LBL_RES;
2077 }
2078 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2079 goto LBL_RES;
2080 }
2081 }
2082
2083 /* then multiply */
2084 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2085 goto LBL_RES;
2086 }
2087 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2088 goto LBL_RES;
2089 }
2090
2091 /* empty window and reset */
2092 bitcpy = 0;
2093 bitbuf = 0;
2094 mode = 1;
2095 }
2096 }
2097
2098 /* if bits remain then square/multiply */
2099 if (mode == 2 && bitcpy > 0) {
2100 /* square then multiply if the bit is set */
2101 for (x = 0; x < bitcpy; x++) {
2102 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2103 goto LBL_RES;
2104 }
2105 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2106 goto LBL_RES;
2107 }
2108
2109 bitbuf <<= 1;
2110 if ((bitbuf & (1 << winsize)) != 0) {
2111 /* then multiply */
2112 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2113 goto LBL_RES;
2114 }
2115 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2116 goto LBL_RES;
2117 }
2118 }
2119 }
2120 }
2121
2122 mp_exch (&res, Y);
2123 err = MP_OKAY;
2124 LBL_RES:mp_clear (&res);
2125 LBL_MU:mp_clear (&mu);
2126 LBL_M:
2127 mp_clear(&M[1]);
2128 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2129 mp_clear (&M[x]);
2130 }
2131 return err;
2132 }
2133
2134
2135 /* computes b = a*a */
2136 static int
mp_sqr(mp_int * a,mp_int * b)2137 mp_sqr (mp_int * a, mp_int * b)
2138 {
2139 int res;
2140
2141 #ifdef BN_MP_TOOM_SQR_C
2142 /* use Toom-Cook? */
2143 if (a->used >= TOOM_SQR_CUTOFF) {
2144 res = mp_toom_sqr(a, b);
2145 /* Karatsuba? */
2146 } else
2147 #endif
2148 #ifdef BN_MP_KARATSUBA_SQR_C
2149 if (a->used >= KARATSUBA_SQR_CUTOFF) {
2150 res = mp_karatsuba_sqr (a, b);
2151 } else
2152 #endif
2153 {
2154 #ifdef BN_FAST_S_MP_SQR_C
2155 /* can we use the fast comba multiplier? */
2156 if ((a->used * 2 + 1) < MP_WARRAY &&
2157 a->used <
2158 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2159 res = fast_s_mp_sqr (a, b);
2160 } else
2161 #endif
2162 #ifdef BN_S_MP_SQR_C
2163 res = s_mp_sqr (a, b);
2164 #else
2165 #error mp_sqr could fail
2166 res = MP_VAL;
2167 #endif
2168 }
2169 b->sign = MP_ZPOS;
2170 return res;
2171 }
2172
2173
2174 /* reduces a modulo n where n is of the form 2**p - d
2175 This differs from reduce_2k since "d" can be larger
2176 than a single digit.
2177 */
2178 static int
mp_reduce_2k_l(mp_int * a,mp_int * n,mp_int * d)2179 mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2180 {
2181 mp_int q;
2182 int p, res;
2183
2184 if ((res = mp_init(&q)) != MP_OKAY) {
2185 return res;
2186 }
2187
2188 p = mp_count_bits(n);
2189 top:
2190 /* q = a/2**p, a = a mod 2**p */
2191 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2192 goto ERR;
2193 }
2194
2195 /* q = q * d */
2196 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2197 goto ERR;
2198 }
2199
2200 /* a = a + q */
2201 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2202 goto ERR;
2203 }
2204
2205 if (mp_cmp_mag(a, n) != MP_LT) {
2206 s_mp_sub(a, n, a);
2207 goto top;
2208 }
2209
2210 ERR:
2211 mp_clear(&q);
2212 return res;
2213 }
2214
2215
2216 /* determines the setup value */
2217 static int
mp_reduce_2k_setup_l(mp_int * a,mp_int * d)2218 mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2219 {
2220 int res;
2221 mp_int tmp;
2222
2223 if ((res = mp_init(&tmp)) != MP_OKAY) {
2224 return res;
2225 }
2226
2227 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2228 goto ERR;
2229 }
2230
2231 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2232 goto ERR;
2233 }
2234
2235 ERR:
2236 mp_clear(&tmp);
2237 return res;
2238 }
2239
2240
2241 /* computes a = 2**b
2242 *
2243 * Simple algorithm which zeroes the int, grows it then just sets one bit
2244 * as required.
2245 */
2246 static int
mp_2expt(mp_int * a,int b)2247 mp_2expt (mp_int * a, int b)
2248 {
2249 int res;
2250
2251 /* zero a as per default */
2252 mp_zero (a);
2253
2254 /* grow a to accommodate the single bit */
2255 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2256 return res;
2257 }
2258
2259 /* set the used count of where the bit will go */
2260 a->used = b / DIGIT_BIT + 1;
2261
2262 /* put the single bit in its place */
2263 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2264
2265 return MP_OKAY;
2266 }
2267
2268
2269 /* pre-calculate the value required for Barrett reduction
2270 * For a given modulus "b" it calulates the value required in "a"
2271 */
2272 static int
mp_reduce_setup(mp_int * a,mp_int * b)2273 mp_reduce_setup (mp_int * a, mp_int * b)
2274 {
2275 int res;
2276
2277 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2278 return res;
2279 }
2280 return mp_div (a, b, a, NULL);
2281 }
2282
2283
2284 /* reduces x mod m, assumes 0 < x < m**2, mu is
2285 * precomputed via mp_reduce_setup.
2286 * From HAC pp.604 Algorithm 14.42
2287 */
2288 static int
mp_reduce(mp_int * x,mp_int * m,mp_int * mu)2289 mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2290 {
2291 mp_int q;
2292 int res, um = m->used;
2293
2294 /* q = x */
2295 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2296 return res;
2297 }
2298
2299 /* q1 = x / b**(k-1) */
2300 mp_rshd (&q, um - 1);
2301
2302 /* according to HAC this optimization is ok */
2303 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2304 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2305 goto CLEANUP;
2306 }
2307 } else {
2308 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2309 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2310 goto CLEANUP;
2311 }
2312 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2313 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2314 goto CLEANUP;
2315 }
2316 #else
2317 {
2318 #error mp_reduce would always fail
2319 res = MP_VAL;
2320 goto CLEANUP;
2321 }
2322 #endif
2323 }
2324
2325 /* q3 = q2 / b**(k+1) */
2326 mp_rshd (&q, um + 1);
2327
2328 /* x = x mod b**(k+1), quick (no division) */
2329 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2330 goto CLEANUP;
2331 }
2332
2333 /* q = q * m mod b**(k+1), quick (no division) */
2334 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2335 goto CLEANUP;
2336 }
2337
2338 /* x = x - q */
2339 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2340 goto CLEANUP;
2341 }
2342
2343 /* If x < 0, add b**(k+1) to it */
2344 if (mp_cmp_d (x, 0) == MP_LT) {
2345 mp_set (&q, 1);
2346 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2347 goto CLEANUP;
2348 }
2349 if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2350 goto CLEANUP;
2351 }
2352 }
2353
2354 /* Back off if it's too big */
2355 while (mp_cmp (x, m) != MP_LT) {
2356 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2357 goto CLEANUP;
2358 }
2359 }
2360
2361 CLEANUP:
2362 mp_clear (&q);
2363
2364 return res;
2365 }
2366
2367
2368 /* multiplies |a| * |b| and only computes up to digs digits of result
2369 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
2370 * many digits of output are created.
2371 */
2372 static int
s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2373 s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2374 {
2375 mp_int t;
2376 int res, pa, pb, ix, iy;
2377 mp_digit u;
2378 mp_word r;
2379 mp_digit tmpx, *tmpt, *tmpy;
2380
2381 /* can we use the fast multiplier? */
2382 if (((digs) < MP_WARRAY) &&
2383 MIN (a->used, b->used) <
2384 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2385 return fast_s_mp_mul_digs (a, b, c, digs);
2386 }
2387
2388 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2389 return res;
2390 }
2391 t.used = digs;
2392
2393 /* compute the digits of the product directly */
2394 pa = a->used;
2395 for (ix = 0; ix < pa; ix++) {
2396 /* set the carry to zero */
2397 u = 0;
2398
2399 /* limit ourselves to making digs digits of output */
2400 pb = MIN (b->used, digs - ix);
2401
2402 /* setup some aliases */
2403 /* copy of the digit from a used within the nested loop */
2404 tmpx = a->dp[ix];
2405
2406 /* an alias for the destination shifted ix places */
2407 tmpt = t.dp + ix;
2408
2409 /* an alias for the digits of b */
2410 tmpy = b->dp;
2411
2412 /* compute the columns of the output and propagate the carry */
2413 for (iy = 0; iy < pb; iy++) {
2414 /* compute the column as a mp_word */
2415 r = ((mp_word)*tmpt) +
2416 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2417 ((mp_word) u);
2418
2419 /* the new column is the lower part of the result */
2420 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2421
2422 /* get the carry word from the result */
2423 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2424 }
2425 /* set carry if it is placed below digs */
2426 if (ix + iy < digs) {
2427 *tmpt = u;
2428 }
2429 }
2430
2431 mp_clamp (&t);
2432 mp_exch (&t, c);
2433
2434 mp_clear (&t);
2435 return MP_OKAY;
2436 }
2437
2438
2439 /* Fast (comba) multiplier
2440 *
2441 * This is the fast column-array [comba] multiplier. It is
2442 * designed to compute the columns of the product first
2443 * then handle the carries afterwards. This has the effect
2444 * of making the nested loops that compute the columns very
2445 * simple and schedulable on super-scalar processors.
2446 *
2447 * This has been modified to produce a variable number of
2448 * digits of output so if say only a half-product is required
2449 * you don't have to compute the upper half (a feature
2450 * required for fast Barrett reduction).
2451 *
2452 * Based on Algorithm 14.12 on pp.595 of HAC.
2453 *
2454 */
2455 static int
fast_s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2456 fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2457 {
2458 int olduse, res, pa, ix, iz;
2459 mp_digit W[MP_WARRAY];
2460 register mp_word _W;
2461
2462 /* grow the destination as required */
2463 if (c->alloc < digs) {
2464 if ((res = mp_grow (c, digs)) != MP_OKAY) {
2465 return res;
2466 }
2467 }
2468
2469 /* number of output digits to produce */
2470 pa = MIN(digs, a->used + b->used);
2471
2472 /* clear the carry */
2473 _W = 0;
2474 for (ix = 0; ix < pa; ix++) {
2475 int tx, ty;
2476 int iy;
2477 mp_digit *tmpx, *tmpy;
2478
2479 /* get offsets into the two bignums */
2480 ty = MIN(b->used-1, ix);
2481 tx = ix - ty;
2482
2483 /* setup temp aliases */
2484 tmpx = a->dp + tx;
2485 tmpy = b->dp + ty;
2486
2487 /* this is the number of times the loop will iterrate, essentially
2488 while (tx++ < a->used && ty-- >= 0) { ... }
2489 */
2490 iy = MIN(a->used-tx, ty+1);
2491
2492 /* execute loop */
2493 for (iz = 0; iz < iy; ++iz) {
2494 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2495
2496 }
2497
2498 /* store term */
2499 W[ix] = ((mp_digit)_W) & MP_MASK;
2500
2501 /* make next carry */
2502 _W = _W >> ((mp_word)DIGIT_BIT);
2503 }
2504
2505 /* setup dest */
2506 olduse = c->used;
2507 c->used = pa;
2508
2509 {
2510 register mp_digit *tmpc;
2511 tmpc = c->dp;
2512 for (ix = 0; ix < pa+1; ix++) {
2513 /* now extract the previous digit [below the carry] */
2514 *tmpc++ = W[ix];
2515 }
2516
2517 /* clear unused digits [that existed in the old copy of c] */
2518 for (; ix < olduse; ix++) {
2519 *tmpc++ = 0;
2520 }
2521 }
2522 mp_clamp (c);
2523 return MP_OKAY;
2524 }
2525
2526
2527 /* init an mp_init for a given size */
2528 static int
mp_init_size(mp_int * a,int size)2529 mp_init_size (mp_int * a, int size)
2530 {
2531 int x;
2532
2533 /* pad size so there are always extra digits */
2534 size += (MP_PREC * 2) - (size % MP_PREC);
2535
2536 /* alloc mem */
2537 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2538 if (a->dp == NULL) {
2539 return MP_MEM;
2540 }
2541
2542 /* set the members */
2543 a->used = 0;
2544 a->alloc = size;
2545 a->sign = MP_ZPOS;
2546
2547 /* zero the digits */
2548 for (x = 0; x < size; x++) {
2549 a->dp[x] = 0;
2550 }
2551
2552 return MP_OKAY;
2553 }
2554
2555
2556 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2557 static int
s_mp_sqr(mp_int * a,mp_int * b)2558 s_mp_sqr (mp_int * a, mp_int * b)
2559 {
2560 mp_int t;
2561 int res, ix, iy, pa;
2562 mp_word r;
2563 mp_digit u, tmpx, *tmpt;
2564
2565 pa = a->used;
2566 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2567 return res;
2568 }
2569
2570 /* default used is maximum possible size */
2571 t.used = 2*pa + 1;
2572
2573 for (ix = 0; ix < pa; ix++) {
2574 /* first calculate the digit at 2*ix */
2575 /* calculate double precision result */
2576 r = ((mp_word) t.dp[2*ix]) +
2577 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2578
2579 /* store lower part in result */
2580 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2581
2582 /* get the carry */
2583 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2584
2585 /* left hand side of A[ix] * A[iy] */
2586 tmpx = a->dp[ix];
2587
2588 /* alias for where to store the results */
2589 tmpt = t.dp + (2*ix + 1);
2590
2591 for (iy = ix + 1; iy < pa; iy++) {
2592 /* first calculate the product */
2593 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2594
2595 /* now calculate the double precision result, note we use
2596 * addition instead of *2 since it's easier to optimize
2597 */
2598 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2599
2600 /* store lower part */
2601 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2602
2603 /* get carry */
2604 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2605 }
2606 /* propagate upwards */
2607 while (u != ((mp_digit) 0)) {
2608 r = ((mp_word) *tmpt) + ((mp_word) u);
2609 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2610 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2611 }
2612 }
2613
2614 mp_clamp (&t);
2615 mp_exch (&t, b);
2616 mp_clear (&t);
2617 return MP_OKAY;
2618 }
2619
2620
2621 /* multiplies |a| * |b| and does not compute the lower digs digits
2622 * [meant to get the higher part of the product]
2623 */
2624 static int
s_mp_mul_high_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2625 s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2626 {
2627 mp_int t;
2628 int res, pa, pb, ix, iy;
2629 mp_digit u;
2630 mp_word r;
2631 mp_digit tmpx, *tmpt, *tmpy;
2632
2633 /* can we use the fast multiplier? */
2634 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2635 if (((a->used + b->used + 1) < MP_WARRAY)
2636 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2637 return fast_s_mp_mul_high_digs (a, b, c, digs);
2638 }
2639 #endif
2640
2641 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2642 return res;
2643 }
2644 t.used = a->used + b->used + 1;
2645
2646 pa = a->used;
2647 pb = b->used;
2648 for (ix = 0; ix < pa; ix++) {
2649 /* clear the carry */
2650 u = 0;
2651
2652 /* left hand side of A[ix] * B[iy] */
2653 tmpx = a->dp[ix];
2654
2655 /* alias to the address of where the digits will be stored */
2656 tmpt = &(t.dp[digs]);
2657
2658 /* alias for where to read the right hand side from */
2659 tmpy = b->dp + (digs - ix);
2660
2661 for (iy = digs - ix; iy < pb; iy++) {
2662 /* calculate the double precision result */
2663 r = ((mp_word)*tmpt) +
2664 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2665 ((mp_word) u);
2666
2667 /* get the lower part */
2668 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2669
2670 /* carry the carry */
2671 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2672 }
2673 *tmpt = u;
2674 }
2675 mp_clamp (&t);
2676 mp_exch (&t, c);
2677 mp_clear (&t);
2678 return MP_OKAY;
2679 }
2680
2681
2682 #ifdef BN_MP_MONTGOMERY_SETUP_C
2683 /* setups the montgomery reduction stuff */
2684 static int
mp_montgomery_setup(mp_int * n,mp_digit * rho)2685 mp_montgomery_setup (mp_int * n, mp_digit * rho)
2686 {
2687 mp_digit x, b;
2688
2689 /* fast inversion mod 2**k
2690 *
2691 * Based on the fact that
2692 *
2693 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
2694 * => 2*X*A - X*X*A*A = 1
2695 * => 2*(1) - (1) = 1
2696 */
2697 b = n->dp[0];
2698
2699 if ((b & 1) == 0) {
2700 return MP_VAL;
2701 }
2702
2703 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2704 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
2705 #if !defined(MP_8BIT)
2706 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
2707 #endif
2708 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2709 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
2710 #endif
2711 #ifdef MP_64BIT
2712 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
2713 #endif
2714
2715 /* rho = -1/m mod b */
2716 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2717
2718 return MP_OKAY;
2719 }
2720 #endif
2721
2722
2723 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2724 /* computes xR**-1 == x (mod N) via Montgomery Reduction
2725 *
2726 * This is an optimized implementation of montgomery_reduce
2727 * which uses the comba method to quickly calculate the columns of the
2728 * reduction.
2729 *
2730 * Based on Algorithm 14.32 on pp.601 of HAC.
2731 */
2732 int
fast_mp_montgomery_reduce(mp_int * x,mp_int * n,mp_digit rho)2733 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
2734 {
2735 int ix, res, olduse;
2736 mp_word W[MP_WARRAY];
2737
2738 /* get old used count */
2739 olduse = x->used;
2740
2741 /* grow a as required */
2742 if (x->alloc < n->used + 1) {
2743 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2744 return res;
2745 }
2746 }
2747
2748 /* first we have to get the digits of the input into
2749 * an array of double precision words W[...]
2750 */
2751 {
2752 register mp_word *_W;
2753 register mp_digit *tmpx;
2754
2755 /* alias for the W[] array */
2756 _W = W;
2757
2758 /* alias for the digits of x*/
2759 tmpx = x->dp;
2760
2761 /* copy the digits of a into W[0..a->used-1] */
2762 for (ix = 0; ix < x->used; ix++) {
2763 *_W++ = *tmpx++;
2764 }
2765
2766 /* zero the high words of W[a->used..m->used*2] */
2767 for (; ix < n->used * 2 + 1; ix++) {
2768 *_W++ = 0;
2769 }
2770 }
2771
2772 /* now we proceed to zero successive digits
2773 * from the least significant upwards
2774 */
2775 for (ix = 0; ix < n->used; ix++) {
2776 /* mu = ai * m' mod b
2777 *
2778 * We avoid a double precision multiplication (which isn't required)
2779 * by casting the value down to a mp_digit. Note this requires
2780 * that W[ix-1] have the carry cleared (see after the inner loop)
2781 */
2782 register mp_digit mu;
2783 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2784
2785 /* a = a + mu * m * b**i
2786 *
2787 * This is computed in place and on the fly. The multiplication
2788 * by b**i is handled by offseting which columns the results
2789 * are added to.
2790 *
2791 * Note the comba method normally doesn't handle carries in the
2792 * inner loop In this case we fix the carry from the previous
2793 * column since the Montgomery reduction requires digits of the
2794 * result (so far) [see above] to work. This is
2795 * handled by fixing up one carry after the inner loop. The
2796 * carry fixups are done in order so after these loops the
2797 * first m->used words of W[] have the carries fixed
2798 */
2799 {
2800 register int iy;
2801 register mp_digit *tmpn;
2802 register mp_word *_W;
2803
2804 /* alias for the digits of the modulus */
2805 tmpn = n->dp;
2806
2807 /* Alias for the columns set by an offset of ix */
2808 _W = W + ix;
2809
2810 /* inner loop */
2811 for (iy = 0; iy < n->used; iy++) {
2812 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2813 }
2814 }
2815
2816 /* now fix carry for next digit, W[ix+1] */
2817 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2818 }
2819
2820 /* now we have to propagate the carries and
2821 * shift the words downward [all those least
2822 * significant digits we zeroed].
2823 */
2824 {
2825 register mp_digit *tmpx;
2826 register mp_word *_W, *_W1;
2827
2828 /* nox fix rest of carries */
2829
2830 /* alias for current word */
2831 _W1 = W + ix;
2832
2833 /* alias for next word, where the carry goes */
2834 _W = W + ++ix;
2835
2836 for (; ix <= n->used * 2 + 1; ix++) {
2837 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2838 }
2839
2840 /* copy out, A = A/b**n
2841 *
2842 * The result is A/b**n but instead of converting from an
2843 * array of mp_word to mp_digit than calling mp_rshd
2844 * we just copy them in the right order
2845 */
2846
2847 /* alias for destination word */
2848 tmpx = x->dp;
2849
2850 /* alias for shifted double precision result */
2851 _W = W + n->used;
2852
2853 for (ix = 0; ix < n->used + 1; ix++) {
2854 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2855 }
2856
2857 /* zero oldused digits, if the input a was larger than
2858 * m->used+1 we'll have to clear the digits
2859 */
2860 for (; ix < olduse; ix++) {
2861 *tmpx++ = 0;
2862 }
2863 }
2864
2865 /* set the max used and clamp */
2866 x->used = n->used + 1;
2867 mp_clamp (x);
2868
2869 /* if A >= m then A = A - m */
2870 if (mp_cmp_mag (x, n) != MP_LT) {
2871 return s_mp_sub (x, n, x);
2872 }
2873 return MP_OKAY;
2874 }
2875 #endif
2876
2877
2878 #ifdef BN_MP_MUL_2_C
2879 /* b = a*2 */
2880 static int
mp_mul_2(mp_int * a,mp_int * b)2881 mp_mul_2(mp_int * a, mp_int * b)
2882 {
2883 int x, res, oldused;
2884
2885 /* grow to accommodate result */
2886 if (b->alloc < a->used + 1) {
2887 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2888 return res;
2889 }
2890 }
2891
2892 oldused = b->used;
2893 b->used = a->used;
2894
2895 {
2896 register mp_digit r, rr, *tmpa, *tmpb;
2897
2898 /* alias for source */
2899 tmpa = a->dp;
2900
2901 /* alias for dest */
2902 tmpb = b->dp;
2903
2904 /* carry */
2905 r = 0;
2906 for (x = 0; x < a->used; x++) {
2907
2908 /* get what will be the *next* carry bit from the
2909 * MSB of the current digit
2910 */
2911 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2912
2913 /* now shift up this digit, add in the carry [from the previous] */
2914 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2915
2916 /* copy the carry that would be from the source
2917 * digit into the next iteration
2918 */
2919 r = rr;
2920 }
2921
2922 /* new leading digit? */
2923 if (r != 0) {
2924 /* add a MSB which is always 1 at this point */
2925 *tmpb = 1;
2926 ++(b->used);
2927 }
2928
2929 /* now zero any excess digits on the destination
2930 * that we didn't write to
2931 */
2932 tmpb = b->dp + b->used;
2933 for (x = b->used; x < oldused; x++) {
2934 *tmpb++ = 0;
2935 }
2936 }
2937 b->sign = a->sign;
2938 return MP_OKAY;
2939 }
2940 #endif
2941
2942
2943 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2944 /*
2945 * shifts with subtractions when the result is greater than b.
2946 *
2947 * The method is slightly modified to shift B unconditionally up to just under
2948 * the leading bit of b. This saves a lot of multiple precision shifting.
2949 */
2950 static int
mp_montgomery_calc_normalization(mp_int * a,mp_int * b)2951 mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2952 {
2953 int x, bits, res;
2954
2955 /* how many bits of last digit does b use */
2956 bits = mp_count_bits (b) % DIGIT_BIT;
2957
2958 if (b->used > 1) {
2959 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2960 return res;
2961 }
2962 } else {
2963 mp_set(a, 1);
2964 bits = 1;
2965 }
2966
2967
2968 /* now compute C = A * B mod b */
2969 for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2970 if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2971 return res;
2972 }
2973 if (mp_cmp_mag (a, b) != MP_LT) {
2974 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2975 return res;
2976 }
2977 }
2978 }
2979
2980 return MP_OKAY;
2981 }
2982 #endif
2983
2984
2985 #ifdef BN_MP_EXPTMOD_FAST_C
2986 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2987 *
2988 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2989 * The value of k changes based on the size of the exponent.
2990 *
2991 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2992 */
2993
2994 static int
mp_exptmod_fast(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)2995 mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2996 {
2997 mp_int M[TAB_SIZE], res;
2998 mp_digit buf, mp;
2999 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
3000
3001 /* use a pointer to the reduction algorithm. This allows us to use
3002 * one of many reduction algorithms without modding the guts of
3003 * the code with if statements everywhere.
3004 */
3005 int (*redux)(mp_int*,mp_int*,mp_digit);
3006
3007 /* find window size */
3008 x = mp_count_bits (X);
3009 if (x <= 7) {
3010 winsize = 2;
3011 } else if (x <= 36) {
3012 winsize = 3;
3013 } else if (x <= 140) {
3014 winsize = 4;
3015 } else if (x <= 450) {
3016 winsize = 5;
3017 } else if (x <= 1303) {
3018 winsize = 6;
3019 } else if (x <= 3529) {
3020 winsize = 7;
3021 } else {
3022 winsize = 8;
3023 }
3024
3025 #ifdef MP_LOW_MEM
3026 if (winsize > 5) {
3027 winsize = 5;
3028 }
3029 #endif
3030
3031 /* init M array */
3032 /* init first cell */
3033 if ((err = mp_init(&M[1])) != MP_OKAY) {
3034 return err;
3035 }
3036
3037 /* now init the second half of the array */
3038 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3039 if ((err = mp_init(&M[x])) != MP_OKAY) {
3040 for (y = 1<<(winsize-1); y < x; y++) {
3041 mp_clear (&M[y]);
3042 }
3043 mp_clear(&M[1]);
3044 return err;
3045 }
3046 }
3047
3048 /* determine and setup reduction code */
3049 if (redmode == 0) {
3050 #ifdef BN_MP_MONTGOMERY_SETUP_C
3051 /* now setup montgomery */
3052 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3053 goto LBL_M;
3054 }
3055 #else
3056 err = MP_VAL;
3057 goto LBL_M;
3058 #endif
3059
3060 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3061 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3062 if (((P->used * 2 + 1) < MP_WARRAY) &&
3063 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3064 redux = fast_mp_montgomery_reduce;
3065 } else
3066 #endif
3067 {
3068 #ifdef BN_MP_MONTGOMERY_REDUCE_C
3069 /* use slower baseline Montgomery method */
3070 redux = mp_montgomery_reduce;
3071 #else
3072 err = MP_VAL;
3073 goto LBL_M;
3074 #endif
3075 }
3076 } else if (redmode == 1) {
3077 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3078 /* setup DR reduction for moduli of the form B**k - b */
3079 mp_dr_setup(P, &mp);
3080 redux = mp_dr_reduce;
3081 #else
3082 err = MP_VAL;
3083 goto LBL_M;
3084 #endif
3085 } else {
3086 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3087 /* setup DR reduction for moduli of the form 2**k - b */
3088 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3089 goto LBL_M;
3090 }
3091 redux = mp_reduce_2k;
3092 #else
3093 err = MP_VAL;
3094 goto LBL_M;
3095 #endif
3096 }
3097
3098 /* setup result */
3099 if ((err = mp_init (&res)) != MP_OKAY) {
3100 goto LBL_M;
3101 }
3102
3103 /* create M table
3104 *
3105
3106 *
3107 * The first half of the table is not computed though accept for M[0] and M[1]
3108 */
3109
3110 if (redmode == 0) {
3111 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3112 /* now we need R mod m */
3113 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3114 goto LBL_RES;
3115 }
3116 #else
3117 err = MP_VAL;
3118 goto LBL_RES;
3119 #endif
3120
3121 /* now set M[1] to G * R mod m */
3122 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3123 goto LBL_RES;
3124 }
3125 } else {
3126 mp_set(&res, 1);
3127 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3128 goto LBL_RES;
3129 }
3130 }
3131
3132 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3133 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3134 goto LBL_RES;
3135 }
3136
3137 for (x = 0; x < (winsize - 1); x++) {
3138 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3139 goto LBL_RES;
3140 }
3141 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3142 goto LBL_RES;
3143 }
3144 }
3145
3146 /* create upper table */
3147 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3148 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3149 goto LBL_RES;
3150 }
3151 if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3152 goto LBL_RES;
3153 }
3154 }
3155
3156 /* set initial mode and bit cnt */
3157 mode = 0;
3158 bitcnt = 1;
3159 buf = 0;
3160 digidx = X->used - 1;
3161 bitcpy = 0;
3162 bitbuf = 0;
3163
3164 for (;;) {
3165 /* grab next digit as required */
3166 if (--bitcnt == 0) {
3167 /* if digidx == -1 we are out of digits so break */
3168 if (digidx == -1) {
3169 break;
3170 }
3171 /* read next digit and reset bitcnt */
3172 buf = X->dp[digidx--];
3173 bitcnt = (int)DIGIT_BIT;
3174 }
3175
3176 /* grab the next msb from the exponent */
3177 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3178 buf <<= (mp_digit)1;
3179
3180 /* if the bit is zero and mode == 0 then we ignore it
3181 * These represent the leading zero bits before the first 1 bit
3182 * in the exponent. Technically this opt is not required but it
3183 * does lower the # of trivial squaring/reductions used
3184 */
3185 if (mode == 0 && y == 0) {
3186 continue;
3187 }
3188
3189 /* if the bit is zero and mode == 1 then we square */
3190 if (mode == 1 && y == 0) {
3191 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3192 goto LBL_RES;
3193 }
3194 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3195 goto LBL_RES;
3196 }
3197 continue;
3198 }
3199
3200 /* else we add it to the window */
3201 bitbuf |= (y << (winsize - ++bitcpy));
3202 mode = 2;
3203
3204 if (bitcpy == winsize) {
3205 /* ok window is filled so square as required and multiply */
3206 /* square first */
3207 for (x = 0; x < winsize; x++) {
3208 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3209 goto LBL_RES;
3210 }
3211 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3212 goto LBL_RES;
3213 }
3214 }
3215
3216 /* then multiply */
3217 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3218 goto LBL_RES;
3219 }
3220 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3221 goto LBL_RES;
3222 }
3223
3224 /* empty window and reset */
3225 bitcpy = 0;
3226 bitbuf = 0;
3227 mode = 1;
3228 }
3229 }
3230
3231 /* if bits remain then square/multiply */
3232 if (mode == 2 && bitcpy > 0) {
3233 /* square then multiply if the bit is set */
3234 for (x = 0; x < bitcpy; x++) {
3235 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3236 goto LBL_RES;
3237 }
3238 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3239 goto LBL_RES;
3240 }
3241
3242 /* get next bit of the window */
3243 bitbuf <<= 1;
3244 if ((bitbuf & (1 << winsize)) != 0) {
3245 /* then multiply */
3246 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3247 goto LBL_RES;
3248 }
3249 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3250 goto LBL_RES;
3251 }
3252 }
3253 }
3254 }
3255
3256 if (redmode == 0) {
3257 /* fixup result if Montgomery reduction is used
3258 * recall that any value in a Montgomery system is
3259 * actually multiplied by R mod n. So we have
3260 * to reduce one more time to cancel out the factor
3261 * of R.
3262 */
3263 if ((err = redux(&res, P, mp)) != MP_OKAY) {
3264 goto LBL_RES;
3265 }
3266 }
3267
3268 /* swap res with Y */
3269 mp_exch (&res, Y);
3270 err = MP_OKAY;
3271 LBL_RES:mp_clear (&res);
3272 LBL_M:
3273 mp_clear(&M[1]);
3274 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3275 mp_clear (&M[x]);
3276 }
3277 return err;
3278 }
3279 #endif
3280
3281
3282 #ifdef BN_FAST_S_MP_SQR_C
3283 /* the jist of squaring...
3284 * you do like mult except the offset of the tmpx [one that
3285 * starts closer to zero] can't equal the offset of tmpy.
3286 * So basically you set up iy like before then you min it with
3287 * (ty-tx) so that it never happens. You double all those
3288 * you add in the inner loop
3289
3290 After that loop you do the squares and add them in.
3291 */
3292
3293 static int
fast_s_mp_sqr(mp_int * a,mp_int * b)3294 fast_s_mp_sqr (mp_int * a, mp_int * b)
3295 {
3296 int olduse, res, pa, ix, iz;
3297 mp_digit W[MP_WARRAY], *tmpx;
3298 mp_word W1;
3299
3300 /* grow the destination as required */
3301 pa = a->used + a->used;
3302 if (b->alloc < pa) {
3303 if ((res = mp_grow (b, pa)) != MP_OKAY) {
3304 return res;
3305 }
3306 }
3307
3308 /* number of output digits to produce */
3309 W1 = 0;
3310 for (ix = 0; ix < pa; ix++) {
3311 int tx, ty, iy;
3312 mp_word _W;
3313 mp_digit *tmpy;
3314
3315 /* clear counter */
3316 _W = 0;
3317
3318 /* get offsets into the two bignums */
3319 ty = MIN(a->used-1, ix);
3320 tx = ix - ty;
3321
3322 /* setup temp aliases */
3323 tmpx = a->dp + tx;
3324 tmpy = a->dp + ty;
3325
3326 /* this is the number of times the loop will iterrate, essentially
3327 while (tx++ < a->used && ty-- >= 0) { ... }
3328 */
3329 iy = MIN(a->used-tx, ty+1);
3330
3331 /* now for squaring tx can never equal ty
3332 * we halve the distance since they approach at a rate of 2x
3333 * and we have to round because odd cases need to be executed
3334 */
3335 iy = MIN(iy, (ty-tx+1)>>1);
3336
3337 /* execute loop */
3338 for (iz = 0; iz < iy; iz++) {
3339 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3340 }
3341
3342 /* double the inner product and add carry */
3343 _W = _W + _W + W1;
3344
3345 /* even columns have the square term in them */
3346 if ((ix&1) == 0) {
3347 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3348 }
3349
3350 /* store it */
3351 W[ix] = (mp_digit)(_W & MP_MASK);
3352
3353 /* make next carry */
3354 W1 = _W >> ((mp_word)DIGIT_BIT);
3355 }
3356
3357 /* setup dest */
3358 olduse = b->used;
3359 b->used = a->used+a->used;
3360
3361 {
3362 mp_digit *tmpb;
3363 tmpb = b->dp;
3364 for (ix = 0; ix < pa; ix++) {
3365 *tmpb++ = W[ix] & MP_MASK;
3366 }
3367
3368 /* clear unused digits [that existed in the old copy of c] */
3369 for (; ix < olduse; ix++) {
3370 *tmpb++ = 0;
3371 }
3372 }
3373 mp_clamp (b);
3374 return MP_OKAY;
3375 }
3376 #endif
3377
3378
3379 #ifdef BN_MP_MUL_D_C
3380 /* multiply by a digit */
3381 static int
mp_mul_d(mp_int * a,mp_digit b,mp_int * c)3382 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3383 {
3384 mp_digit u, *tmpa, *tmpc;
3385 mp_word r;
3386 int ix, res, olduse;
3387
3388 /* make sure c is big enough to hold a*b */
3389 if (c->alloc < a->used + 1) {
3390 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3391 return res;
3392 }
3393 }
3394
3395 /* get the original destinations used count */
3396 olduse = c->used;
3397
3398 /* set the sign */
3399 c->sign = a->sign;
3400
3401 /* alias for a->dp [source] */
3402 tmpa = a->dp;
3403
3404 /* alias for c->dp [dest] */
3405 tmpc = c->dp;
3406
3407 /* zero carry */
3408 u = 0;
3409
3410 /* compute columns */
3411 for (ix = 0; ix < a->used; ix++) {
3412 /* compute product and carry sum for this term */
3413 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3414
3415 /* mask off higher bits to get a single digit */
3416 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3417
3418 /* send carry into next iteration */
3419 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3420 }
3421
3422 /* store final carry [if any] and increment ix offset */
3423 *tmpc++ = u;
3424 ++ix;
3425
3426 /* now zero digits above the top */
3427 while (ix++ < olduse) {
3428 *tmpc++ = 0;
3429 }
3430
3431 /* set used count */
3432 c->used = a->used + 1;
3433 mp_clamp(c);
3434
3435 return MP_OKAY;
3436 }
3437 #endif
3438