1 /*
2  * SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_transpose_conv_wrapper_s8.c
22  * Description:  Wrapper API to select appropriate transpose conv API based
23  *               on dimensions.
24  *
25  * $Date:        16 October 2024
26  * $Revision:    V.1.0.0
27  *
28  * Target :  Arm(R) M-Profile Architecture
29  *
30  * -------------------------------------------------------------------- */
31 
32 #include "arm_nnfunctions.h"
33 #include "arm_nnsupportfunctions.h"
34 
35 /**
36  *  @ingroup Public
37  */
38 
39 /**
40  * @addtogroup NNConv
41  * @{
42  */
43 
44 /*
45  *  s8 Transpose conv wrapper function
46  *
47  *  Refer header file for details.
48  *
49  */
arm_transpose_conv_wrapper_s8(const cmsis_nn_context * ctx,const cmsis_nn_context * reverse_conv_ctx,const cmsis_nn_transpose_conv_params * transpose_conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)50 arm_cmsis_nn_status arm_transpose_conv_wrapper_s8(const cmsis_nn_context *ctx,
51                                                   const cmsis_nn_context *reverse_conv_ctx,
52                                                   const cmsis_nn_transpose_conv_params *transpose_conv_params,
53                                                   const cmsis_nn_per_channel_quant_params *quant_params,
54                                                   const cmsis_nn_dims *input_dims,
55                                                   const int8_t *input_data,
56                                                   const cmsis_nn_dims *filter_dims,
57                                                   const int8_t *filter_data,
58                                                   const cmsis_nn_dims *bias_dims,
59                                                   const int32_t *bias_data,
60                                                   const cmsis_nn_dims *output_dims,
61                                                   int8_t *output_data)
62 {
63 
64     if (ctx->buf == NULL)
65     {
66         return ARM_CMSIS_NN_ARG_ERROR;
67     }
68 
69     const bool reverse_conv_possible =
70         ((transpose_conv_params->stride.w <= 2) && (transpose_conv_params->stride.h <= 2));
71     const bool reverse_conv_efficient = (input_dims->c > REVERSE_TCOL_EFFICIENT_THRESHOLD);
72 
73     if (reverse_conv_possible && reverse_conv_efficient)
74     {
75 
76         if (reverse_conv_ctx->buf == NULL)
77         {
78             return ARM_CMSIS_NN_ARG_ERROR;
79         }
80 
81         const int32_t stride_w = transpose_conv_params->stride.w;
82         const int32_t stride_h = transpose_conv_params->stride.h;
83         const int32_t filter_h = filter_dims->h;
84         const int32_t filter_w = filter_dims->w;
85         const int32_t output_c = output_dims->c;
86         const int32_t input_n = input_dims->n;
87         const int32_t input_h = input_dims->h;
88         const int32_t input_w = input_dims->w;
89         const int32_t input_c = input_dims->c;
90         const int32_t padding_w = transpose_conv_params->padding.w;
91         const int32_t padding_h = transpose_conv_params->padding.h;
92 
93         cmsis_nn_conv_params conv_params;
94         conv_params.padding.h = filter_h - 1 - padding_h;
95         conv_params.padding.w = filter_w - 1 - padding_w;
96         conv_params.input_offset = transpose_conv_params->input_offset;
97         conv_params.output_offset = transpose_conv_params->output_offset;
98         conv_params.stride.h = 1;
99         conv_params.stride.w = 1;
100         conv_params.dilation.h = 1;
101         conv_params.dilation.w = 1;
102         conv_params.activation = transpose_conv_params->activation;
103 
104         const cmsis_nn_dims transposed_input_dims = {input_n, input_h * stride_h, input_w * stride_w, input_c};
105         const cmsis_nn_dims upscale_dims = {0, stride_h, stride_w, 0};
106 
107         // Reverse filter in x and y-dimensions
108         int8_t *reversed_filter = reverse_conv_ctx->buf;
109         const int8_t *in_ptr = filter_data;
110         int8_t *out_ptr = reversed_filter;
111         const int32_t filter_size = filter_h * filter_w * input_c;
112 
113         out_ptr += filter_size;
114         for (int32_t i = 0; i < output_c; i++)
115         {
116             for (int32_t y = 0; y < filter_h; y++)
117             {
118                 for (int32_t x = 0; x < filter_w; x++)
119                 {
120                     out_ptr -= input_c;
121                     arm_memcpy_s8(out_ptr, in_ptr, input_c * sizeof(int8_t));
122                     in_ptr += input_c;
123                 }
124             }
125             out_ptr += 2 * filter_size;
126         }
127 
128         return arm_convolve_s8(ctx,
129                                &conv_params,
130                                quant_params,
131                                &transposed_input_dims,
132                                input_data,
133                                filter_dims,
134                                reversed_filter,
135                                bias_dims,
136                                bias_data,
137                                &upscale_dims,
138                                output_dims,
139                                output_data);
140     }
141     else
142     {
143 
144         return arm_transpose_conv_s8(ctx,
145                                      reverse_conv_ctx,
146                                      transpose_conv_params,
147                                      quant_params,
148                                      input_dims,
149                                      input_data,
150                                      filter_dims,
151                                      filter_data,
152                                      bias_dims,
153                                      bias_data,
154                                      output_dims,
155                                      output_data);
156     }
157 }
158 
159 /**
160  * @} end of NNconv group
161  */
162