1 /*
2 * SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <esp_types.h>
8 #include <stdlib.h>
9 #include <ctype.h>
10 #include "freertos/FreeRTOS.h"
11 #include "freertos/semphr.h"
12 #include "freertos/timers.h"
13 #include "esp_log.h"
14 #include "esp_pm.h"
15 #include "soc/rtc.h"
16 #include "driver/rtc_io.h"
17 #include "sys/lock.h"
18 #include "driver/gpio.h"
19 #include "driver/adc.h"
20 #include "adc1_private.h"
21 #include "hal/adc_types.h"
22 #include "hal/adc_hal.h"
23 #include "hal/adc_hal_conf.h"
24
25 #if SOC_DAC_SUPPORTED
26 #include "driver/dac.h"
27 #include "hal/dac_hal.h"
28 #endif
29
30 #if CONFIG_IDF_TARGET_ESP32S3
31 #include "esp_efuse_rtc_calib.h"
32 #endif
33
34 #define ADC_CHECK_RET(fun_ret) ({ \
35 if (fun_ret != ESP_OK) { \
36 ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
37 return ESP_FAIL; \
38 } \
39 })
40
41 static const char *ADC_TAG = "ADC";
42
43 #define ADC_CHECK(a, str, ret_val) ({ \
44 if (!(a)) { \
45 ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
46 return (ret_val); \
47 } \
48 })
49
50 #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
51
52 #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
53
54 //////////////////////// Locks ///////////////////////////////////////////
55 extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
56
57 #define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
58 #define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
59 #define DIGI_ENTER_CRITICAL()
60 #define DIGI_EXIT_CRITICAL()
61
62 #define ADC_POWER_ENTER() RTC_ENTER_CRITICAL()
63 #define ADC_POWER_EXIT() RTC_EXIT_CRITICAL()
64
65 #define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
66 #define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL()
67
68 #define SARADC1_ENTER() RTC_ENTER_CRITICAL()
69 #define SARADC1_EXIT() RTC_EXIT_CRITICAL()
70
71 #define SARADC2_ENTER() RTC_ENTER_CRITICAL()
72 #define SARADC2_EXIT() RTC_EXIT_CRITICAL()
73
74 //n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
75 #define VREF_ENTER(n) RTC_ENTER_CRITICAL()
76 #define VREF_EXIT(n) RTC_EXIT_CRITICAL()
77
78 #define FSM_ENTER() RTC_ENTER_CRITICAL()
79 #define FSM_EXIT() RTC_EXIT_CRITICAL()
80
81 //TODO: IDF-3610
82 #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
83 //prevent ADC1 being used by I2S dma and other tasks at the same time.
84 static _lock_t adc1_dma_lock;
85 #define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
86 #define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
87 #endif
88
89
90 /*
91 In ADC2, there're two locks used for different cases:
92 1. lock shared with app and Wi-Fi:
93 ESP32:
94 When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
95 ESP32S2:
96 The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
97
98 2. lock shared between tasks:
99 when several tasks sharing the ADC2, we want to guarantee
100 all the requests will be handled.
101 Since conversions are short (about 31us), app returns the lock very soon,
102 we use a spinlock to stand there waiting to do conversions one by one.
103
104 adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
105 */
106
107 #ifdef CONFIG_IDF_TARGET_ESP32
108 //prevent ADC2 being used by wifi and other tasks at the same time.
109 static _lock_t adc2_wifi_lock;
110 /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock. */
111 #define SARADC2_ACQUIRE() _lock_acquire( &adc2_wifi_lock )
112 #define SARADC2_RELEASE() _lock_release( &adc2_wifi_lock )
113 #define SARADC2_TRY_ACQUIRE() _lock_try_acquire( &adc2_wifi_lock )
114 #define SARADC2_LOCK_CHECK() ((uint32_t *)adc2_wifi_lock != NULL)
115
116 #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
117 #define SARADC2_ACQUIRE()
118 #define SARADC2_RELEASE()
119 #define SARADC2_TRY_ACQUIRE() (0) //WIFI controller and rtc controller have independent parameter configuration.
120 #define SARADC2_LOCK_CHECK() (true)
121
122 #endif // CONFIG_IDF_TARGET_*
123
124 #if CONFIG_IDF_TARGET_ESP32S2
125 #ifdef CONFIG_PM_ENABLE
126 static esp_pm_lock_handle_t s_adc2_arbiter_lock;
127 #endif //CONFIG_PM_ENABLE
128 #endif // !CONFIG_IDF_TARGET_ESP32
129
130
131 /*---------------------------------------------------------------
132 ADC Common
133 ---------------------------------------------------------------*/
134 // ADC Power
135
136 // This gets incremented when adc_power_acquire() is called, and decremented when
137 // adc_power_release() is called. ADC is powered down when the value reaches zero.
138 // Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL).
139 static int s_adc_power_on_cnt;
140
adc_power_on_internal(void)141 static void adc_power_on_internal(void)
142 {
143 /* Set the power always on to increase precision. */
144 adc_hal_set_power_manage(ADC_POWER_SW_ON);
145 }
146
adc_power_acquire(void)147 void adc_power_acquire(void)
148 {
149 ADC_POWER_ENTER();
150 s_adc_power_on_cnt++;
151 if (s_adc_power_on_cnt == 1) {
152 adc_power_on_internal();
153 }
154 ADC_POWER_EXIT();
155 }
156
adc_power_on(void)157 void adc_power_on(void)
158 {
159 ADC_POWER_ENTER();
160 adc_power_on_internal();
161 ADC_POWER_EXIT();
162 }
163
adc_power_off_internal(void)164 static void adc_power_off_internal(void)
165 {
166 #if CONFIG_IDF_TARGET_ESP32
167 adc_hal_set_power_manage(ADC_POWER_SW_OFF);
168 #else
169 adc_hal_set_power_manage(ADC_POWER_BY_FSM);
170 #endif
171 }
172
adc_power_release(void)173 void adc_power_release(void)
174 {
175 ADC_POWER_ENTER();
176 s_adc_power_on_cnt--;
177 /* Sanity check */
178 if (s_adc_power_on_cnt < 0) {
179 ADC_POWER_EXIT();
180 ESP_LOGE(ADC_TAG, "%s called, but s_adc_power_on_cnt == 0", __func__);
181 abort();
182 } else if (s_adc_power_on_cnt == 0) {
183 adc_power_off_internal();
184 }
185 ADC_POWER_EXIT();
186 }
187
adc_power_off(void)188 void adc_power_off(void)
189 {
190 ADC_POWER_ENTER();
191 adc_power_off_internal();
192 ADC_POWER_EXIT();
193 }
194
adc1_pad_get_io_num(adc1_channel_t channel,gpio_num_t * gpio_num)195 esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
196 {
197 ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
198
199 int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
200 if (io < 0) {
201 return ESP_ERR_INVALID_ARG;
202 } else {
203 *gpio_num = (gpio_num_t)io;
204 }
205
206 return ESP_OK;
207 }
208
adc2_pad_get_io_num(adc2_channel_t channel,gpio_num_t * gpio_num)209 esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
210 {
211 ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
212
213 int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
214 if (io < 0) {
215 return ESP_ERR_INVALID_ARG;
216 } else {
217 *gpio_num = (gpio_num_t)io;
218 }
219
220 return ESP_OK;
221 }
222
223 //------------------------------------------------------------RTC Single Read----------------------------------------------//
224 #if SOC_ADC_RTC_CTRL_SUPPORTED
225
226 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
get_calibration_offset(adc_ll_num_t adc_n,adc_channel_t chan)227 static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
228 {
229 adc_atten_t atten = adc_ll_get_atten(adc_n, chan);
230 extern uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
231
232 return adc_get_calibration_offset(adc_n, chan, atten);
233 }
234 #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
235
adc_set_clk_div(uint8_t clk_div)236 esp_err_t adc_set_clk_div(uint8_t clk_div)
237 {
238 DIGI_CONTROLLER_ENTER();
239 adc_ll_digi_set_clk_div(clk_div);
240 DIGI_CONTROLLER_EXIT();
241 return ESP_OK;
242 }
243
adc_rtc_chan_init(adc_unit_t adc_unit)244 static void adc_rtc_chan_init(adc_unit_t adc_unit)
245 {
246 if (adc_unit & ADC_UNIT_1) {
247 /* Workaround: Disable the synchronization operation function of ADC1 and DAC.
248 If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
249 #if SOC_DAC_SUPPORTED
250 dac_hal_rtc_sync_by_adc(false);
251 #endif
252 adc_hal_rtc_output_invert(ADC_NUM_1, SOC_ADC1_DATA_INVERT_DEFAULT);
253 adc_ll_set_sar_clk_div(ADC_NUM_1, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_1));
254 #ifdef CONFIG_IDF_TARGET_ESP32
255 adc_ll_hall_disable(); //Disable other peripherals.
256 adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
257 #endif
258 }
259 if (adc_unit & ADC_UNIT_2) {
260 adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
261 adc_hal_rtc_output_invert(ADC_NUM_2, SOC_ADC2_DATA_INVERT_DEFAULT);
262 adc_ll_set_sar_clk_div(ADC_NUM_2, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_2));
263 }
264 }
265
266 /**
267 * This function is NOT an API.
268 * Now some to-be-deprecated APIs are using this function, so don't make it static for now.
269 * Will make this static on v5.0
270 */
adc_common_gpio_init(adc_unit_t adc_unit,adc_channel_t channel)271 esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
272 {
273 gpio_num_t gpio_num = 0;
274 //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
275 if (adc_unit & ADC_UNIT_1) {
276 ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
277 gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
278 ADC_CHECK_RET(rtc_gpio_init(gpio_num));
279 ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
280 ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
281 ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
282 }
283 if (adc_unit & ADC_UNIT_2) {
284 ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
285 gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
286 ADC_CHECK_RET(rtc_gpio_init(gpio_num));
287 ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
288 ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
289 ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
290 }
291
292 return ESP_OK;
293 }
294
adc_set_data_inv(adc_unit_t adc_unit,bool inv_en)295 esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
296 {
297 if (adc_unit & ADC_UNIT_1) {
298 SARADC1_ENTER();
299 adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
300 SARADC1_EXIT();
301 }
302 if (adc_unit & ADC_UNIT_2) {
303 SARADC2_ENTER();
304 adc_hal_rtc_output_invert(ADC_NUM_2, inv_en);
305 SARADC2_EXIT();
306 }
307
308 return ESP_OK;
309 }
310
adc_set_data_width(adc_unit_t adc_unit,adc_bits_width_t width_bit)311 esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)
312 {
313 #if CONFIG_IDF_TARGET_ESP32
314 ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
315 #else
316 ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
317 #endif
318
319 if (adc_unit & ADC_UNIT_1) {
320 SARADC1_ENTER();
321 adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
322 SARADC1_EXIT();
323 }
324 if (adc_unit & ADC_UNIT_2) {
325 SARADC2_ENTER();
326 adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
327 SARADC2_EXIT();
328 }
329
330 return ESP_OK;
331 }
332
333 /**
334 * @brief Reset RTC controller FSM.
335 *
336 * @return
337 * - ESP_OK Success
338 */
339 #if !CONFIG_IDF_TARGET_ESP32
adc_rtc_reset(void)340 esp_err_t adc_rtc_reset(void)
341 {
342 FSM_ENTER();
343 adc_ll_rtc_reset();
344 FSM_EXIT();
345 return ESP_OK;
346 }
347 #endif
348
349 /*-------------------------------------------------------------------------------------
350 * ADC1
351 *------------------------------------------------------------------------------------*/
adc1_config_channel_atten(adc1_channel_t channel,adc_atten_t atten)352 esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
353 {
354 ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
355 ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
356
357 adc_common_gpio_init(ADC_UNIT_1, channel);
358 SARADC1_ENTER();
359 adc_rtc_chan_init(ADC_UNIT_1);
360 adc_hal_set_atten(ADC_NUM_1, channel, atten);
361 SARADC1_EXIT();
362
363 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
364 adc_hal_calibration_init(ADC_NUM_1);
365 #endif
366
367 return ESP_OK;
368 }
369
adc1_config_width(adc_bits_width_t width_bit)370 esp_err_t adc1_config_width(adc_bits_width_t width_bit)
371 {
372 #if CONFIG_IDF_TARGET_ESP32
373 ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
374 #else
375 ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
376 #endif
377
378 SARADC1_ENTER();
379 adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
380 SARADC1_EXIT();
381
382 return ESP_OK;
383 }
384
adc1_dma_mode_acquire(void)385 esp_err_t adc1_dma_mode_acquire(void)
386 {
387 /* Use locks to avoid digtal and RTC controller conflicts.
388 for adc1, block until acquire the lock. */
389 SARADC1_ACQUIRE();
390 ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." );
391
392 adc_power_acquire();
393
394 SARADC1_ENTER();
395 /* switch SARADC into DIG channel */
396 adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
397 SARADC1_EXIT();
398
399 return ESP_OK;
400 }
401
adc1_rtc_mode_acquire(void)402 esp_err_t adc1_rtc_mode_acquire(void)
403 {
404 /* Use locks to avoid digtal and RTC controller conflicts.
405 for adc1, block until acquire the lock. */
406 SARADC1_ACQUIRE();
407 adc_power_acquire();
408
409 SARADC1_ENTER();
410 /* switch SARADC into RTC channel. */
411 adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC);
412 SARADC1_EXIT();
413
414 return ESP_OK;
415 }
416
adc1_lock_release(void)417 esp_err_t adc1_lock_release(void)
418 {
419 ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
420 /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
421
422 adc_power_release();
423 SARADC1_RELEASE();
424 return ESP_OK;
425 }
426
adc1_get_raw(adc1_channel_t channel)427 int adc1_get_raw(adc1_channel_t channel)
428 {
429 int adc_value;
430 ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
431 adc1_rtc_mode_acquire();
432
433 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
434 // Get calibration value before going into critical section
435 uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
436 adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
437 #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
438
439 SARADC1_ENTER();
440 #ifdef CONFIG_IDF_TARGET_ESP32
441 adc_ll_hall_disable(); //Disable other peripherals.
442 adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
443 #endif
444 adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC); //Set controller
445 adc_hal_convert(ADC_NUM_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
446 #if !CONFIG_IDF_TARGET_ESP32
447 adc_ll_rtc_reset(); //Reset FSM of rtc controller
448 #endif
449 SARADC1_EXIT();
450
451 adc1_lock_release();
452 return adc_value;
453 }
454
adc1_get_voltage(adc1_channel_t channel)455 int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead
456 {
457 return adc1_get_raw(channel);
458 }
459
460 #if SOC_ULP_SUPPORTED
adc1_ulp_enable(void)461 void adc1_ulp_enable(void)
462 {
463 adc_power_acquire();
464
465 SARADC1_ENTER();
466 adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_ULP);
467 /* since most users do not need LNA and HALL with uLP, we disable them here
468 open them in the uLP if needed. */
469 #ifdef CONFIG_IDF_TARGET_ESP32
470 /* disable other peripherals. */
471 adc_ll_hall_disable();
472 adc_ll_amp_disable();
473 #endif
474 SARADC1_EXIT();
475 }
476 #endif
477
478 /*---------------------------------------------------------------
479 ADC2
480 ---------------------------------------------------------------*/
481 /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
adc2_wifi_acquire(void)482 esp_err_t adc2_wifi_acquire(void)
483 {
484 /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
485 SARADC2_ACQUIRE();
486 ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
487 return ESP_OK;
488 }
489
adc2_wifi_release(void)490 esp_err_t adc2_wifi_release(void)
491 {
492 ADC_CHECK(SARADC2_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
493 SARADC2_RELEASE();
494 ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
495
496 return ESP_OK;
497 }
498
adc2_config_channel_atten(adc2_channel_t channel,adc_atten_t atten)499 esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
500 {
501 ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
502 ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
503
504 adc_common_gpio_init(ADC_UNIT_2, channel);
505
506 if ( SARADC2_TRY_ACQUIRE() == -1 ) {
507 //try the lock, return if failed (wifi using).
508 return ESP_ERR_TIMEOUT;
509 }
510
511 //avoid collision with other tasks
512 SARADC2_ENTER();
513 adc_rtc_chan_init(ADC_UNIT_2);
514 adc_hal_set_atten(ADC_NUM_2, channel, atten);
515 SARADC2_EXIT();
516
517 SARADC2_RELEASE();
518
519 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
520 adc_hal_calibration_init(ADC_NUM_2);
521 #endif
522
523 return ESP_OK;
524 }
525
adc2_init(void)526 static inline void adc2_init(void)
527 {
528 #if CONFIG_IDF_TARGET_ESP32S2
529 #ifdef CONFIG_PM_ENABLE
530 /* Lock APB clock. */
531 if (s_adc2_arbiter_lock == NULL) {
532 esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
533 }
534 #endif //CONFIG_PM_ENABLE
535 #endif //CONFIG_IDF_TARGET_ESP32S2
536 }
537
adc2_dac_disable(adc2_channel_t channel)538 static inline void adc2_dac_disable( adc2_channel_t channel)
539 {
540 #if SOC_DAC_SUPPORTED
541 #ifdef CONFIG_IDF_TARGET_ESP32
542 if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
543 dac_output_disable(DAC_CHANNEL_1);
544 } else if ( channel == ADC2_CHANNEL_9 ) {
545 dac_output_disable(DAC_CHANNEL_2);
546 }
547 #else
548 if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1
549 dac_output_disable(DAC_CHANNEL_1);
550 } else if ( channel == ADC2_CHANNEL_7 ) {
551 dac_output_disable(DAC_CHANNEL_2);
552 }
553 #endif
554 #endif // SOC_DAC_SUPPORTED
555 }
556
557 /**
558 * @note For ESP32S2:
559 * The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
560 * Or, the RTC controller will fail when get raw data.
561 * This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
562 */
adc2_get_raw(adc2_channel_t channel,adc_bits_width_t width_bit,int * raw_out)563 esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
564 {
565 esp_err_t ret = ESP_OK;
566 int adc_value = 0;
567
568 ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG);
569 ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
570 #if CONFIG_IDF_TARGET_ESP32
571 ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
572 #else
573 ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
574 #endif
575
576 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
577 // Get calibration value before going into critical section
578 uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
579 adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
580 #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
581
582 if ( SARADC2_TRY_ACQUIRE() == -1 ) {
583 //try the lock, return if failed (wifi using).
584 return ESP_ERR_TIMEOUT;
585 }
586 adc_power_acquire(); //in critical section with whole rtc module
587
588 //avoid collision with other tasks
589 adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
590 SARADC2_ENTER();
591
592 #if SOC_ADC_ARBITER_SUPPORTED
593 adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
594 adc_hal_arbiter_config(&config);
595 #endif
596
597 #ifdef CONFIG_ADC_DISABLE_DAC
598 adc2_dac_disable(channel); //disable other peripherals
599 #endif
600 adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
601
602 #if CONFIG_IDF_TARGET_ESP32
603 adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_RTC);// set controller
604 #else
605 adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB);// set controller
606 #endif
607
608 #if CONFIG_IDF_TARGET_ESP32S2
609 #ifdef CONFIG_PM_ENABLE
610 if (s_adc2_arbiter_lock) {
611 esp_pm_lock_acquire(s_adc2_arbiter_lock);
612 }
613 #endif //CONFIG_PM_ENABLE
614 #endif //CONFIG_IDF_TARGET_ESP32
615
616 ret = adc_hal_convert(ADC_NUM_2, channel, &adc_value);
617 if (ret != ESP_OK) {
618 adc_value = -1;
619 }
620
621 #if CONFIG_IDF_TARGET_ESP32S2
622 #ifdef CONFIG_PM_ENABLE
623 /* Release APB clock. */
624 if (s_adc2_arbiter_lock) {
625 esp_pm_lock_release(s_adc2_arbiter_lock);
626 }
627 #endif //CONFIG_PM_ENABLE
628 #endif //CONFIG_IDF_TARGET_ESP32
629 SARADC2_EXIT();
630
631 adc_power_release();
632 SARADC2_RELEASE();
633
634 *raw_out = adc_value;
635 return ret;
636 }
637
adc2_vref_to_gpio(gpio_num_t gpio)638 esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
639 {
640 return adc_vref_to_gpio(ADC_UNIT_2, gpio);
641 }
642
adc_vref_to_gpio(adc_unit_t adc_unit,gpio_num_t gpio)643 esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
644 {
645 #ifdef CONFIG_IDF_TARGET_ESP32
646 if (adc_unit & ADC_UNIT_1) {
647 return ESP_ERR_INVALID_ARG;
648 }
649 #endif
650 adc2_channel_t ch = ADC2_CHANNEL_MAX;
651 /* Check if the GPIO supported. */
652 for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
653 if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
654 ch = i;
655 break;
656 }
657 }
658 if (ch == ADC2_CHANNEL_MAX) {
659 return ESP_ERR_INVALID_ARG;
660 }
661
662 adc_power_acquire();
663 if (adc_unit & ADC_UNIT_1) {
664 VREF_ENTER(1);
665 adc_hal_vref_output(ADC_NUM_1, ch, true);
666 VREF_EXIT(1);
667 } else if (adc_unit & ADC_UNIT_2) {
668 VREF_ENTER(2);
669 adc_hal_vref_output(ADC_NUM_2, ch, true);
670 VREF_EXIT(2);
671 }
672
673 //Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
674 adc_common_gpio_init(ADC_UNIT_2, ch);
675 return ESP_OK;
676 }
677
678 #endif //SOC_ADC_RTC_CTRL_SUPPORTED
679