1 /**
2 * \brief Multi-precision integer library, ESP32 S3 hardware accelerated parts
3 *
4 * based on mbedTLS implementation
5 *
6 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
7 * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
8 * SPDX-License-Identifier: Apache-2.0
9 *
10 * Licensed under the Apache License, Version 2.0 (the "License"); you may
11 * not use this file except in compliance with the License.
12 * You may obtain a copy of the License at
13 *
14 * http://www.apache.org/licenses/LICENSE-2.0
15 *
16 * Unless required by applicable law or agreed to in writing, software
17 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
18 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19 * See the License for the specific language governing permissions and
20 * limitations under the License.
21 *
22 */
23 #include "soc/hwcrypto_periph.h"
24 #include "driver/periph_ctrl.h"
25 #include <mbedtls/bignum.h>
26 #include "bignum_impl.h"
27 #include "soc/dport_reg.h"
28 #include "soc/system_reg.h"
29 #include "soc/periph_defs.h"
30 #include <sys/param.h>
31
esp_mpi_hardware_words(size_t words)32 size_t esp_mpi_hardware_words(size_t words)
33 {
34 return words;
35 }
36
esp_mpi_enable_hardware_hw_op(void)37 void esp_mpi_enable_hardware_hw_op( void )
38 {
39 /* Enable RSA hardware */
40 periph_module_enable(PERIPH_RSA_MODULE);
41
42 REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
43
44 while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
45 }
46 // Note: from enabling RSA clock to here takes about 1.3us
47
48
49 }
50
esp_mpi_disable_hardware_hw_op(void)51 void esp_mpi_disable_hardware_hw_op( void )
52 {
53 REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
54
55 /* Disable RSA hardware */
56 periph_module_disable(PERIPH_RSA_MODULE);
57 }
58
59
60 /* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
61
62 If num_words is higher than the number of words in the bignum then
63 these additional words will be zeroed in the memory buffer.
64 */
mpi_to_mem_block(uint32_t mem_base,const mbedtls_mpi * mpi,size_t num_words)65 static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
66 {
67 uint32_t *pbase = (uint32_t *)mem_base;
68 uint32_t copy_words = MIN(num_words, mpi->n);
69
70 /* Copy MPI data to memory block registers */
71 for (uint32_t i = 0; i < copy_words; i++) {
72 pbase[i] = mpi->p[i];
73 }
74
75 /* Zero any remaining memory block data */
76 for (uint32_t i = copy_words; i < num_words; i++) {
77 pbase[i] = 0;
78 }
79 }
80
81 /* Read mbedTLS MPI bignum back from hardware memory block.
82
83 Reads num_words words from block.
84 */
mem_block_to_mpi(mbedtls_mpi * x,uint32_t mem_base,int num_words)85 static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
86 {
87
88 /* Copy data from memory block registers */
89 esp_dport_access_read_buffer(x->p, mem_base, num_words);
90 /* Zero any remaining limbs in the bignum, if the buffer is bigger
91 than num_words */
92 for (size_t i = num_words; i < x->n; i++) {
93 x->p[i] = 0;
94 }
95 }
96
97
98
99 /* Begin an RSA operation. op_reg specifies which 'START' register
100 to write to.
101 */
start_op(uint32_t op_reg)102 static inline void start_op(uint32_t op_reg)
103 {
104 /* Clear interrupt status */
105 DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
106
107 /* Note: above REG_WRITE includes a memw, so we know any writes
108 to the memory blocks are also complete. */
109
110 DPORT_REG_WRITE(op_reg, 1);
111 }
112
113 /* Wait for an RSA operation to complete.
114 */
wait_op_complete(void)115 static inline void wait_op_complete(void)
116 {
117 while (DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
118 { }
119
120 /* clear the interrupt */
121 DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
122 }
123
124
125 /* Read result from last MPI operation */
esp_mpi_read_result_hw_op(mbedtls_mpi * Z,size_t z_words)126 void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
127 {
128 wait_op_complete();
129 mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
130 }
131
132
133 /* Z = (X * Y) mod M
134
135 Not an mbedTLS function
136 */
esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi * X,const mbedtls_mpi * Y,const mbedtls_mpi * M,const mbedtls_mpi * Rinv,mbedtls_mpi_uint Mprime,size_t num_words)137 void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
138 {
139 DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
140
141 /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
142 mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
143 mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
144 mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
145 mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
146 DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
147
148 start_op(RSA_MOD_MULT_START_REG);
149 }
150
151 /* Z = (X ^ Y) mod M
152 */
esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi * X,const mbedtls_mpi * Y,const mbedtls_mpi * M,const mbedtls_mpi * Rinv,mbedtls_mpi_uint Mprime,size_t num_words)153 void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
154 {
155 size_t y_bits = mbedtls_mpi_bitlen(Y);
156
157 DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
158
159 /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
160 mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
161 mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
162 mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
163 mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
164 DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
165
166 /* Enable acceleration options */
167 DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
168 DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
169 DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
170
171 /* Execute first stage montgomery multiplication */
172 start_op(RSA_MODEXP_START_REG);
173
174 DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
175 }
176
177
178 /* Z = X * Y */
esp_mpi_mul_mpi_hw_op(const mbedtls_mpi * X,const mbedtls_mpi * Y,size_t num_words)179 void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
180 {
181 /* Copy X (right-extended) & Y (left-extended) to memory block */
182 mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
183 mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
184 /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
185 This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
186 */
187 DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
188 start_op(RSA_MULT_START_REG);
189 }
190
191
192
193 /**
194 * @brief Special-case of (X * Y), where we use hardware montgomery mod
195 multiplication to calculate result where either A or B are >2048 bits so
196 can't use the standard multiplication method.
197 *
198 */
esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi * X,const mbedtls_mpi * Y,size_t num_words)199 void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
200 {
201 /* M = 2^num_words - 1, so block is entirely FF */
202 for (size_t i = 0; i < num_words; i++) {
203 DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
204 }
205
206 /* Mprime = 1 */
207 DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
208 DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
209
210 /* Load X & Y */
211 mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
212 mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
213
214 /* Rinv = 1, write first word */
215 DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
216
217 /* Zero out rest of the Rinv words */
218 for (size_t i = 1; i < num_words; i++) {
219 DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
220 }
221
222 start_op(RSA_MOD_MULT_START_REG);
223 }
224