1 /* SPI Master example
2
3 This example code is in the Public Domain (or CC0 licensed, at your option.)
4
5 Unless required by applicable law or agreed to in writing, this
6 software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
7 CONDITIONS OF ANY KIND, either express or implied.
8 */
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include "freertos/FreeRTOS.h"
13 #include "freertos/task.h"
14 #include "esp_system.h"
15 #include "driver/spi_master.h"
16 #include "driver/gpio.h"
17
18 #include "pretty_effect.h"
19
20 /*
21 This code displays some fancy graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
22 This example demonstrates the use of both spi_device_transmit as well as
23 spi_device_queue_trans/spi_device_get_trans_result and pre-transmit callbacks.
24
25 Some info about the ILI9341/ST7789V: It has an C/D line, which is connected to a GPIO here. It expects this
26 line to be low for a command and high for data. We use a pre-transmit callback here to control that
27 line: every transaction has as the user-definable argument the needed state of the D/C line and just
28 before the transaction is sent, the callback will set this line to the correct state.
29 */
30
31 #ifdef CONFIG_IDF_TARGET_ESP32
32 #define LCD_HOST HSPI_HOST
33
34 #define PIN_NUM_MISO 25
35 #define PIN_NUM_MOSI 23
36 #define PIN_NUM_CLK 19
37 #define PIN_NUM_CS 22
38
39 #define PIN_NUM_DC 21
40 #define PIN_NUM_RST 18
41 #define PIN_NUM_BCKL 5
42 #elif defined CONFIG_IDF_TARGET_ESP32S2
43 #define LCD_HOST SPI2_HOST
44
45 #define PIN_NUM_MISO 37
46 #define PIN_NUM_MOSI 35
47 #define PIN_NUM_CLK 36
48 #define PIN_NUM_CS 34
49
50 #define PIN_NUM_DC 4
51 #define PIN_NUM_RST 5
52 #define PIN_NUM_BCKL 6
53 #elif defined CONFIG_IDF_TARGET_ESP32C3
54 #define LCD_HOST SPI2_HOST
55
56 #define PIN_NUM_MISO 2
57 #define PIN_NUM_MOSI 7
58 #define PIN_NUM_CLK 6
59 #define PIN_NUM_CS 10
60
61 #define PIN_NUM_DC 9
62 #define PIN_NUM_RST 4
63 #define PIN_NUM_BCKL 5
64 #endif
65
66 //To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
67 //but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
68 #define PARALLEL_LINES 16
69
70 /*
71 The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
72 */
73 typedef struct {
74 uint8_t cmd;
75 uint8_t data[16];
76 uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
77 } lcd_init_cmd_t;
78
79 typedef enum {
80 LCD_TYPE_ILI = 1,
81 LCD_TYPE_ST,
82 LCD_TYPE_MAX,
83 } type_lcd_t;
84
85 //Place data into DRAM. Constant data gets placed into DROM by default, which is not accessible by DMA.
86 DRAM_ATTR static const lcd_init_cmd_t st_init_cmds[]={
87 /* Memory Data Access Control, MX=MV=1, MY=ML=MH=0, RGB=0 */
88 {0x36, {(1<<5)|(1<<6)}, 1},
89 /* Interface Pixel Format, 16bits/pixel for RGB/MCU interface */
90 {0x3A, {0x55}, 1},
91 /* Porch Setting */
92 {0xB2, {0x0c, 0x0c, 0x00, 0x33, 0x33}, 5},
93 /* Gate Control, Vgh=13.65V, Vgl=-10.43V */
94 {0xB7, {0x45}, 1},
95 /* VCOM Setting, VCOM=1.175V */
96 {0xBB, {0x2B}, 1},
97 /* LCM Control, XOR: BGR, MX, MH */
98 {0xC0, {0x2C}, 1},
99 /* VDV and VRH Command Enable, enable=1 */
100 {0xC2, {0x01, 0xff}, 2},
101 /* VRH Set, Vap=4.4+... */
102 {0xC3, {0x11}, 1},
103 /* VDV Set, VDV=0 */
104 {0xC4, {0x20}, 1},
105 /* Frame Rate Control, 60Hz, inversion=0 */
106 {0xC6, {0x0f}, 1},
107 /* Power Control 1, AVDD=6.8V, AVCL=-4.8V, VDDS=2.3V */
108 {0xD0, {0xA4, 0xA1}, 1},
109 /* Positive Voltage Gamma Control */
110 {0xE0, {0xD0, 0x00, 0x05, 0x0E, 0x15, 0x0D, 0x37, 0x43, 0x47, 0x09, 0x15, 0x12, 0x16, 0x19}, 14},
111 /* Negative Voltage Gamma Control */
112 {0xE1, {0xD0, 0x00, 0x05, 0x0D, 0x0C, 0x06, 0x2D, 0x44, 0x40, 0x0E, 0x1C, 0x18, 0x16, 0x19}, 14},
113 /* Sleep Out */
114 {0x11, {0}, 0x80},
115 /* Display On */
116 {0x29, {0}, 0x80},
117 {0, {0}, 0xff}
118 };
119
120 DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
121 /* Power contorl B, power control = 0, DC_ENA = 1 */
122 {0xCF, {0x00, 0x83, 0X30}, 3},
123 /* Power on sequence control,
124 * cp1 keeps 1 frame, 1st frame enable
125 * vcl = 0, ddvdh=3, vgh=1, vgl=2
126 * DDVDH_ENH=1
127 */
128 {0xED, {0x64, 0x03, 0X12, 0X81}, 4},
129 /* Driver timing control A,
130 * non-overlap=default +1
131 * EQ=default - 1, CR=default
132 * pre-charge=default - 1
133 */
134 {0xE8, {0x85, 0x01, 0x79}, 3},
135 /* Power control A, Vcore=1.6V, DDVDH=5.6V */
136 {0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
137 /* Pump ratio control, DDVDH=2xVCl */
138 {0xF7, {0x20}, 1},
139 /* Driver timing control, all=0 unit */
140 {0xEA, {0x00, 0x00}, 2},
141 /* Power control 1, GVDD=4.75V */
142 {0xC0, {0x26}, 1},
143 /* Power control 2, DDVDH=VCl*2, VGH=VCl*7, VGL=-VCl*3 */
144 {0xC1, {0x11}, 1},
145 /* VCOM control 1, VCOMH=4.025V, VCOML=-0.950V */
146 {0xC5, {0x35, 0x3E}, 2},
147 /* VCOM control 2, VCOMH=VMH-2, VCOML=VML-2 */
148 {0xC7, {0xBE}, 1},
149 /* Memory access contorl, MX=MY=0, MV=1, ML=0, BGR=1, MH=0 */
150 {0x36, {0x28}, 1},
151 /* Pixel format, 16bits/pixel for RGB/MCU interface */
152 {0x3A, {0x55}, 1},
153 /* Frame rate control, f=fosc, 70Hz fps */
154 {0xB1, {0x00, 0x1B}, 2},
155 /* Enable 3G, disabled */
156 {0xF2, {0x08}, 1},
157 /* Gamma set, curve 1 */
158 {0x26, {0x01}, 1},
159 /* Positive gamma correction */
160 {0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
161 /* Negative gamma correction */
162 {0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
163 /* Column address set, SC=0, EC=0xEF */
164 {0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
165 /* Page address set, SP=0, EP=0x013F */
166 {0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
167 /* Memory write */
168 {0x2C, {0}, 0},
169 /* Entry mode set, Low vol detect disabled, normal display */
170 {0xB7, {0x07}, 1},
171 /* Display function control */
172 {0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
173 /* Sleep out */
174 {0x11, {0}, 0x80},
175 /* Display on */
176 {0x29, {0}, 0x80},
177 {0, {0}, 0xff},
178 };
179
180 /* Send a command to the LCD. Uses spi_device_polling_transmit, which waits
181 * until the transfer is complete.
182 *
183 * Since command transactions are usually small, they are handled in polling
184 * mode for higher speed. The overhead of interrupt transactions is more than
185 * just waiting for the transaction to complete.
186 */
lcd_cmd(spi_device_handle_t spi,const uint8_t cmd)187 void lcd_cmd(spi_device_handle_t spi, const uint8_t cmd)
188 {
189 esp_err_t ret;
190 spi_transaction_t t;
191 memset(&t, 0, sizeof(t)); //Zero out the transaction
192 t.length=8; //Command is 8 bits
193 t.tx_buffer=&cmd; //The data is the cmd itself
194 t.user=(void*)0; //D/C needs to be set to 0
195 ret=spi_device_polling_transmit(spi, &t); //Transmit!
196 assert(ret==ESP_OK); //Should have had no issues.
197 }
198
199 /* Send data to the LCD. Uses spi_device_polling_transmit, which waits until the
200 * transfer is complete.
201 *
202 * Since data transactions are usually small, they are handled in polling
203 * mode for higher speed. The overhead of interrupt transactions is more than
204 * just waiting for the transaction to complete.
205 */
lcd_data(spi_device_handle_t spi,const uint8_t * data,int len)206 void lcd_data(spi_device_handle_t spi, const uint8_t *data, int len)
207 {
208 esp_err_t ret;
209 spi_transaction_t t;
210 if (len==0) return; //no need to send anything
211 memset(&t, 0, sizeof(t)); //Zero out the transaction
212 t.length=len*8; //Len is in bytes, transaction length is in bits.
213 t.tx_buffer=data; //Data
214 t.user=(void*)1; //D/C needs to be set to 1
215 ret=spi_device_polling_transmit(spi, &t); //Transmit!
216 assert(ret==ESP_OK); //Should have had no issues.
217 }
218
219 //This function is called (in irq context!) just before a transmission starts. It will
220 //set the D/C line to the value indicated in the user field.
lcd_spi_pre_transfer_callback(spi_transaction_t * t)221 void lcd_spi_pre_transfer_callback(spi_transaction_t *t)
222 {
223 int dc=(int)t->user;
224 gpio_set_level(PIN_NUM_DC, dc);
225 }
226
lcd_get_id(spi_device_handle_t spi)227 uint32_t lcd_get_id(spi_device_handle_t spi)
228 {
229 //get_id cmd
230 lcd_cmd(spi, 0x04);
231
232 spi_transaction_t t;
233 memset(&t, 0, sizeof(t));
234 t.length=8*3;
235 t.flags = SPI_TRANS_USE_RXDATA;
236 t.user = (void*)1;
237
238 esp_err_t ret = spi_device_polling_transmit(spi, &t);
239 assert( ret == ESP_OK );
240
241 return *(uint32_t*)t.rx_data;
242 }
243
244 //Initialize the display
lcd_init(spi_device_handle_t spi)245 void lcd_init(spi_device_handle_t spi)
246 {
247 int cmd=0;
248 const lcd_init_cmd_t* lcd_init_cmds;
249
250 //Initialize non-SPI GPIOs
251 gpio_set_direction(PIN_NUM_DC, GPIO_MODE_OUTPUT);
252 gpio_set_direction(PIN_NUM_RST, GPIO_MODE_OUTPUT);
253 gpio_set_direction(PIN_NUM_BCKL, GPIO_MODE_OUTPUT);
254
255 //Reset the display
256 gpio_set_level(PIN_NUM_RST, 0);
257 vTaskDelay(100 / portTICK_RATE_MS);
258 gpio_set_level(PIN_NUM_RST, 1);
259 vTaskDelay(100 / portTICK_RATE_MS);
260
261 //detect LCD type
262 uint32_t lcd_id = lcd_get_id(spi);
263 int lcd_detected_type = 0;
264 int lcd_type;
265
266 printf("LCD ID: %08X\n", lcd_id);
267 if ( lcd_id == 0 ) {
268 //zero, ili
269 lcd_detected_type = LCD_TYPE_ILI;
270 printf("ILI9341 detected.\n");
271 } else {
272 // none-zero, ST
273 lcd_detected_type = LCD_TYPE_ST;
274 printf("ST7789V detected.\n");
275 }
276
277 #ifdef CONFIG_LCD_TYPE_AUTO
278 lcd_type = lcd_detected_type;
279 #elif defined( CONFIG_LCD_TYPE_ST7789V )
280 printf("kconfig: force CONFIG_LCD_TYPE_ST7789V.\n");
281 lcd_type = LCD_TYPE_ST;
282 #elif defined( CONFIG_LCD_TYPE_ILI9341 )
283 printf("kconfig: force CONFIG_LCD_TYPE_ILI9341.\n");
284 lcd_type = LCD_TYPE_ILI;
285 #endif
286 if ( lcd_type == LCD_TYPE_ST ) {
287 printf("LCD ST7789V initialization.\n");
288 lcd_init_cmds = st_init_cmds;
289 } else {
290 printf("LCD ILI9341 initialization.\n");
291 lcd_init_cmds = ili_init_cmds;
292 }
293
294 //Send all the commands
295 while (lcd_init_cmds[cmd].databytes!=0xff) {
296 lcd_cmd(spi, lcd_init_cmds[cmd].cmd);
297 lcd_data(spi, lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
298 if (lcd_init_cmds[cmd].databytes&0x80) {
299 vTaskDelay(100 / portTICK_RATE_MS);
300 }
301 cmd++;
302 }
303
304 ///Enable backlight
305 gpio_set_level(PIN_NUM_BCKL, 0);
306 }
307
308
309 /* To send a set of lines we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
310 * before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
311 * because the D/C line needs to be toggled in the middle.)
312 * This routine queues these commands up as interrupt transactions so they get
313 * sent faster (compared to calling spi_device_transmit several times), and at
314 * the mean while the lines for next transactions can get calculated.
315 */
send_lines(spi_device_handle_t spi,int ypos,uint16_t * linedata)316 static void send_lines(spi_device_handle_t spi, int ypos, uint16_t *linedata)
317 {
318 esp_err_t ret;
319 int x;
320 //Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
321 //function is finished because the SPI driver needs access to it even while we're already calculating the next line.
322 static spi_transaction_t trans[6];
323
324 //In theory, it's better to initialize trans and data only once and hang on to the initialized
325 //variables. We allocate them on the stack, so we need to re-init them each call.
326 for (x=0; x<6; x++) {
327 memset(&trans[x], 0, sizeof(spi_transaction_t));
328 if ((x&1)==0) {
329 //Even transfers are commands
330 trans[x].length=8;
331 trans[x].user=(void*)0;
332 } else {
333 //Odd transfers are data
334 trans[x].length=8*4;
335 trans[x].user=(void*)1;
336 }
337 trans[x].flags=SPI_TRANS_USE_TXDATA;
338 }
339 trans[0].tx_data[0]=0x2A; //Column Address Set
340 trans[1].tx_data[0]=0; //Start Col High
341 trans[1].tx_data[1]=0; //Start Col Low
342 trans[1].tx_data[2]=(320)>>8; //End Col High
343 trans[1].tx_data[3]=(320)&0xff; //End Col Low
344 trans[2].tx_data[0]=0x2B; //Page address set
345 trans[3].tx_data[0]=ypos>>8; //Start page high
346 trans[3].tx_data[1]=ypos&0xff; //start page low
347 trans[3].tx_data[2]=(ypos+PARALLEL_LINES)>>8; //end page high
348 trans[3].tx_data[3]=(ypos+PARALLEL_LINES)&0xff; //end page low
349 trans[4].tx_data[0]=0x2C; //memory write
350 trans[5].tx_buffer=linedata; //finally send the line data
351 trans[5].length=320*2*8*PARALLEL_LINES; //Data length, in bits
352 trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
353
354 //Queue all transactions.
355 for (x=0; x<6; x++) {
356 ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
357 assert(ret==ESP_OK);
358 }
359
360 //When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
361 //mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
362 //finish because we may as well spend the time calculating the next line. When that is done, we can call
363 //send_line_finish, which will wait for the transfers to be done and check their status.
364 }
365
366
send_line_finish(spi_device_handle_t spi)367 static void send_line_finish(spi_device_handle_t spi)
368 {
369 spi_transaction_t *rtrans;
370 esp_err_t ret;
371 //Wait for all 6 transactions to be done and get back the results.
372 for (int x=0; x<6; x++) {
373 ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
374 assert(ret==ESP_OK);
375 //We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
376 }
377 }
378
379
380 //Simple routine to generate some patterns and send them to the LCD. Don't expect anything too
381 //impressive. Because the SPI driver handles transactions in the background, we can calculate the next line
382 //while the previous one is being sent.
display_pretty_colors(spi_device_handle_t spi)383 static void display_pretty_colors(spi_device_handle_t spi)
384 {
385 uint16_t *lines[2];
386 //Allocate memory for the pixel buffers
387 for (int i=0; i<2; i++) {
388 lines[i]=heap_caps_malloc(320*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
389 assert(lines[i]!=NULL);
390 }
391 int frame=0;
392 //Indexes of the line currently being sent to the LCD and the line we're calculating.
393 int sending_line=-1;
394 int calc_line=0;
395
396 while(1) {
397 frame++;
398 for (int y=0; y<240; y+=PARALLEL_LINES) {
399 //Calculate a line.
400 pretty_effect_calc_lines(lines[calc_line], y, frame, PARALLEL_LINES);
401 //Finish up the sending process of the previous line, if any
402 if (sending_line!=-1) send_line_finish(spi);
403 //Swap sending_line and calc_line
404 sending_line=calc_line;
405 calc_line=(calc_line==1)?0:1;
406 //Send the line we currently calculated.
407 send_lines(spi, y, lines[sending_line]);
408 //The line set is queued up for sending now; the actual sending happens in the
409 //background. We can go on to calculate the next line set as long as we do not
410 //touch line[sending_line]; the SPI sending process is still reading from that.
411 }
412 }
413 }
414
app_main(void)415 void app_main(void)
416 {
417 esp_err_t ret;
418 spi_device_handle_t spi;
419 spi_bus_config_t buscfg={
420 .miso_io_num=PIN_NUM_MISO,
421 .mosi_io_num=PIN_NUM_MOSI,
422 .sclk_io_num=PIN_NUM_CLK,
423 .quadwp_io_num=-1,
424 .quadhd_io_num=-1,
425 .max_transfer_sz=PARALLEL_LINES*320*2+8
426 };
427 spi_device_interface_config_t devcfg={
428 #ifdef CONFIG_LCD_OVERCLOCK
429 .clock_speed_hz=26*1000*1000, //Clock out at 26 MHz
430 #else
431 .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
432 #endif
433 .mode=0, //SPI mode 0
434 .spics_io_num=PIN_NUM_CS, //CS pin
435 .queue_size=7, //We want to be able to queue 7 transactions at a time
436 .pre_cb=lcd_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
437 };
438 //Initialize the SPI bus
439 ret=spi_bus_initialize(LCD_HOST, &buscfg, SPI_DMA_CH_AUTO);
440 ESP_ERROR_CHECK(ret);
441 //Attach the LCD to the SPI bus
442 ret=spi_bus_add_device(LCD_HOST, &devcfg, &spi);
443 ESP_ERROR_CHECK(ret);
444 //Initialize the LCD
445 lcd_init(spi);
446 //Initialize the effect displayed
447 ret=pretty_effect_init();
448 ESP_ERROR_CHECK(ret);
449
450 //Go do nice stuff.
451 display_pretty_colors(spi);
452 }
453