1 /*
2  * SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_maximum_s8
22  * Description:  Minimum and Maximum
23  *
24  * $Date:        08 October 2024
25  * $Revision:    V.1.0.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup minimumMaximum
40  * @{
41  */
42 
43 static arm_cmsis_nn_status
arm_max_no_broadcast_s8(const int8_t * input_1,const int8_t * input_2,int8_t * output,int32_t flat_size)44 arm_max_no_broadcast_s8(const int8_t *input_1, const int8_t *input_2, int8_t *output, int32_t flat_size)
45 {
46 #if defined(ARM_MATH_MVEI)
47     while (flat_size > 0)
48     {
49         mve_pred16_t p = vctp8q(flat_size);
50 
51         int8x16_t vec1 = vldrbq_z_s8(input_1, p);
52         input_1 += 16;
53         int8x16_t vec2 = vldrbq_z_s8(input_2, p);
54         input_2 += 16;
55 
56         vstrbq_p_s8(output, vmaxq_s8(vec1, vec2), p);
57         output += 16;
58         flat_size -= 16;
59     }
60 #else
61     while (flat_size > 0)
62     {
63         int8_t in1 = *input_1++;
64         int8_t in2 = *input_2++;
65         *output++ = in1 >= in2 ? in1 : in2;
66         --flat_size;
67     }
68 #endif
69 
70     return ARM_CMSIS_NN_SUCCESS;
71 }
72 
73 static arm_cmsis_nn_status
arm_max_scalar_s8(const int8_t * input_1,const int8_t * input_2,int8_t * output,int32_t flat_size)74 arm_max_scalar_s8(const int8_t *input_1, const int8_t *input_2, int8_t *output, int32_t flat_size)
75 {
76 #if defined(ARM_MATH_MVEI)
77     int8x16_t scalar_vec = vdupq_n_s8(*input_1);
78 
79     while (flat_size > 0)
80     {
81         mve_pred16_t p = vctp8q(flat_size);
82         int8x16_t vec = vldrbq_z_s8(input_2, p);
83         input_2 += 16;
84 
85         vstrbq_p_s8(output, vmaxq_s8(scalar_vec, vec), p);
86         output += 16;
87         flat_size -= 16;
88     }
89 #else
90     int8_t in1 = *input_1;
91     while (flat_size > 0)
92     {
93         int8_t in2 = *input_2++;
94         *output++ = in1 >= in2 ? in1 : in2;
95         --flat_size;
96     }
97 #endif
98     return ARM_CMSIS_NN_SUCCESS;
99 }
100 
101 /*
102  * s8 maximum
103  *
104  * Refer header file for details.
105  *
106  */
arm_maximum_s8(const cmsis_nn_context * ctx,const int8_t * input_1_data,const cmsis_nn_dims * input_1_dims,const int8_t * input_2_data,const cmsis_nn_dims * input_2_dims,int8_t * output_data,const cmsis_nn_dims * output_dims)107 arm_cmsis_nn_status arm_maximum_s8(const cmsis_nn_context *ctx,
108                                    const int8_t *input_1_data,
109                                    const cmsis_nn_dims *input_1_dims,
110                                    const int8_t *input_2_data,
111                                    const cmsis_nn_dims *input_2_dims,
112                                    int8_t *output_data,
113                                    const cmsis_nn_dims *output_dims)
114 {
115     (void)ctx;
116     const int32_t output_batch = output_dims->n;
117     const int32_t output_height = output_dims->h;
118     const int32_t output_width = output_dims->w;
119 
120     const int32_t input_1_batch = input_1_dims->n;
121     const int32_t input_1_height = input_1_dims->h;
122     const int32_t input_1_width = input_1_dims->w;
123     const int32_t input_1_channels = input_1_dims->c;
124 
125     const int32_t input_2_batch = input_2_dims->n;
126     const int32_t input_2_height = input_2_dims->h;
127     const int32_t input_2_width = input_2_dims->w;
128     const int32_t input_2_channels = input_2_dims->c;
129 
130     int32_t flat_size_1 = input_1_batch * input_1_height * input_1_width * input_1_channels;
131     int32_t flat_size_2 = input_2_batch * input_2_height * input_2_width * input_2_channels;
132 
133     if (arm_check_broadcast_required(input_1_dims, input_2_dims))
134     {
135         if (flat_size_1 == 1)
136         {
137             // arm_max_scalar expects the tensor with the scalar value to be provided first
138             arm_max_scalar_s8(input_1_data, input_2_data, output_data, flat_size_2);
139         }
140         else if (flat_size_2 == 1)
141         {
142             // arm_max_scalar expects the tensor with the scalar value to be provided first
143             arm_max_scalar_s8(input_2_data, input_1_data, output_data, flat_size_1);
144         }
145         else
146         {
147             int32_t width_1_diff = input_1_width >= input_2_width ? 0 : input_1_channels;
148             int32_t width_2_diff = input_2_width >= input_1_width ? 0 : input_2_channels;
149 
150             int32_t height_1_diff =
151                 input_1_height >= input_2_height ? width_1_diff : -input_1_width * (input_1_channels - width_1_diff);
152             int32_t height_2_diff =
153                 input_2_height >= input_1_height ? width_2_diff : -input_2_width * (input_2_channels - width_2_diff);
154 
155             int32_t batch_1_diff =
156                 input_1_batch >= input_2_batch ? input_1_channels * input_1_width * input_1_height : 0;
157             int32_t batch_2_diff =
158                 input_2_batch >= input_1_batch ? input_2_channels * input_2_width * input_2_height : 0;
159 
160             for (int32_t i_out_batch = 0; i_out_batch < output_batch; i_out_batch++)
161             {
162                 const int8_t *input_1_ptr = input_1_data;
163                 const int8_t *input_2_ptr = input_2_data;
164                 flat_size_1 = input_1_height * input_1_width * input_1_channels;
165                 flat_size_2 = input_2_height * input_2_width * input_2_channels;
166                 if (input_1_height == input_2_height && input_1_width == input_2_width &&
167                     input_1_channels == input_2_channels)
168                 {
169                     arm_max_no_broadcast_s8(input_1_ptr, input_2_ptr, output_data, flat_size_1);
170                     output_data += flat_size_1;
171                 }
172                 else if (flat_size_1 == 1)
173                 {
174                     // arm_max_scalar expects the tensor with the scalar value to be provided first
175                     arm_max_scalar_s8(input_1_ptr, input_2_ptr, output_data, flat_size_2);
176                     output_data += flat_size_2;
177                 }
178                 else if (flat_size_2 == 1)
179                 {
180                     // arm_max_scalar expects the tensor with the scalar value to be provided first
181                     arm_max_scalar_s8(input_2_ptr, input_1_ptr, output_data, flat_size_1);
182                     output_data += flat_size_1;
183                 }
184                 else
185                 {
186                     flat_size_1 = input_1_width * input_1_channels;
187                     flat_size_2 = input_2_width * input_2_channels;
188                     for (int32_t i_out_height = 0; i_out_height < output_height; i_out_height++)
189                     {
190                         if (input_1_width == input_2_width && input_1_channels == input_2_channels)
191                         {
192                             arm_max_no_broadcast_s8(input_1_ptr, input_2_ptr, output_data, flat_size_1);
193                             output_data += flat_size_1;
194                             input_1_ptr += flat_size_1;
195                             input_2_ptr += flat_size_1;
196                         }
197                         else if (flat_size_1 == 1)
198                         {
199                             // arm_max_scalar expects the tensor with the scalar value to be provided first
200                             arm_max_scalar_s8(input_1_ptr, input_2_ptr, output_data, flat_size_2);
201                             output_data += flat_size_2;
202                             ++input_1_ptr;
203                             input_2_ptr += flat_size_2;
204                         }
205                         else if (flat_size_2 == 1)
206                         {
207                             // arm_max_scalar expects the tensor with the scalar value to be provided first
208                             arm_max_scalar_s8(input_2_ptr, input_1_ptr, output_data, flat_size_1);
209                             output_data += flat_size_1;
210                             ++input_2_ptr;
211                             input_1_ptr += flat_size_1;
212                         }
213                         else
214                         {
215                             for (int32_t i_out_width = 0; i_out_width < output_width; i_out_width++)
216                             {
217                                 if (input_1_channels == input_2_channels)
218                                 {
219                                     arm_max_no_broadcast_s8(input_1_ptr, input_2_ptr, output_data, input_1_channels);
220                                     output_data += input_1_channels;
221                                     input_1_ptr += input_1_channels;
222                                     input_2_ptr += input_1_channels;
223                                 }
224                                 else if (input_1_channels == 1)
225                                 {
226                                     // arm_max_scalar expects the tensor with the scalar value to be provided first
227                                     arm_max_scalar_s8(input_1_ptr, input_2_ptr, output_data, input_2_channels);
228                                     output_data += input_2_channels;
229                                     input_1_ptr++;
230                                     input_2_ptr += input_2_channels;
231                                 }
232                                 else if (input_2_channels == 1)
233                                 {
234                                     // arm_max_scalar expects the tensor with the scalar value to be provided first
235                                     arm_max_scalar_s8(input_2_ptr, input_1_ptr, output_data, input_1_channels);
236                                     output_data += input_1_channels;
237                                     input_1_ptr += input_1_channels;
238                                     input_2_ptr++;
239                                 }
240                                 input_1_ptr -= width_1_diff;
241                                 input_2_ptr -= width_2_diff;
242                             }
243                         }
244                         input_1_ptr += height_1_diff;
245                         input_2_ptr += height_2_diff;
246                     }
247                 }
248                 input_1_data += batch_1_diff;
249                 input_2_data += batch_2_diff;
250             }
251         }
252     }
253     else
254     {
255         arm_max_no_broadcast_s8(input_1_data, input_2_data, output_data, flat_size_1);
256     }
257 
258     return (ARM_CMSIS_NN_SUCCESS);
259 }
260 
261 /**
262  * @} end of Doxygen group
263  */
264