1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_vlog_q31
4 * Description: Q31 vector log
5 *
6 * $Date: 19 July 2021
7 * $Revision: V1.10.0
8 *
9 * Target Processor: Cortex-M and Cortex-A cores
10 * -------------------------------------------------------------------- */
11 /*
12 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29 #include "dsp/fast_math_functions.h"
30
31 #define LOG_Q31_ACCURACY 31
32
33 /* Bit to represent the normalization factor
34 It is Ceiling[Log2[LOG_Q31_ACCURACY]] of the previous value.
35 The Log2 algorithm is assuming that the value x is
36 1 <= x < 2.
37
38 But input value could be as small a 2^-LOG_Q31_ACCURACY
39 which would give an integer part of -31.
40 */
41 #define LOG_Q31_INTEGER_PART 5
42
43 /* 2.0 in Q30 */
44 #define LOQ_Q31_THRESHOLD (1u << LOG_Q31_ACCURACY)
45
46 /* HALF */
47 #define LOQ_Q31_Q32_HALF LOQ_Q31_THRESHOLD
48 #define LOQ_Q31_Q30_HALF (LOQ_Q31_Q32_HALF >> 2)
49
50
51 /* 1.0 / Log2[Exp[1]] in Q31 */
52 #define LOG_Q31_INVLOG2EXP 0x58b90bfbuL
53
54 /* Clay Turner algorithm */
arm_scalar_log_q31(uint32_t src)55 static uint32_t arm_scalar_log_q31(uint32_t src)
56 {
57 int32_t i;
58
59 int32_t c = __CLZ(src);
60 int32_t normalization=0;
61
62 /* 0.5 in q26 */
63 uint32_t inc = LOQ_Q31_Q32_HALF >> (LOG_Q31_INTEGER_PART + 1);
64
65 /* Will compute y = log2(x) for 1 <= x < 2.0 */
66 uint32_t x;
67
68 /* q26 */
69 uint32_t y=0;
70
71 /* q26 */
72 int32_t tmp;
73
74
75 /* Normalize and convert to q30 format */
76 x = src;
77 if ((c-1) < 0)
78 {
79 x = x >> (1-c);
80 }
81 else
82 {
83 x = x << (c-1);
84 }
85 normalization = c;
86
87 /* Compute the Log2. Result is in q26
88 because we know 0 <= y < 1.0 but
89 do not want to use q32 to allow
90 following computation with less instructions.
91 */
92 for(i = 0; i < LOG_Q31_ACCURACY ; i++)
93 {
94 x = ((int64_t)x*x) >> (LOG_Q31_ACCURACY - 1);
95
96 if (x >= LOQ_Q31_THRESHOLD)
97 {
98 y += inc ;
99 x = x >> 1;
100 }
101 inc = inc >> 1;
102 }
103
104 /*
105 Convert the Log2 to Log and apply normalization.
106 We compute (y - normalisation) * (1 / Log2[e]).
107
108 */
109
110 /* q26 */
111 tmp = (int32_t)y - (normalization << (LOG_Q31_ACCURACY - LOG_Q31_INTEGER_PART));
112
113
114 /* q5.26 */
115 y = ((int64_t)tmp * LOG_Q31_INVLOG2EXP) >> 31;
116
117
118
119 return(y);
120
121 }
122
123 #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
124
125
vlogq_q31(q31x4_t src)126 q31x4_t vlogq_q31(q31x4_t src)
127 {
128
129 int32_t i;
130
131 int32x4_t c = vclzq_s32(src);
132 int32x4_t normalization = c;
133
134
135 /* 0.5 in q11 */
136 uint32_t inc = LOQ_Q31_Q32_HALF >> (LOG_Q31_INTEGER_PART + 1);
137
138 /* Will compute y = log2(x) for 1 <= x < 2.0 */
139 uint32x4_t x;
140
141
142 /* q11 */
143 uint32x4_t y = vdupq_n_u32(0);
144
145
146 /* q11 */
147 int32x4_t vtmp;
148
149
150 mve_pred16_t p;
151
152 /* Normalize and convert to q14 format */
153
154
155 vtmp = vsubq_n_s32(c,1);
156 x = vshlq_u32((uint32x4_t)src,vtmp);
157
158
159 /* Compute the Log2. Result is in Q26
160 because we know 0 <= y < 1.0 but
161 do not want to use Q32 to allow
162 following computation with less instructions.
163 */
164 for(i = 0; i < LOG_Q31_ACCURACY ; i++)
165 {
166 x = vmulhq_u32(x,x);
167 x = vshlq_n_u32(x,2);
168
169
170 p = vcmphiq_u32(x,vdupq_n_u32(LOQ_Q31_THRESHOLD));
171 y = vaddq_m_n_u32(y, y,inc,p);
172 x = vshrq_m_n_u32(x,x,1,p);
173
174 inc = inc >> 1;
175 }
176
177
178 /*
179 Convert the Log2 to Log and apply normalization.
180 We compute (y - normalisation) * (1 / Log2[e]).
181
182 */
183
184 /* q11 */
185 // tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
186 vtmp = vshlq_n_s32(normalization,LOG_Q31_ACCURACY - LOG_Q31_INTEGER_PART);
187 vtmp = vsubq_s32((int32x4_t)y,vtmp);
188
189
190
191 /* q4.11 */
192 // y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
193 vtmp = vqdmulhq_n_s32(vtmp,LOG_Q31_INVLOG2EXP);
194
195 return(vtmp);
196 }
197 #endif
198
199 /**
200 @ingroup groupFastMath
201 */
202
203 /**
204 @addtogroup vlog
205 @{
206 */
207
208 /**
209 @brief q31 vector of log values.
210 @param[in] pSrc points to the input vector in q31
211 @param[out] pDst points to the output vector q5.26
212 @param[in] blockSize number of samples in each vector
213 */
arm_vlog_q31(const q31_t * pSrc,q31_t * pDst,uint32_t blockSize)214 void arm_vlog_q31(
215 const q31_t * pSrc,
216 q31_t * pDst,
217 uint32_t blockSize)
218 {
219 uint32_t blkCnt; /* loop counters */
220
221 #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
222
223 q31x4_t src;
224 q31x4_t dst;
225
226 blkCnt = blockSize >> 2;
227
228 while (blkCnt > 0U)
229 {
230 src = vld1q(pSrc);
231 dst = vlogq_q31(src);
232 vst1q(pDst, dst);
233
234 pSrc += 4;
235 pDst += 4;
236 /* Decrement loop counter */
237 blkCnt--;
238 }
239
240 blkCnt = blockSize & 3;
241 #else
242 blkCnt = blockSize;
243 #endif
244
245 while (blkCnt > 0U)
246 {
247 *pDst++=arm_scalar_log_q31(*pSrc++);
248
249 blkCnt--;
250 }
251
252 }
253
254 /**
255 @} end of vlog group
256 */
257