1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_mat_inverse_f16.c
4  * Description:  Floating-point matrix inverse
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/matrix_functions_f16.h"
30 #include "dsp/matrix_utils.h"
31 
32 #if defined(ARM_FLOAT16_SUPPORTED)
33 
34 
35 /**
36   @ingroup groupMatrix
37  */
38 
39 
40 /**
41   @addtogroup MatrixInv
42   @{
43  */
44 
45 /**
46   @brief         Floating-point matrix inverse.
47   @param[in]     pSrc      points to input matrix structure. The source matrix is modified by the function.
48   @param[out]    pDst      points to output matrix structure
49   @return        execution status
50                    - \ref ARM_MATH_SUCCESS       : Operation successful
51                    - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
52                    - \ref ARM_MATH_SINGULAR      : Input matrix is found to be singular (non-invertible)
53  */
arm_mat_inverse_f16(const arm_matrix_instance_f16 * pSrc,arm_matrix_instance_f16 * pDst)54 arm_status arm_mat_inverse_f16(
55   const arm_matrix_instance_f16 * pSrc,
56         arm_matrix_instance_f16 * pDst)
57 {
58   float16_t *pIn = pSrc->pData;                  /* input data matrix pointer */
59   float16_t *pOut = pDst->pData;                 /* output data matrix pointer */
60 
61   float16_t *pTmp;
62   uint32_t numRows = pSrc->numRows;              /* Number of rows in the matrix  */
63   uint32_t numCols = pSrc->numCols;              /* Number of Cols in the matrix  */
64 
65 
66   float16_t pivot = 0.0f16, newPivot=0.0f16;                /* Temporary input values  */
67   uint32_t selectedRow,pivotRow,i, rowNb, rowCnt, flag = 0U, j,column;      /* loop counters */
68   arm_status status;                             /* status of matrix inverse */
69 
70 #ifdef ARM_MATH_MATRIX_CHECK
71 
72   /* Check for matrix mismatch condition */
73   if ((pSrc->numRows != pSrc->numCols) ||
74       (pDst->numRows != pDst->numCols) ||
75       (pSrc->numRows != pDst->numRows)   )
76   {
77     /* Set status as ARM_MATH_SIZE_MISMATCH */
78     status = ARM_MATH_SIZE_MISMATCH;
79   }
80   else
81 
82 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
83 
84   {
85     /*--------------------------------------------------------------------------------------------------------------
86      * Matrix Inverse can be solved using elementary row operations.
87      *
88      *  Gauss-Jordan Method:
89      *
90      *      1. First combine the identity matrix and the input matrix separated by a bar to form an
91      *        augmented matrix as follows:
92      *                      _                  _         _         _
93      *                     |  a11  a12 | 1   0  |       |  X11 X12  |
94      *                     |           |        |   =   |           |
95      *                     |_ a21  a22 | 0   1 _|       |_ X21 X21 _|
96      *
97      *      2. In our implementation, pDst Matrix is used as identity matrix.
98      *
99      *      3. Begin with the first row. Let i = 1.
100      *
101      *      4. Check to see if the pivot for row i is zero.
102      *         The pivot is the element of the main diagonal that is on the current row.
103      *         For instance, if working with row i, then the pivot element is aii.
104      *         If the pivot is zero, exchange that row with a row below it that does not
105      *         contain a zero in column i. If this is not possible, then an inverse
106      *         to that matrix does not exist.
107      *
108      *      5. Divide every element of row i by the pivot.
109      *
110      *      6. For every row below and  row i, replace that row with the sum of that row and
111      *         a multiple of row i so that each new element in column i below row i is zero.
112      *
113      *      7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
114      *         for every element below and above the main diagonal.
115      *
116      *      8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
117      *         Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
118      *----------------------------------------------------------------------------------------------------------------*/
119 
120     /* Working pointer for destination matrix */
121     pTmp = pOut;
122 
123     /* Loop over the number of rows */
124     rowCnt = numRows;
125 
126     /* Making the destination matrix as identity matrix */
127     while (rowCnt > 0U)
128     {
129       /* Writing all zeroes in lower triangle of the destination matrix */
130       j = numRows - rowCnt;
131       while (j > 0U)
132       {
133         *pTmp++ = 0.0f16;
134         j--;
135       }
136 
137       /* Writing all ones in the diagonal of the destination matrix */
138       *pTmp++ = 1.0f16;
139 
140       /* Writing all zeroes in upper triangle of the destination matrix */
141       j = rowCnt - 1U;
142       while (j > 0U)
143       {
144         *pTmp++ = 0.0f16;
145         j--;
146       }
147 
148       /* Decrement loop counter */
149       rowCnt--;
150     }
151 
152     /* Loop over the number of columns of the input matrix.
153        All the elements in each column are processed by the row operations */
154 
155     /* Index modifier to navigate through the columns */
156     for(column = 0U; column < numCols; column++)
157     {
158       /* Check if the pivot element is zero..
159        * If it is zero then interchange the row with non zero row below.
160        * If there is no non zero element to replace in the rows below,
161        * then the matrix is Singular. */
162 
163       pivotRow = column;
164 
165       /* Temporary variable to hold the pivot value */
166       pTmp = ELEM(pSrc,column,column) ;
167       pivot = *pTmp;
168       selectedRow = column;
169 
170 
171         /* Loop over the number rows present below */
172 
173       for (rowNb = column+1; rowNb < numRows; rowNb++)
174       {
175           /* Update the input and destination pointers */
176           pTmp = ELEM(pSrc,rowNb,column);
177           newPivot = *pTmp;
178           if (fabsf((float32_t)newPivot) > fabsf((float32_t)pivot))
179           {
180             selectedRow = rowNb;
181             pivot = newPivot;
182           }
183 
184       }
185 
186           /* Check if there is a non zero pivot element to
187            * replace in the rows below */
188       if (((_Float16)pivot != 0.0f16) && (selectedRow != column))
189       {
190             /* Loop over number of columns
191              * to the right of the pilot element */
192 
193             SWAP_ROWS_F16(pSrc,column, pivotRow,selectedRow);
194             SWAP_ROWS_F16(pDst,0, pivotRow,selectedRow);
195 
196 
197             /* Flag to indicate whether exchange is done or not */
198             flag = 1U;
199 
200       }
201 
202 
203       /* Update the status if the matrix is singular */
204       if ((flag != 1U) && ((_Float16)pivot == 0.0f16))
205       {
206         return ARM_MATH_SINGULAR;
207       }
208 
209 
210       /* Pivot element of the row */
211       pivot = 1.0f16 / (_Float16)pivot;
212 
213       SCALE_ROW_F16(pSrc,column,pivot,pivotRow);
214       SCALE_ROW_F16(pDst,0,pivot,pivotRow);
215 
216 
217       /* Replace the rows with the sum of that row and a multiple of row i
218        * so that each new element in column i above row i is zero.*/
219 
220       rowNb = 0;
221       for (;rowNb < pivotRow; rowNb++)
222       {
223            pTmp = ELEM(pSrc,rowNb,column) ;
224            pivot = *pTmp;
225 
226            MAS_ROW_F16(column,pSrc,rowNb,pivot,pSrc,pivotRow);
227            MAS_ROW_F16(0     ,pDst,rowNb,pivot,pDst,pivotRow);
228 
229 
230       }
231 
232       for (rowNb = pivotRow + 1; rowNb < numRows; rowNb++)
233       {
234            pTmp = ELEM(pSrc,rowNb,column) ;
235            pivot = *pTmp;
236 
237            MAS_ROW_F16(column,pSrc,rowNb,pivot,pSrc,pivotRow);
238            MAS_ROW_F16(0     ,pDst,rowNb,pivot,pDst,pivotRow);
239 
240       }
241 
242     }
243 
244     /* Set status as ARM_MATH_SUCCESS */
245     status = ARM_MATH_SUCCESS;
246 
247     if ((flag != 1U) && ((_Float16)pivot == 0.0f16))
248     {
249       pIn = pSrc->pData;
250       for (i = 0; i < numRows * numCols; i++)
251       {
252         if ((_Float16)pIn[i] != 0.0f16)
253             break;
254       }
255 
256       if (i == numRows * numCols)
257         status = ARM_MATH_SINGULAR;
258     }
259   }
260 
261   /* Return to application */
262   return (status);
263 }
264 /**
265   @} end of MatrixInv group
266  */
267 
268 #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
269 
270