1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_mat_solve_upper_triangular_f64.c
4 * Description: Solve linear system UT X = A with UT upper triangular matrix
5 *
6 * $Date: 10 August 2022
7 * $Revision: V1.9.1
8 *
9 * Target Processor: Cortex-M and Cortex-A cores
10 * -------------------------------------------------------------------- */
11 /*
12 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29 #include "dsp/matrix_functions.h"
30
31
32 /**
33 @ingroup groupMatrix
34 */
35
36
37 /**
38 @addtogroup MatrixInv
39 @{
40 */
41
42 /**
43 * @brief Solve UT . X = A where UT is an upper triangular matrix
44 * @param[in] ut The upper triangular matrix
45 * @param[in] a The matrix a
46 * @param[out] dst The solution X of UT . X = A
47 * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
48 */
49
50 #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) && defined(__aarch64__)
arm_mat_solve_upper_triangular_f64(const arm_matrix_instance_f64 * ut,const arm_matrix_instance_f64 * a,arm_matrix_instance_f64 * dst)51 ARM_DSP_ATTRIBUTE arm_status arm_mat_solve_upper_triangular_f64(
52 const arm_matrix_instance_f64 * ut,
53 const arm_matrix_instance_f64 * a,
54 arm_matrix_instance_f64 * dst)
55 {
56 arm_status status; /* status of matrix inverse */
57
58
59 #ifdef ARM_MATH_MATRIX_CHECK
60
61 /* Check for matrix mismatch condition */
62 if ((ut->numRows != ut->numCols) ||
63 (ut->numRows != a->numRows) )
64 {
65 /* Set status as ARM_MATH_SIZE_MISMATCH */
66 status = ARM_MATH_SIZE_MISMATCH;
67 }
68 else
69
70 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
71
72 {
73
74 int i,j,k,n,cols;
75
76 n = dst->numRows;
77 cols = dst->numCols;
78
79 float64_t *pX = dst->pData;
80 float64_t *pUT = ut->pData;
81 float64_t *pA = a->pData;
82
83 float64_t *ut_row;
84 float64_t *a_col;
85
86 float64_t invUT;
87
88 float64x2_t vecA;
89 float64x2_t vecX;
90
91 for(i=n-1; i >= 0 ; i--)
92 {
93 for(j=0; j+1 < cols; j +=2)
94 {
95 vecA = vld1q_f64(&pA[i * cols + j]);
96
97 for(k=n-1; k > i; k--)
98 {
99 vecX = vld1q_f64(&pX[cols*k+j]);
100 vecA = vfmsq_f64(vecA,vdupq_n_f64(pUT[n*i + k]),vecX);
101 }
102
103 if (pUT[n*i + i]==0.0)
104 {
105 return(ARM_MATH_SINGULAR);
106 }
107
108 invUT = 1.0 / pUT[n*i + i];
109 vecA = vmulq_f64(vecA,vdupq_n_f64(invUT));
110
111
112 vst1q_f64(&pX[i*cols+j],vecA);
113 }
114
115 for(; j < cols; j ++)
116 {
117 a_col = &pA[j];
118
119 ut_row = &pUT[n*i];
120
121 float64_t tmp=a_col[i * cols];
122
123 for(k=n-1; k > i; k--)
124 {
125 tmp -= ut_row[k] * pX[cols*k+j];
126 }
127
128 if (ut_row[i]==0.0)
129 {
130 return(ARM_MATH_SINGULAR);
131 }
132 tmp = tmp / ut_row[i];
133 pX[i*cols+j] = tmp;
134 }
135
136 }
137 status = ARM_MATH_SUCCESS;
138
139 }
140
141
142 /* Return to application */
143 return (status);
144 }
145
146 #else
arm_mat_solve_upper_triangular_f64(const arm_matrix_instance_f64 * ut,const arm_matrix_instance_f64 * a,arm_matrix_instance_f64 * dst)147 ARM_DSP_ATTRIBUTE arm_status arm_mat_solve_upper_triangular_f64(
148 const arm_matrix_instance_f64 * ut,
149 const arm_matrix_instance_f64 * a,
150 arm_matrix_instance_f64 * dst)
151 {
152 arm_status status; /* status of matrix inverse */
153
154
155 #ifdef ARM_MATH_MATRIX_CHECK
156
157 /* Check for matrix mismatch condition */
158 if ((ut->numRows != ut->numCols) ||
159 (ut->numRows != a->numRows) )
160 {
161 /* Set status as ARM_MATH_SIZE_MISMATCH */
162 status = ARM_MATH_SIZE_MISMATCH;
163 }
164 else
165
166 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
167
168 {
169
170 int i,j,k,n,cols;
171
172 float64_t *pX = dst->pData;
173 float64_t *pUT = ut->pData;
174 float64_t *pA = a->pData;
175
176 float64_t *ut_row;
177 float64_t *a_col;
178
179 n = dst->numRows;
180 cols = dst->numCols;
181
182 for(j=0; j < cols; j ++)
183 {
184 a_col = &pA[j];
185
186 for(i=n-1; i >= 0 ; i--)
187 {
188 float64_t tmp=a_col[i * cols];
189
190 ut_row = &pUT[n*i];
191
192 for(k=n-1; k > i; k--)
193 {
194 tmp -= ut_row[k] * pX[cols*k+j];
195 }
196
197 if (ut_row[i]==0.0)
198 {
199 return(ARM_MATH_SINGULAR);
200 }
201 tmp = tmp / ut_row[i];
202 pX[i*cols+j] = tmp;
203 }
204
205 }
206 status = ARM_MATH_SUCCESS;
207
208 }
209
210
211 /* Return to application */
212 return (status);
213 }
214 #endif
215
216 /**
217 @} end of MatrixInv group
218 */
219